JP2006332301A - Optical amplifier - Google Patents

Optical amplifier Download PDF

Info

Publication number
JP2006332301A
JP2006332301A JP2005153380A JP2005153380A JP2006332301A JP 2006332301 A JP2006332301 A JP 2006332301A JP 2005153380 A JP2005153380 A JP 2005153380A JP 2005153380 A JP2005153380 A JP 2005153380A JP 2006332301 A JP2006332301 A JP 2006332301A
Authority
JP
Japan
Prior art keywords
gain
light
optical
signal light
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005153380A
Other languages
Japanese (ja)
Other versions
JP4911922B2 (en
Inventor
Kenichi Suzuki
謙一 鈴木
Yoichi Fukada
陽一 深田
Koichi Saito
幸一 斎藤
Yoichi Maeda
洋一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005153380A priority Critical patent/JP4911922B2/en
Publication of JP2006332301A publication Critical patent/JP2006332301A/en
Application granted granted Critical
Publication of JP4911922B2 publication Critical patent/JP4911922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To relax the requirement condition to BPF for splitting GC control light outputted from a gain block. <P>SOLUTION: A gain clamp light of different wavelength from signal light within an amplification band of a gain block 12 with intensity much higher than the signal light is inputted in the gain block 12, so that a constant gain is provided regardless of intensity of signal light. The gain clamp light is inputted in the gain block in the direction opposite to the propagation direction of signal light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、PON(Passive Optical Network:受動光ネットワーク)システムの伝送距離を拡大する利得クランプ型PON中継器等に適用される光増幅器に関するものである。   The present invention relates to an optical amplifier applied to a gain-clamped PON repeater or the like that increases the transmission distance of a PON (Passive Optical Network) system.

PONシステムは、光ファイバ伝送路および局装置を複数のユーザ間で共有する費用効率の高いシステムである。ここ数年、ITU−T勧告G.983シリーズに準拠しB−PON(Broadband PON)インターフェースを備えた光アクセスシステムが導入されている。そして、IEEE802.3ahに準拠しギガビットの伝送能力を持ったGE−PON(Gigabit Ethernet PON)システムが導入され始めている。さらに、ITU−T勧告G.984シリーズに準拠しフルサービスの効率的な転送が可能なG−PON(Gigabit-capable PON)システムが主に北米で注目されている。このように、PONシステムはFTTx(FTTHその他)の本命として世界中に広がりつつある。   The PON system is a cost-effective system that shares an optical fiber transmission line and a station apparatus among a plurality of users. ITU-T Recommendation G. An optical access system based on the 983 series and equipped with a B-PON (Broadband PON) interface has been introduced. Then, a GE-PON (Gigabit Ethernet PON) system having a gigabit transmission capability based on IEEE802.3ah has started to be introduced. Furthermore, ITU-T Recommendation G. A G-PON (Gigabit-capable PON) system that is compliant with the 984 series and enables efficient transfer of full service has attracted attention mainly in North America. Thus, the PON system is spreading all over the world as a favorite of FTTx (FTTH and others).

ところで、通信事業者がサービスを経済的に提供するためには、収容局側の1つのOLT(Optical Line Terminal)で、できるだけ多くの顧客を効率的に収容できなくてはならない。それゆえ、サービス要求の比較的少ない地域(過疎地)では、OLTと宅内のONU(Optical Network Unit)間の距離を拡大することが重要である。一方、サービス要求の比較的高い地域(都市部)では、スプリッタの許容分岐数を増やすことが重要である。つまり、伝送距離を拡大することにより1つのOLTで遠隔地のより多くの顧客にサービスを提供することができ、許容分岐数を増加させることにより都市部のさらに多くの顧客にサービスを提供することができる。   By the way, in order for a telecommunications carrier to provide services economically, it is necessary to efficiently accommodate as many customers as possible with one OLT (Optical Line Terminal) on the accommodation station side. Therefore, it is important to increase the distance between the OLT and the ONU (Optical Network Unit) in the home in an area where service requests are relatively small (depopulated area). On the other hand, in areas (urban areas) where service requests are relatively high, it is important to increase the number of splitter branches allowed. In other words, by extending the transmission distance, one OLT can provide services to more customers in remote locations, and by increasing the number of allowed branches, services can be provided to more customers in urban areas. Can do.

PONシステムの伝送距離を拡大するものとして、光信号を一度電気信号に変化した後に電気信号から同期クロックを再生し、識別再生を行った後に再度光信号に変換する3R機能(Reshaping,Retiming,Regenerating)を持ったPON中継器(3R中継器)(例えば、非特許文献1参照)および光増幅器がある。3R中継器は標準準拠の光インターフェースを用いるので経済的な光モジュールの入手が可能であるという利点があるが、異なる伝送ビットレートや伝送プロトコルを持つPONシステムに対して、それぞれ専用の中継器の開発が必要となる。一方、光増幅器は伝送ビットレートやプロトコルによらず光信号を増幅できる利点がある。   3R function (Reshaping, Retiming, Regenerating) that expands the transmission distance of the PON system, regenerates a synchronous clock from an electrical signal once it is converted to an electrical signal, performs identification regeneration, and then converts it back to an optical signal PON repeater (3R repeater) (see Non-Patent Document 1, for example) and an optical amplifier. The 3R repeater has the advantage that an economical optical module can be obtained because it uses a standard-compliant optical interface. However, each 3R repeater has its own repeater for PON systems with different transmission bit rates and transmission protocols. Development is required. On the other hand, an optical amplifier has an advantage that an optical signal can be amplified regardless of a transmission bit rate or a protocol.

ところで、PONシステムでは、OLTからONUへの送信(下り)信号は連続光であるため、既存技術を用いた光増幅が可能である。一方、ONUからOLTへの送信(上り)信号はバースト光であり、OLTと各ONUの距離が異なるので、OLTは各ONUからの異なる光強度を持ったバースト光信号を受信することになる。光増幅器によるPON中継器においても、これらバースト光信号を増幅できなくてはならない。   By the way, in the PON system, since the transmission (downstream) signal from the OLT to the ONU is continuous light, optical amplification using existing technology is possible. On the other hand, the transmission (upstream) signal from the ONU to the OLT is a burst light, and since the distance between the OLT and each ONU is different, the OLT receives a burst optical signal having a different light intensity from each ONU. Even in a PON repeater using an optical amplifier, it is necessary to amplify these burst optical signals.

しかしながら、光増幅器によるバースト光信号の増幅においては、その瞬時的な利得特性により光サージが引き起こされる。光サージはOLTにおける正常な信号受信を妨げるばかりでなく、光受信器の故障を引き起こす可能性がある。したがって、光増幅器は、バースト光信号の増幅の際に生じる光サージを抑圧するため、何らかの利得制御を必要とする。   However, when the burst optical signal is amplified by the optical amplifier, an optical surge is caused by the instantaneous gain characteristic. Optical surges not only prevent normal signal reception at the OLT, but can also cause optical receiver failure. Therefore, the optical amplifier needs some gain control in order to suppress the optical surge generated when the burst optical signal is amplified.

光増幅器の利得制御法として主に2つの方法がある。1つは、入出力光強度をモニタしてフィードバック/フォワードにより一定出力動作を実現する自動利得制御(AGC)法である。もう1つは、利得制御光を信号光と同時増幅させることにより、入力信号光のバースト的なふるまいによる利得変動を抑圧する利得クランプ(GC)法である。特にAGC法は多くの長距離伝送システム用光中継器に適用されている。   There are mainly two methods for gain control of an optical amplifier. One is an automatic gain control (AGC) method that monitors the input / output light intensity and realizes a constant output operation by feedback / forward. The other is a gain clamp (GC) method in which gain control light is simultaneously amplified with signal light to suppress gain fluctuation due to burst behavior of input signal light. In particular, the AGC method is applied to many optical repeaters for long-distance transmission systems.

しかしながら、AGC法の応答速度は、制御回路の速度ばかりでなく光増幅器の瞬時的な利得応答特性に依存する。それゆえ、AGC法はバースト信号のように激しく光強度が変わる信号に対しては応答が遅すぎる。一方、GC法は利得応答特性や制御回路の速度に依存しない。バースト対応でない従来の1.3μm波長帯光増幅器としては、プラセオジウム添加ファイバからなるものが知られている(例えば、非特許文献2参照)。   However, the response speed of the AGC method depends not only on the speed of the control circuit but also on the instantaneous gain response characteristic of the optical amplifier. Therefore, the AGC method is too slow in response to a signal whose light intensity changes drastically like a burst signal. On the other hand, the GC method does not depend on the gain response characteristic or the speed of the control circuit. As a conventional 1.3 μm wavelength band optical amplifier that does not support burst, one made of praseodymium-doped fiber is known (for example, see Non-Patent Document 2).

図7に、従来のGC制御光ファイバ光増幅器としての利得クランプ型PON中継器の構成を示す。このPON中継器は、入力ポート側の光アイソレータ31、出力ポート側の光アイソレータ32、GC制御光源33、GC制御光λ2と信号光λ1を合波するためのWDM(Wavelength Division Multiplexer:波長多重分離器)34、希土類添加ファイバからなる利得ブロック35、利得ブロック35を励起する励起光源36、信号光λ1およびGC制御光λ2を励起光と合波するためのWDM37、信号光λ1を励起光λ2から分離するためのWDM38、信号光λ1を自然放出光雑音およびGC制御光λ2から分離するための光バンドパスフィルタ(BPF)39で構成される。   FIG. 7 shows a configuration of a gain clamp type PON repeater as a conventional GC control optical fiber optical amplifier. This PON repeater includes an optical isolator 31 on the input port side, an optical isolator 32 on the output port side, a GC control light source 33, a WDM (Wavelength Division Multiplexer) for multiplexing the GC control light λ2 and the signal light λ1. 34), a gain block 35 made of rare earth doped fiber, a pumping light source 36 for pumping the gain block 35, a WDM 37 for combining the signal light λ1 and the GC control light λ2 with the pumping light, and the signal light λ1 from the pumping light λ2. A WDM 38 for separation and an optical bandpass filter (BPF) 39 for separating the signal light λ1 from the spontaneous emission light noise and the GC control light λ2.

このような構成のPON中継器において、利得クランプを行うためには、GC制御光λ2の波長を利得ブロック35の利得帯域内の波長に設定する。そして、信号光λ1に比べ十分大きな光強度でGC制御光λ2を利得ブロック35に入力することにより、信号光強度の変化によらず一定の利得をもった光増幅を実現できる。   In the PON repeater having such a configuration, in order to perform gain clamping, the wavelength of the GC control light λ2 is set to a wavelength within the gain band of the gain block 35. Then, by inputting the GC control light λ2 to the gain block 35 with a light intensity sufficiently higher than that of the signal light λ1, it is possible to realize optical amplification with a constant gain regardless of the change of the signal light intensity.

鈴木謙一、古川哲治、斎藤幸一、上田裕巳 著、「B−PONにおける伝送距離の拡大を実現するレピータの構成法」、信学論B、J86−B巻、10号、2053−2064頁、2003年10月。Kenichi Suzuki, Tetsuji Furukawa, Koichi Saito, Hiroshi Ueda, “Repeater Configuration Method for Realizing Expansion of Transmission Distance in B-PON”, Science B, J86-B Vol. 10, No. 2053-2064, 2003 October. Makoto Yamada,Terutoshi Kanamori,Yasutake Ohishi,Makoto Shimizu,Yukio Terunuma,Seiichiro Sato,and Shoichi Sudo,"Pr3+-Doped Fluoride Fiber Amplifier Module Pumped by a Fiber Coupled Master Oscillator/Power Amplifier Laser Diode" IEEE Photon.Techol.Lett.VOL.9,NO.3,pp.321-323,March 1997.Makoto Yamada, Terutoshi Kanamori, Yasutake Ohishi, Makoto Shimizu, Yukio Terunuma, Seiichiro Sato, and Shoichi Sudo, "Pr3 + -Doped Fluoride Fiber Amplifier Module Pumped by a Fiber Coupled Master Oscillator / Power Amplifier Laser Diode" IEEE Photon.Techol.Lett. VOL.9, NO.3, pp.321-323, March 1997.

しかしながら、信号光λ1に比べGC制御光λ2の強度が10dB乃至20dB大きいと、信号光λ1とGC制御光λ2を分離するためのBPF39への要求条件が厳しくなる欠点があった。例えば、GC制御光抑圧比20dBのBPF39ではBPFの出力側では光信号λ1とGC制御光λ2が同程度の光強度となってしまう。   However, if the intensity of the GC control light λ2 is 10 dB to 20 dB higher than the signal light λ1, there is a drawback that the requirements for the BPF 39 for separating the signal light λ1 and the GC control light λ2 become severe. For example, in the BPF 39 having a GC control light suppression ratio of 20 dB, the optical signal λ1 and the GC control light λ2 have the same light intensity on the output side of the BPF.

本発明は、上記した点に鑑みてなされたもので、その目的は、信号光とGC制御光を分離するためのBPFへの要求条件を緩和できるようにした光増幅器することである。   The present invention has been made in view of the above points, and an object of the present invention is to provide an optical amplifier capable of relaxing the requirements for the BPF for separating signal light and GC control light.

上記目的を達成するために、請求項1にかかる発明は、利得ブロックの増幅帯域内で且つ信号光と異なる波長で且つ該信号光と比べ十分大きな強度の利得クランプ光を前記利得ブロックに入力することにより、前記信号光の強度によらず一定の利得を得る光増幅器において、前記利得クランプ光を、前記信号光の伝搬方向と逆方向に前記利得ブロックに入力するようにしたことを特徴とする。   To achieve the above object, according to the first aspect of the present invention, a gain clamp light having a sufficiently large intensity compared with the signal light is input to the gain block within the amplification band of the gain block, at a wavelength different from that of the signal light. Thus, in an optical amplifier that obtains a constant gain regardless of the intensity of the signal light, the gain clamp light is input to the gain block in a direction opposite to the propagation direction of the signal light. .

請求項2にかかる発明は、請求項1に記載の光増幅器において、前記利得ブロックを、プラセオジウム添加ファイバで構成したことを特徴とする。   According to a second aspect of the present invention, in the optical amplifier according to the first aspect, the gain block is composed of a praseodymium-doped fiber.

請求項3にかかる発明は、請求項1又は2に記載の光増幅器において、前記利得ブロックを多段構成としたことを特徴とする。   The invention according to claim 3 is the optical amplifier according to claim 1 or 2, characterized in that the gain block has a multistage configuration.

本発明の光増幅器によれば、GC制御光を信号光と逆方向に伝搬させて利得ブロックに入力させるので、信号光と同方向に伝搬するGC制御光成分はGC制御光の反射成分となり強度が低下する。このため、信号光から自然放出光雑音およびGC制御光を分離するための光フィルタへの要求条件を緩和できる。   According to the optical amplifier of the present invention, since the GC control light propagates in the opposite direction to the signal light and is input to the gain block, the GC control light component propagating in the same direction as the signal light becomes a reflection component of the GC control light and has an intensity. Decreases. For this reason, the requirements for the optical filter for separating the spontaneous emission light noise and the GC control light from the signal light can be relaxed.

以下、本発明の光増幅器を適用した利得クランプ型PON中継器の実施例について説明する。   Hereinafter, an embodiment of a gain clamp type PON repeater to which the optical amplifier of the present invention is applied will be described.

図1は実施例1の利得クランプ型PON中継器の構成を示すブロック図である。本実施例1では、入力ポート側の光アイソレータ11、希土類添加ファイバからなる利得ブロック12、利得ブロック12を励起するための励起光源13、信号光λ1を励起光源13からの励起光λ3と合波するためのWDM14、励起光を信号光λ1から分離するためのWDM15、GC制御光源16、GC制御光源16からのGC制御光λ2を利得ブロック12へ入力するためのサーキュレータ17、信号光λ1から自然放出光雑音およびGC制御光λ2を分離するための光バンドパスフィルタ(BPF)18で構成される。そして、GC制御光源16からのGC制御光λ2は、信号光λ2と反対方向に伝搬させて利得ブロック12に入力させる構成、すなわち前方励起且つ後方利得クランプの構成としている。   FIG. 1 is a block diagram illustrating a configuration of a gain clamp type PON repeater according to the first embodiment. In the first embodiment, an optical isolator 11 on the input port side, a gain block 12 made of a rare earth doped fiber, a pumping light source 13 for pumping the gain block 12, and signal light λ1 are combined with pumping light λ3 from the pumping light source 13. The WDM 14 for separating the excitation light from the signal light λ 1, the GC control light source 16, the circulator 17 for inputting the GC control light λ 2 from the GC control light source 16 to the gain block 12, and the natural light from the signal light λ 1. It comprises an optical bandpass filter (BPF) 18 for separating the emitted light noise and the GC control light λ2. The GC control light λ2 from the GC control light source 16 is propagated in the opposite direction to the signal light λ2 and input to the gain block 12, that is, the configuration of forward pumping and backward gain clamping.

このように、GC制御光λ2を利得ブロック12に対して信号光λ1と反対方向に伝搬させると、信号光λ1と同方向に伝搬するGC制御光λ2の成分は、GC制御光λ2の反射成分となる。このため、GC制御光λ2を分離除去するためのBPF18への要求条件(GC制御光抑圧比)を緩和することができる。   As described above, when the GC control light λ2 is propagated to the gain block 12 in the opposite direction to the signal light λ1, the component of the GC control light λ2 propagating in the same direction as the signal light λ1 is the reflected component of the GC control light λ2. It becomes. For this reason, the requirement (GC control light suppression ratio) for the BPF 18 for separating and removing the GC control light λ2 can be relaxed.

実施例1の利得クランプ型PON中継器の具体例としては、信号光の波長を1.3μmとするとき、利得ブロック12を1.3μm帯の波長の光増幅が可能なプラセオジウム添加ファイバで構成し、励起光源13を0.98μmの波長のLD光源で構成し、GC制御光源16を1.27μm〜1.28μmまたは1.32μm〜1.35μmのいずれかの波長で発振するLD光源で構成する。また、BPF18を1.29μm〜1.31μmの波長を通過帯域とする光バンドパスフィルタで構成する。   As a specific example of the gain clamp type PON repeater of the first embodiment, when the wavelength of the signal light is 1.3 μm, the gain block 12 is composed of a praseodymium-doped fiber capable of amplifying light in the wavelength of 1.3 μm band. The excitation light source 13 is composed of an LD light source having a wavelength of 0.98 μm, and the GC control light source 16 is composed of an LD light source that oscillates at a wavelength of 1.27 μm to 1.28 μm or 1.32 μm to 1.35 μm. . Further, the BPF 18 is constituted by an optical bandpass filter having a passband with a wavelength of 1.29 μm to 1.31 μm.

図2は本発明の実施例2の利得クランプ型PON中継器の構成を示す図である。図1の構成との違いは、図1の励起光源13を除去し、利得ブロック12の後方に配置した励起光源13Aからの励起光をWDM15により信号光と逆方向に、利得ブロック12に入力して、WDM14においてその励起光を分離する構成、すなわち後方励起且つ後方利得クランプの構成としている。ここでも、利得ブロック12、励起光源13A、GC制御光源16、BPF18には、実施例1と同様のプラセオジウム添加ファイバ、並びに同様の波長のLD光源および光バンドパスフィルタを適用できる。   FIG. 2 is a diagram showing the configuration of the gain clamp type PON repeater according to the second embodiment of the present invention. The difference from the configuration of FIG. 1 is that the pumping light source 13 of FIG. 1 is removed, and pumping light from the pumping light source 13A disposed behind the gain block 12 is input to the gain block 12 by the WDM 15 in the opposite direction to the signal light. Thus, the WDM 14 is configured to separate the excitation light, that is, the configuration of backward pumping and backward gain clamping. Also here, the same praseodymium-doped fiber as in the first embodiment, the LD light source of the same wavelength, and the optical bandpass filter can be applied to the gain block 12, the excitation light source 13A, the GC control light source 16, and the BPF 18.

図3は本発明の実施例3の利得クランプ型PON中継器の構成を示す図である。図1との違いはWDM14から励起光源13による励起光を利得ブロック12に入力するのに加えて、WDM15から励起光源13Aによる励起光を信号光と逆方向に利得ブロック12に入力する双方向励起且つ後方利得クランプの構成としている。ここでも、利得ブロック12、励起光源13,13A、GC制御光源16、BPF18には、実施例1と同様のプラセオジウム添加ファイバ、並びに同様の波長のLD光源および光バンドパスフィルタを適用できる。   FIG. 3 is a diagram showing the configuration of the gain clamp type PON repeater according to the third embodiment of the present invention. The difference from FIG. 1 is that the pump light from the pump light source 13 is input from the WDM 14 to the gain block 12, and the pump light from the pump light source 13A is input from the WDM 15 to the gain block 12 in the opposite direction to the signal light. And it is set as the structure of a rear gain clamp. Also here, the same praseodymium-doped fiber as in the first embodiment, the LD light source having the same wavelength, and the optical bandpass filter can be applied to the gain block 12, the excitation light sources 13, 13A, the GC control light source 16, and the BPF 18.

図4は本発明の実施例4の利得クランプ型PON中継器の構成を示すブロック図である。これは図1の実施例1の構成を前段に配置し、図2の実施例2の構成を後段に配置して2段に組み合わせて高利得を実現したものである。12Aは利得ブロック、14A,15AはWDM、16AはGC制御光源、17Aはサーキュレータである。ここでも、利得ブロック12,12A、励起光源13,13A、GC制御光源16,16A、BPF18には、実施例1と同様のプラセオジウム添加ファイバ、並びに同様の波長のLD光源および光バンドパスフィルタを適用できる。   FIG. 4 is a block diagram showing the configuration of the gain clamp type PON repeater according to the fourth embodiment of the present invention. This is a configuration in which the configuration of the first embodiment shown in FIG. 1 is arranged at the front stage, and the configuration of the second embodiment shown in FIG. 12A is a gain block, 14A and 15A are WDM, 16A is a GC control light source, and 17A is a circulator. Here again, the gain blocks 12 and 12A, the excitation light sources 13 and 13A, the GC control light sources 16 and 16A, and the BPF 18 are applied with the same praseodymium-doped fiber, the LD light source with the same wavelength, and the optical bandpass filter as in the first embodiment. it can.

図5に、この図4の2段構成の利得クランプ型PON中継器の利得特性を示す。ここでは、波長が1.3μmの信号光の利得が11.67dBmであるのに対して、波長が1.32μmのGC制御光の利得は−25dBmと大幅に低下している。図6に、従来の図7の構成を2段にして同じ波長条件とした利得クランプ型PON中継器の利得特性を示す。ここでは、波長が1.3μmの信号光の利得が9.52dBmであるのに対して、波長が1.32μmのGC制御光の利得は5dBmとほぼ同じになっていて、GC制御光の減衰が十分ではない。   FIG. 5 shows gain characteristics of the gain clamp type PON repeater having the two-stage configuration shown in FIG. Here, the gain of signal light having a wavelength of 1.3 μm is 11.67 dBm, whereas the gain of GC control light having a wavelength of 1.32 μm is greatly reduced to −25 dBm. FIG. 6 shows the gain characteristics of a gain-clamped PON repeater having the same wavelength condition as the conventional configuration of FIG. Here, the gain of the signal light having a wavelength of 1.3 μm is 9.52 dBm, whereas the gain of the GC control light having a wavelength of 1.32 μm is substantially the same as 5 dBm. Is not enough.

なお、以上の実施例1〜4では、GC制御光の波長を信号光の波長より大きな波長に設定した場合について説明したが、GC制御光は信号光増幅帯域内(利得ブロック12、12Aの増幅帯域内)で且つ信号光と異なる波長で且つ該信号光に対し十分大きな強度をもつものであれば、信号光の波長より小さな波長であってもよい。   In the first to fourth embodiments, the case where the wavelength of the GC control light is set to be larger than the wavelength of the signal light has been described. However, the GC control light is within the signal light amplification band (amplification of the gain blocks 12, 12A). The wavelength may be smaller than the wavelength of the signal light as long as it has a wavelength different from that of the signal light and has a sufficiently large intensity with respect to the signal light.

本発明の実施例1の利得クランプ型PON中継器の構成を示すブロック図である。It is a block diagram which shows the structure of the gain clamp type PON repeater of Example 1 of this invention. 本発明の実施例2の利得クランプ型PON中継器の構成を示すブロック図である。It is a block diagram which shows the structure of the gain clamp type PON repeater of Example 2 of this invention. 本発明の実施例3の利得クランプ型PON中継器の構成を示すブロック図である。It is a block diagram which shows the structure of the gain clamp type PON repeater of Example 3 of this invention. 本発明の実施例4の利得クランプ型PON中継器の構成を示すブロック図である。It is a block diagram which shows the structure of the gain clamp type PON repeater of Example 4 of this invention. 本発明の実施例4の利得クランプ型PON中継器の利得特性図である。It is a gain characteristic figure of the gain clamp type PON repeater of Example 4 of the present invention. 従来の2段構成の利得クランプ型PON中継器の利得特性図である。It is a gain characteristic figure of the gain clamp type PON repeater of the conventional 2 step | paragraph structure. 従来の利得クランプ型PON中継器の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional gain clamp type PON repeater.

符号の説明Explanation of symbols

11:光アイソレータ
12,12A:利得ブロック
13,13A:励起光源
14,14A,15,15A:WDM
16,16A:GC制御光源
17,17A:サーキュレータ
18:光バンドパスフィルタ
31,32:光アイソレータ
33:GC制御光源
34,37,38:WDM
35:利得ブロック
36:励起光源
39:光バンドパスフィルタ
11: Optical isolator 12, 12A: Gain block 13, 13A: Excitation light source 14, 14A, 15, 15A: WDM
16, 16A: GC control light source 17, 17A: Circulator 18: Optical bandpass filter 31, 32: Optical isolator 33: GC control light source 34, 37, 38: WDM
35: Gain block 36: Excitation light source 39: Optical bandpass filter

Claims (3)

利得ブロックの増幅帯域内で且つ信号光と異なる波長で且つ該信号光と比べ十分大きな強度の利得クランプ光を前記利得ブロックに入力することにより、前記信号光の強度によらず一定の利得を得る光増幅器において、
前記利得クランプ光を、前記信号光の伝搬方向と逆方向に前記利得ブロックに入力するようにしたことを特徴とする光増幅器。
A constant gain can be obtained regardless of the intensity of the signal light by inputting gain clamp light within the gain block amplification band and at a wavelength different from that of the signal light and having a sufficiently large intensity compared to the signal light to the gain block. In an optical amplifier,
An optical amplifier characterized in that the gain clamp light is input to the gain block in a direction opposite to the propagation direction of the signal light.
請求項1に記載の光増幅器において、
前記利得ブロックを、プラセオジウム添加ファイバで構成したことを特徴とする光増幅器。
The optical amplifier according to claim 1.
An optical amplifier characterized in that the gain block is composed of a praseodymium-doped fiber.
請求項1又は2に記載の光増幅器において、
前記利得ブロックを多段構成としたことを特徴とする光増幅器。
The optical amplifier according to claim 1 or 2,
An optical amplifier characterized in that the gain block has a multistage configuration.
JP2005153380A 2005-05-26 2005-05-26 Optical amplifier Active JP4911922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153380A JP4911922B2 (en) 2005-05-26 2005-05-26 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153380A JP4911922B2 (en) 2005-05-26 2005-05-26 Optical amplifier

Publications (2)

Publication Number Publication Date
JP2006332301A true JP2006332301A (en) 2006-12-07
JP4911922B2 JP4911922B2 (en) 2012-04-04

Family

ID=37553682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153380A Active JP4911922B2 (en) 2005-05-26 2005-05-26 Optical amplifier

Country Status (1)

Country Link
JP (1) JP4911922B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281838A (en) * 2006-04-06 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2020107816A (en) * 2018-12-28 2020-07-09 日本電気株式会社 Optical amplifier and optical communication device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728105A (en) * 1993-07-14 1995-01-31 Nec Corp Optical fiber amplifier
JPH09509012A (en) * 1994-02-18 1997-09-09 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Gain control optical fiber amplifier
JPH09321373A (en) * 1996-05-31 1997-12-12 Nec Corp Optical signal monitor circuit and optical amplifier
JPH1022556A (en) * 1996-07-03 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> Light gain control type of optical amplifier
JPH10163972A (en) * 1996-11-25 1998-06-19 Hitachi Ltd Optical amplifier medium control method, optical amplifier device and system using the same
JPH11145533A (en) * 1997-11-12 1999-05-28 Furukawa Electric Co Ltd:The Light-amplifying device
JP2000261079A (en) * 1999-03-10 2000-09-22 Hitachi Cable Ltd Optical amplifier
JP2001284689A (en) * 2000-04-04 2001-10-12 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2003338650A (en) * 2002-03-14 2003-11-28 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2004301991A (en) * 2003-03-31 2004-10-28 Fujitsu Ltd Optical amplification control unit and optical amplification control process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728105A (en) * 1993-07-14 1995-01-31 Nec Corp Optical fiber amplifier
JPH09509012A (en) * 1994-02-18 1997-09-09 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Gain control optical fiber amplifier
JPH09321373A (en) * 1996-05-31 1997-12-12 Nec Corp Optical signal monitor circuit and optical amplifier
JPH1022556A (en) * 1996-07-03 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> Light gain control type of optical amplifier
JPH10163972A (en) * 1996-11-25 1998-06-19 Hitachi Ltd Optical amplifier medium control method, optical amplifier device and system using the same
JPH11145533A (en) * 1997-11-12 1999-05-28 Furukawa Electric Co Ltd:The Light-amplifying device
JP2000261079A (en) * 1999-03-10 2000-09-22 Hitachi Cable Ltd Optical amplifier
JP2001284689A (en) * 2000-04-04 2001-10-12 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2003338650A (en) * 2002-03-14 2003-11-28 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2004301991A (en) * 2003-03-31 2004-10-28 Fujitsu Ltd Optical amplification control unit and optical amplification control process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281838A (en) * 2006-04-06 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP4606369B2 (en) * 2006-04-06 2011-01-05 日本電信電話株式会社 Optical amplifier
JP2020107816A (en) * 2018-12-28 2020-07-09 日本電気株式会社 Optical amplifier and optical communication device
JP7221683B2 (en) 2018-12-28 2023-02-14 日本電気株式会社 Optical communication device

Also Published As

Publication number Publication date
JP4911922B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US8644707B2 (en) Bidirectional optical amplifier arrangement
CN102783056B (en) Bidirectional optical amplifier and passive optical network
US8594502B2 (en) Method and apparatus using distributed raman amplification and remote pumping in bidirectional optical communication networks
JP6608747B2 (en) Wavelength multiplexed optical receiver and driving method thereof
US7085039B2 (en) Hybrid Raman/erbium-doped fiber amplifier and transmission system with dispersion map
US9948422B2 (en) Low cost gain clamped EDFA for TWDM passive optical network application
JPH11331094A (en) Wide band optical amplifier
JP2005073257A (en) Multi-wavelength optical transmitter and two-way wavelength division multiplexing system using the same
US6091541A (en) Multichannel 3-stage optical fiber amplifier
JP3217037B2 (en) Multi-stage optical fiber amplifier
US7379233B2 (en) Raman amplifier utilizing pump modulation for expanding gain band width
JP5899866B2 (en) Optical repeater amplification apparatus and method
JP2000307552A (en) Optical amplification device for transmitting waveform mulltiplex light
JP4911922B2 (en) Optical amplifier
JP2005218114A (en) Metro wavelength division multiplexing network
JP4606369B2 (en) Optical amplifier
EP1128581B1 (en) Optical amplifier with gain equalizer
KR20080099056A (en) Wavelength division multiplexing passive optical network using the remotely pumped optical amplifier
JP2001201773A (en) Optical amplifier and method for reinforcing its performance and device for transmitting optical signal
JP2003298527A (en) Method and apparatus for optical fiber transmission using raman amplification
JP3869444B2 (en) Broadband light source with dual output structure
JP6470028B2 (en) Bidirectional optical amplifier
JP2002198598A (en) Circuit and method for optical amplification gain control
JP7343806B2 (en) Optical communication system and optical communication method
Suzuki Burst-mode optical amplifier for passive optical networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110111

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350