JP2006339051A - Electrically charged particle application apparatus - Google Patents

Electrically charged particle application apparatus Download PDF

Info

Publication number
JP2006339051A
JP2006339051A JP2005163366A JP2005163366A JP2006339051A JP 2006339051 A JP2006339051 A JP 2006339051A JP 2005163366 A JP2005163366 A JP 2005163366A JP 2005163366 A JP2005163366 A JP 2005163366A JP 2006339051 A JP2006339051 A JP 2006339051A
Authority
JP
Japan
Prior art keywords
charged particle
sample
gas
radical
electrically charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005163366A
Other languages
Japanese (ja)
Inventor
Takeshi Miyajima
猛志 宮嶋
Akihiko Ueda
壮彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005163366A priority Critical patent/JP2006339051A/en
Publication of JP2006339051A publication Critical patent/JP2006339051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent physical damage to a vacuum chamber by preventing build up of charge and electrifying on a surface of an object regardless of an irradiated portion or non-irradiated portion, in an electrically charged particle application apparatus carrying out analysis of the object or drawing of a pattern on the surface of the object by radiating charged particles such as an electron beam 2 on the object such as a sample 7 installed in the vacuum chamber 6. <P>SOLUTION: An electrically charged particle application apparatus includes a radical generating means for generating radical 19 coming into contact with a charged particle irradiated surface of the object such as the sample 7 in the vicinity of the object, for example, a gas supplying means such as a gas supplying source 14 and a gas conducting port 16 supplying gas 15 so that it comes into contact with the electrically charged particle irradiated surface of the object, and a UV radiating apparatus 18 radiating ultra violet rays 17 on the electrically charged particles irradiated surface of the object. Thus, the charge on the electrically charged particle irradiated surface of the object is speedily neutralized by the radical 19 and the build up of the charge and the electrifying can be prevented regardless of the irradiated portion or the non-irradiated portion of the charged particles. On the other hand, since the radical 19 is generated in the vicinity of the object and disappears in a short period of time, the physical damage to the vacuum chamber 6 can be prevented by the radical 19. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、対象物に荷電粒子を照射して対象物の分析あるいはその表面へのパターンの描画を行う荷電粒子応用装置に関し、特に対象物表面でのチャージアップを防止する技術に関するものである。   The present invention relates to a charged particle application apparatus that irradiates an object with charged particles and analyzes the object or draws a pattern on the surface thereof, and particularly relates to a technique for preventing charge-up on the surface of the object.

荷電粒子応用装置の一つである走査型電子顕微鏡(SEM:Scanning Electron Microscope)を図4に示す。一般に走査型電子顕微鏡は、電子銃1から出射した電子ビーム(荷電粒子)2を集束レンズ3で集束し、偏向板4で偏向し、対物レンズ5によって、真空チャンバ6内に設置された半導体ウエハや半導体チップ等のサンプル7上に結像し、サンプル7より放出される2次電子8を2次電子検出器9で検出するように構成されており、サンプル7上を電子ビーム2で走査した際に検出される2次電子8に基づいて、図示しない装置で画像処理し、サンプル表面の凹凸パターンを画面上に表示する。10は真空チャンバ6内を所定の真空度となるように排気する真空ポンプ、11はサンプル台である。   FIG. 4 shows a scanning electron microscope (SEM) which is one of charged particle application apparatuses. In general, in a scanning electron microscope, an electron beam (charged particle) 2 emitted from an electron gun 1 is focused by a focusing lens 3, deflected by a deflecting plate 4, and a semiconductor wafer placed in a vacuum chamber 6 by an objective lens 5. The secondary electron 8 is focused on the sample 7 such as a semiconductor chip, and the secondary electron 8 emitted from the sample 7 is detected by the secondary electron detector 9. The sample 7 is scanned with the electron beam 2. Based on the secondary electrons 8 detected at the time, image processing is performed by a device (not shown), and the uneven pattern on the sample surface is displayed on the screen. Reference numeral 10 denotes a vacuum pump that exhausts the inside of the vacuum chamber 6 to a predetermined degree of vacuum, and 11 denotes a sample stage.

ところが従来の走査型電子顕微鏡では、例えばSiウエハ上に形成した絶縁膜の形状を観察する場合などに、電子銃1によって照射された電子が基板側に流れ込まず、絶縁膜の表面が帯電(チャージ)してしまい、2次電子像が見えなくなることがある。これを避けるために、サンプル表面にAuやCu等の導電材料を薄く(10nm程度)蒸着して観察する方法が古くから用いられているが、半導体集積回路素子の形成に本来は必要でないAu、Cu等の蒸着工程を要することになり、拡散中の製品を観察するインライン観察ができない。   However, in the conventional scanning electron microscope, for example, when observing the shape of the insulating film formed on the Si wafer, the electrons irradiated by the electron gun 1 do not flow into the substrate side, and the surface of the insulating film is charged (charged). The secondary electron image may become invisible. In order to avoid this, a method of depositing and observing a conductive material such as Au or Cu thinly (about 10 nm) on the sample surface has been used for a long time, but Au, which is not originally necessary for forming a semiconductor integrated circuit element, An evaporation process of Cu or the like is required, and in-line observation for observing the product being diffused is not possible.

また走査型電子顕微鏡をはじめとする荷電粒子応用装置では、基板表面の例えばフォトレジストなどの絶縁物の領域に入射電荷が蓄積され、絶縁物に高電界が発生し、基板上に既に形成されている電子回路が破壊されることがある。   In charged particle application equipment such as a scanning electron microscope, incident charges are accumulated in an insulating region such as a photoresist on the surface of the substrate, and a high electric field is generated in the insulating material. The electronic circuit may be destroyed.

そこで、図5に示した走査型電子顕微鏡などにおいて、プラズマ発生装置12で発生させたプラズマ13を、荷電粒子が照射されるサンプル表面に接触するように導入することにより、入射電荷をサンプル表面で中和し、蓄積を防止することが提案されている(特許文献1)。
特開平7−45227号公報
Therefore, in the scanning electron microscope shown in FIG. 5 or the like, the plasma 13 generated by the plasma generator 12 is introduced so as to come into contact with the sample surface irradiated with the charged particles, so that the incident charge is generated on the sample surface. It has been proposed to neutralize and prevent accumulation (Patent Document 1).
Japanese Patent Laid-Open No. 7-45227

しかしながら、上記したようにプラズマを導入する方式では、荷電粒子を照射する部位での電荷の蓄積、帯電は避けられるものの、それ以外の部位にプラズマが拡散してサンプル(対象物)に電気的ダメージ(つまり非照射部位への電荷蓄積、帯電)を与える他、真空チャンバの内壁への物理的ダメージ(ラジカルによるスパッタ等)、それによる重金属などの汚染も懸念される。   However, in the method of introducing plasma as described above, charge accumulation and charging at the site where charged particles are irradiated can be avoided, but plasma diffuses to other sites and causes electrical damage to the sample (object). In addition to giving charge accumulation (charging to non-irradiated sites), physical damage to the inner wall of the vacuum chamber (sputtering by radicals, etc.), and contamination by heavy metals, etc. are also a concern.

本発明は、上記問題に鑑み、対象物表面での電荷の蓄積、帯電を荷電粒子の照射部位、非照射部位に関わらず防止することができ、真空チャンバの物理的ダメージも防止できる荷電粒子応用装置を提供することを目的とするものである。   In view of the above problems, the present invention can prevent charge accumulation and charging on the surface of an object regardless of whether the charged particle is irradiated or non-irradiated, and can also prevent physical damage in a vacuum chamber. The object is to provide an apparatus.

上記課題を解決するために本発明は、真空チャンバ内に設置した対象物に荷電粒子を照射して対象物の分析あるいは対象物表面へのパターンの描画を行う荷電粒子応用装置において、前記対象物の荷電粒子照射面に接触するラジカルを前記対象物の近傍で発生させるラジカル発生手段を設けたことを特徴とする。これによれば、対象物の荷電粒子照射面上の電荷をラジカルによって速やかに中和することができ、荷電粒子の照射部位、非照射部位に関わらず電荷の蓄積、帯電を防止できる。一方でラジカルは対象物の近傍で発生するが、ラジカルとして存在できる時間が短く、真空チャンバの側壁まで到達することができないため、ラジカルによる真空チャンバの物理的ダメージも防止できる。   In order to solve the above-described problems, the present invention provides a charged particle application apparatus for performing analysis of an object or drawing a pattern on the surface of an object by irradiating the object placed in a vacuum chamber with charged particles. A radical generating means for generating radicals in contact with the charged particle irradiation surface in the vicinity of the object is provided. According to this, the charge on the charged particle irradiation surface of the target can be quickly neutralized by radicals, and charge accumulation and charging can be prevented regardless of whether the charged particle is irradiated or not. On the other hand, radicals are generated in the vicinity of the object, but since the time in which they can exist as radicals is short and the side walls of the vacuum chamber cannot be reached, physical damage to the vacuum chamber due to radicals can also be prevented.

ラジカル発生手段は、対象物の荷電粒子照射面に接触するようにガスを供給するガス供給手段と、前記対象物の荷電粒子照射面に紫外線を照射するUV照射装置とで構成することができる。荷電粒子照射面に供給したガスをその荷電粒子照射面でラジカル化して中和に使用することになる。   The radical generating means can be composed of a gas supply means for supplying a gas so as to come into contact with the charged particle irradiation surface of the object and a UV irradiation apparatus for irradiating the charged particle irradiation surface of the object with ultraviolet rays. The gas supplied to the charged particle irradiation surface is radicalized on the charged particle irradiation surface and used for neutralization.

ガスが酸素とオゾンとの内の一方、あるいは双方の混合物であり、UV照射装置が波長185nmおよび254nmの紫外線を照射するのが好ましい。これにより発生する酸素ラジカルは反応性が高いからである。   The gas is preferably one of oxygen and ozone, or a mixture of both, and the UV irradiation device irradiates ultraviolet rays having wavelengths of 185 nm and 254 nm. This is because the oxygen radicals generated thereby are highly reactive.

本発明の荷電粒子応用装置は、対象物の荷電粒子照射面上の電荷をラジカルによって速やかに中和できるので、荷電粒子の照射部位、非照射部位に関わらず電荷の蓄積、帯電を防止することができ、前記ラジカルによる真空チャンバの物理的ダメージ、それによる重金属などの汚染も防止できる。   The charged particle application apparatus of the present invention can quickly neutralize the charge on the charged particle irradiation surface of the target object with radicals, thereby preventing charge accumulation and charging regardless of whether the charged particle is irradiated or not. It is possible to prevent physical damage to the vacuum chamber due to the radicals, and contamination of heavy metals and the like.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の第1実施形態における荷電粒子応用装置である、走査型電子顕微鏡の構成を示す断面図である。先に図4を用いて説明した従来のものと同様の作用を有する部材には図4と同じ符号を付す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the configuration of a scanning electron microscope, which is a charged particle application apparatus according to the first embodiment of the present invention. Members having the same functions as those of the prior art described above with reference to FIG. 4 are denoted by the same reference numerals as those in FIG.

図1に示す走査型電子顕微鏡は、半導体ウエハや半導体チップ等のサンプル7が設置される真空チャンバ6と電子銃1との間に、電子銃1から出射された電子ビーム(荷電粒子)2を集束する集束レンズ3と、前記電子ビーム2を偏向する偏向板4と、前記電子ビーム2をサンプル7上に結像する対物レンズ5とを配置し、真空チャンバ6内に、サンプル7を載置するためのサンプル台11と、サンプル7より放出される2次電子8を検出する2次電子検出器9とを配置し、真空チャンバ6外に、槽内を所定の真空度となるように排気する真空ポンプ10を設けている。   1 scans an electron beam (charged particle) 2 emitted from an electron gun 1 between a vacuum chamber 6 in which a sample 7 such as a semiconductor wafer or a semiconductor chip is installed and an electron gun 1. A focusing lens 3 for focusing, a deflection plate 4 for deflecting the electron beam 2, and an objective lens 5 for imaging the electron beam 2 on the sample 7 are arranged, and the sample 7 is placed in the vacuum chamber 6. A sample stage 11 and a secondary electron detector 9 for detecting the secondary electrons 8 emitted from the sample 7 are disposed outside the vacuum chamber 6 so that the inside of the tank has a predetermined degree of vacuum. A vacuum pump 10 is provided.

この走査型電子顕微鏡が従来のものと相違するのは、真空チャンバ6に、ガス供給源14に接続されてサンプル7表面に接触するようにガス15を導入するガス導入口16と、サンプル7表面に紫外線17を照射するUV照射装置18とを配置して、サンプル7表面に接触するラジカル19をサンプル7表面の近傍で発生できるようにした点である。ガス15としてはオゾンなどの反応性ガス、具体的には酸素とオゾンとの混合ガス、酸素ガスとオゾンガスとの内の一方を好適に使用できる。   This scanning electron microscope differs from the conventional one in that a gas inlet 16 for introducing a gas 15 into the vacuum chamber 6 so as to be in contact with the surface of the sample 7 connected to the gas supply source 14 and the surface of the sample 7 A UV irradiation device 18 that irradiates ultraviolet rays 17 is disposed on the surface of the sample 7 so that radicals 19 that contact the surface of the sample 7 can be generated in the vicinity of the surface of the sample 7. As the gas 15, a reactive gas such as ozone, specifically, a mixed gas of oxygen and ozone, or one of oxygen gas and ozone gas can be preferably used.

走査型電子顕微鏡によってサンプル7表面を観察する際の動作を説明する。
真空チャンバ6内を真空ポンプ10によって所定の真空度、たとえば0.1〜30Pa程度となるように排気し、排気完了後にサンプル7を図示しない搬入機構によりサンプル台13上に設置する。
The operation when observing the surface of the sample 7 with the scanning electron microscope will be described.
The inside of the vacuum chamber 6 is evacuated by a vacuum pump 10 to a predetermined degree of vacuum, for example, about 0.1 to 30 Pa, and after completion of evacuation, the sample 7 is placed on the sample table 13 by a loading mechanism (not shown).

次に、ガス供給源14よりガス導入口16を通じてガス15をサンプル7表面に均等に分布するように供給しつつ、槽内の真空度を真空ポンプ10により0.1〜30Pa程度に調節する。次に、UV照射装置18を点灯して波長185nmおよび254nmの紫外線17をサンプル7表面に照射する。   Next, while the gas 15 is supplied from the gas supply source 14 through the gas inlet 16 so as to be evenly distributed on the surface of the sample 7, the degree of vacuum in the tank is adjusted to about 0.1 to 30 Pa by the vacuum pump 10. Next, the UV irradiation device 18 is turned on to irradiate the surface of the sample 7 with ultraviolet rays 17 having wavelengths of 185 nm and 254 nm.

このことにより、ガス15中の酸素に紫外線185nmが吸収されてオゾンが発生する一方で、オゾンに紫外線254nmが吸収されて酸素ラジカル19が生成する。なおこの光励起反応がサンプル7表面で起こるようにガス導入口16、UV照射装置18を配置しておく必要がある。ここではガス導入口16はサンプル7表面に沿う方向のガス流れを作るようにサンプル台13の側方に開口し、UV照射装置18はサンプル台13の斜め上方に複数個配置している。UV照射装置18は、紫外線をサンプル7の全面に照射する配置でもよいし、局所的に、特に観察部分のみに照射する配置でもよい。   As a result, the ultraviolet rays 185 nm are absorbed by oxygen in the gas 15 to generate ozone, while the ultraviolet rays 254 nm are absorbed by ozone and oxygen radicals 19 are generated. In addition, it is necessary to arrange | position the gas inlet 16 and the UV irradiation apparatus 18 so that this photoexcitation reaction may occur on the sample 7 surface. Here, the gas inlet 16 opens to the side of the sample stage 13 so as to create a gas flow in the direction along the surface of the sample 7, and a plurality of UV irradiation devices 18 are arranged obliquely above the sample stage 13. The UV irradiation device 18 may be arranged to irradiate the entire surface of the sample 7 with ultraviolet rays, or may be arranged to irradiate only the observation portion locally.

この状態で、電子銃1より電子ビーム(荷電粒子)2を出射して、偏向板4、対物レンズ5を通してサンプル7上を走査し、サンプル7より放出される2次電子8を2次電子検出器9で検出し、図示しない装置で画像処理して、サンプル7上に所定パターンで形成されたシリコン酸化膜などの絶縁膜の表面の凹凸パターンの画像を画面上に表示させる。   In this state, an electron beam (charged particle) 2 is emitted from the electron gun 1 and scanned on the sample 7 through the deflection plate 4 and the objective lens 5, and secondary electrons 8 emitted from the sample 7 are detected as secondary electrons. The image is detected by the device 9 and subjected to image processing by a device (not shown), and an image of the concavo-convex pattern on the surface of the insulating film such as a silicon oxide film formed on the sample 7 in a predetermined pattern is displayed on the screen.

その際に、上記したように励起されサンプル7表面に接触している酸素ラジカル19(励起状態の酸素原子)が、サンプル7表面に入射した荷電粒子を吸着して電荷を中和するため、サンプル7表面での電荷の蓄積、帯電が回避されることとなる。その結果、サンプル7表面の凹凸パターンの画像が鮮明に表示される。上述した従来装置で発生していた電荷蓄積による不都合、たとえば、電荷による電界が基板側に集中し、その強度によってはサンプル7表面の絶縁膜が破壊することなどは防ぐことができる。   At that time, the oxygen radicals 19 (excited oxygen atoms) excited as described above and in contact with the surface of the sample 7 adsorb charged particles incident on the surface of the sample 7 to neutralize the charge. 7 Accumulation of charge on the surface and charging are avoided. As a result, the image of the uneven pattern on the surface of the sample 7 is clearly displayed. It is possible to prevent inconvenience due to charge accumulation that has occurred in the above-described conventional apparatus, for example, electric field due to charge is concentrated on the substrate side, and depending on the strength, the insulating film on the surface of the sample 7 can be destroyed.

なおこの実施形態では、ガス導入口16を通じて常にガス15を導入し、UV照射装置18によって常にサンプル7表面を照射しているように表現したが、この処理は一定間隔(たとえば常時ガス導入、紫外線間欠照射)でもよいし、観察終了後だけでもよい。   In this embodiment, the gas 15 is always introduced through the gas introduction port 16 and the surface of the sample 7 is always irradiated by the UV irradiation device 18. (Intermittent irradiation) or just after the observation is complete.

UV照射装置18は、図2に示すように、互いに異なる波長の紫外線を発生する2種類のUVランプ18a,18bを組み合わせて、一方のUVランプ18aで紫外線185nmを発光し、もう一方のUVランプ18bで紫外線254nmを発光するのが都合よい。2種類のUVランプ18a,18bは図示したように複数個ずつ用いて交互に配列してもよいし、1個ずつであってもよい。また、それぞれの波長毎に独立したUV照射装置として構成して並べてもよいし、石英製低圧水銀ランプなどのように両波長を同時に発生可能なランプを用いてもよい。   As shown in FIG. 2, the UV irradiation device 18 combines two types of UV lamps 18a and 18b that generate ultraviolet rays having different wavelengths, and emits ultraviolet rays of 185 nm with one UV lamp 18a, and the other UV lamp. It is convenient to emit ultraviolet light 254 nm at 18b. The two types of UV lamps 18a and 18b may be arranged alternately by using a plurality of UV lamps 18a and 18b as shown in the figure. Moreover, you may comprise and arrange as an independent UV irradiation apparatus for each wavelength, and you may use the lamp | ramp which can generate | occur | produce both wavelengths simultaneously like a quartz low pressure mercury lamp.

図3は本発明の第2実施形態における荷電粒子応用装置である、収束イオンビーム描画装置の構成を示す断面図である。
この収束イオンビーム描画装置が上記した走査型電子顕微鏡と相違するのは、電子銃1,2次電子検出器9に代えてイオン源20、たとえばガリウムイオン源が設置されていて、このイオン源20から放射し、加速電極(図示せず)によって加速したイオンビーム21をサンプル7上に入射させて、シリコン酸化膜などの絶縁膜上に微細なパターンを描画する点である。
FIG. 3 is a cross-sectional view showing a configuration of a focused ion beam drawing apparatus which is a charged particle application apparatus according to the second embodiment of the present invention.
This focused ion beam drawing apparatus is different from the above-described scanning electron microscope in that an ion source 20, for example, a gallium ion source is installed in place of the electron gun 1 and the secondary electron detector 9, and this ion source 20 The ion beam 21 radiated from and accelerated by an acceleration electrode (not shown) is incident on the sample 7 to draw a fine pattern on an insulating film such as a silicon oxide film.

この収束イオンビーム描画装置でも、ガス供給源14,ガス導入口16より供給するガス15とUV照射装置18より照射する紫外線17とによって、サンプル7表面でラジカルを発生させることにより、イオンビーム21にて入射した荷電粒子をサンプル7表面で中和できるので、極微細なパターンを精度良く描画することができる。従来装置では、絶縁膜表面が帯電することにより、その電界の影響をイオンビームが受けることとなり、微細なパターンを精度良く作成するのが困難であったのに較べて優れるものである。   Also in this focused ion beam drawing apparatus, radicals are generated on the surface of the sample 7 by the gas 15 supplied from the gas supply source 14 and the gas introduction port 16 and the ultraviolet rays 17 irradiated from the UV irradiation apparatus 18, thereby generating the ion beam 21. Since the charged particles incident on the sample 7 can be neutralized on the surface of the sample 7, an extremely fine pattern can be drawn with high accuracy. In the conventional apparatus, when the surface of the insulating film is charged, the ion beam is affected by the electric field, which is superior to the fact that it is difficult to accurately produce a fine pattern.

この収束イオンビーム描画装置でも、ガス15の導入および紫外線17の照射を常時行ってもよいし、一定間隔あるいは観察終了後だけ行ってもよい。
なお上記した各実施形態では、表面絶縁物がシリコン酸化膜である場合について示したが、通常良く用いられているシリコン窒化膜、シリコン酸窒化膜、高融点金属酸化膜、フォトレジスト等の感光性有機高分子膜であっても、同様に処理して同様の効果を得ることができる。
Also in this focused ion beam drawing apparatus, the introduction of the gas 15 and the irradiation of the ultraviolet rays 17 may be performed constantly, or may be performed only at regular intervals or after the end of observation.
In each of the above-described embodiments, the case where the surface insulator is a silicon oxide film has been described. However, a photosensitivity such as a silicon nitride film, a silicon oxynitride film, a refractory metal oxide film, a photoresist, or the like that is commonly used is used. Even if it is an organic polymer film | membrane, it can process similarly and can acquire the same effect.

また、走査型電子顕微鏡を荷電粒子応用分析装置の一例として挙げ、収束イオンビーム描画装置を荷電粒子応用描画装置の一例として挙げて説明したが、これらに限定されない。荷電粒子応用分析装置は、透過型電子顕微鏡(TEM:Transmission Electron Microscope)、オージェ電子分光装置(AES:Auger Electron Spectroscopy)、2次イオン質量分析機(SIMS:Secondary Ion Mass Spectroscopy)等の、電子等の荷電粒子を用いて表面を分析する装置であってもよく、また荷電粒子応用描画装置は電子ビーム描画装置であってもよく、いずれも、上述したのと同様の作用、効果を奏する。   Moreover, although the scanning electron microscope has been described as an example of a charged particle applied analyzer and the focused ion beam drawing apparatus is described as an example of a charged particle applied drawing apparatus, the invention is not limited thereto. Charged particle application analyzers include transmission electron microscope (TEM), Auger Electron Spectroscopy (AES), secondary ion mass spectrometer (SIMS), etc. The charged particle application drawing apparatus may be an electron beam drawing apparatus, and both have the same operations and effects as described above.

さらに本発明の装置構造を応用して、電子銃1やイオン源20からの荷電粒子が原因となってサンプル表面に付着する有機系コンタミネーションの除去も可能である。これは、UVによって有機化合物の結合が切断されることを利用するもので、UV照射面の有機化合物はC,H,O,Nラジカルなどのフリーラジカルや、C,H,O,Nを含んだ励起状態の分子に変化するが、励起状態の酸素原子(Oラジカル)は強力な酸化力を持つため、他のフリーラジカルや励起状態の分子と反応して揮発除去してしまう。このためには真空チャンバ6への導入ガスがオゾンや酸素であるのが有利であるが、他のガス、他の波長でラジカルを発生させて荷電粒子の中和に用いることは可能である。   Furthermore, by applying the apparatus structure of the present invention, it is possible to remove organic contamination adhering to the sample surface due to charged particles from the electron gun 1 or the ion source 20. This uses the fact that the bond of organic compound is cut by UV, and the organic compound on the UV irradiation surface contains free radicals such as C, H, O, N radicals, and C, H, O, N. However, the excited oxygen atom (O radical) has a strong oxidizing power, and reacts with other free radicals or excited molecules to volatilize and remove. For this purpose, it is advantageous that the gas introduced into the vacuum chamber 6 is ozone or oxygen, but it is possible to generate radicals with other gases and other wavelengths and use them for neutralization of charged particles.

本発明の荷電粒子応用装置は、半導体ウエハや半導体チップ等の分析、加工に有用である。   The charged particle application apparatus of the present invention is useful for analysis and processing of semiconductor wafers and semiconductor chips.

本発明の第1実施形態における荷電粒子応用装置である走査型電子顕微鏡の断面図Sectional drawing of the scanning electron microscope which is a charged particle application apparatus in 1st Embodiment of this invention 本発明の荷電粒子応用装置に用いられるUV照射装置の構成図Configuration diagram of UV irradiation apparatus used in charged particle application apparatus of the present invention 本発明の第2実施形態における荷電粒子応用装置である収束イオンビーム描画装置の断面図Sectional drawing of the focused ion beam drawing apparatus which is a charged particle application apparatus in 2nd Embodiment of this invention 従来の走査型電子顕微鏡の断面図Sectional view of a conventional scanning electron microscope 従来の他の走査型電子顕微鏡の断面図Sectional view of another conventional scanning electron microscope

符号の説明Explanation of symbols

1 電子銃
2 電子ビーム
6 真空チャンバ
7 サンプル
8 2次電子
9 2次電子検出器
14 ガス供給源
15 ガス
16 ガス導入口
17 紫外線
18 UV照射装置
19 ラジカル
20 イオン源
21 イオンビーム
1 Electron Gun 2 Electron Beam 6 Vacuum Chamber 7 Sample 8 Secondary Electron 9 Secondary Electron Detector
14 Gas supply source
15 gas
16 Gas inlet
17 UV
18 UV irradiation equipment
19 radical
20 Ion source
21 Ion beam

Claims (3)

真空チャンバ内に設置した対象物に荷電粒子を照射して対象物の分析あるいは対象物表面へのパターンの描画を行う荷電粒子応用装置において、前記対象物の荷電粒子照射面に接触するラジカルを前記対象物の近傍で発生させるラジカル発生手段を備えた荷電粒子応用装置。   In a charged particle application apparatus for irradiating an object placed in a vacuum chamber with charged particles to analyze the object or to draw a pattern on the object surface, the radical contacting the charged particle irradiation surface of the object is A charged particle application apparatus provided with radical generating means for generating in the vicinity of an object. ラジカル発生手段は、対象物の荷電粒子照射面に接触するようにガスを供給するガス供給手段と、前記対象物の荷電粒子照射面に紫外線を照射するUV照射装置とで構成されている請求項1記載の荷電粒子応用装置。   The radical generating means includes a gas supply means for supplying a gas so as to come into contact with a charged particle irradiation surface of an object, and a UV irradiation device for irradiating the charged particle irradiation surface of the object with ultraviolet rays. 1. The charged particle application apparatus according to 1. ガスが酸素とオゾンとの内の一方、あるいは双方の混合物であり、UV照射装置が波長185nmおよび254nmの紫外線を照射する請求項2記載の荷電粒子応用装置。   The charged particle application apparatus according to claim 2, wherein the gas is one of oxygen and ozone, or a mixture of both, and the UV irradiation apparatus irradiates ultraviolet rays having wavelengths of 185 nm and 254 nm.
JP2005163366A 2005-06-03 2005-06-03 Electrically charged particle application apparatus Pending JP2006339051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163366A JP2006339051A (en) 2005-06-03 2005-06-03 Electrically charged particle application apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163366A JP2006339051A (en) 2005-06-03 2005-06-03 Electrically charged particle application apparatus

Publications (1)

Publication Number Publication Date
JP2006339051A true JP2006339051A (en) 2006-12-14

Family

ID=37559431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163366A Pending JP2006339051A (en) 2005-06-03 2005-06-03 Electrically charged particle application apparatus

Country Status (1)

Country Link
JP (1) JP2006339051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038534A1 (en) * 2008-09-30 2010-04-08 株式会社 日立ハイテクノロジーズ Electron microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038534A1 (en) * 2008-09-30 2010-04-08 株式会社 日立ハイテクノロジーズ Electron microscope
JP2010086691A (en) * 2008-09-30 2010-04-15 Hitachi High-Technologies Corp Electron microscope
US8426811B2 (en) 2008-09-30 2013-04-23 Hitachi High-Technologies Corporation Electron microscope

Similar Documents

Publication Publication Date Title
JP5523651B2 (en) Local plasma treatment
JP5536041B2 (en) Method for detecting arcing phenomenon during wafer plasma processing by monitoring trace gas concentration, and plasma processing apparatus
US6105589A (en) Oxidative cleaning method and apparatus for electron microscopes using an air plasma as an oxygen radical source
JP4801903B2 (en) Method and apparatus for endpoint detection in etching using an electron beam
JP5758577B2 (en) High pressure charged particle beam system
US6761796B2 (en) Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing
TWI485742B (en) Charged particle beam device and semiconductor device manufacturing method using the same
US8507879B2 (en) Oxidative cleaning method and apparatus for electron microscopes using UV excitation in an oxygen radical source
JP2007501535A (en) Plasma device, gas distribution assembly for plasma device, and processing method using them
US20070284541A1 (en) Oxidative cleaning method and apparatus for electron microscopes using UV excitation in a oxygen radical source
JP2010245043A (en) Pre-aligned nozzle/skimmer
JP2007149449A (en) Device and method for preventing charged contamination
JPH10149788A (en) Manufacture and treatment of semi-conductor device, helicon wave plasma ion source, and focus ton beam device
KR100690144B1 (en) Gas analyzer using plasma
JP2005174591A (en) Charged particle beam device and charged particle beam image generation method
KR100835630B1 (en) Plasma processing device and ashing method
US20100006756A1 (en) Charged particle beam apparatus and method for generating charged particle beam image
JP2006339051A (en) Electrically charged particle application apparatus
EP3096343B1 (en) Method of imaging a sample with charged particle beam using an imaging gas
US11830705B2 (en) Plasma flood gun for charged particle apparatus
JP4283835B2 (en) Charged particle beam apparatus and device manufacturing method using the apparatus
JP3294242B2 (en) Charged beam irradiation method
JPH0745227A (en) Charged-particle-applying analyzer and charged-particle-applying plotter
JPH11126811A (en) Impurity measuring method and device
JP3847639B2 (en) Electron beam apparatus and device manufacturing method using the apparatus