JP2006334766A - Microfabrication method and microfabrication device - Google Patents

Microfabrication method and microfabrication device Download PDF

Info

Publication number
JP2006334766A
JP2006334766A JP2005165833A JP2005165833A JP2006334766A JP 2006334766 A JP2006334766 A JP 2006334766A JP 2005165833 A JP2005165833 A JP 2005165833A JP 2005165833 A JP2005165833 A JP 2005165833A JP 2006334766 A JP2006334766 A JP 2006334766A
Authority
JP
Japan
Prior art keywords
potential
metal workpiece
oxide film
electrode
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005165833A
Other languages
Japanese (ja)
Other versions
JP4529802B2 (en
Inventor
Kazuhiro Shigyo
和浩 執行
Tatsushi Sato
達志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005165833A priority Critical patent/JP4529802B2/en
Publication of JP2006334766A publication Critical patent/JP2006334766A/en
Application granted granted Critical
Publication of JP4529802B2 publication Critical patent/JP4529802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microfabricating method and a microfabricating device capable of machining from several μms to several hundreds of μms, mainly from ten and several μms to several tens of μms in manufacturing a mold used for injection molding and press molding. <P>SOLUTION: Microfabrication is carried out by continuously applying a voltage pulse Vp26 to dissolve a surface of a Fe mold material 4 after dissolving and removing a Fe<SB>2</SB>O<SB>3</SB>film 21 by applying the voltage pulse Vp26 on a surface of the Fe mold material 4 on which the Fe<SB>2</SB>O<SB>3</SB>film 21 is formed through a probe electrode 7 brought close to the surface of the Fe mold material 4 in an electrolytic solution 5 after forming the Fe<SB>2</SB>O<SB>3</SB>film 21 which is a metal oxide film on the surface of the Fe mold material 4 by electrochemical reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば射出成形やプレス成形に用いる金型の製造における微細加工方法及び微細加工装置に関するものである。   The present invention relates to a fine processing method and a fine processing apparatus in the manufacture of a mold used for, for example, injection molding or press molding.

近年の電子機器の高密度化、小型化により、微細加工に対する要請が大きくなっている。特にセンサー、アクチュエータの集積化、超小型化が重要になっている。例えば、光磁気ヘッド用のマイクロレンズでは、数μmから数百μm、主として十数μmから数十μm程度の三次元的な微細加工が要求される。このため、微細な形状を持つ電子部品を作るために、金型の製造に対する微細加工技術が必要とされている。従来、金型の加工技術として、切削や研削、研磨などの機械加工、放電加工、電解研磨加工が知られている。中でも、金型の微細加工方法として、加工寸法、加工精度に優れている放電加工による方法が広く用いられている。型彫り加工の放電加工は、放電現象を利用し、数μmから十数μm離した電極と被加工物の間でパルス性アーク放電による絶縁破壊の際に生じる電気火花(スパーク)によって被加工物から導電性物質を除去するもので、一般の機械加工が困難な材質や複雑な形状の加工に使用されている。
しかしながら、放電加工においては加工の際に生じる加工屑(スラッジ)が被加工物の加工精度を低下させてしまうという問題があった。加工中に発生するスラッジが絶縁性の加工液中に浮遊して電極と被加工物の間に介在すると、スラッジと電極の間で二次放電が生じるため、放電が一部に偏在してしまい所望の形状に加工することができない。また、この現象が更に進むと異常放電が発生する場合もある。このため、被加工物の加工精度の低下のみならず、加工面粗度の劣化や加工速度の低下も引き起こしてしまう。これらの問題を解決するために、超音波振動により加工液を流動させ、スラッジを加工部分より除去する方法が提案されている(例えば、特許文献1参照)。
Due to the recent increase in density and miniaturization of electronic devices, the demand for microfabrication has increased. In particular, integration of sensors and actuators and miniaturization are important. For example, a microlens for a magneto-optical head requires three-dimensional microfabrication of several μm to several hundred μm, mainly about several tens of μm to several tens of μm. For this reason, in order to make an electronic component having a fine shape, a fine processing technique for manufacturing a mold is required. Conventionally, machining techniques such as cutting, grinding, and polishing, electric discharge machining, and electrolytic polishing are known as mold processing techniques. Among these, a method using electric discharge machining that is excellent in machining dimensions and machining accuracy is widely used as a fine machining method of a mold. Electric discharge machining of die-sculpture processing uses the electric discharge phenomenon, and the work piece is caused by an electric spark (spark) generated in the case of dielectric breakdown due to pulsed arc discharge between the electrode and the work piece separated by several to tens of micrometers. It is used to remove materials that are difficult to machine and complex shapes.
However, in the electric discharge machining, there is a problem that machining waste (sludge) generated during machining reduces the machining accuracy of the workpiece. If sludge generated during machining floats in the insulating working fluid and is interposed between the electrode and the workpiece, secondary discharge occurs between the sludge and the electrode, and the discharge is unevenly distributed in part. It cannot be processed into a desired shape. Further, when this phenomenon further proceeds, abnormal discharge may occur. For this reason, not only the processing accuracy of the workpiece is reduced, but also the roughness of the processed surface and the processing speed are reduced. In order to solve these problems, a method has been proposed in which a machining fluid is flowed by ultrasonic vibration and sludge is removed from a machining portion (see, for example, Patent Document 1).

特開2002−337026号公報(第3頁から第4頁、図4)JP 2002-337026 A (page 3 to page 4, FIG. 4)

従来の放電加工を用いた微細加工方法においては、微細度は加工電極の寸法や加工電極と被加工物との間の距離とその制御の精度に依存する。従来の放電加工では、加工電極の最小の大きさが50μm径程度であり、65μm程度の穴あけ加工は可能である。しかしながら、放電加工においては液中でのアーク現象による熱的溶融・除去作用を利用しているため、加工面には変質層や欠陥が発生する。変質層の厚さは20μmから50μmにも達し、この変質層内にはピットやクラックがある。このため金型の成形加工時の熱変形によって、金型の欠損、割れが生じる可能性があった。
上述した変質層を除去するにはショットブラスト等による研磨が用いられるが、変質層の除去が必要であるため、加工精度は低下し、微細で複雑な形状の金型を作ることが困難であるという問題があった。
In the conventional micromachining method using electric discharge machining, the fineness depends on the dimensions of the machining electrode, the distance between the machining electrode and the workpiece, and the accuracy of the control. In the conventional electric discharge machining, the minimum size of the machining electrode is about 50 μm in diameter, and drilling of about 65 μm is possible. However, since electric discharge machining utilizes the thermal melting / removal action due to the arc phenomenon in the liquid, a deteriorated layer or a defect is generated on the machined surface. The thickness of the altered layer reaches 20 μm to 50 μm, and there are pits and cracks in the altered layer. For this reason, there is a possibility that the mold may be broken or cracked due to thermal deformation during the molding process.
Polishing by shot blasting or the like is used to remove the above-mentioned deteriorated layer. However, since it is necessary to remove the deteriorated layer, the processing accuracy is lowered and it is difficult to make a mold having a fine and complicated shape. There was a problem.

この発明は、数μmから数百μm、主として十数μmから数十μmの微細な加工が可能な金型の微細加工方法及び微細加工装置を提供することを目的としている。   An object of the present invention is to provide a mold micromachining method and a micromachining apparatus capable of performing micromachining of several μm to several hundred μm, mainly ten to several tens of μm.

上記課題を解決するために、この発明に係る微細加工方法及び微細加工装置においては、金属被加工物に金属酸化膜を形成する工程と、陽電極上に載置された前記金属被加工物と前記金属酸化膜の加工部位に近接して配設されたプローブ電極とを電解液中に配置し、前記プローブ電極に電圧パルスを印加して、前記金属酸化膜の電位を不動態溶解電位にして、かつ、前記電解液と前記金属酸化膜とを化学反応させ、前記金属酸化膜の所定の部分を除去する工程と、を有するものである。
また、陽電極上に載置された金属被加工物と前記金属被加工物の加工部位に近接して配設されたプローブ電極とを電解液中に配置し、前記プローブ電極に電圧パルス印加して、前記金属被加工物の電位を不動態溶解電位にして、かつ、前記電解液と前記金属被加工物とを化学反応させ、前記金属被加工物の所定の部分に金属酸化膜を形成する工程と、前記金属酸化膜が形成されていない前記金属被加工物の部位のみを溶解する工程と、を有するものであってもよい。
In order to solve the above problems, in the micromachining method and the micromachining apparatus according to the present invention, a step of forming a metal oxide film on a metal workpiece, and the metal workpiece placed on the positive electrode, A probe electrode disposed in the vicinity of the processing site of the metal oxide film is placed in an electrolyte solution, and a voltage pulse is applied to the probe electrode to make the potential of the metal oxide film a passive dissolution potential. And a step of chemically reacting the electrolytic solution and the metal oxide film to remove a predetermined portion of the metal oxide film.
Further, a metal workpiece placed on the positive electrode and a probe electrode arranged in the vicinity of the machining site of the metal workpiece are arranged in an electrolyte solution, and a voltage pulse is applied to the probe electrode. Then, the potential of the metal workpiece is set to a passive dissolution potential, and the electrolytic solution and the metal workpiece are chemically reacted to form a metal oxide film on a predetermined portion of the metal workpiece. And a step of dissolving only a portion of the metal workpiece on which the metal oxide film is not formed.

この発明によれば、電気化学反応を利用した加工方法を用いて、金属被加工物の表面に形成した金属酸化膜を微細加工し、エッチングマスクとして利用しているため、金属被加工物の加工時に電解液の拡散の影響を受けず、数μmから数百μmの微細な加工が可能になる。   According to the present invention, the metal oxide film formed on the surface of the metal workpiece is finely processed using a processing method using an electrochemical reaction, and is used as an etching mask. Sometimes fine processing of several μm to several hundred μm is possible without being affected by the diffusion of the electrolyte.

この発明の実施の形態として、微細加工装置を用いて、金属被加工物として例えば鉄(Fe)金型の型彫り加工の実施例に基づき図面を参照して説明する。
実施の形態1.
図1は、この発明の実施の形態1における微細加工装置の略斜視断面図を示している。図1において、X−Y軸方向に移動可能なステージ1上には、容器2が固定されており、この容器2の中には陽電極3が配置され、この陽電極3上には金属被加工物4であるFe金型材4が載置されている。容器2には電解液5が満たされており、Fe金型材4の表面の近傍には、陰電極6が配置され、さらに、Fe金型材4表面上には、近接してプローブ電極7が配設され、このプローブ電極7は、先端部を残して絶縁被覆8で保護されている。また、プローブ電極7には、Z軸方向に移動できるように駆動装置9が取付けられている。電源10と陽電極3、陰電極6及びプローブ電極7とは導電線11、12及び13により、それぞれ電気的に接続されている。容器2の電解液5中には、参照電極14が配置されており、その一端には電位計測器15が取付けられている。ステージ1、プローブ電極7の位置決め、プローブ電極7と陽電極3間及び陽電極3と陰電極6との間に印加する電圧を制御する手段は、駆動装置9、電源10および電位計測器15が信号線16、17、18及び19を介して、制御装置20によりに構成されている。
An embodiment of the present invention will be described with reference to the drawings on the basis of an example of an iron (Fe) mold engraving process as a metal workpiece using a fine processing apparatus.
Embodiment 1 FIG.
1 is a schematic perspective sectional view of a microfabrication apparatus according to Embodiment 1 of the present invention. In FIG. 1, a container 2 is fixed on a stage 1 movable in the XY axis direction, and a positive electrode 3 is disposed in the container 2, and a metal coating is placed on the positive electrode 3. An Fe mold material 4 which is a workpiece 4 is placed. The container 2 is filled with an electrolytic solution 5, a negative electrode 6 is disposed in the vicinity of the surface of the Fe mold material 4, and a probe electrode 7 is disposed on the surface of the Fe mold material 4 in close proximity. The probe electrode 7 is protected by an insulating coating 8 except for the tip. A drive device 9 is attached to the probe electrode 7 so as to be movable in the Z-axis direction. The power supply 10 and the positive electrode 3, the negative electrode 6, and the probe electrode 7 are electrically connected by conductive wires 11, 12, and 13, respectively. A reference electrode 14 is disposed in the electrolytic solution 5 of the container 2, and a potential measuring device 15 is attached to one end thereof. The means for controlling the stage 1, positioning of the probe electrode 7, and the voltage applied between the probe electrode 7 and the positive electrode 3 and between the positive electrode 3 and the negative electrode 6 include the driving device 9, the power supply 10 and the potential measuring device 15. The control device 20 is configured through signal lines 16, 17, 18 and 19.

次に、実施の形態1における微細加工方法の原理について、図1を参照して説明する。図2は、電解液5中で電位を変化させた場合にFe金型材4の表面における電位−電流特性を示すものである。まず、図2を用いて、電解液中で電圧が印加されたFe金型材4の表面に見られる電気化学現象について説明する。
ここでは、参照電極14と電位計測器15を用いてFe金型材4表面の電位を測定し、それに対応した電圧を印加した結果を次に説明する。図2においては、横軸は電位Vを、縦軸は電流Iを対数表示したものを表わしており、電位Vは参照電極14を基準にしている。なお、図2中のSHEは標準水素電位を表わす。
ここでは、電解液5としては、1L(リットル)の水にホウ酸(HBO)を16.7g、ホウ砂(Na・10HO)を2.86g溶かしたもので、pH7.2の水溶液とした実施例について説明する。容器2の電解液5中に金属被加工物4であるFe金型材4を陽電極3の上に載せ、陰電極6との間に印加する電圧を増加させた場合の電位−電流特性22は、3つの領域に分けられる。
まず、第一の領域である電位Va(本実施例では、−0.2V)までは、活性溶解領域23と呼ばれる領域で、電位Vの増加とともに電流Iが増加し、Fe金型材4からFeイオンが電解液5により溶解される。この状態でのFe金型材4の表面電位を活性溶解電位と呼ぶ。次に、第二の領域である電位VaからVbの間は、不動態形成領域24と呼ばれる領域で、電位Vが増加しても電流Iがあまり流れず一定の値となる状態であり、この領域では、Feは電解液5で溶解されず、Fe金型材4表面に不動態膜であるFeの酸化膜Fe(三二酸化鉄)膜21が形成される。この状態におけるFe金型材4の表面電位を不動態形成電位と呼ぶ。さらに、第三の領域である電位Vb(本実施例では、1.3V)以上は、不動態溶解領域25と呼ばれる領域で、電位Vを増加させると、再び電流Iが急激に増加し、Fe金型材4やFe膜21を溶解する状態になる。この状態でのFe金型材4の表面電位を不動態溶解電位と呼ぶ。
Next, the principle of the fine processing method in the first embodiment will be described with reference to FIG. FIG. 2 shows the potential-current characteristics on the surface of the Fe mold material 4 when the potential is changed in the electrolytic solution 5. First, the electrochemical phenomenon seen on the surface of the Fe mold material 4 to which a voltage is applied in the electrolytic solution will be described with reference to FIG.
Here, the result of measuring the potential on the surface of the Fe mold material 4 using the reference electrode 14 and the potential measuring device 15 and applying the corresponding voltage will be described. In FIG. 2, the horizontal axis represents the potential V and the vertical axis represents the logarithm of the current I. The potential V is based on the reference electrode 14. Note that SHE in FIG. 2 represents a standard hydrogen potential.
Here, as the electrolytic solution 5, 16.7 g of boric acid (H 2 BO 3 ) and 2.86 g of borax (Na 2 B 4 O 7 · 10 H 2 O) are dissolved in 1 L (liter) of water. An example in which the aqueous solution has a pH of 7.2 will be described. A potential-current characteristic 22 in the case where the Fe mold material 4 as the metal workpiece 4 is placed on the positive electrode 3 in the electrolytic solution 5 of the container 2 and the voltage applied to the negative electrode 6 is increased is as follows. Divided into three areas.
First, up to potential Va (-0.2 V in this embodiment), which is the first region, current I increases with increasing potential V in a region called active dissolution region 23, and Fe mold material 4 increases Fe to Fe. Ions are dissolved by the electrolytic solution 5. The surface potential of the Fe mold material 4 in this state is called an active dissolution potential. Next, between the potentials Va and Vb, which is the second region, a region called a passive formation region 24 is a state in which the current I does not flow so much even when the potential V increases and becomes a constant value. In the region, Fe is not dissolved by the electrolytic solution 5, and a Fe oxide film Fe 2 O 3 (iron trioxide) film 21 as a passive film is formed on the surface of the Fe mold material 4. The surface potential of the Fe mold material 4 in this state is called a passive formation potential. Further, the potential Vb (1.3 V in this embodiment) or more which is the third region is a region called the passive dissolution region 25. When the potential V is increased, the current I rapidly increases again, and Fe The mold material 4 and the Fe 2 O 3 film 21 are dissolved. The surface potential of the Fe mold material 4 in this state is called a passive dissolution potential.

上述の現象は、電圧印加による電解液5とFeとの化学反応により起こる。電流値は電気化学反応速度に対応しており、電流値が大きいほど、溶解速度が大きいことを示す。なお、Fe金型材4以外の金属材料についても同様の現象が起こる。ここで、電位計測器15は参照電極14が検出した電位信号を処理し、信号線19を通して制御装置20に送るものである。参照電極14としては、電気化学の分野で一般に用いられる代表的なSCE(飽和カロメル電極)やAg(銀)−AgCl(塩化銀)電極を用いる。   The above phenomenon occurs due to a chemical reaction between the electrolytic solution 5 and Fe caused by voltage application. The current value corresponds to the electrochemical reaction rate. The larger the current value, the higher the dissolution rate. The same phenomenon occurs for metal materials other than the Fe mold material 4. Here, the potential measuring device 15 processes the potential signal detected by the reference electrode 14 and sends it to the control device 20 through the signal line 19. As the reference electrode 14, a typical SCE (saturated calomel electrode) or Ag (silver) -AgCl (silver chloride) electrode generally used in the field of electrochemistry is used.

図3は、実施の形態1における微細加工方法の工程を説明する略断面図を示す。
図2で説明した電気化学反応を利用し、図3に示すFe金型材4に微細な溝加工を行う実施の形態1における微細加工方法の実施例と微細加工装置の動作について、図1の微細加工装置および図4に示す電解液中における電位−電流特性を参照して説明する。
まず、図3(a)に示す第一の工程では、Fe金型材4を電解液5が満たされた容器2に入れ、陽電極3の上に載置する(図3では、陽電極3、Fe金型材4、プローブ電極7、Fe膜21のみを表示する)。陰電極6と陽電極3との間に電源10から導電線11、12を通して、Fe金型材4の表面にかかる電位Vを図4で示す不動態形成領域24となる電位Vc(例えば、0.7Vとする)として、Fe金型材4表面を不動態形成電位の状態で保持する。この状態では、Fe金型材4表面の近傍の電解液5のみが分極されているため、Feの溶解は起こらず、電気化学反応によりFe金型材4表面に金属酸化膜であるFe膜21が反応生成される。(1)から(3)式にFe膜21が生成される反応式を示す。
Fe→Fe3++3e (1)
O→2H+O2− (2)
2Fe+3HO→Fe+6H+6e (3)
次に、図3(b)に示す第二の工程では、駆動装置9を操作して、先端が12μm径のプローブ電極7をFe膜21が形成されたFe金型材4の表面に対して約1μmの距離に近接させ、電源10からプローブ電極7と陽電極3との間に図4で示す電圧パルス26を印加する。パルス電圧を不動態溶解領域25となるVp(例えば、1Vとする)として、Fe金型材4の表面電位を不動態溶解電位にすると、プローブ電極7の先端部分が近接するFe膜21の部分のみが溶解除去され、Fe膜除去部28が形成される。(4)式にFe膜21が溶解される反応式を示す。
Fe+3H→2Fe3++3HO (4)
続いて、図3(c)に示す第三の工程では、さらに電源10からプローブ電極7と陽電極3との間に図4で示す電圧パルス26を印加する。このとき、図3(b)において、Fe膜除去部28の露出されたFe金型材4の表面が溶解除去されて、加工溝29が形成される。例えば、パルスの印加時間Tを50ns、休止時間を550nsとするパルスの周波数約1.7MHzとした場合では、Fe金型材4の溶解加工速度は500nm/sである。
第二の工程、第三の工程を繰り返しながら、ステージ1を逐次移動させると、Fe金型材4の表面に線状の加工溝29が形成される。
最後に、図3(d)に示す第四の工程では、陽電極6と陰電極3との間に電源10により、Fe金型材4の表面電位を不動態溶解領域25の電位となるよう電圧を印加し、電解液5との電気化学反応によりFe膜21のみを除去することにより、Fe金型材4上に微細な溝形状の加工が完了する。その反応式を(5)式に示す。
Fe→Fe3++3e (5)
FIG. 3 is a schematic cross-sectional view illustrating the steps of the microfabrication method in the first embodiment.
The example of the micromachining method and the operation of the micromachining apparatus in the first embodiment in which the fine groove machining is performed on the Fe mold material 4 shown in FIG. 3 using the electrochemical reaction described in FIG. This will be described with reference to the processing apparatus and the potential-current characteristics in the electrolytic solution shown in FIG.
First, in the first step shown in FIG. 3A, the Fe mold material 4 is placed in the container 2 filled with the electrolytic solution 5 and placed on the positive electrode 3 (in FIG. 3, the positive electrode 3, Only the Fe mold material 4, the probe electrode 7, and the Fe 2 O 3 film 21 are displayed). A potential Vc applied to the surface of the Fe mold material 4 through the conductive wires 11 and 12 from the power source 10 between the negative electrode 6 and the positive electrode 3 becomes a passivity forming region 24 shown in FIG. 7V), the surface of the Fe mold material 4 is held in a state of passive formation potential. In this state, since only the electrolyte solution 5 in the vicinity of the surface of the Fe mold material 4 is polarized, Fe does not dissolve, and an Fe 2 O 3 film, which is a metal oxide film, is formed on the surface of the Fe mold material 4 by an electrochemical reaction. 21 is produced by reaction. Equations (1) to (3) show reaction equations for generating the Fe 2 O 3 film 21.
Fe → Fe 3+ + 3e (1)
H 2 O → 2H + + O 2− (2)
2Fe + 3H 2 O → Fe 2 O 3 + 6H + + 6e (3)
Next, in the second step shown in FIG. 3B, the driving device 9 is operated to place the probe electrode 7 having a tip of 12 μm in diameter on the surface of the Fe mold material 4 on which the Fe 2 O 3 film 21 is formed. On the other hand, a voltage pulse 26 shown in FIG. 4 is applied between the probe electrode 7 and the positive electrode 3 from the power source 10 close to a distance of about 1 μm. When the pulse voltage is Vp (for example, 1 V) that becomes the passive dissolution region 25 and the surface potential of the Fe mold material 4 is the passive dissolution potential, the Fe 2 O 3 film 21 in which the tip portion of the probe electrode 7 is close Only the portion is dissolved and removed, and the Fe 2 O 3 film removal portion 28 is formed. (4) shows a reaction formula in which the Fe 2 O 3 film 21 is dissolved.
Fe 2 O 3 + 3H + → 2Fe 3+ + 3H 2 O (4)
3C, a voltage pulse 26 shown in FIG. 4 is further applied between the probe electrode 7 and the positive electrode 3 from the power source 10. In the third step shown in FIG. At this time, in FIG. 3B, the exposed surface of the Fe mold material 4 of the Fe 2 O 3 film removal portion 28 is dissolved and removed, and a processed groove 29 is formed. For example, when the pulse application time T is 50 ns and the pause time is 550 ns, and the pulse frequency is about 1.7 MHz, the melt processing speed of the Fe mold material 4 is 500 nm / s.
When the stage 1 is sequentially moved while repeating the second step and the third step, a linear processing groove 29 is formed on the surface of the Fe mold material 4.
Finally, in the fourth step shown in FIG. 3D, a voltage is applied between the positive electrode 6 and the negative electrode 3 so that the surface potential of the Fe mold material 4 becomes the potential of the passive dissolution region 25 by the power source 10. Is applied, and only the Fe 2 O 3 film 21 is removed by an electrochemical reaction with the electrolytic solution 5 to complete the processing of the fine groove shape on the Fe mold material 4. The reaction formula is shown in Formula (5).
Fe → Fe 3+ + 3e (5)

本実施の形態1で使用されるプローブ電極7には、駆動装置9が装着されており、その駆動装置9により、Z軸方向に駆動される。駆動は圧電素子により動作されるため、0.1nm程度のステップでZ軸方向に移動が可能で、プローブ電極7をFe金型材4表面に対して高精度に位置決めすることができる。また、容器2が搭載されたステージ1は駆動装置(図示せず)によりX、Y軸方向に移動されるとともに、角度も調整される。これら一連の操作は、信号線16から18を通じて、制御装置20により行われる。ここで、プローブ電極7は、電解液5中で使用されるため、プローブ材料には腐食されないPt(白金)やAu(金)などの貴金属製が使用される。また、プローブ先端部以外は絶縁被覆8で覆われている。
また、陰電極6により不動態形成領域24においてFe金型材4の電位V、時間を制御することにより、Fe膜21の厚さを、さらに、プローブ電極7により不動態溶解領域25おける電圧パルス26の電圧Vp、パルス幅T、パルス数を制御することにより、Fe膜除去部28の大きさを変えることができ、Fe金型材4に加工する溝の幅、深さを調整することができる。なお、プローブ電極7は、駆動装置9によりX及びY軸方向にも移動可能としてもよく、微調整が可能となる。
A drive device 9 is attached to the probe electrode 7 used in the first embodiment, and is driven in the Z-axis direction by the drive device 9. Since the drive is operated by a piezoelectric element, it can be moved in the Z-axis direction in steps of about 0.1 nm, and the probe electrode 7 can be positioned with high accuracy with respect to the surface of the Fe mold material 4. The stage 1 on which the container 2 is mounted is moved in the X and Y axis directions by a driving device (not shown), and the angle is adjusted. These series of operations are performed by the control device 20 through the signal lines 16 to 18. Here, since the probe electrode 7 is used in the electrolytic solution 5, a noble metal such as Pt (platinum) or Au (gold) that is not corroded is used for the probe material. Further, the portion other than the probe tip is covered with an insulating coating 8.
Further, by controlling the potential V and time of the Fe mold material 4 in the passive formation region 24 by the negative electrode 6, the thickness of the Fe 2 O 3 film 21 is further controlled by the probe electrode 7 in the passive dissolution region 25. By controlling the voltage Vp, the pulse width T, and the number of pulses of the voltage pulse 26, the size of the Fe 2 O 3 film removal portion 28 can be changed, and the width and depth of the groove processed into the Fe mold material 4 can be changed. Can be adjusted. The probe electrode 7 may be movable in the X and Y axis directions by the driving device 9, and fine adjustment is possible.

上述のとおり、本実施の形態1においては、Fe膜21の所定の部分を除去した微細なFe膜除去部28を設け、このFe膜除去部28の露出されたFe金型材4の表面をパルス電圧Vpを印加することにより電解液5との電気化学反応により溶解除去させることにより、Fe金型材4に微細な溝加工を施すことができる。一般的に、電解液5のイオンが拡散することにより、プローブ電極7の径の何倍もの大きさの加工寸法のものしか得られないが、金属酸化膜であるFe膜21をエッチングマスクとして利用することにより、プローブ電極7の径と同等の微細加工が可能である。特にFe膜21は、電解液5のイオンの拡散を抑制する働きをするため、Fe金型材4の表面の状況による影響を受け難く、従来の加工方法では困難であった、主として十数μmから数十μmと幅の狭い細線な加工が可能となる。さらに、プローブ電極の径が異なるものを使用することにより、例えば1μm径のものを使用すれば1〜2μmの加工も可能である。従って、この発明により数μmから数百μmの微細な加工が容易にできる。 As described above, in the first embodiment, the fine Fe 2 O 3 film removing unit 28 obtained by removing a predetermined portion of the Fe 2 O 3 film 21 is provided, and the Fe 2 O 3 film removing unit 28 is exposed. The Fe mold material 4 can be finely grooved by dissolving and removing the surface of the Fe mold material 4 by an electrochemical reaction with the electrolytic solution 5 by applying a pulse voltage Vp. In general, diffusion of ions of the electrolyte 5 results in a processing dimension that is many times larger than the diameter of the probe electrode 7, but the Fe 2 O 3 film 21 that is a metal oxide film is etched. By using it as a mask, fine processing equivalent to the diameter of the probe electrode 7 is possible. In particular, since the Fe 2 O 3 film 21 functions to suppress the diffusion of ions in the electrolyte solution 5, the Fe 2 O 3 film 21 is not easily affected by the surface condition of the Fe mold material 4, and is difficult to achieve with conventional processing methods. Thin line processing as narrow as several μm to several tens μm is possible. Further, by using a probe electrode having a different diameter, for example, if a probe electrode having a diameter of 1 μm is used, processing of 1 to 2 μm is possible. Therefore, according to the present invention, fine processing of several μm to several hundred μm can be easily performed.

本実施の形態1では、図3(c)に示す工程において、Fe金型材4の表面の加工溝29をパルス電圧印加により形成する例について述べたが、例えば、図3(b)の工程において、ステージ1を逐次移動させて、線状の開口を持つFe膜除去部28を形成しておき、その後、電源10により導電線11、12を通して、陽電極3と陰電極6との間に電圧を印加して電位Vを活性溶解領域22であるVf(例えば、−0.3V)として、Fe金型材4表面を活性溶解電位に保持することにより、優れた耐食性を持つFe膜21が電解液5中では溶解されないエッチングマスクとして作用し、Fe膜除去部28の露出されたFe金型材4の表面部分のみを溶解させることもできる。これにより、Fe金型材4表面は溝状にエッチングされた加工溝29が形成されるが、この方法であっても、前述した図3(b)の工程で説明した方法と同様の効果が期待できる。
また、本実施の形態1では、Fe金型材4の表面に金属酸化膜であるFe膜21を形成する方法として、電解液5中で化学反応により形成したものを利用する例について説明したが、予め、金属被加工物のFe金型材4を高温(900℃から1200℃)の酸化雰囲気に晒す、ウエット酸化法(O、HOガス中)あるいはスチーム酸化法(HOガス中)により金属酸化膜を形成したものを利用してもよい。
In the first embodiment, the example in which the processing groove 29 on the surface of the Fe mold material 4 is formed by applying a pulse voltage in the step shown in FIG. 3C has been described. For example, in the step shown in FIG. Then, the stage 1 is sequentially moved to form the Fe 2 O 3 film removal portion 28 having a linear opening, and then the positive electrode 3 and the negative electrode 6 are connected by the power source 10 through the conductive wires 11 and 12. By applying a voltage between them and setting the potential V to Vf (for example, -0.3 V) which is the active dissolution region 22, the Fe mold material 4 surface is maintained at the active dissolution potential, thereby providing Fe 2 O having excellent corrosion resistance. The 3 film 21 can act as an etching mask that is not dissolved in the electrolytic solution 5, and can dissolve only the surface portion of the Fe mold material 4 where the Fe 2 O 3 film removal portion 28 is exposed. Thereby, a processed groove 29 etched into a groove shape is formed on the surface of the Fe mold material 4. Even in this method, the same effect as the method described in the step of FIG. 3B is expected. it can.
Further, in the first embodiment, as an example of a method for forming the Fe 2 O 3 film 21 that is a metal oxide film on the surface of the Fe mold material 4, an example in which the one formed by a chemical reaction in the electrolytic solution 5 is used will be described. However, a wet oxidation method (in O 2 or H 2 O gas) or a steam oxidation method (H 2 O) in which an Fe mold material 4 of a metal workpiece is exposed to an oxidizing atmosphere at a high temperature (900 ° C. to 1200 ° C.) in advance. A metal oxide film formed in a gas) may be used.

実施の形態2.
上記実施の形態1では、Fe金型材4表面に金属酸化膜であるFe膜21を形成し、プローブ電極7により局所的に電圧を印加することにより、Fe膜21を溶解、Fe金型材4表面を加工するものであった。実施の形態2では、電圧印加によりプローブ電極近傍のFe金型材4表面にFe膜の微細線を形成し、エッチングマスクとして利用する場合の例について説明する。図5は、実施の形態2における微細加工方法の工程を説明する略断面図を示す。
実施の形態1と同様に図2で説明した電気化学反応を利用し、図5に示すFe金型材4に細いリッジ加工を行う、この発明の実施の形態2における微細加工方法と微細加工装置の動作について、図1の微細加工装置および図6に示す電解液中における電位−電流特性を参照して説明する。
まず、図5(a)に示す第一の工程では、Fe金型材4を電解液5の入った容器2に入れ、陽電極3の上に載置する(図5では、陽電極3、Fe金型材4、プローブ電極7、Fe膜21のみを表示する)。ここで、電解液5は実施の形態1で説明したものと同じものである。駆動装置9を操作して、先端が12μm径のプローブ電極7をFe金型材4の表面に対して約1μmの距離に近接させ、Fe金型材4の電位を電流が流れない−0.5V以下の状態から電源10によりプローブ電極7と陽電極3との間に図6で示す電圧パルス27を印加する。パルス電圧を不動態形成領域24である電圧Vr(例えば、1.2V)として、Fe金型材4の表面電位を不動態形成電位にするとプローブ電極7の先端部分が近接する位置にFeの金属酸化膜であるFe膜21が反応生成される。ステージ1を逐次移動させることにより線状のFe膜21が得られる。
次に、図5(b)に示す第二の工程では、電源10から導電線12、11を通して、陽電極3と陰電極6の間にFe金型材4の表面にかかる電位Vを、図6で示す活性溶解領域22であるVf(例えば、−0.3V)として、Fe金型材4表面を活性溶解電位に保持する状態にすると、Fe金型材4のFe膜21は耐食性を有しており、電解液5中では溶解されないためエッチングマスクとして働き、細線状のFe膜21で覆われていないFe金型材4の表面部分が溶解され、エッチング部30が形成される。
最後に、図5(c)に示す第三の工程では、陽電極6と陰電極3との間に電源10により、Fe金型材4の表面電位を不動態溶解領域25の電位となるよう電圧を印加し、細線状のFe膜21を除去することにより、Fe金型材4上にリッジ31形状の微細線加工が完了する。
Embodiment 2. FIG.
In the first embodiment, the Fe 2 O 3 film 21 that is a metal oxide film is formed on the surface of the Fe mold material 4 and a voltage is locally applied by the probe electrode 7 to dissolve the Fe 2 O 3 film 21. The surface of the Fe mold material 4 was processed. In the second embodiment, an example in which a fine line of an Fe 2 O 3 film is formed on the surface of the Fe mold material 4 near the probe electrode by applying a voltage and used as an etching mask will be described. FIG. 5 is a schematic cross-sectional view illustrating the steps of the microfabrication method in the second embodiment.
As in the first embodiment, the electrochemical reaction described in FIG. 2 is used to perform the thin ridge processing on the Fe mold material 4 shown in FIG. 5, and the fine processing method and the fine processing apparatus in the second embodiment of the present invention are used. The operation will be described with reference to the microfabrication apparatus of FIG. 1 and the potential-current characteristics in the electrolytic solution shown in FIG.
First, in the first step shown in FIG. 5A, the Fe mold material 4 is placed in the container 2 containing the electrolytic solution 5 and placed on the positive electrode 3 (in FIG. 5, the positive electrode 3, Fe Only the mold material 4, the probe electrode 7, and the Fe 2 O 3 film 21 are displayed). Here, the electrolytic solution 5 is the same as that described in the first embodiment. By operating the driving device 9, the probe electrode 7 having a 12 μm diameter tip is brought close to the surface of the Fe mold material 4 at a distance of about 1 μm, and no electric current flows through the Fe mold material 4 −0.5 V or less. 6 is applied between the probe electrode 7 and the positive electrode 3 by the power source 10. When the pulse voltage is set to the voltage Vr (for example, 1.2 V) which is the passivation formation region 24 and the surface potential of the Fe mold material 4 is set to the passivation formation potential, the metal oxidation of Fe is performed at a position close to the tip portion of the probe electrode 7. The Fe 2 O 3 film 21 that is a film is generated by reaction. A linear Fe 2 O 3 film 21 is obtained by sequentially moving the stage 1.
Next, in the second step shown in FIG. 5B, the potential V applied to the surface of the Fe mold material 4 between the positive electrode 3 and the negative electrode 6 through the conductive wires 12 and 11 from the power source 10 is shown in FIG. When the surface of the Fe mold material 4 is kept at the active dissolution potential as Vf (for example, −0.3 V) which is the active dissolution region 22 shown in FIG. 2, the Fe 2 O 3 film 21 of the Fe mold material 4 has corrosion resistance. Since it is not dissolved in the electrolytic solution 5, it functions as an etching mask, and the surface portion of the Fe mold material 4 not covered with the fine-line Fe 2 O 3 film 21 is dissolved, thereby forming an etched portion 30.
Finally, in the third step shown in FIG. 5C, a voltage is applied between the positive electrode 6 and the negative electrode 3 so that the surface potential of the Fe mold material 4 becomes the potential of the passive dissolution region 25 by the power source 10. Is applied to remove the fine wire-like Fe 2 O 3 film 21, thereby completing the fine wire processing of the ridge 31 shape on the Fe mold material 4.

本実施の形態2では、金属酸化膜であるFe膜21をFe金型材4の表面の所定の位置に形成し、このFe膜21をエッチング保護膜として、露出されたFe金型材4表面を電解液5で溶解させることにより、Fe金型材4に微細なリッジ31加工を施すことができる。この際、Fe膜21はプローブ電極7の先端部分が近接したFe金型材4表面にのみに形成されるため、従来の加工方法では困難であった、数μmから数百μm、主として十数μmから数十μmと幅の狭いリッジ状微細線加工が可能となる。
また、プローブ電極7による不導態形成領域24において電圧パルス27の電圧Vr、パルス幅T、パルス数を制御することにより、Fe膜21の幅、厚さを変えることができる。さらに、陰電極6により活性溶解領域23においてFe金型材4の表面にかかる電位、時間を制御することにより、リッジ31の高さを調整することができる。
In the second embodiment, a Fe 2 O 3 film 21 that is a metal oxide film is formed at a predetermined position on the surface of the Fe mold material 4, and this Fe 2 O 3 film 21 is used as an etching protection film to expose the exposed Fe 2 O 3 film 21. By dissolving the surface of the mold material 4 with the electrolytic solution 5, the fine ridge 31 can be processed on the Fe mold material 4. At this time, since the Fe 2 O 3 film 21 is formed only on the surface of the Fe mold material 4 to which the tip portion of the probe electrode 7 is close, it is difficult to perform by a conventional processing method, which is several μm to several hundred μm. Ridge-like fine line processing with a width as narrow as 10 to several tens μm is possible.
Further, the width and thickness of the Fe 2 O 3 film 21 can be changed by controlling the voltage Vr, the pulse width T, and the number of pulses of the voltage pulse 27 in the non-conductive state formation region 24 by the probe electrode 7. Furthermore, the height of the ridge 31 can be adjusted by controlling the potential and time applied to the surface of the Fe mold material 4 in the active dissolution region 23 by the negative electrode 6.

実施の形態1及び2では、金属被加工物としてFe金型材を用いる例について述べたが、この発明は表面に金属酸化膜が形成される材料と電解液の組み合わせであればよく、純粋なFe金型材だけでなく、鉄系の合金、例えばFe−Cr、Fe−Cr−Mo、Fe−Cr−Ni合金のステンレスであってもFeやその合金以外の金属加工にも適用が可能である。
また、実施の形態1及び2では、Fe金型材4表面のエッチングには、電解液5中でFe製金型材4にかかる電位を活性溶解領域23であるVfとして加工する場合について説明したが、Feのみを溶解しFe膜を溶解しない例えば、ペルオキソ二硫酸アンモニウム((NH)と希硫酸(HSO)と水(HO)を混合しpH3以下に調整したエッチング液を使用してもよい。また、必ずしも電圧を印加する必要はない。
また、実施の形態1及び2において、エッチングマスクとしてのFe膜21の除去は、電解液5中で電位を不動態領域25にすることにより行っているが、塩酸(HCl)等の酸あるいはアルカリ性溶液で溶解してもよい。また、必ずしも電気化学反応に依らずに除去することも可能である。
In the first and second embodiments, the example in which the Fe mold material is used as the metal workpiece has been described. However, the present invention may be a combination of a material for forming a metal oxide film on the surface and an electrolytic solution, and pure Fe. Not only mold materials but also iron alloys such as Fe-Cr, Fe-Cr-Mo, and Fe-Cr-Ni alloy stainless steels can be applied to metal processing other than Fe and its alloys.
Moreover, in Embodiment 1 and 2, although the case where the electric potential concerning Fe metal mold | die material 4 was processed into Vf which is the active melt | dissolution area | region 23 in the electrolyte solution 5 was demonstrated for the etching of the Fe metal mold | die material 4 surface, for example does not dissolve was dissolved Fe only Fe 2 O 3 film, ammonium peroxodisulfate ((NH 4) 2 S 2 O 8) and dilute sulfuric acid (H 2 SO 4) and water (H 2 O) mixture pH3 following a Etching solution adjusted to may be used. Further, it is not always necessary to apply a voltage.
In the first and second embodiments, the removal of the Fe 2 O 3 film 21 as an etching mask is performed by setting the potential to the passive region 25 in the electrolytic solution 5, but hydrochloric acid (HCl) or the like is used. It may be dissolved in an acid or alkaline solution. Further, it can be removed without necessarily depending on the electrochemical reaction.

また、実施の形態1及び2においては、Fe金型材4の電解液5として硼酸、硼砂の混合水溶液を利用する例について示したが、電解液としては、例えば、1L(リットル)の水にリン酸水素二ナトリウム(NaHPO)を7.1g、リン酸二水素ナトリウム(NaHPO)を6.0g溶かし、pH7の水溶液としたものであっても良好な酸化膜を形成することができるものであり、実施の形態1及び2で示した電解液5と同様の効果を期待できる。この電解液は、上述したFe以外の鉄系の合金に対しても有効である。 In the first and second embodiments, an example in which a mixed aqueous solution of boric acid and borax is used as the electrolytic solution 5 of the Fe mold material 4 is described. However, as the electrolytic solution, for example, phosphorous in 1 L (liter) of water is used. Dissolving 7.1 g of disodium hydrogen oxyhydrogen (Na 2 HPO 4 ) and 6.0 g of sodium dihydrogen phosphate (NaH 2 PO 4 ) to form a good oxide film even when the aqueous solution has a pH of 7 Therefore, the same effect as the electrolytic solution 5 shown in the first and second embodiments can be expected. This electrolytic solution is also effective for iron-based alloys other than Fe described above.

さらに、実施の形態1及び2では、微細な線状の溝やリッジを形成する例について述べたが、実施の形態1と実施の形態2の加工方法の組み合わせや、ステージを制御することにより他の形状に加工することが可能で、複雑な金型の型彫りに応用できるものである。
実施の形態1及び2は、例えば微細な加工が必要な射出成形金型やプレス金型の製造技術として利用できるものである。
なお、図中、同一符号は同一、又は相当部分を示す。
Further, in the first and second embodiments, examples of forming fine linear grooves and ridges have been described. However, other combinations of the processing methods of the first and second embodiments and other stages can be controlled by controlling the stage. It can be processed to the shape of the mold and can be applied to the mold carving of complicated molds.
Embodiments 1 and 2 can be used, for example, as a manufacturing technique for an injection mold or a press mold that requires fine processing.
In the drawings, the same reference numerals indicate the same or corresponding parts.

実施の形態1における微細加工装置を示す略斜視断面図である。1 is a schematic perspective sectional view showing a microfabrication apparatus in a first embodiment. 実施の形態1におけるFeの電位−電流特性図である。6 is a potential-current characteristic diagram of Fe in Embodiment 1. FIG. 実施の形態1における微細加工方法の工程を説明するための略断面図である。FIG. 6 is a schematic cross-sectional view for explaining a process of the microfabrication method in the first embodiment. 実施の形態1における動作を説明するためのFeの電位−電流特性図である。6 is a potential-current characteristic diagram of Fe for explaining an operation in the first embodiment. FIG. 実施の形態2における微細加工方法の工程を説明するための略断面図である。FIG. 10 is a schematic cross-sectional view for explaining a process of the fine processing method in the second embodiment. 実施の形態2における動作を説明するためのFeの電位−電流特性図である。FIG. 9 is a potential-current characteristic diagram of Fe for explaining the operation in the second embodiment.

符号の説明Explanation of symbols

1 ステージ
2 容器
3 陽電極
4 Fe金型材
5 電解液
6 陰電極
7 プローブ電極
10 電源
20 制御装置
21 Fe
26、27 電圧パルス
1 Stage 2 Container 3 Positive Electrode 4 Fe Mold Material 5 Electrolyte 6 Negative Electrode 7 Probe Electrode 10 Power Supply 20 Controller 21 Fe 2 O 3 Film 26, 27 Voltage Pulse

Claims (7)

金属被加工物に金属酸化膜を形成する工程と、
陽電極上に載置された前記金属被加工物と前記金属酸化膜の加工部位に近接して配設されたプローブ電極とを電解液中に配置し、前記プローブ電極に電圧パルスを印加して、前記金属酸化膜の電位を不動態溶解電位にして、かつ、前記電解液と前記金属酸化膜とを化学反応させ、前記金属酸化膜の所定の部分を除去する工程と、
前記金属酸化膜が除去され露出された前記金属被加工物の部位のみを溶解する工程と、
を備えたことを特徴とする微細加工方法。
Forming a metal oxide film on the metal workpiece;
The metal workpiece placed on the positive electrode and the probe electrode arranged in the vicinity of the processing site of the metal oxide film are arranged in an electrolyte solution, and a voltage pulse is applied to the probe electrode. A step of setting the potential of the metal oxide film to a passive dissolution potential and chemically reacting the electrolytic solution with the metal oxide film to remove a predetermined portion of the metal oxide film;
Dissolving only the portion of the metal workpiece that is exposed by removing the metal oxide film; and
A fine processing method characterized by comprising:
金属酸化膜を形成する工程は、電解液中で被加工物の表面電位を不動態形成電位に保持する工程を含むことを特徴とする請求項1に記載の微細加工方法。 2. The micromachining method according to claim 1, wherein the step of forming the metal oxide film includes a step of maintaining the surface potential of the workpiece at a passive formation potential in the electrolytic solution. 露出された金属被加工物の部位のみを溶解する工程は、電解液中で前記金属被加工物の表面電位を活性溶解電位に保持する工程を含むことを特徴とする請求項1に記載の微細加工方法。 2. The method according to claim 1, wherein the step of dissolving only the exposed portion of the metal workpiece includes the step of maintaining the surface potential of the metal workpiece in an electrolytic solution at an active dissolution potential. Processing method. 陽電極上に載置された金属被加工物と前記金属被加工物の加工部位に近接して配設されたプローブ電極とを電解液中に配置し、前記プローブ電極に電圧パルス印加して、前記金属被加工物の表面電位を不動態溶解電位にして、かつ、前記電解液と前記金属被加工物とを化学反応させ、前記金属被加工物の所定の部分に金属酸化膜を形成する工程と、
前記金属酸化膜が形成されていない前記金属被加工物の部位のみを溶解する工程と、
を備えたことを特徴とする微細加工方法。
A metal workpiece placed on the positive electrode and a probe electrode arranged in the vicinity of the machining site of the metal workpiece are placed in the electrolyte, and a voltage pulse is applied to the probe electrode, Forming a metal oxide film on a predetermined portion of the metal workpiece by causing the surface potential of the metal workpiece to be a passive dissolution potential and chemically reacting the electrolytic solution and the metal workpiece; When,
Dissolving only the portion of the metal workpiece on which the metal oxide film is not formed;
A fine processing method characterized by comprising:
金属酸化膜が形成されていない金属被加工物の部位のみを溶解する工程は、電解液中で前記金属被加工物の表面電位を活性溶解電位に保持する工程を含むことを特徴とする請求項4に記載の微細加工方法。 The step of dissolving only a portion of the metal workpiece on which the metal oxide film is not formed includes a step of maintaining a surface potential of the metal workpiece in an electrolytic solution at an active dissolution potential. 4. The microfabrication method according to 4. 移動可能なステージと、
前記ステージに取付けられ電解液を収納する容器と、
前記容器内に固定され金属酸化膜が形成された金属被加工物を載置する陽電極と、
前記金属被加工物に対して所定の位置に配置された陰電極と、
前記金属被加工物に対して所定の位置に配置されたプローブ電極と、
前記金属酸化膜が形成された金属被加工物を不動態膜形成電位とする電圧を前記陽電極と前記陰電極との間に、かつ、前記金属酸化膜が形成された金属被加工物を不動態溶解電位とするパルス電圧を前記陽電極と前記プローブ電極との間に印加する電源と、
前記ステージ及びプローブ電極の位置決めと前記陽電極と前記プローブ電極との間及び前記陽電極と前記陰電極との間に印加する電圧とを制御する手段と、
を備えたことを特徴とする微細加工装置。
A movable stage,
A container that is attached to the stage and stores an electrolyte;
A positive electrode for mounting a metal workpiece fixed in the container and having a metal oxide film formed thereon;
A negative electrode disposed at a predetermined position with respect to the metal workpiece;
A probe electrode disposed at a predetermined position with respect to the metal workpiece;
A voltage at which the metal workpiece on which the metal oxide film is formed has a passive film forming potential is set between the positive electrode and the negative electrode, and the metal workpiece on which the metal oxide film is formed is not allowed. A power supply for applying a pulse voltage as a kinetic dissolution potential between the positive electrode and the probe electrode;
Means for controlling the positioning of the stage and probe electrode and the voltage applied between the positive electrode and the probe electrode and between the positive electrode and the negative electrode;
A fine processing apparatus comprising:
移動可能なステージと、
前記ステージに取付けられ電解液を収納する容器と、
前記容器内に固定され金属被加工物を載置する陽電極と、
前記金属被加工物に対して所定の位置に配置されたプローブ電極と、
前記金属被加工物を不動態膜形成電位とするパルス電圧を前記陽電極と前記プローブ電極との間に印加する電源と、
前記ステージ及びプローブ電極の位置決めと前記陽電極と前記プローブ電極との間及び前記陽電極と前記陰電極との間に印加する電圧とを制御する手段と、
を備えたことを特徴とする微細加工装置。
A movable stage,
A container that is attached to the stage and stores an electrolyte;
A positive electrode fixed in the vessel for placing a metal workpiece;
A probe electrode disposed at a predetermined position with respect to the metal workpiece;
A power supply for applying a pulse voltage between the positive electrode and the probe electrode, with the metal workpiece being a passive film forming potential;
Means for controlling the positioning of the stage and probe electrode and the voltage applied between the positive electrode and the probe electrode and between the positive electrode and the negative electrode;
A fine processing apparatus comprising:
JP2005165833A 2005-06-06 2005-06-06 Fine processing method and fine processing apparatus Expired - Fee Related JP4529802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165833A JP4529802B2 (en) 2005-06-06 2005-06-06 Fine processing method and fine processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165833A JP4529802B2 (en) 2005-06-06 2005-06-06 Fine processing method and fine processing apparatus

Publications (2)

Publication Number Publication Date
JP2006334766A true JP2006334766A (en) 2006-12-14
JP4529802B2 JP4529802B2 (en) 2010-08-25

Family

ID=37555732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165833A Expired - Fee Related JP4529802B2 (en) 2005-06-06 2005-06-06 Fine processing method and fine processing apparatus

Country Status (1)

Country Link
JP (1) JP4529802B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025341A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology Electrolysis-laser combined machining method and device
DE102012109208A1 (en) * 2012-09-28 2014-06-12 Osram Opto Semiconductors Gmbh A method of processing a device having at least one electrical layer structure and device arrangement for processing a device having at least one electrical layer structure
CN107186298A (en) * 2017-05-17 2017-09-22 南京航空航天大学 A kind of groove array electrochemical machining system and method based on PDMS templates
CN107199379A (en) * 2017-05-12 2017-09-26 南京航空航天大学 Micro-pit array electrolysis system and method and method for preparing template based on double template

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445629U (en) * 1990-01-30 1992-04-17
JPH05247700A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Electrolytic descaling method for stainless annealed steel strip
JPH08138543A (en) * 1994-11-11 1996-05-31 Dainippon Screen Mfg Co Ltd Surface finish method and device
JPH09285917A (en) * 1996-04-18 1997-11-04 Denso Corp Electrochemical machining method
JPH11347888A (en) * 1998-06-04 1999-12-21 Fuji Xerox Co Ltd Micro cutting method and device
JP2002337026A (en) * 2001-05-11 2002-11-26 Tokushima Ken Electric discharge machining device and method
JP2005516787A (en) * 2002-02-15 2005-06-09 ミネベア株式会社 Processed electrode manufacturing method for electrolytic processing of workpiece and processed electrode manufactured by this method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445629U (en) * 1990-01-30 1992-04-17
JPH05247700A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Electrolytic descaling method for stainless annealed steel strip
JPH08138543A (en) * 1994-11-11 1996-05-31 Dainippon Screen Mfg Co Ltd Surface finish method and device
JPH09285917A (en) * 1996-04-18 1997-11-04 Denso Corp Electrochemical machining method
JPH11347888A (en) * 1998-06-04 1999-12-21 Fuji Xerox Co Ltd Micro cutting method and device
JP2002337026A (en) * 2001-05-11 2002-11-26 Tokushima Ken Electric discharge machining device and method
JP2005516787A (en) * 2002-02-15 2005-06-09 ミネベア株式会社 Processed electrode manufacturing method for electrolytic processing of workpiece and processed electrode manufactured by this method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025341A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology Electrolysis-laser combined machining method and device
DE102012109208A1 (en) * 2012-09-28 2014-06-12 Osram Opto Semiconductors Gmbh A method of processing a device having at least one electrical layer structure and device arrangement for processing a device having at least one electrical layer structure
US9888576B2 (en) 2012-09-28 2018-02-06 Osram Oled Gmbh Method for working an apparatus having at least one electrical layer structure, and component arrangement for working an apparatus having at least one electrical layer structure
DE102012109208B4 (en) * 2012-09-28 2019-05-23 Osram Oled Gmbh Method for processing a device having at least one electrical layer structure and component arrangement therefor
CN107199379A (en) * 2017-05-12 2017-09-26 南京航空航天大学 Micro-pit array electrolysis system and method and method for preparing template based on double template
CN107186298A (en) * 2017-05-17 2017-09-22 南京航空航天大学 A kind of groove array electrochemical machining system and method based on PDMS templates

Also Published As

Publication number Publication date
JP4529802B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
Shin et al. Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses
Nguyen et al. Experimental investigation of ECDM for fabricating micro structures of quartz
Hewidy et al. Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM
Bhattacharyya et al. Advancement in electrochemical micro-machining
Zeng et al. A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures
Bhattacharyya Electrochemical micromachining for nanofabrication, MEMS and nanotechnology
Fan et al. Electrochemical micro-drilling of deep holes by rotational cathode tools
Wang et al. Micro wire electrode electrochemical cutting with low frequency and small amplitude tool vibration
Zishanur Rahman et al. Microhole drilling through electrochemical processes: A review
Ryu Eco-friendly ECM in citric acid electrolyte with microwire and microfoil electrodes
Fan et al. Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage
Ryu Micro fabrication by electrochemical process in citric acid electrolyte
Mithu et al. A step towards the in-process monitoring for electrochemical microdrilling
Bindu Madhavi et al. Machining and characterization of channels and textures on quartz glass using μ-ECDM process
JP4529802B2 (en) Fine processing method and fine processing apparatus
Skoczypiec Discussion of ultrashort voltage pulses electrochemical micromachining: a review
Xiaolong et al. Improving machining accuracy in wire electrochemical micromachining using a rotary helical electrode
Joshi et al. 11.15-Electrochemical Micromachining
Besekar et al. Experimental investigation and characterization of NiTinol shape memory alloy during wire electrochemical machining
Sethi et al. Study of the electrochemical dissolution behavior of Nitinol shape memory alloy in different electrolytes for micro-ECM process
Anasane et al. Parametric analysis of fabrication of through micro holes on titanium by maskless electrochemical micromachining
Lim et al. Self-aligned microtool and electrochemical discharge machining (ECDM) for ceramic materials
CN108971745B (en) Laser-induced discharge surface microstructure machining method and device
Paul et al. Non-conventional micro-machining processes
Chun et al. Analysis of the relationship between electrolyte characteristics and electrochemical machinability in PECM on invar (Fe-Ni) fine sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091103

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R151 Written notification of patent or utility model registration

Ref document number: 4529802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees