JP2006333188A - Optical spatial transmitter - Google Patents

Optical spatial transmitter Download PDF

Info

Publication number
JP2006333188A
JP2006333188A JP2005155240A JP2005155240A JP2006333188A JP 2006333188 A JP2006333188 A JP 2006333188A JP 2005155240 A JP2005155240 A JP 2005155240A JP 2005155240 A JP2005155240 A JP 2005155240A JP 2006333188 A JP2006333188 A JP 2006333188A
Authority
JP
Japan
Prior art keywords
optical
signal
output
light sources
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005155240A
Other languages
Japanese (ja)
Inventor
Masaru Fuse
優 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005155240A priority Critical patent/JP2006333188A/en
Publication of JP2006333188A publication Critical patent/JP2006333188A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical spatial transmitter capable of attaining both high-speed transmission and flexibility about the installation of an optical receiver. <P>SOLUTION: A light source control part 104 switches a modulated signal 14 from any port of n output ports and outputs the modulated signal 14 according to a control signal 15, point light sources 101a to 101g convert an output signal from a corresponding port into optical signals 11a to 11g and output the optical signals 11a to 11g, and an optical coupling part 102 transmits optical signals to space and adjusts optical paths so that regions 13a to 13g that are respectively irradiated with the optical signals in the space may be adjacent to one another and different from one another. An optical receiving part 103 is arranged within an irradiation range 13 composed of the irradiation regions 13a to 13g, receives any of the optical signals 11a to 11g, converts the received optical signal into an electric signal (modulated signal) 14' and outputs the electric signal 14'. Further, the light source control part 104 switches the output signal to the point light sources so as to make the optical signals 11a to 11g sequentially scan the irradiation regions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光を自由空間に放射し無線通信を行う上において、人間の視覚に対する危険性を抑圧しながら、光伝送装置の設定精度を緩和しつつ、高速伝送を行う光空間伝送装置に関する。   The present invention relates to an optical space transmission device that performs high-speed transmission while reducing the setting accuracy of an optical transmission device while suppressing danger to human vision when performing wireless communication by emitting light into free space.

図5は、従来の光空間伝送装置の構成を示したブロック図である(例えば、特許文献1参照)。図5において、本光空間伝送装置は、光送信部500と、光受信部503とを備え、光源501と、光結合部502とで光送信部500を構成し、光検波部503aで、光受信部503を構成する。   FIG. 5 is a block diagram showing a configuration of a conventional optical space transmission device (see, for example, Patent Document 1). In FIG. 5, the present optical space transmission apparatus includes an optical transmission unit 500 and an optical reception unit 503. The light source 501 and the optical coupling unit 502 constitute an optical transmission unit 500, and the optical detection unit 503a The receiving unit 503 is configured.

上記のように構成された光空間伝送装置について、図5を用いて、その動作を説明する。光送信部500は、変調信号54を入力し、所定のバイアス値(バイアス電流)を付加した後光源501に入力して、例えば直接光強度変調方式により光信号51に変換し出力する。光結合部502はレンズ等の光学部品で構成され、光信号51の光路を調整して所定の範囲53を照射する。光受信部503(光検波部503a)は、光照射範囲53の中に配置されて、前記光信号51の少なくとも一部の電力を入力して、電気信号54’に変換し出力する。   About the space optical transmission apparatus comprised as mentioned above, the operation | movement is demonstrated using FIG. The optical transmission unit 500 receives the modulation signal 54, adds a predetermined bias value (bias current), and then inputs the modulation signal 54 to the light source 501, for example, converts the light signal 51 by a direct light intensity modulation method and outputs the light signal 51. The optical coupling unit 502 is configured by an optical component such as a lens, and irradiates a predetermined range 53 by adjusting the optical path of the optical signal 51. The optical receiver 503 (optical detector 503a) is arranged in the light irradiation range 53, receives at least a part of the power of the optical signal 51, converts it into an electric signal 54 ', and outputs it.

ここで、本構成のような光空間伝送装置では、光送信部500から送出される光信号51が、人間の目に入射して網膜を焼き、傷害を起こす可能性がある。そのため、例えば国内では、総務省下の社団法人・電波産業会(ARIB)によって空間への放射光電力が制限/規定されており、例えば、光送信部500の光出射端面500aから所定の距離Deyeを隔てた所定の範囲50を照射する総光電力Ptotalが所定値以下になるように定められている。   Here, in the optical space transmission apparatus having this configuration, the optical signal 51 transmitted from the optical transmission unit 500 may enter the human eye and burn the retina, causing injury. For this reason, in Japan, for example, the radiated light power to the space is limited / defined by the Association of Radio Industries and Businesses (ARIB) under the Ministry of Internal Affairs and Communications. For example, a predetermined distance Daye from the light emitting end surface 500a of the optical transmission unit 500 The total light power Ptotal that irradiates a predetermined range 50 separated by a distance is set to be equal to or less than a predetermined value.

一方、光伝送システムでは光受信器(光検波素子)に入力する光電力が大きい程、受信信号品質(SNR)を高めて、より高速な伝送を行うことができる。このため、図5のように、光源501から出力された光信号が拡散する場合、光検波部503aに入力する総光電力が低下するため、高いSNRを確保することが難しく、伝送レートを高めることができない。従って、実際の光空間伝送装置では、光源501からの出力光信号を光結合部502で集光し(51a)、光信号を拡散することなく送出する。これにより、光源501から出力された光信号の全電力が、光検波部503aに入力するようにし、受信信号のSNRを高めて高速伝送を可能としている。   On the other hand, in the optical transmission system, the higher the optical power input to the optical receiver (optical detection element), the higher the received signal quality (SNR) and the higher the transmission speed. Therefore, as shown in FIG. 5, when the optical signal output from the light source 501 is diffused, the total optical power input to the optical detection unit 503a is reduced, so it is difficult to ensure a high SNR and increase the transmission rate. I can't. Therefore, in the actual optical space transmission apparatus, the output optical signal from the light source 501 is collected by the optical coupling unit 502 (51a), and the optical signal is transmitted without being diffused. As a result, the total power of the optical signal output from the light source 501 is input to the optical detection unit 503a, and the SNR of the received signal is increased to enable high-speed transmission.

以上のように、点光源もしくは集光を用いる光空間伝送装置では、アイセーフティを考慮して放射光電力が制限される中、所望の受信信号品質を確保するために、光信号の照射範囲を狭めて、高速な光伝送を可能とする。しかしながら、光信号の照射範囲を小さくすることに起因して、光受信器の設置に関して高い精度を要求し、無線伝送装置/端末としての柔軟性が低下するという課題を有している。   As described above, in an optical space transmission device using a point light source or condensing, while the radiated light power is limited in consideration of eye safety, in order to ensure a desired received signal quality, an optical signal irradiation range is set. Narrowed to enable high-speed optical transmission. However, due to the reduction of the optical signal irradiation range, there is a problem that high accuracy is required for installation of the optical receiver, and flexibility as a wireless transmission device / terminal is lowered.

図6は、従来の光空間伝送装置の別の構成を示したブロック図である(例えば、特許文献2参照)。図6において、本光空間伝送装置は、光送信部600と、光受信部603とを備え、光源601と光結合部602とで光送信部600を構成し、光検波部503aで、光受信部503を構成する。   FIG. 6 is a block diagram showing another configuration of a conventional optical space transmission device (see, for example, Patent Document 2). In FIG. 6, the present optical space transmission device includes an optical transmission unit 600 and an optical reception unit 603. The optical transmission unit 600 is configured by a light source 601 and an optical coupling unit 602, and an optical reception unit 503a receives the optical reception. Part 503 is configured.

上記のように構成された光空間伝送装置について、図6を用いて、その動作を説明する。光送信部600は、変調信号64を入力し、所定のバイアス値を付加した後、光源601に注入する。光源601は、例えば複数の発光素子601a〜601gからなる面光源であり、変調信号64により一斉に明滅して光信号61を出力する。光源601から出力された光信号は所定の角度で拡散し、少なくとも一部は光結合部602によって当該光路を調整され、所定の範囲63を照射する。光受信部603(光検波部603a)は、照射範囲63の中に配置されて、光信号61の一部電力を入力して、電気信号64’に変換し出力する。   About the space optical transmission apparatus comprised as mentioned above, the operation | movement is demonstrated using FIG. The optical transmitter 600 receives the modulated signal 64, adds a predetermined bias value, and then injects it into the light source 601. The light source 601 is a surface light source composed of, for example, a plurality of light emitting elements 601 a to 601 g, and blinks all at once with the modulation signal 64 and outputs an optical signal 61. The optical signal output from the light source 601 is diffused at a predetermined angle, and at least part of the optical signal is adjusted by the optical coupling unit 602 to irradiate the predetermined range 63. The optical receiving unit 603 (optical detection unit 603a) is arranged in the irradiation range 63, receives a partial power of the optical signal 61, converts it into an electric signal 64 ', and outputs it.

本構成のような光空間伝送装置では、図5の場合に比べて、光信号の拡散角を大きくして、光信号を受信することのできる照射範囲63をより広く確保し、光受信部603の設置に関する柔軟性を向上することができる。なお、本構成においても、図5の場合と同様、アイセーフティの観点から、光送信部600の光出射端面600aから所定の距離Deyeを隔てた所定の範囲60を照射する総光電力Stotalが制限されているが、光源を見た場合の人間の視野角を考慮して、図5における総光電力Ptotalよりも大きい値が許容されている。   In the optical space transmission apparatus of this configuration, compared with the case of FIG. 5, the diffusion angle of the optical signal is increased to secure a wider irradiation range 63 in which the optical signal can be received, and the optical receiving unit 603. The flexibility regarding the installation of can be improved. Also in this configuration, as in the case of FIG. 5, from the viewpoint of eye safety, the total optical power Total that irradiates a predetermined range 60 that is a predetermined distance Dee from the light emitting end surface 600 a of the optical transmitter 600 is limited. However, in consideration of the human viewing angle when the light source is viewed, a value larger than the total optical power Ptotal in FIG. 5 is allowed.

以上のように、面光源もしくは拡散光を用いる光空間伝送装置では、光送信器の放射光電力制限を緩和すると共に、広範な範囲に光信号を照射して、より柔軟な光伝送を可能とする。しかしながら、光信号の拡散角が大きいことに起因して、光受信器が受信することのできる総光電力は、図5の場合に比べて小さく、伝送レートの高速化が難しいという課題を有している。
特開平1−192233号公報 特開平9−167996号公報
As described above, in an optical space transmission device using a surface light source or diffused light, the radiated light power limitation of an optical transmitter can be relaxed, and an optical signal can be irradiated over a wide range to enable more flexible optical transmission. To do. However, due to the large diffusion angle of the optical signal, the total optical power that can be received by the optical receiver is smaller than in the case of FIG. 5, and it is difficult to increase the transmission rate. ing.
JP-A-1-192233 JP-A-9-167996

以上のように、従来の光空間伝送装置は、点光源を用いた構成では、光信号の照射範囲を狭めて受光電力を高め、高速伝送を実現できる一方で、光受信器の設置に高い精度を必要とし、面光源を用いた構成においては、光信号の照射範囲を大きくして光受信器の柔軟な設置を可能とするが、受光電力が低下して、伝送レートが制限されるという課題を有している。   As described above, the conventional optical space transmission device can achieve high-speed transmission by narrowing the light signal irradiation range and increasing the received light power in the configuration using the point light source, while providing high accuracy for installing the optical receiver. In a configuration using a surface light source, the light signal irradiation range is increased to enable flexible installation of the optical receiver, but the received light power is reduced and the transmission rate is limited. have.

それ故に、本発明の目的は、高速伝送と光受信器設置に関する柔軟性を両立することのできる光空間伝送装置を提供することである。   Therefore, an object of the present invention is to provide an optical space transmission device that can achieve both high-speed transmission and flexibility in installing an optical receiver.

第1の発明は、光送信部と光受信部からなる光伝送装置であって、光送信部は、変調信号と制御信号を入力し、制御信号に従い、変調信号を複数n(nは、2以上の整数)の出力ポートの内いずれかのポートから選択出力する光源駆動部と、光源駆動部のnの出力ポートに対応して設けられ、当該出力信号をそれぞれ光信号に変換して出力するnの光源からなる発光部とを備え、光受信部は、発光部のnの光源から出力される光信号のいずれかを入力して、電気信号に変換して出力する光検波部を備える。   A first invention is an optical transmission apparatus including an optical transmission unit and an optical reception unit. The optical transmission unit inputs a modulation signal and a control signal, and a plurality of modulation signals (n is 2 in accordance with the control signal). The light source driving unit selectively outputs from any one of the output ports of the above integers) and the n output ports of the light source driving unit. The output signals are converted into optical signals and output. The light receiving unit includes an optical detection unit that inputs any of the optical signals output from the n light sources of the light emitting unit, converts the light signals into electrical signals, and outputs the electrical signals.

第2の発明は、前記第1の発明において、光送信部から出力される光信号が、所定の時間、所定の手順で、所望の空間的な範囲を走査する。   In a second aspect based on the first aspect, the optical signal output from the optical transmitter scans a desired spatial range in a predetermined procedure for a predetermined time.

第3の発明は、前記第2の発明において、光送信部から出力される光信号が、光受信部から出力される電気信号のレベルが最大となる状態、または当該信号品質が最良となる状態で走査を停止する。   In a third aspect based on the second aspect, the optical signal output from the optical transmitter is in a state where the level of the electrical signal output from the optical receiver is maximized, or the signal quality is optimal. Stop scanning.

第4の発明は、前記第1および第2の発明において、nの光源から出力される光信号が、いずれも光送信部が備える同一の開口部を介して出力される。   According to a fourth invention, in the first and second inventions, the optical signals output from the n light sources are both output through the same opening provided in the optical transmitter.

第5の発明は、前記第1および第2の発明において、nの光源から出力される光信号が、互いに異なる空間的な範囲を照射する。   According to a fifth invention, in the first and second inventions, the optical signals output from the n light sources irradiate different spatial ranges.

第6の発明は、前記第1および第2の発明において、nの光源から出力される光信号が、互いに隣接する空間的な領域を照射する。   In a sixth aspect based on the first and second aspects, the optical signals output from the n light sources irradiate spatial regions adjacent to each other.

第7の発明は、前記第1〜第6の発明において、nの光源が、同一平面上に互いに隣接して配置される。   In a seventh aspect based on the first to sixth aspects, the n light sources are arranged adjacent to each other on the same plane.

第8の発明は、前記第1〜第6の発明において、nの光源が、凹面上に互いに隣接して配置される。   In an eighth aspect based on the first to sixth aspects, the n light sources are arranged adjacent to each other on the concave surface.

第9の発明は、前記第1〜第6の発明において、光源駆動部のnの出力ポートとnの光源との間に挿入され、光源駆動部から出力されるすべてまたは一部の注入電流に対して所定の遅延時間をそれぞれ付加するm(mは、n以下の整数)の遅延調整部をさらに備える。   According to a ninth invention, in the first to sixth inventions, all or a part of the injected current output from the light source driver is inserted between the n output ports of the light source driver and the n light sources. In addition, m (m is an integer equal to or less than n) delay adjustment units that respectively add predetermined delay times are further provided.

第10の発明は、光送信部と光受信部からなる光伝送装置であって、光送信部は、変調信号と制御信号を入力し、制御信号に従い変調信号をnの出力ポートの内いずれかのポートから選択出力する光源駆動部と、光源駆動部のn出力ポートから出力されるすべてまたは一部の注入電流に対して所定の遅延時間をそれぞれ付加するmの遅延調整部と、光源駆動部のnの出力ポートに対応して設けられ、当該出力信号もしくはmの遅延調整部からの出力信号を入力し、当該照射領域が互いに重なる拡散型の光信号に変換して出力するnの拡散光源からなる発光部とを備え、光受信部は、発光部のnの拡散光源から出力される光信号のいずれかを入力して、電気信号に変換して出力する光検波部を備え、遅延調整部は、nの拡散光源から出力される光信号の照射領域で形成される全照射範囲内の所定の領域において、複数の光信号の位相が整合するように、前記遅延時間を調整する。   A tenth aspect of the invention is an optical transmission apparatus including an optical transmission unit and an optical reception unit, wherein the optical transmission unit inputs a modulation signal and a control signal, and the modulation signal is selected from any of n output ports according to the control signal. A light source driving unit that selectively outputs from a plurality of ports, m delay adjusting units that respectively add a predetermined delay time to all or some of the injection currents output from the n output port of the light source driving unit, and a light source driving unit N diffused light sources provided corresponding to the n output ports of the light source, which receive the output signal or the output signal from the delay adjustment unit of m, and convert and output to a diffused optical signal in which the irradiation regions overlap each other The light receiving unit includes an optical detection unit that inputs any one of the optical signals output from the n diffused light sources of the light emitting unit, converts the light signal into an electrical signal, and outputs the electrical signal. Part is output from n diffused light sources In a predetermined area within the entire illumination range formed by the irradiation area of the signal, the phase of the plurality of optical signals to match, to adjust the delay time.

第11の発明は、前記第10の発明において、nの拡散光源が、マルチモード光源である。   In an eleventh aspect based on the tenth aspect, the n diffused light sources are multimode light sources.

第12の発明は、前記第11の発明において、マルチモード光源が、LED(Light Emission Diode)である。   In a twelfth aspect based on the eleventh aspect, the multimode light source is an LED (Light Emission Diode).

上記第1の発明では、複数の光源の内いずれかを発光させ、当該いずれかの光信号を受信することにより、光受信部の設置精度を緩和して、柔軟性に優れた光空間伝送装置を提供する。   In the first aspect of the present invention, an optical space transmission device that is excellent in flexibility by relaxing one of the plurality of light sources and receiving one of the optical signals, thereby reducing the installation accuracy of the optical receiver. I will provide a.

上記第2の発明では、複数の光源を切替え発光させることにより、光信号を空間的に走査し実質的な照射範囲を拡大して、光受信部の設置精度を緩和して、柔軟性に優れた光空間伝送装置を提供する。   In the second aspect of the invention, by switching light sources of a plurality of light sources, the optical signal is spatially scanned, the substantial irradiation range is expanded, the installation accuracy of the light receiving unit is relaxed, and excellent in flexibility. An optical space transmission device is provided.

上記第3の発明では、複数の光源を切替え発光させて光信号を空間的に走査すると共に、光受信部の電気信号品質が最大となる状態で当該走査を停止させることによって、光受信部の設置精度を緩和しながら、高速伝送を可能とする光空間伝送装置を提供する。   In the third aspect of the invention, the optical signal is spatially scanned by switching the plurality of light sources to emit light, and the scanning is stopped in a state in which the electrical signal quality of the optical receiver is maximized, whereby the optical receiver Provided is an optical space transmission device that enables high-speed transmission while relaxing installation accuracy.

上記第4、第5および第6の発明では、光信号をより効率的に走査することによって、光受信部の設置精度を緩和しながら、光送信部に用いる光源の数を最適化して、より簡易な構造の光空間伝送装置を提供する。   In the fourth, fifth, and sixth inventions, the number of light sources used in the optical transmitter is optimized by reducing the installation accuracy of the optical receiver by scanning the optical signal more efficiently. An optical space transmission apparatus having a simple structure is provided.

上記第7および第8の発明では、光送信部に用いる光源の数を最適化すると共に、光受信部が複数の光源から出力された光信号を同時に受信した場合においても、信号品質劣化を抑圧して、高品質の光空間伝送装置を提供する。   In the seventh and eighth inventions, the number of light sources used in the optical transmission unit is optimized, and signal quality degradation is suppressed even when the optical reception unit receives optical signals output from a plurality of light sources simultaneously. Thus, a high-quality optical space transmission device is provided.

上記第9の発明では、光受信部が複数の光源から出力された光信号を同時に受信した場合においても、効果的に信号品質劣化を抑圧して、より高品質の光空間伝送装置を提供する。   In the ninth aspect of the invention, even when the optical receiving unit receives optical signals output from a plurality of light sources at the same time, the signal quality deterioration is effectively suppressed and a higher quality optical space transmission device is provided. .

上記第10の発明では、複数の拡散光源を発光させ、当該変調信号の位相を調整することにより、空間上の所定の領域における受信信号レベルを高めて、光受信部の設置場所に柔軟に対応できる高品質の光空間伝送装置を提供する。   In the tenth aspect of the invention, a plurality of diffused light sources emit light, and the phase of the modulated signal is adjusted, thereby increasing the received signal level in a predetermined area in space and flexibly corresponding to the place where the optical receiving unit is installed. Provided is a high-quality optical space transmission device that can be used.

上記第11および第12の発明では、光送信部に、可干渉性の低い光源を用いることにより、光受信部が複数の光源から出力された光信号を同時に受信した場合においても、信号品質劣化を抑圧して、より高品質の光空間伝送装置を提供する。   In the eleventh and twelfth inventions described above, even when the optical receiver receives optical signals output from a plurality of light sources simultaneously by using a light source with low coherence for the optical transmitter, the signal quality is deteriorated. Therefore, a higher quality optical space transmission device is provided.

(実施の形態1)
本発明の実施の形態1に係る光空間伝送装置について、図1にその構成を示すと共に、以下に説明する。図1において、本実施形態の光空間伝送装置は、発光部101と、光結合部102と、光受信部103と、光源制御部104とを備えている。なお、発光部101は、複数n(図1では、n=7)の点光源101a〜101gで構成され、発光部101と、光結合部102と、光源制御部104とで光送信部100を構成する。また、光受信部103は、光検波部103aで構成される。
(Embodiment 1)
The optical space transmission apparatus according to Embodiment 1 of the present invention is shown in FIG. In FIG. 1, the space optical transmission apparatus of the present embodiment includes a light emitting unit 101, an optical coupling unit 102, an optical receiving unit 103, and a light source control unit 104. The light emitting unit 101 includes a plurality of n (n = 7 in FIG. 1) point light sources 101a to 101g, and the light transmitting unit 100 includes the light emitting unit 101, the optical coupling unit 102, and the light source control unit 104. Constitute. In addition, the optical receiving unit 103 includes an optical detection unit 103a.

次に、図1に示す本実施形態の動作を説明する。光源制御部104は、nの点光源101a〜101gに対応したnの出力ポートを有し、制御信号15に従っていずれか1ポートを選択し、当該ポートから、入力する変調信号14に所定のバイアス値(バイアス電流)を付加し出力する。点光源101a〜101gは、光源制御部104のnの出力ポートの内、対応するポートからの出力信号をそれぞれ入力して、光信号11a〜11gに変換し出力する。光結合部102は、レンズ等で構成され、光信号11a〜11gを、光送信部100の光出射端面100aを介して空間へ送出すると共に、光信号11a〜11gが当該空間上においてそれぞれ照射する領域13a〜13gが互いに隣接しかつ異なるように、当該光路を調整する。光受信部103(光検波部103a)は、光信号11a〜11gの照射領域13a〜13gによって構成される照射範囲13の中に配置され、光信号11a〜11gのいずれかを入力して、電気信号(変調信号)14’に変換し出力する。   Next, the operation of this embodiment shown in FIG. 1 will be described. The light source control unit 104 has n output ports corresponding to the n point light sources 101a to 101g, selects any one port according to the control signal 15, and applies a predetermined bias value to the modulation signal 14 input from the port. (Bias current) is added and output. The point light sources 101a to 101g each receive an output signal from a corresponding port among the n output ports of the light source control unit 104, and convert and output to optical signals 11a to 11g. The optical coupling unit 102 is configured by a lens or the like, and transmits the optical signals 11a to 11g to the space via the light emitting end surface 100a of the optical transmission unit 100, and the optical signals 11a to 11g irradiate on the space, respectively. The optical path is adjusted so that the regions 13a to 13g are adjacent to each other and different from each other. The optical receiving unit 103 (optical detection unit 103a) is disposed in the irradiation range 13 constituted by the irradiation regions 13a to 13g of the optical signals 11a to 11g, and inputs any one of the optical signals 11a to 11g to generate an electric signal. A signal (modulated signal) 14 ′ is converted and output.

ここで、光源制御部104は、光信号11a〜11gが照射領域13a〜13gを順次走査するように(例えば、図1では、13a−>13b−>13c−>13d−>13e−>13f−>13g−>13a−>・・・の順)、点光源101a〜101gに対する出力信号を切替え、瞬時的には、光信号11a〜11gの内いずれか一つが当該照射領域を照射し、かつ長期的には、光信号11a〜11gが、照射範囲13を隈なく照射するように制御する。これにより、図5と同様に、光信号を集光して、当該照射領域に向け高い光電力を送出して、受信信号のSNRを高め高速伝送を行うと共に、擬似的には、図6と同様に、光信号を拡散して当該照射範囲を拡大し、光受信器の設置精度を緩和する。なお、光送信部100からの送出電力に関しては、図5に準じて、光信号11a〜11gが、光出射端面100aから所定の距離Deyeを隔てた所定の範囲10を照射する各光電力Ptotalが、それぞれ所定値以下になるように定められ、その結果、伝送レートは、図5と同等の性能が得られる。   Here, the light source control unit 104 sequentially scans the irradiation regions 13a to 13g with the light signals 11a to 11g (for example, in FIG. 1, 13a-> 13b-> 13c-> 13d-> 13e-> 13f- > 13g-> 13a-> ...), the output signals to the point light sources 101a-101g are switched, and instantaneously, any one of the optical signals 11a-11g irradiates the irradiation region, and is long-term Specifically, the optical signals 11a to 11g are controlled so as to irradiate the irradiation range 13 thoroughly. As a result, as in FIG. 5, the optical signal is collected and high optical power is transmitted toward the irradiation area to increase the SNR of the received signal and perform high-speed transmission. Similarly, the optical signal is diffused to expand the irradiation range, and the installation accuracy of the optical receiver is relaxed. As for the transmission power from the optical transmission unit 100, the optical powers Ptotal for irradiating the predetermined range 10 with the optical signals 11a to 11g being separated from the light emitting end face 100a by the predetermined distance Dee are according to FIG. Each of the transmission rates is determined to be equal to or less than a predetermined value. As a result, the transmission rate is equivalent to that shown in FIG.

さらに、光受信部103から出力される電気信号14’の品質をモニタできる場合は、光源制御部104は、モニタ情報に基づいて、当該信号品質が最大となる状態で光信号の走査を停止し、当該照射領域を固定する。これにより、光信号の走査/切替え時間に起因する実効的な伝送レートの低下を防ぎ、より高速な光空間伝送を行う。なお、具体的なモニタ手段としては、受信信号のSNRを検出し、当該SNR値を電気無線信号等に変換して、光送信部100に伝達する構成等が想定される。   Further, when the quality of the electrical signal 14 ′ output from the optical receiving unit 103 can be monitored, the light source control unit 104 stops scanning the optical signal in a state where the signal quality is maximized based on the monitor information. The irradiation area is fixed. This prevents a decrease in the effective transmission rate due to the scanning / switching time of the optical signal and performs faster optical space transmission. In addition, as a specific monitoring means, the structure etc. which detect SNR of a received signal, convert the said SNR value into an electric radio signal etc., and transmit to the optical transmission part 100 etc. are assumed.

次に、本実施形態に関する別の構成について、図2にその構成を示し、説明する。図2は、図1の点光源101a〜101gの物理的な配置を変更したもので、当該点光源101a〜101gで、発光部201を構成する。本構成において、点光源101a〜101gは、図1と同様に、光源制御部104から切替え出力される信号を入力して、光信号に変換し出力する。ここで、点光源101a〜101gは、当該光信号を出力する方向に対して凹面状に配置される。これにより、例えば、図2に示すように、光受信部103が複数の光信号の照射領域(図2では、13bおよび13c)に跨って設置され、その結果として、複数の光信号成分(図2では、11bおよび11c)が同時に光検波部103aに入力した場合においても、両光信号間のスキュー(位相ずれ)を軽減して、より高品質な波形伝送を行う。   Next, another configuration relating to the present embodiment will be described with reference to FIG. FIG. 2 is a diagram in which the physical arrangement of the point light sources 101a to 101g in FIG. 1 is changed, and the light source 201 is configured by the point light sources 101a to 101g. In this configuration, the point light sources 101a to 101g receive the signal switched and output from the light source control unit 104, convert it into an optical signal, and output the same as in FIG. Here, the point light sources 101a to 101g are arranged in a concave shape with respect to the direction in which the optical signal is output. Thereby, for example, as shown in FIG. 2, the optical receiving unit 103 is installed across a plurality of optical signal irradiation regions (13b and 13c in FIG. 2), and as a result, a plurality of optical signal components (see FIG. 2). 2, even when 11b and 11c) are simultaneously input to the optical detection unit 103a, the skew (phase shift) between both optical signals is reduced, and higher-quality waveform transmission is performed.

なお、上記第1の実施形態(図1および図2)では、点光源101a〜101gを1次元的(線状)に配置した状態を図示したが、原理的にはいかなる配置でも良く、例えば、2次元的(面状)に配置しても良い。また、点光源の数nも、7以外のいかなる複数であっても良い。   In the first embodiment (FIGS. 1 and 2), the point light sources 101a to 101g are illustrated in a one-dimensional (linear) arrangement, but in principle any arrangement may be used. It may be arranged two-dimensionally (planar). Further, the number n of point light sources may be any number other than seven.

以上説明したように、第1の発明によれば、複数の点光源を順次切替え発光させ、空間上の所定の範囲を面的に走査するように照射することにより、高い伝送信号品質を確保しながら、光受信器の設置精度を緩和して、高速の光空間伝送装置を簡単な構成で提供することができる。   As described above, according to the first aspect of the present invention, high transmission signal quality is ensured by sequentially switching a plurality of point light sources to emit light and irradiating a predetermined range in space. However, the installation accuracy of the optical receiver can be relaxed, and a high-speed optical space transmission device can be provided with a simple configuration.

(実施の形態2)
本発明の実施の形態2に係る光伝送装置について、図3にその構成を示すと共に、以下に説明する。図3において、本実施形態の光空間伝送装置は、発光部101と、光結合部102と、光受信部103と、光源制御部104と、複数n(図3では、n=7)の遅延制御部305a〜305gを備えており、図2の構成に対して、遅延調整部305a〜305gを新たに備える点が異なる。なお、発光部101は、nの点光源101a〜101gで構成され、発光部101と、光結合部102と、光源制御部104と、遅延調整部305a〜305gとで光送信部100を構成する。また、光受信部103は、光検波部103aで構成される。
(Embodiment 2)
An optical transmission apparatus according to Embodiment 2 of the present invention will be described below with reference to FIG. 3, the optical space transmission device of the present embodiment includes a light emitting unit 101, an optical coupling unit 102, an optical receiving unit 103, a light source control unit 104, and a delay of a plurality of n (n = 7 in FIG. 3). Control units 305a to 305g are provided, and the configuration in FIG. 2 is different in that delay adjustment units 305a to 305g are newly provided. The light emitting unit 101 includes n point light sources 101a to 101g, and the light transmitting unit 101 includes the light emitting unit 101, the optical coupling unit 102, the light source control unit 104, and the delay adjustment units 305a to 305g. . In addition, the optical receiving unit 103 includes an optical detection unit 103a.

次に、図3に示す本実施形態の動作を説明する。本実施例の構成は、前述の第1の実施例(図1)に準ずるため、同一の動作を行うブロックに関しては、同一の番号を付して、その説明を省略し、相違点のみを以下に説明する。その構成において、本実施例の光伝送装置は、遅延制御部305a〜305gが、光源制御部104のnの出力ポートに対応して設けられ、対応するポートからの出力信号にそれぞれ所定の遅延量Da〜Dgを付与し出力する。点光源101a〜101gは、遅延調整部305a〜305gからの出力信号をそれぞれ入力して、光信号11a〜11gに変換し出力する。   Next, the operation of this embodiment shown in FIG. 3 will be described. Since the configuration of this embodiment conforms to that of the first embodiment (FIG. 1), the same number is assigned to the blocks performing the same operation, the description thereof is omitted, and only the differences are described below. Explained. In this configuration, in the optical transmission apparatus according to the present embodiment, the delay control units 305a to 305g are provided corresponding to the n output ports of the light source control unit 104, and each of the output signals from the corresponding ports has a predetermined delay amount. Da to Dg are assigned and output. The point light sources 101a to 101g receive the output signals from the delay adjustment units 305a to 305g, respectively, convert them into optical signals 11a to 11g, and output them.

ここで、遅延調整部305a〜305gは、光受信部103に対して近い位置にある点光源への入力信号に対しては大きな遅延量を付与し、光受信部103に対して遠い位置にある点光源への入力信号に対しては小さな遅延量を付与する。これにより、例えば、図3に示すように、光受信部103が複数の光信号の照射領域(図3では、13bおよび13c)に跨り設置され、その結果として、複数の光信号成分(図3では、11bおよび11c)が同時に光検波部103aに入力した場合においても、点光源101cに対して101dよりも大きな遅延量を与えて、両光信号間のスキュー(位相ずれ)を軽減し、高速伝送と光受信器の設置精度緩和を両立しながら、より高品質な波形伝送を行うことができる。   Here, the delay adjustment units 305 a to 305 g give a large delay amount to the input signal to the point light source located near the optical receiving unit 103, and are located far from the optical receiving unit 103. A small delay amount is given to the input signal to the point light source. Thereby, for example, as shown in FIG. 3, the optical receiving unit 103 is installed across a plurality of optical signal irradiation regions (13b and 13c in FIG. 3), and as a result, a plurality of optical signal components (FIG. 3) are installed. Then, even when 11b and 11c) are simultaneously input to the optical detection unit 103a, a delay amount larger than 101d is given to the point light source 101c to reduce the skew (phase shift) between the two optical signals, and high speed. Higher quality waveform transmission can be performed while achieving both transmission and ease of installation accuracy of the optical receiver.

次に、本実施形態に関する別の構成について、図4にその構成を示し、説明する。図4は、図3の点光源101a〜101gを拡散光源401a〜401gに変更したもので、図4に示すように、各点光源からの出力光信号を拡散光とし当該照射領域が、空間上において互いに重なるようにする。また、遅延制御部305a〜305gは、光源制御部104の対応するポートからの出力信号にそれぞれ所定の遅延量Da〜Dgを付与し出力する。これにより、各光信号が同相で重なり合う(光信号が互いに強めあう)空間的な領域、即ち光信号を効率的に受信できる領域を調整・制御することが可能となり、さらに前記遅延量を変更することで、当該受信領域を任意に変更することができる。即ち、発光部101からの出力光の出射方向/角度を擬似的に変更して、光受信部の設置位置に対し最適な出射方向を設定し、より高品質な波形伝送を効率的に行うことができる。   Next, another configuration relating to the present embodiment will be described with reference to FIG. 4 is obtained by changing the point light sources 101a to 101g in FIG. 3 to diffuse light sources 401a to 401g. As shown in FIG. 4, the output light signal from each point light source is diffused light, and the irradiation area is spatially So that they overlap each other. The delay control units 305a to 305g add predetermined delay amounts Da to Dg to the output signals from the corresponding ports of the light source control unit 104 and output the signals. As a result, it is possible to adjust and control a spatial region in which the optical signals overlap in phase (the optical signals strengthen each other), that is, a region where the optical signal can be efficiently received, and further change the delay amount. Thus, the reception area can be arbitrarily changed. That is, the emission direction / angle of the output light from the light emitting unit 101 is changed in a pseudo manner to set an optimum emission direction with respect to the installation position of the light receiving unit, thereby efficiently performing higher quality waveform transmission. Can do.

なお、図4では、光結合部を省略して示したが、図1〜図3と同様に、適宜挿入しても良い。   In FIG. 4, the optical coupling portion is omitted, but may be inserted as appropriate as in FIGS. 1 to 3.

以上説明したように、第2の発明によれば、複数の点光源への入力信号の遅延量/位相を最適に設定、制御することにより、光受信器に複数の光信号が入力した際の信号品質劣化を防ぎ、あるいは、光受信器の位置に応じて、光信号の出射方向を擬似的に最適制御して、より高速かつより柔軟な光空間伝送装置を提供することができる。   As described above, according to the second aspect of the present invention, when a plurality of optical signals are input to the optical receiver by optimally setting and controlling the delay amount / phase of the input signals to the plurality of point light sources. Signal quality deterioration can be prevented, or the optical signal emission direction can be optimally controlled in accordance with the position of the optical receiver to provide a higher-speed and more flexible optical space transmission device.

本発明は、光を自由空間に放射し無線通信を行う上において、人間の視覚に対する危険性を抑圧しながら、高速伝送を行う光空間伝送技術に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in an optical space transmission technology that performs high-speed transmission while suppressing the danger to human vision when performing wireless communication by emitting light into free space.

本発明の第1の実施形態に係る光空間伝送装置の構成を示すブロック図The block diagram which shows the structure of the optical space transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態の別の構成に係る光空間伝送装置の構成を示すブロック図The block diagram which shows the structure of the optical space transmission apparatus which concerns on another structure of the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光空間伝送装置の構成を示すブロック図The block diagram which shows the structure of the optical space transmission apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態の別の構成に係る光空間伝送装置の構成を示すブロック図The block diagram which shows the structure of the optical space transmission apparatus which concerns on another structure of the 2nd Embodiment of this invention. 従来の光空間伝送装置の構成を示すブロック図Block diagram showing the configuration of a conventional optical space transmission device 従来の光空間伝送装置の別の構成を示すブロック図The block diagram which shows another structure of the conventional optical space transmission apparatus

符号の説明Explanation of symbols

100 光送信部
101 発光部
102 光結合部
103 光受信部
104 光源制御部
101a〜101g 点光源
11a〜11g 光信号
14,14’ 変調信号
15 制御信号
200 光送信部
201 発光部
305a〜305g 遅延調整部
41a〜41g 光信号
DESCRIPTION OF SYMBOLS 100 Optical transmission part 101 Light emission part 102 Optical coupling part 103 Optical reception part 104 Light source control part 101a-101g Point light source 11a-11g Optical signal 14,14 'Modulation signal 15 Control signal 200 Optical transmission part 201 Light emission part 305a-305g Delay adjustment 41a to 41g Optical signal

Claims (12)

光送信部と光受信部からなる光伝送装置であって、
前記光送信部は、
変調信号と制御信号を入力し、前記制御信号に従い、前記変調信号を複数n(nは、2以上の整数)の出力ポートの内いずれかのポートから選択出力する光源駆動部と、
前記光源駆動部のnの出力ポートに対応して設けられ、出力信号をそれぞれ光信号に変換して出力するnの光源からなる発光部とを備え、
前記光受信部は、
前記発光部のnの光源から出力される光信号のいずれかを入力して、電気信号に変換して出力する光検波部を備える光空間伝送装置。
An optical transmission device comprising an optical transmitter and an optical receiver,
The optical transmitter is
A light source driver that inputs a modulation signal and a control signal, and selectively outputs the modulation signal from any one of a plurality of n (n is an integer of 2 or more) output ports according to the control signal;
A light emitting unit that is provided corresponding to n output ports of the light source driving unit, and that includes n light sources that convert the output signals into optical signals and output the optical signals, respectively.
The optical receiver is
An optical space transmission device including an optical detection unit that inputs any one of optical signals output from n light sources of the light emitting unit, converts the optical signal into an electrical signal, and outputs the electrical signal.
前記光送信部から出力される光信号は、所定の時間、所定の手順で、所望の空間的な範囲を走査する請求項1記載の光空間伝送装置。 The optical space transmission device according to claim 1, wherein the optical signal output from the optical transmitter scans a desired spatial range in a predetermined procedure for a predetermined time. 前記光送信部から出力される光信号は、前記光受信部から出力される電気信号のレベルが最大となる状態、または信号品質が最良となる状態で走査を停止する請求項2記載の光空間伝送装置。 The optical space according to claim 2, wherein scanning of the optical signal output from the optical transmission unit is stopped in a state where the level of the electrical signal output from the optical reception unit is maximized or in a state where the signal quality is optimal. Transmission equipment. 前記nの光源から出力される光信号は、いずれも光送信部が備える同一の開口部を介して出力される請求項1または2記載の光空間伝送装置。 3. The optical space transmission device according to claim 1, wherein all of the optical signals output from the n light sources are output through the same opening provided in the optical transmission unit. 前記nの光源から出力される光信号は、互いに異なる空間的な範囲を照射する請求項1または2記載の光空間伝送装置。 The optical space transmission device according to claim 1, wherein the optical signals output from the n light sources irradiate different spatial ranges. 前記nの光源から出力される光信号は、互いに隣接する空間的な領域を照射する請求項1または2記載の光空間伝送装置。 The optical space transmission device according to claim 1, wherein the optical signals output from the n light sources irradiate spatial regions adjacent to each other. 前記nの光源は、同一平面上に互いに隣接して配置される請求項1〜6いずれかに記載の光空間伝送装置。 The optical space transmission device according to claim 1, wherein the n light sources are arranged adjacent to each other on the same plane. 前記nの光源は、凹面上に互いに隣接して配置される請求項1〜6いずれかに記載の光空間伝送装置。 The optical space transmission device according to claim 1, wherein the n light sources are arranged adjacent to each other on a concave surface. 前記光源駆動部のnの出力ポートと前記nの光源との間に挿入され、前記光源駆動部から出力されるすべてまたは一部の注入電流に対して所定の遅延時間をそれぞれ付加するm(mは、n以下の整数)の遅延調整部をさらに備える請求項1〜6いずれかに記載の光空間伝送装置。 M (m) inserted between the n output ports of the light source driver and the n light sources, and adds a predetermined delay time to all or part of the injected current output from the light source driver. The optical space transmission device according to any one of claims 1 to 6, further comprising a delay adjusting unit of n or less. 光送信部と光受信部からなる光伝送装置であって、
前記光送信部は、
変調信号と制御信号を入力し、前記制御信号に従い、前記変調信号をnの出力ポートの内いずれかのポートから選択出力する光源駆動部と、
前記光源駆動部のn出力ポートから出力されるすべてまたは一部の注入電流に対して所定の遅延時間をそれぞれ付加するmの遅延調整部と、
前記光源駆動部のnの出力ポートに対応して設けられ、出力信号もしくは前記mの遅延調整部からの出力信号を入力し、照射領域が互いに重なる拡散型の光信号に変換して出力するnの拡散光源からなる発光部とを備え、
前記光受信部は、
前記発光部のnの拡散光源から出力される光信号のいずれかを入力して、電気信号に変換して出力する光検波部を備え、
前記遅延調整部は、前記nの拡散光源から出力される光信号の照射領域で形成される全照射範囲内の所定の領域において、複数の光信号の位相が整合するように、前記遅延時間を調整する光空間伝送装置。
An optical transmission device comprising an optical transmitter and an optical receiver,
The optical transmitter is
A light source driver that inputs a modulation signal and a control signal, and selectively outputs the modulation signal from any one of n output ports according to the control signal;
M delay adjusting units for respectively adding a predetermined delay time to all or a part of the injection current output from the n output port of the light source driving unit;
N corresponding to the n output ports of the light source driving unit, which receives an output signal or an output signal from the m delay adjusting unit, converts it into a diffused optical signal in which irradiation areas overlap each other, and outputs n A light-emitting unit comprising a diffused light source of
The optical receiver is
An optical detection unit that inputs any of the optical signals output from the n diffused light sources of the light emitting unit, converts the optical signal into an electrical signal, and outputs the electrical signal,
The delay adjustment unit adjusts the delay time so that phases of a plurality of optical signals are matched in a predetermined region within an entire irradiation range formed by irradiation regions of optical signals output from the n diffusion light sources. Optical space transmission device to be adjusted.
前記nの拡散光源は、マルチモード光源である請求項10記載の光空間伝送装置。 The optical space transmission device according to claim 10, wherein the n diffused light sources are multimode light sources. 前記マルチモード光源は、LED(Light Emission Diode)である請求項11記載の光空間伝送装置。 The optical space transmission device according to claim 11, wherein the multimode light source is an LED (Light Emission Diode).
JP2005155240A 2005-05-27 2005-05-27 Optical spatial transmitter Pending JP2006333188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155240A JP2006333188A (en) 2005-05-27 2005-05-27 Optical spatial transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155240A JP2006333188A (en) 2005-05-27 2005-05-27 Optical spatial transmitter

Publications (1)

Publication Number Publication Date
JP2006333188A true JP2006333188A (en) 2006-12-07

Family

ID=37554384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155240A Pending JP2006333188A (en) 2005-05-27 2005-05-27 Optical spatial transmitter

Country Status (1)

Country Link
JP (1) JP2006333188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193248A (en) * 2018-01-05 2019-10-31 アロン シュアファイア エルエルシーAron Surefire Llc System and method of tiling free space optical transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193248A (en) * 2018-01-05 2019-10-31 アロン シュアファイア エルエルシーAron Surefire Llc System and method of tiling free space optical transmission
JP7232507B2 (en) 2018-01-05 2023-03-03 アロン シュアファイア エルエルシー Systems and methods for tiling free-space optical transmission

Similar Documents

Publication Publication Date Title
Abumarshoud et al. LiFi through reconfigurable intelligent surfaces: A new frontier for 6G?
US20180131450A1 (en) Power beaming vcsel arrangement
TW200608630A (en) Satellite communication device with a smart antenna and associated method
TWI369723B (en) Multi laser system
Kim et al. Performance improvement of visible light communications using optical beamforming
US20110158651A1 (en) Method and apparatus for filtering locking
US20220376787A1 (en) Method for transmitting/receiving signal in optical wireless communication system, and transmission terminal and reception terminal therefor
US7583899B2 (en) Space optical transmission apparatus and space optical transmission system
TW200713820A (en) Switching circuit and control method of antenna module
KR20100071327A (en) Laser targeting system using multiple wavelength pulse modulation
CN108964761B (en) High-reliability space optical communication signal modulation terminal and method based on software radio
Aftab et al. Light fidelity (Li-Fi) based indoor communication system
Soltani et al. Terabit indoor laser-based wireless communications: LiFi 2.0 for 6G
JP2006333188A (en) Optical spatial transmitter
Khalid et al. Demonstrating a hybrid radio-over-fibre and visible light communication system
Rüb et al. A symbiotic 6G enabler: combining laser based visible light communication with reconfigurable intelligent surfaces
DE60007308D1 (en) MULTI-BEAM INTERNAL DRUM RECORDING DEVICE WITH MULTIPLE WAVELENGTHS
Bui et al. Energy-constrained slot-amplitude modulation with dimming support
WO2019244348A1 (en) Wireless communication system, terminal device, base station device, and wireless communication method
RU2211538C2 (en) Method for radio suppression of communication channels
KR101302190B1 (en) Data signal interleaving system and method thereof using by pma
JP5329482B2 (en) Diversity communication system
Kirrbach et al. High Power Eye-Safe Optical Wireless Gigabit Link Employing a Freeform Multipath Lens
JP2017005579A (en) Millimeter wave communication system and millimeter wave communication method
CN111092690A (en) WDM-based baseband signal transmission device, method, storage medium and electronic device