JP2006331662A - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP2006331662A
JP2006331662A JP2005149051A JP2005149051A JP2006331662A JP 2006331662 A JP2006331662 A JP 2006331662A JP 2005149051 A JP2005149051 A JP 2005149051A JP 2005149051 A JP2005149051 A JP 2005149051A JP 2006331662 A JP2006331662 A JP 2006331662A
Authority
JP
Japan
Prior art keywords
voltage
power supply
induction heating
supply voltage
drive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005149051A
Other languages
Japanese (ja)
Inventor
Nobuhiko Nakamura
信彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005149051A priority Critical patent/JP2006331662A/en
Publication of JP2006331662A publication Critical patent/JP2006331662A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating device capable of surely carrying out response, when power is fluctuated, in relation to an induction heating device. <P>SOLUTION: This induction heating device 10 is so structured that a power voltage V of a power source 1 is detected via a detection means 17 connected to both ends of the power source 1; and a control means 16 controls to stop a drive signal S1 to a drive element 4, when the power voltage V fluctuates outside of normal voltage. Thereby, the inexpensive induction heating device, capable of responding to the fluctuation of the power voltage by a simple structure, can be provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一般家庭やレストランなどで使用される誘導加熱調理器や誘導加熱炊飯器(以後、炊飯器と記載する)などの誘導加熱装置に関するものである。   The present invention relates to an induction heating apparatus such as an induction heating cooker or an induction heating rice cooker (hereinafter referred to as a rice cooker) used in general households or restaurants.

近年、誘導加熱装置は調理容器への加熱が火力を用いない加熱方式のため、利便性に優れることから多用されている。   In recent years, induction heating devices have been widely used because heating to cooking containers is a heating method that does not use thermal power, and is excellent in convenience.

このような従来の誘導加熱装置について、主に炊飯器を例に図5に基づいて説明する。   Such a conventional induction heating apparatus will be described with reference to FIG. 5 mainly using a rice cooker as an example.

図5は従来の誘導加熱装置の構成図であり、同図において、1は電源で、図示しない交流電源から整流器や平滑器などを介して得られた直流の電源電圧Vが供給される。   FIG. 5 is a configuration diagram of a conventional induction heating apparatus. In FIG. 5, reference numeral 1 denotes a power source, which is supplied with a DC power source voltage V obtained from an AC power source (not shown) through a rectifier or a smoother.

また、2は加熱コイル、3は共振コンデンサで、加熱コイル2と共振コンデンサ3が並列接続されて共振回路11が形成され、共振回路11を駆動する駆動素子4と共に電源1に直列接続されている。   Further, 2 is a heating coil, 3 is a resonance capacitor, and the heating coil 2 and the resonance capacitor 3 are connected in parallel to form a resonance circuit 11, which is connected in series with the power source 1 together with the drive element 4 that drives the resonance circuit 11. .

そして、加熱コイル2の上には図示しない調理容器の鍋などの被加熱物が載置されている。   Then, an object to be heated such as a pot of a cooking container (not shown) is placed on the heating coil 2.

ここで、駆動素子4は、コレクタ損失がバイポーラトランジスタなどより大幅に少ない半導体のスイッチング素子であるIGBTを用いており、例えば、そのコレクタ−エミッタ間(以後、C−E間と記載する)定格耐圧Vkは900V、定格電流は60Aである。   Here, the drive element 4 uses an IGBT which is a semiconductor switching element whose collector loss is significantly smaller than that of a bipolar transistor or the like. For example, a rated breakdown voltage between its collector and emitter (hereinafter referred to as CE). Vk is 900V and the rated current is 60A.

また、5は駆動素子4に並列接続された逆導通ダイオードであり、6はマイコンからなる制御手段である。   Reference numeral 5 denotes a reverse conducting diode connected in parallel to the driving element 4, and reference numeral 6 denotes a control means comprising a microcomputer.

ここで、制御手段6は、ポートP1で電源1の電源電圧Vを駆動素子4のC−E間逆起電圧Vceにより検知すると共に、逆起電圧Vceに応じて駆動素子4への通電時間を制御するようにして誘導加熱装置30が構成されている。   Here, the control means 6 detects the power supply voltage V of the power supply 1 at the port P1 by the back-electromotive voltage Vce between CE of the drive element 4, and determines the energization time to the drive element 4 according to the counter-electromotive voltage Vce. The induction heating device 30 is configured so as to be controlled.

以上の構成において、制御手段6は内部に設けた図示しない発振回路の発振周波数(可聴領域外の数10KHz)で駆動素子4を通電制御する駆動信号S1を発生させている。   In the above configuration, the control means 6 generates a drive signal S1 for energizing the drive element 4 at an oscillation frequency (several tens KHz outside the audible region) of an oscillation circuit (not shown) provided inside.

そして、駆動信号S1により共振回路11には高周波電流(以後、電流と記載する)Icが発生し、この電流Icによって被加熱物には渦電流が誘起されて誘導加熱される。   A high-frequency current (hereinafter referred to as current) Ic is generated in the resonance circuit 11 by the drive signal S1, and an eddy current is induced in the object to be heated by the current Ic to be induction-heated.

ここで、制御手段6は被加熱物を定電力で制御するために、電源1の電源電圧Vの変動を逆起電圧Vceで検知し、例えば、電源電圧の変動が低下、つまり逆起電圧Vceが低下すると駆動信号S1のオン時間を長くして駆動素子4への通電時間を長くするように制御する。   Here, in order to control the object to be heated with constant power, the control means 6 detects the fluctuation of the power supply voltage V of the power supply 1 with the counter electromotive voltage Vce. For example, the fluctuation of the power supply voltage is reduced, that is, the counter electromotive voltage Vce. When the voltage decreases, the ON time of the drive signal S1 is lengthened, and the energization time to the drive element 4 is lengthened.

そして、逆起電圧Vceが駆動素子4の定格耐圧Vkを超える恐れがあると判断した際には、制御手段6は次の駆動信号S1を停止させるというものであった。   When it is determined that the back electromotive voltage Vce may exceed the rated withstand voltage Vk of the drive element 4, the control means 6 stops the next drive signal S1.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平11−204242号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
Japanese Patent Laid-Open No. 11-204242

しかしながら、上記従来の誘導加熱装置30においては、制御手段6は逆起電圧Vceが駆動素子4の定格耐圧Vkを超える恐れがあると判断した際、次の駆動信号S1を停止させるが、自らの処理速度より電源電圧Vの変動の方が早い場合対応することが困難となる。   However, in the above-described conventional induction heating device 30, when the control means 6 determines that the back electromotive voltage Vce may exceed the rated withstand voltage Vk of the drive element 4, the next drive signal S1 is stopped. It is difficult to cope with the case where the fluctuation of the power supply voltage V is faster than the processing speed.

このため、駆動素子4には定格耐圧Vkの高いものが用いられるが、定格耐圧Vkを高くするとコストUPを招くと共に、その形状も大きくなり誘導加熱装置が高価になるという課題があった。   For this reason, the drive element 4 having a high rated withstand voltage Vk is used. However, increasing the rated withstand voltage Vk causes a problem that the cost increases and the shape of the drive element 4 increases and the induction heating device becomes expensive.

本発明は、このような従来の課題を解決するものであり、駆動素子4の定格耐圧Vkを高くすることなく電源電圧Vの変動に対応できる誘導加熱装置を提供することを目的とする。   The present invention solves such a conventional problem, and an object of the present invention is to provide an induction heating apparatus that can cope with fluctuations in the power supply voltage V without increasing the rated withstand voltage Vk of the drive element 4.

上記目的を達成するために本発明の誘導加熱装置は、以下の構成を有するものである。   In order to achieve the above object, an induction heating apparatus of the present invention has the following configuration.

本発明の請求項1に記載の発明は、電源電圧が定常電圧外に変動した際、制御手段が駆動素子への通電を所定時間停止させるように構成したものであり、簡易な構成で電源電圧の変動に対応できる、安価な誘導加熱装置を得ることができるという作用を有する。   According to the first aspect of the present invention, when the power supply voltage fluctuates outside the steady voltage, the control means is configured to stop energization of the drive element for a predetermined time. It is possible to obtain an inexpensive induction heating apparatus that can cope with fluctuations in

請求項2に記載の発明は、請求項1記載の発明において、電源電圧が定常電圧外から定常電圧内に復帰した際、制御手段が駆動素子への通電時間の制御を所定時間から段階的に長くするものであり、駆動素子に発生する逆起電圧を駆動素子の定格耐圧より低くできるという作用を有する。   According to a second aspect of the present invention, in the first aspect of the invention, when the power supply voltage returns from outside the steady voltage to within the steady voltage, the control means controls the energization time to the drive element stepwise from a predetermined time. The back electromotive force generated in the drive element can be made lower than the rated breakdown voltage of the drive element.

請求項3に記載の発明は、請求項1記載の発明において、電源電圧の変動時の対応が所定回数以上有った場合、制御手段が外部へ報知を行うものであり、使用者に対して電源電圧の変動を知らせることができるという作用を有する。   According to a third aspect of the present invention, in the first aspect of the present invention, when there is a predetermined number of times of response when the power supply voltage fluctuates, the control means notifies the outside and It has the effect that it can notify the fluctuation of the power supply voltage.

請求項4に記載の発明は、請求項1記載の発明において、検知手段を、サージ吸収素子と抵抗により形成するものであり、サージ吸収素子が有するコンデンサ成分により電源電圧の変動の検知速度を速くできるという作用を有する。   According to a fourth aspect of the present invention, in the first aspect of the present invention, the detection means is formed by a surge absorbing element and a resistor, and the detection rate of fluctuations in the power supply voltage is increased by the capacitor component of the surge absorbing element. Has the effect of being able to.

以上のように本発明によれば、簡易な構成で電源電圧の変動に対応できる、安価な誘導加熱装置を得ることができるという有利な効果が得られる。   As described above, according to the present invention, it is possible to obtain an advantageous effect that it is possible to obtain an inexpensive induction heating apparatus that can cope with fluctuations in the power supply voltage with a simple configuration.

以下、本発明の実施の形態について、図1〜図4を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

なお、従来の技術の項で説明した構成と同一構成の部分には同一符号を付して、詳細な説明を簡略化する。   In addition, the same code | symbol is attached | subjected to the part of the structure same as the structure demonstrated in the term of the prior art, and detailed description is simplified.

(実施の形態)
図1は本発明の一実施の形態による誘導加熱装置の構成図であり、同図において、電源電圧Vを備えた電源1に、加熱コイル2と共振コンデンサ3が並列接続されて共振回路11が形成されていることや、共振回路11と共に共振回路11を駆動する駆動素子4や逆導通ダイオード5が電源1に直列接続されていることは従来の構成と同じである。
(Embodiment)
FIG. 1 is a configuration diagram of an induction heating apparatus according to an embodiment of the present invention, in which a heating coil 2 and a resonant capacitor 3 are connected in parallel to a power source 1 having a power source voltage V to form a resonant circuit 11. It is the same as the conventional configuration that it is formed, and that the drive element 4 and the reverse conducting diode 5 that drive the resonance circuit 11 together with the resonance circuit 11 are connected in series to the power source 1.

そして、17は検知手段で、この検知手段17は電源1の両端に並列接続されたサージ吸収素子と抵抗の直列接続体で、その中点で電源1の電源電圧Vが検知できるように形成されている。   Reference numeral 17 denotes detection means. The detection means 17 is a serial connection body of a surge absorbing element and a resistor connected in parallel to both ends of the power supply 1 and is formed so that the power supply voltage V of the power supply 1 can be detected at its midpoint. ing.

ここで、検知手段17のサージ吸収素子には、ガラスなどのケース内に対向する電極を設け、その電極間のギャップにより設定電圧を設定できるギャップ式放電素子や双方向性のツェナーダイオードにより形成された半導体接合素子、及び酸化亜鉛の材料で形成されたバリスタなどが使用可能である。   Here, the surge absorbing element of the detecting means 17 is formed of a gap type discharge element or a bidirectional Zener diode in which an opposing electrode is provided in a case such as glass and a set voltage can be set by a gap between the electrodes. A semiconductor junction element, a varistor made of a zinc oxide material, or the like can be used.

なお、これらのうちバリスタは種類も多く、交流電源の100V系や200V系に容易に対応できるため、より好ましい。   Of these, there are many types of varistors, which are more preferable because they can easily cope with 100V and 200V AC power supplies.

次に、16は制御手段、18は報知手段で、マイコンからなる制御手段16は、検知手段17により電源1の電源電圧VをポートP1で検知すると共に、駆動素子4とブザーやLEDなどからなる報知手段18を制御するようにして、誘導加熱装置10が構成されている。   Next, 16 is a control means, 18 is a notification means, and the control means 16 comprising a microcomputer detects the power supply voltage V of the power supply 1 at the port P1 by the detection means 17, and comprises the drive element 4, a buzzer, an LED, and the like. The induction heating device 10 is configured to control the notification means 18.

以上の構成において、制御手段16は内部に設けた図示しない発振回路の発振周波数(可聴領域外の数10KHz)で駆動素子4を通電する駆動信号S1を発生させている。   In the above configuration, the control means 16 generates a drive signal S1 for energizing the drive element 4 at an oscillation frequency (several tens of KHz outside the audible region) of an oscillation circuit (not shown) provided therein.

そして、駆動信号S1により共振回路11には電流Icが発生し、この電流Icによって加熱コイル2の上に載置された図示しない被加熱物には渦電流が誘起されて誘導加熱される。   Then, a current Ic is generated in the resonance circuit 11 by the drive signal S1, and an eddy current is induced in a heated object (not shown) placed on the heating coil 2 by this current Ic to be induction-heated.

図2は電源電圧の変動の模式図、図3は電源電圧の変動が定常時の動作説明図、図4は電源電圧が変動時の動作説明図であり、まず、定常時の動作を図3で、次に変動時の動作を図4で説明する。   2 is a schematic diagram of the fluctuation of the power supply voltage, FIG. 3 is an operation explanatory diagram when the fluctuation of the power supply voltage is steady, and FIG. 4 is an explanatory diagram of the operation when the power supply voltage fluctuates. Next, the operation at the time of fluctuation will be described with reference to FIG.

ここで、定常時とは、図2に示すT1、及びT3時の電源電圧Vが定常電圧内、つまり電源電圧Vが下限電圧VLから上限電圧VUの範囲、例えば定格電圧Vaに対し±10%以内の間のことである。   Here, the steady state means that the power source voltage V at T1 and T3 shown in FIG. 2 is within the steady state voltage, that is, the power source voltage V is within the range of the lower limit voltage VL to the upper limit voltage VU, for example, ± 10% with respect to the rated voltage Va. Is within.

一方、変動時とは、T2時の電源電圧Vが定常電圧外、つまり電源電圧Vが定常電圧範囲を超えて変動し、再び定格電圧Vaに復帰するまでの間のことである。   On the other hand, the time of fluctuation means that the power supply voltage V at T2 is outside the steady voltage, that is, until the power supply voltage V fluctuates beyond the steady voltage range and returns to the rated voltage Va again.

まず、定常時の動作は、図2に示す時間taやtc時、制御手段16は前回の駆動信号S1発生時の電源電圧Vが定常電圧内の定格電圧Vaで有ることを検知して、今回も前回と同じ図3(a)に示すオン時間t1の駆動信号S1を出力する。   First, the steady state operation is performed at times ta and tc shown in FIG. 2, and the control means 16 detects that the power supply voltage V at the time of the previous generation of the drive signal S1 is the rated voltage Va within the steady state voltage. Also outputs the drive signal S1 of the on-time t1 shown in FIG.

そして、共振回路11には、この駆動信号S1に応じた図3(b)に示す電流Ic1が発生し、この電流Ic1により被加熱物は一定電力で加熱制御される。   Then, in the resonance circuit 11, a current Ic1 shown in FIG. 3B corresponding to the drive signal S1 is generated, and the object to be heated is controlled to be heated at a constant power by the current Ic1.

その後、駆動信号S1のオフ時、電流Ic1はオン状態から急激にターンオフし、その結果、加熱コイル2により図3(c)に示す前回の電源電圧Vが定格電圧Vaと同じ値の逆起電圧Vce1が駆動素子4のC−E間に発生する。   Thereafter, when the drive signal S1 is turned off, the current Ic1 is suddenly turned off from the on state. As a result, the heating coil 2 causes the previous power supply voltage V shown in FIG. 3C to be the back electromotive voltage having the same value as the rated voltage Va. Vce1 is generated between CE of the drive element 4.

ここで、図2に示す時間taから時間tb1にかけて電源電圧Vが定常電圧内で低下した場合、制御手段6は、電源電圧Vが低下した分駆動信号S1のオン時間を長くするが、この時の制御は図3(c)に示すように逆起電圧Vceが電源電圧Vの定常電圧内に応じた値になるように形成している。   Here, when the power supply voltage V decreases within the steady voltage from the time ta to the time tb1 shown in FIG. 2, the control means 6 lengthens the on-time of the drive signal S1 by the amount that the power supply voltage V has decreased. As shown in FIG. 3C, the control is configured such that the back electromotive voltage Vce becomes a value corresponding to the steady voltage of the power supply voltage V.

このように、定常時においては、逆起電圧Vceが駆動素子4の定格耐圧Vkを超えることは無い。   As described above, the back electromotive voltage Vce does not exceed the rated withstand voltage Vk of the drive element 4 in a steady state.

次に、変動時の動作について説明するが、電源電圧Vが変動する要因は、雷サージや瞬時停電などの外来ノイズが家庭内の交流電源に重畳されて発生するもので、その特徴は電源電圧Vの急激な電圧変動として現れる。   Next, the operation at the time of fluctuation will be described. The factor that the power supply voltage V fluctuates is that external noise such as lightning surge and instantaneous power failure is superimposed on the AC power supply in the home. It appears as a sudden voltage fluctuation of V.

一方、炊飯器の炊飯時間は約1時間以上必要で、炊飯後も24時間保温などで動作するため、炊飯途中や保温時などで電源電圧の変動に対し一定電力で加熱や保温制御する必要から電源電圧の変動に対する対応が必要である。   On the other hand, the rice cooker needs about 1 hour or more of cooking time, and since it operates with heat insulation for 24 hours after cooking, it is necessary to control heating and heat insulation with constant power against fluctuations in the power supply voltage during rice cooking or during heat insulation. It is necessary to deal with fluctuations in the power supply voltage.

上記電源電圧の変動時の動作は、図2のtb1時に、制御手段16が検知手段17により電源電圧Vが定常電圧範囲を越えて電圧Vb1になったことを検知すると、図4(a)に示すように、時間tb1から駆動信号S1を所定の時間toff1だけ停止制御し、更に、電源電圧Vが定常電圧内に復帰するまでの時間がtoff1より長い場合は、停止制御を継続して定常電圧内に復帰したtoff2後に停止制御を解除する。   The operation when the power supply voltage fluctuates is shown in FIG. 4A when the control means 16 detects that the power supply voltage V exceeds the steady voltage range and becomes the voltage Vb1 at the time tb1 in FIG. As shown, when the drive signal S1 is controlled to stop for a predetermined time toff1 from time tb1, and when the time until the power supply voltage V returns to the steady voltage is longer than toff1, the stop control is continued to maintain the steady voltage. Stop control is released after toff2 returned to the inside.

つまり、制御手段16は、図2のtb2時に、検知手段17により電源電圧Vが定常電圧内の電圧Vb3になったことを検知すると、停止制御を解除し再び駆動信号S1を発生させる。   That is, when the detecting means 17 detects that the power supply voltage V has become the voltage Vb3 within the steady voltage at tb2 in FIG. 2, the control means 16 cancels the stop control and generates the drive signal S1 again.

ここで、停止制御を解除後の駆動信号S1のオン時間は図4(a)に示すように、短い時間t2から始めt3,t4…と、段階的にその時間を徐々に長くしていき定常時の時間t1となるように制御する。   Here, as shown in FIG. 4A, the on-time of the drive signal S1 after canceling the stop control starts from a short time t2, t3, t4,... Control is performed so that the time is always t1.

上記時間を徐々に長くする例として、一番短い時間t2を5μsとし、t3,t4…は、前回のオン時間に0.25μsを加えて長くしたり、交流電源の周波数に同期した時間毎に長くしても良い。   As an example of gradually increasing the time, the shortest time t2 is set to 5 μs, and t3, t4... Are increased by adding 0.25 μs to the previous on-time, or every time synchronized with the frequency of the AC power supply. It may be longer.

こうすることで、図2に示す時間tb2の手前からtb3において、電源電圧VがVb2からVcに急激に変動し、この間で定常電圧内に復帰した際も逆起電圧Vceが駆動素子4の定格耐圧Vkを超えないようにすることができる。   As a result, the power source voltage V rapidly changes from Vb2 to Vc from before the time tb2 shown in FIG. The breakdown voltage Vk can be prevented from exceeding.

また、電源電圧Vが定常電圧外へ変動したことを所定回数以上検知した場合、制御手段16は報知手段18を駆動してブザー音やLEDの点滅などにより外部へ報知を行う。   Further, when it is detected a predetermined number of times or more that the power supply voltage V has fluctuated outside the steady voltage, the control means 16 drives the notification means 18 to notify the outside by a buzzer sound, LED blinking, or the like.

以上の説明で明らかなように、誘導加熱装置10の電源電圧の変動に対する対応は、電源電圧Vが定常電圧外から定常電圧内に低下から増加方向へ急激に復帰しても、または増加から低下方向へ急激に復帰しても逆起電圧Vceが駆動素子4の定格耐圧Vkを超えることがないように構成されている。   As is apparent from the above description, the response to fluctuations in the power supply voltage of the induction heating apparatus 10 can be dealt with even if the power supply voltage V suddenly returns from outside the steady voltage to within the steady voltage in the increasing direction or decreases from the increase. The counter electromotive voltage Vce does not exceed the rated withstand voltage Vk of the drive element 4 even if it suddenly returns in the direction.

このように本実施の形態によれば、電源1の電源電圧Vが定常電圧外に変動した際、制御手段16が駆動素子4への通電を所定時間toff1停止、または電源電圧Vが定常電圧外から定常電圧内に復帰途上で所定時間toff1を経過した際、制御手段16は定常電圧内に復帰するまで通電停止を継続させることによって、瞬時停電や雷サージなど過渡特性の時間が長い電圧変動に対応することができる。   As described above, according to the present embodiment, when the power supply voltage V of the power supply 1 fluctuates outside the steady voltage, the control means 16 stops the energization of the drive element 4 for a predetermined time toff1, or the power supply voltage V is outside the steady voltage. When the predetermined time toff1 elapses during the return from the normal voltage to the steady voltage, the control means 16 continues to stop energization until the normal voltage returns to the normal voltage, thereby causing a voltage fluctuation with a long transient characteristic such as an instantaneous power failure or a lightning surge. Can respond.

また、電源電圧Vが定常電圧外から定常電圧内に復帰した際、制御手段16が駆動素子4への通電時間の制御を所定時間から段階的に長くすることによって、駆動素子4に発生する逆起電圧Vceを駆動素子4の定格耐圧Vkより低くできる。   Further, when the power supply voltage V returns from outside the steady voltage to inside the steady voltage, the control means 16 increases the control of the energization time to the drive element 4 stepwise from a predetermined time, thereby causing the reverse generated in the drive element 4. The electromotive voltage Vce can be made lower than the rated withstand voltage Vk of the drive element 4.

さらに、電源電圧Vの変動時の対応を所定回数以上行った場合、制御手段16が報知手段18を駆動して外部へ報知を行うことによって、使用者に対して電源電圧Vの変動を知らせることができる。   Further, when the response when the power supply voltage V fluctuates is performed a predetermined number of times or more, the control means 16 drives the notification means 18 to notify the outside, thereby notifying the user of the fluctuation of the power supply voltage V. Can do.

さらにまた、検知手段17を、サージ吸収素子と抵抗により形成することによって、簡単な回路構成にできると共に、サージ吸収素子が有するコンデンサ成分により電源電圧Vの変動の検知速度を速くできる。   Furthermore, by forming the detection means 17 with a surge absorbing element and a resistor, a simple circuit configuration can be achieved, and the detection speed of fluctuations in the power supply voltage V can be increased by the capacitor component of the surge absorbing element.

ここで、検知手段17は、2つの抵抗により形成しても実施は可能であるが、サージ吸収素子の方が電源電圧の変動の検知速度を速くできてより有用である。   Here, the detection means 17 can be implemented even if formed by two resistors, but the surge absorbing element is more useful because it can increase the detection speed of the fluctuation of the power supply voltage.

なお、本実施の形態において、電源電圧Vの変動は一般的に多く発生する低下方向として説明したが、これに限ることはなく、高くなる方向でも本発明の実施は可能である。   In the present embodiment, the fluctuation of the power supply voltage V has been described as a decreasing direction that generally occurs. However, the present invention is not limited to this, and the present invention can be implemented in a higher direction.

また、電源電圧Vの変動の判定は、下限電圧VL値などの電圧値(絶対値)を用いるのではなく定格電圧Vaからの変動率を用いるのが好ましい。   In addition, it is preferable to use the rate of change from the rated voltage Va instead of using a voltage value (absolute value) such as the lower limit voltage VL value for the determination of the fluctuation of the power supply voltage V.

こうすることで、例えば定格電圧Vaを100%とし、電源電圧Vの変動範囲、つまり定常電圧内を定格電圧Vaの±10%とすれば、交流電源が100V系から200V系に変わった場合でも同じ%値を用いることができるため、制御手段16のプログラムを変える必要が無い。   Thus, for example, if the rated voltage Va is 100% and the fluctuation range of the power supply voltage V, that is, the steady voltage is ± 10% of the rated voltage Va, even when the AC power supply is changed from the 100V system to the 200V system. Since the same% value can be used, there is no need to change the program of the control means 16.

本発明による誘導加熱装置は、瞬時停電などで電源電圧が変動した際、これに簡易な構成で確実に対応できるという効果を有し、誘導加熱装置等に有用である。   The induction heating device according to the present invention has an effect that when a power supply voltage fluctuates due to an instantaneous power failure or the like, it can reliably cope with this with a simple configuration, and is useful for an induction heating device or the like.

本発明の一実施の形態による誘導加熱装置の構成図The block diagram of the induction heating apparatus by one embodiment of this invention 同電源電圧の変動の模式図Schematic diagram of fluctuations in power supply voltage 同定常時の動作説明図Illustration of operation during normal identification 同変動時の動作説明図Operation explanatory diagram at the time of the change 従来の誘導加熱装置の構成図Configuration diagram of conventional induction heating device

符号の説明Explanation of symbols

1 電源
2 加熱コイル
3 共振コンデンサ
4 駆動素子
5 逆導通ダイオード
10 誘導加熱装置
16 制御手段
17 検知手段
18 報知手段
Ic 電流
S1 駆動信号
Vce 逆起電圧
DESCRIPTION OF SYMBOLS 1 Power supply 2 Heating coil 3 Resonance capacitor 4 Drive element 5 Reverse conducting diode 10 Induction heating device 16 Control means 17 Detection means 18 Notification means Ic Current S1 Drive signal Vce Back electromotive voltage

Claims (4)

電源に接続された加熱コイル及び共振コンデンサから形成された共振回路と、この共振回路を駆動する駆動素子と、この駆動素子への通電時間を制御する制御手段からなり、
前記電源の両端の電源電圧を検知する検知手段を設けると共に、該検知手段により前記電源電圧が定常電圧外に変動したことを検知した際、前記制御手段が前記駆動素子への通電を所定時間停止させる誘導加熱装置。
A resonance circuit formed of a heating coil and a resonance capacitor connected to a power source, a drive element for driving the resonance circuit, and a control means for controlling the energization time to the drive element,
Detection means for detecting the power supply voltage at both ends of the power supply is provided, and when the detection means detects that the power supply voltage has fluctuated outside the steady voltage, the control means stops energizing the drive element for a predetermined time. Induction heating device.
電源電圧が定常電圧外から定常電圧内に復帰した際、制御手段が駆動素子への通電時間の制御を所定時間から段階的に長くする請求項1記載の誘導加熱装置。 2. The induction heating apparatus according to claim 1, wherein when the power supply voltage returns from outside the steady voltage to within the steady voltage, the control means lengthens the control of the energization time to the drive element stepwise from a predetermined time. 定常電圧外の制御が所定回数以上有った場合、制御手段が外部へ報知を行う請求項1記載の誘導加熱装置。 The induction heating apparatus according to claim 1, wherein when the control outside the steady voltage has occurred a predetermined number of times or more, the control means notifies the outside. 検知手段が、サージ吸収素子と抵抗により形成された請求項1記載の誘導加熱装置。 The induction heating apparatus according to claim 1, wherein the detection means is formed of a surge absorbing element and a resistor.
JP2005149051A 2005-05-23 2005-05-23 Induction heating device Pending JP2006331662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149051A JP2006331662A (en) 2005-05-23 2005-05-23 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149051A JP2006331662A (en) 2005-05-23 2005-05-23 Induction heating device

Publications (1)

Publication Number Publication Date
JP2006331662A true JP2006331662A (en) 2006-12-07

Family

ID=37553162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149051A Pending JP2006331662A (en) 2005-05-23 2005-05-23 Induction heating device

Country Status (1)

Country Link
JP (1) JP2006331662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048924A (en) * 2010-08-26 2012-03-08 Panasonic Corp Induction heating cooker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048924A (en) * 2010-08-26 2012-03-08 Panasonic Corp Induction heating cooker

Similar Documents

Publication Publication Date Title
CN107027206B (en) Electromagnetic heating device, heating control circuit thereof and low-power heating control method
US11304270B2 (en) Induction heating device having negative voltage protection circuit
JP4706307B2 (en) Induction heating device
JP5071012B2 (en) Induction heating cooker
JP2006331662A (en) Induction heating device
JP6178676B2 (en) Control circuit for inverter circuit, inverter device provided with this control circuit, induction heating device provided with this inverter device, and control method
JP2006253132A (en) Induction heating cooking device using dsp
JP4765441B2 (en) Induction heating device
JP4114625B2 (en) Induction heating cooker
JP4407438B2 (en) Induction heating cooker
JP6854405B2 (en) Drive control method for induction heating device and induction heating device
JP2004327104A (en) Induction heating cooker
JP5892842B2 (en) Induction heating cooker
JP2005317320A (en) Induction heating cooker
WO2016095394A1 (en) Electromagnetic resonant circuit, and control method and control system thereof
JP2006324121A (en) Induction heating device
JPH11111441A (en) Induction heating cooker
JP3756970B2 (en) Induction heating cooker
JP5450335B2 (en) Induction heating cooker
JP2004047202A (en) Electromagnetic induction heating type rice boiler
JP3890706B2 (en) Induction heating device
JPH0470754B2 (en)
JP2014146531A (en) Induction heating cooker
KR100628084B1 (en) Circuit for Controlling Inverter of Induction Type Heating Cooker
JPH09260046A (en) Induction heating cooker