JP2006329746A - Measuring instrument and measuring method for hygroscopic and exothermic material based on adsorption heat and thermal onductivity - Google Patents

Measuring instrument and measuring method for hygroscopic and exothermic material based on adsorption heat and thermal onductivity Download PDF

Info

Publication number
JP2006329746A
JP2006329746A JP2005151989A JP2005151989A JP2006329746A JP 2006329746 A JP2006329746 A JP 2006329746A JP 2005151989 A JP2005151989 A JP 2005151989A JP 2005151989 A JP2005151989 A JP 2005151989A JP 2006329746 A JP2006329746 A JP 2006329746A
Authority
JP
Japan
Prior art keywords
temperature
measuring
air
heat
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151989A
Other languages
Japanese (ja)
Inventor
Takeshi Ogino
毅 荻野
Tatsuo Sakaguchi
達雄 坂口
Atsushi Shiraishi
篤史 白石
展宏 ▲桑▼原
Nobuhiro Kuwabara
Sonoko Ishimaru
園子 石丸
Tatsuaki Sumiya
龍明 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuno Corp
Toyobo Co Ltd
Original Assignee
Mizuno Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuno Corp, Toyobo Co Ltd filed Critical Mizuno Corp
Priority to JP2005151989A priority Critical patent/JP2006329746A/en
Publication of JP2006329746A publication Critical patent/JP2006329746A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument and a measuring method for hygroscopic and exothermic fiber correlating with actual wear by simultaneously measuring adsorption heat and thermal conductivity in the field of clothing. <P>SOLUTION: This measuring instrument comprises respective parts (A) to (D) shown below. (A) A precise rapid thermophysical property measuring part comprises a precise rapid thermophysical property measuring instrument and a heat source plate. (B) A measuring part comprises a fixed temperature table maintaining a fixed temperature and a temperature measuring sensor. (C) A water supply part comprises a heater, a pump, and a pipe for water. (D) An air supply part comprises a temperature/humidity adjusting air generator, a flow adjustment cock, and a pipe for air. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、吸湿発熱性素材における吸着熱及び熱伝導性の両方を同時に測定可能とした測定装置及び測定方法に関するものである。   The present invention relates to a measuring apparatus and a measuring method capable of simultaneously measuring both heat of adsorption and heat conductivity in a hygroscopic exothermic material.

従来より、吸湿発熱性に着目した繊維構造物及びそれを用いた衣料(一般衣料、防寒衣料、スポーツ衣料、低温倉庫用ユニホーム等)が報告されている。
吸湿発熱性に関して、吸着熱は吸湿性に比例することは知られており、綿などのセルロース系繊維は、ポリエステルなどの化学繊維に比べて吸湿性が高く、吸着熱が大きい傾向にあることが知られている。従って、吸着熱評価のみで吸湿発熱性の有無を判定した場合、綿などのセルロース系繊維も吸湿発熱性繊維に含まれることがあったが、吸着熱評価と実際の着用時の感覚とは異なる場合があった。従来の吸湿発熱性繊維の評価方法としては、例えば特許文献1が挙げられる。
Conventionally, a fiber structure focused on moisture absorption and heat generation and clothing using the same (general clothing, winter clothing, sports clothing, low temperature warehouse uniform, etc.) have been reported.
Regarding the hygroscopic exothermic property, it is known that the heat of adsorption is proportional to the hygroscopic property. Cellulosic fibers such as cotton tend to have higher hygroscopicity and higher heat of adsorption than chemical fibers such as polyester. Are known. Therefore, when the presence or absence of hygroscopic exothermicity is determined only by the evaluation of adsorption heat, cellulose-based fibers such as cotton may be included in the hygroscopic exothermic fiber, but the adsorption heat evaluation is different from the actual feeling when worn. There was a case. As a conventional method for evaluating hygroscopic exothermic fibers, for example, Patent Document 1 can be cited.

綿などのセルロース系繊維を用いた衣服は、吸着熱の発生はあるものの、繊維内部および繊維間に吸湿、吸水された水分が熱伝導性を高めてしまい、温かみを感じることはない。そのため、山登りなどのアウトドアの世界では、綿などのセルロース系繊維を用いた衣服は体温が奪われる等の理由で好まれていない。
また、ポリエステル繊維やアクリル繊維などの疎水性繊維を用いた衣服は、繊維を通過して水分は放出されやすいため、熱伝導性は低いが、吸着熱の発生がほとんどなく、人体から発生する水分が気化熱として奪われやすいので、肌寒さを感じる。そのため、山登りやアウトドアの用途としては問題点が残る。
非特許文献1には、吸湿発熱性繊維には吸湿発熱性と保温性(熱伝導性、輻射熱、衣服内の対流)を併せ持つことが必要であることが記されており、綿などのセルロース系繊維は冬物衣料には向いていないと記されている。
今まで、実着用と相関のとれている吸湿発熱性繊維の評価方法はなく、冬物衣料の「温かさ」に関する定量的測定がなされていない状況であった。
特開2003−337111号 第3版 繊維便覧 455〜456頁 編者:社団法人 繊維学会 発行者:村田誠四郎 発行所:丸善株式会社
Although clothes using cellulosic fibers such as cotton generate heat of adsorption, moisture absorbed and absorbed between the fibers and between the fibers increases the thermal conductivity and does not feel warm. Therefore, in the outdoor world such as mountain climbing, clothes using cellulosic fibers such as cotton are not preferred because the body temperature is lost.
In addition, clothes using hydrophobic fibers such as polyester fibers and acrylic fibers tend to release moisture through the fibers, so the thermal conductivity is low, but there is almost no heat of adsorption, and moisture generated from the human body. Because it is easily taken away as heat of vaporization, it feels chilly. Therefore, problems remain for mountain climbing and outdoor use.
Non-Patent Document 1 describes that a moisture-absorbing and exothermic fiber needs to have both moisture-absorbing and exothermic properties and heat retention (thermal conductivity, radiant heat, convection in clothes), and cellulose-based materials such as cotton. It is noted that fiber is not suitable for winter clothing.
Until now, there has been no method for evaluating hygroscopic exothermic fibers correlated with actual wearing, and quantitative measurement of the “warmth” of winter clothing has not been made.
JP 2003-337111 A 3rd Edition Textile Handbook 455-456 Editor: Japan Society of Textile Science Publisher: Seishiro Murata Publisher: Maruzen Co., Ltd.

前記特許文献1の測定方法では吸着熱に関する測定はできるものの、吸湿発熱性繊維に必要な吸着熱以外の要因(熱伝導性、輻射熱、衣服内の対流)に関しては考慮されていない。例えば、アンダーシャツやTシャツなどは肌に直接触れるため、輻射熱による影響は小さい。また、体型にそったシルエットであるため、衣服内の対流に対する影響も小さい。そのため、人体の温かさに影響を与える大きい要素である吸着熱と熱伝導性に注目した。本発明は衣料技術の分野において、吸着熱と熱伝導性を同時に計測することによって、実着用と相関のとれている吸湿発熱性繊維の評価方法、及び測定装置を提供しようとするものである。   Although the measurement method of Patent Document 1 can measure the heat of adsorption, no consideration is given to factors other than the heat of adsorption necessary for the hygroscopic exothermic fiber (thermal conductivity, radiant heat, convection in clothes). For example, undershirts and T-shirts touch the skin directly, so the influence of radiant heat is small. In addition, since the silhouette conforms to the body shape, the influence on the convection in the clothes is small. For this reason, we focused on the heat of adsorption and thermal conductivity, which are large factors that affect the warmth of the human body. In the field of clothing technology, the present invention intends to provide a method and an apparatus for evaluating a hygroscopic exothermic fiber that correlates with actual wearing by simultaneously measuring adsorption heat and thermal conductivity.

そこで、本発明の測定装置及びそれを用いた測定方法は、吸着熱による上昇温度と見かけの熱伝導性とを用いて吸湿発熱性素材を評価することを特徴とするものである。
測定装置としては、以下に示す(A)精密迅速熱物性測定部、(B)測定部、(C)水供給部、(D)空気供給部の各部で構成され、吸着熱による上昇温度と見かけの熱伝導性とを同時に測定可能とした測定装置である。
(A)精密迅速熱物性測定部は、精密迅速熱物性測定装置と熱源板で構成される。
(B)測定部は、定温を維持する定温台と温度測定センサーで構成され、前記定温台は上面部、中部及び下部で構成され、前記定温台の中央領域には上面部から下部の途中まで至る凹部を設け、前記凹部の底面に温度測定センサーを設け、
前記定温台の中部には前記水供給部から供給される定温の水を循環させるための給水口と排水口を設け、
前記定温台下部には前記空気供給部から供給される調温調湿された空気を凹部に届けるための空気供給口を設ける。
(C)水供給部はヒーター、ポンプ及び水用パイプで構成され、前記水用パイプによって前記ヒーターとポンプは給水口及び排水口に繋がれる。
(D)空気供給部は温湿度調節空気発生装置、流量調節コック及び空気用パイプで構成され、前記空気用パイプによって前記温湿度調節空気発生装置と前記空気供給口は繋がれ、前記空気用パイプに流量調節コックを設ける。
測定方法としては、前記の測定装置を用いて、以下(1)〜(6)に示す条件及び順番で測定することで、吸着熱による上昇温度と見かけの熱伝導性とを同時に測定可能とした吸湿発熱性素材の測定方法である。
(1)20℃65%に調温調湿された環境下で測定を行う。
(2)前記熱源板の温度は25〜45℃とし、安定するまで約1時間以上放置する。
(3)前記定温台中部にヒーターで温めた20℃の水を循環させ、定温台中部の温度を20℃に保つ。
(4)前記空気供給部から温度20〜35℃、湿度40〜100%の空気を凹部に流量1〜15mm/secとなるように流し込む。
(5)20℃65%の環境下で2時間以上、調温調湿した試料の生地を定温台に固定する。試料の生地の裏面に温度測定センサーが触れるように生地を垂らすと共に、熱源板と定温台上面部で生地を挟み込む。
(6)定温台上面部と熱源板の間に挟み込んだ部分で生地の熱伝導性を測定し、温度測定センサーに触れる部分で生地の吸着熱を測定する。
Therefore, the measuring device and the measuring method using the same according to the present invention are characterized in that the moisture-absorbing exothermic material is evaluated using the temperature rise due to the heat of adsorption and the apparent thermal conductivity.
The measuring device consists of the following parts: (A) precise rapid thermophysical property measurement unit, (B) measurement unit, (C) water supply unit, and (D) air supply unit. It is the measuring device which made it possible to measure the thermal conductivity.
(A) The precise rapid thermophysical property measuring unit is composed of a precise rapid thermophysical property measuring device and a heat source plate.
(B) The measurement unit is composed of a temperature table and a temperature measurement sensor for maintaining a constant temperature, and the temperature table is composed of an upper surface part, a middle part and a lower part, and the central region of the constant temperature table is from the upper surface part to the middle of the lower part. A recess that reaches, a temperature measurement sensor is provided on the bottom of the recess,
A water supply port and a drain port for circulating the constant temperature water supplied from the water supply unit are provided in the middle of the constant temperature table,
An air supply port is provided at the lower part of the constant temperature table to deliver the temperature-controlled and humidity-controlled air supplied from the air supply unit to the recess.
(C) The water supply unit is composed of a heater, a pump, and a water pipe, and the heater and the pump are connected to a water supply port and a drain port by the water pipe.
(D) The air supply unit includes a temperature / humidity adjusting air generating device, a flow rate adjusting cock, and an air pipe. The temperature / humidity adjusting air generating device and the air supply port are connected by the air pipe, and the air pipe. Provide a flow control cock in
As a measuring method, by using the above-described measuring apparatus and measuring under the conditions and order shown in the following (1) to (6), it is possible to simultaneously measure the rising temperature due to the heat of adsorption and the apparent thermal conductivity. This is a method for measuring a hygroscopic exothermic material.
(1) Measurement is performed in an environment where the temperature and humidity are adjusted to 20 ° C. and 65%.
(2) The temperature of the heat source plate is 25 to 45 ° C., and is left for about 1 hour or more until it becomes stable.
(3) Circulating 20 ° C. water heated by a heater in the middle of the temperature-controlled table, and keeping the temperature in the temperature-controlled table at 20 ° C.
(4) Air having a temperature of 20 to 35 ° C. and a humidity of 40 to 100% is poured from the air supply unit into the recess so as to have a flow rate of 1 to 15 mm 3 / sec.
(5) Fix the dough of the temperature-controlled sample for 2 hours or more in an environment of 20 ° C. and 65% on a constant temperature table. The fabric is hung so that the temperature measurement sensor touches the back of the sample fabric, and the fabric is sandwiched between the heat source plate and the top surface of the constant temperature table.
(6) The thermal conductivity of the dough is measured at the portion sandwiched between the upper surface of the constant temperature table and the heat source plate, and the adsorption heat of the dough is measured at the portion touching the temperature measurement sensor.

本発明に記載の測定装置及びそれを用いた測定方法によれば吸湿発熱性繊維の吸着熱及び熱伝導性を同時に測定することが可能である。   According to the measuring apparatus and the measuring method using the same described in the present invention, it is possible to simultaneously measure the heat of adsorption and the thermal conductivity of the hygroscopic exothermic fiber.

本発明の実施の形態について説明する。図1は本発明に係る測定装置を示す模式図、図2(a)は図1中のX−X線断面図、図2(b)は図1中のY−Y線断面図、図2(c)は図1中のZ−Z線断面図、図3は図2(c)において試料をセットした状態を示す図である。
本発明の測定装置1は、図1に示すように精密迅速熱物性測定部2、測定部3、水供給部4、空気供給部5で構成される。
Embodiments of the present invention will be described. 1 is a schematic view showing a measuring apparatus according to the present invention, FIG. 2 (a) is a cross-sectional view taken along line XX in FIG. 1, FIG. 2 (b) is a cross-sectional view taken along line YY in FIG. (C) is a sectional view taken along the line ZZ in FIG. 1, and FIG. 3 is a view showing a state in which a sample is set in FIG. 2 (c).
As shown in FIG. 1, the measuring device 1 of the present invention includes a precise rapid thermophysical property measuring unit 2, a measuring unit 3, a water supply unit 4, and an air supply unit 5.

精密迅速熱物性測定部2は、精密迅速熱物性測定装置2aと熱源板2bで構成される。熱源板2bは熱を発する金属板、ヒーター及び温度センサーで構成され、ヒーターによって金属板を加熱し、温度センサーによって精密迅速熱物性測定装置2aが金属板の温度を制御するようになっている。金属板の周囲(試料と接触する金属板の接触面以外の部分)にはガードヒーターが取り付けられている。ガードヒーターは環境温度による熱源板の温度変化を小さくするためのものであり、熱源板温度よりも若干高い温度に設定される。   The precise rapid thermophysical property measuring unit 2 includes a precise rapid thermophysical property measuring device 2a and a heat source plate 2b. The heat source plate 2b is composed of a metal plate that generates heat, a heater, and a temperature sensor. The metal plate is heated by the heater, and the precise rapid thermophysical property measuring device 2a controls the temperature of the metal plate by the temperature sensor. A guard heater is attached around the metal plate (a portion other than the contact surface of the metal plate that contacts the sample). The guard heater is for reducing the temperature change of the heat source plate due to the environmental temperature, and is set to a temperature slightly higher than the heat source plate temperature.

精密迅速熱物性測定装置2aによって金属板及びガードヒーターの温度設定及び熱源板の放熱による仕事量の計測ができる。精密迅速熱物性測定装置2aとしては、カトーテック株式会社製KES−F7(サーモラボII型)等が使用可能であり、熱源板2bとしてBT−Boxを使用する。   The precise rapid thermophysical property measuring apparatus 2a can measure the work amount by setting the temperature of the metal plate and the guard heater and releasing the heat from the heat source plate. As the precise rapid thermophysical property measuring apparatus 2a, KES-F7 (Thermo Lab II type) manufactured by Kato Tech Co., Ltd. can be used, and BT-Box is used as the heat source plate 2b.

測定部3は定温を維持する台(以下、定温台3a)と温度測定センサー3bからなる。定温台3aは上面部3aa、中部3ab及び下部3acで構成される。上面部3aaは熱を伝えやすく比較的入手が容易な銅板で構成される。上面部3aa以外の部分(中部3ab及び下部3ac)は任意の材料を用いることが可能である。例えば鉄などの金属を用いることができる。定温台3aの中央領域には上面部3aaから下部3acの途中まで至る凹部3cを設ける。   The measurement unit 3 includes a table that maintains a constant temperature (hereinafter, a constant temperature table 3a) and a temperature measurement sensor 3b. The constant temperature table 3a includes an upper surface portion 3aa, a middle portion 3ab, and a lower portion 3ac. The upper surface portion 3aa is made of a copper plate that is easy to conduct heat and relatively easily available. Arbitrary materials can be used for the portions other than the upper surface portion 3aa (the middle portion 3ab and the lower portion 3ac). For example, a metal such as iron can be used. A concave portion 3c extending from the upper surface portion 3aa to the middle of the lower portion 3ac is provided in the central region of the constant temperature table 3a.

定温台の中部3abには給水口3dと排水口3eを設け、後述する水供給部4から供給される定温の水を中部3ab内(凹部3cを除く部分)に循環させる。定温の水を循環するとにより定温台中部3abに供給される熱容は無限大と仮定する。   A water supply port 3d and a water discharge port 3e are provided in the middle part 3ab of the constant temperature table, and constant temperature water supplied from a water supply part 4 described later is circulated in the middle part 3ab (a part excluding the recessed part 3c). It is assumed that the heat capacity supplied to the constant temperature base 3ab by circulating constant temperature water is infinite.

定温台3aの下部3acには空気供給口3fと温度測定センサー3bを設ける。後述する空気供給部5で調温調湿された空気は空気供給口3fを経て凹部3cに供給される。温度測定センサー3bは試料の吸着熱による温度上昇を計測するためのものであり、凹部3cの底面に設ける。   An air supply port 3f and a temperature measurement sensor 3b are provided in the lower part 3ac of the constant temperature table 3a. Air that has been temperature-controlled and humidity-controlled by an air supply unit 5 described later is supplied to the recess 3c through the air supply port 3f. The temperature measurement sensor 3b is for measuring the temperature rise due to the heat of adsorption of the sample, and is provided on the bottom surface of the recess 3c.

水供給部4は、ヒーター4a、ポンプ4b及び水用パイプ4cで構成される。定温台中部3abに供給する水の温度はヒーター4aによって一定に保たれ、ポンプ4bによって送り出され定温台中部内を循環する。ヒーター4a及びポンプ4bと給水口3d及び排水口3eとはそれぞれ水用パイプ4cで繋がれる。   The water supply unit 4 includes a heater 4a, a pump 4b, and a water pipe 4c. The temperature of the water supplied to the constant temperature base 3ab is kept constant by the heater 4a, is sent out by the pump 4b, and circulates in the constant temperature base. The heater 4a and the pump 4b are connected to the water supply port 3d and the drainage port 3e by a water pipe 4c.

空気供給部5は温湿度調節空気発生装置5a、流量調節コック5b及び空気用パイプ5cで構成される。温湿度調節空気発生装置5aは設定した温度で湿度100%の湿潤空気と湿度0%の乾燥空気の混合する比率を変えることによって、任意の温度、湿度の空気を発生することができる。湿潤空気を発生させる方法としては、設定した温度の容器内において、設定した温度の水に空気を送り込んでバブリングをし、バブリングされた空気を採取する方法があげられる。乾燥空気を発生させる方法としては、設定した温度の空気をシリカゲルなどの吸湿剤に通すことで乾燥した空気を得る方法がある。   The air supply unit 5 includes a temperature / humidity adjusting air generator 5a, a flow rate adjusting cock 5b, and an air pipe 5c. The temperature / humidity adjusting air generator 5a can generate air of any temperature and humidity by changing the mixing ratio of humid air having a humidity of 100% and dry air having a humidity of 0% at a set temperature. As a method for generating moist air, there is a method in which air is sent to water at a set temperature and bubbled in a container at a set temperature, and the bubbled air is collected. As a method of generating dry air, there is a method of obtaining dry air by passing air of a set temperature through a hygroscopic agent such as silica gel.

温湿度調節空気発生装置5aで調温調湿された空気は空気用パイプ5cを経て定温台下部3acの凹部3c内に流し込まれる。空気用パイプ5cに取り付けられた流量調節コック5bによって、流量を任意に調整することができる。   The air whose temperature is controlled by the temperature / humidity adjusting air generator 5a flows through the air pipe 5c into the recess 3c of the constant temperature base lower part 3ac. The flow rate can be arbitrarily adjusted by the flow rate adjusting cock 5b attached to the air pipe 5c.

以上のように構成した測定装置1で試料の吸着熱と熱伝導性を同時に測定する。
(測定装置の準備)
試験は20℃65%に調温調湿された環境下で行う。精密迅速熱物性測定装置2aの電源を入れ、熱源板中の金属板の温度を25〜45℃、ガード板の温度を熱源板より0.3℃高く設定し、安定するまで約1時間以上放置する。
The measuring device 1 configured as described above simultaneously measures the heat of adsorption and thermal conductivity of the sample.
(Preparation of measuring device)
The test is performed in an environment where the temperature and humidity are adjusted to 20 ° C. and 65%. Turn on the precision rapid thermophysical property measuring device 2a, set the temperature of the metal plate in the heat source plate to 25-45 ° C and the temperature of the guard plate 0.3 ° C higher than the heat source plate, and leave it for about 1 hour or more until it stabilizes To do.

水供給部4のポンプ4bを作動させ、定温台中部3abの中にヒーター4aで温めた20℃の水を循環させ、定温台中部3abの温度を20℃に保つ。
空気供給部5の温湿度調節空気発生装置5aの電源を入れ、流し込む空気の温度を20〜35℃、湿度を40〜100%に設定し、定温台下部3acに供給される空気の流量が1〜15mm/secになるように流量調節コック5bを調節する。
測定部の温度測定センサー3bの電源を入れる。
The pump 4b of the water supply unit 4 is operated to circulate the 20 ° C. water heated by the heater 4a in the constant temperature base 3ab, and keep the temperature of the constant temperature base 3ab at 20 ° C.
The temperature / humidity adjusting air generator 5a of the air supply unit 5 is turned on, the temperature of the flowing air is set to 20 to 35 ° C., the humidity is set to 40 to 100%, and the flow rate of the air supplied to the constant temperature base lower part 3ac is 1. The flow rate adjustment cock 5b is adjusted to be ˜15 mm 3 / sec.
The temperature measurement sensor 3b of the measurement unit is turned on.

(試料の設置)
20℃65%の環境下に2時間以上置き、調温調湿した試料7の生地を定温台3aにセットする。この時、凹部3cに試料7を弛ませて設置して、試料生地の裏面に温度測定センサー3bが触れるように試料7を垂らすと共に、熱源板2bと定温台上面部3aaの間に試料7を挟み込む。定温台上面部3aaと熱源板2bの間に挟み込んだ部分で試料の熱伝導性を測定し、温度測定センサー3bに触れる部分で生地の吸着熱を測定する。
(Sample installation)
Place the dough of the sample 7 placed in an environment of 20 ° C. and 65% for 2 hours or more and adjusting the temperature and humidity on the constant temperature table 3a. At this time, the sample 7 is placed loosely in the recess 3c, and the sample 7 is hung so that the temperature measuring sensor 3b touches the back surface of the sample fabric, and the sample 7 is placed between the heat source plate 2b and the top surface 3aa of the temperature table. Sandwich. The thermal conductivity of the sample is measured at the portion sandwiched between the constant temperature table upper surface portion 3aa and the heat source plate 2b, and the heat of adsorption of the dough is measured at the portion touching the temperature measurement sensor 3b.

(熱伝導性測定)
熱伝導性測定法としては、平板比較法、平板直接法、熱流計法、非定常熱線法があるが、編み物(ニット)、織物、不織布等からなる衣料は、平板法が応用され、水平に置いた布の上下両側平板をそれぞれ高温側(熱源)、低温側とし、その温度を一定に保つのに必要な熱量を測定する定常法が一般的に用いられている。本発明は熱源板と定温台の間に試料を挟み込んだ時、試料が定温台に接する部位を利用して、定常法による計測が行われている。試料を銅板にセットし、熱源板を置いた時の定温台に吸収される熱量Wを測定する。熱量Wは熱源板を置いた時の定温台への吸収量が一定になった時の値を計測する。さらに、熱源板を置いたときの圧力に相当する時の厚みDを、圧縮弾性試験機を使用して測定した後、見掛けの熱伝導率k(W/mK)を以下の式1を用いて算出する。
k=(W*D)/(A*ΔT0)・・・(式1)
W:熱量(W)
D:生地厚み(m)
A:熱源板面積(m2
ΔT0:熱板温度と試験環境温度の差(K)
(Thermal conductivity measurement)
Thermal conductivity measurement methods include the flat plate comparison method, the flat plate direct method, the heat flow meter method, and the unsteady hot wire method, but the flat plate method is applied to clothing made of knitted fabric, woven fabric, non-woven fabric, etc. A stationary method is generally used in which the upper and lower flat plates of the placed cloth are set to the high temperature side (heat source) and the low temperature side, respectively, and the amount of heat necessary to keep the temperature constant is measured. In the present invention, when a sample is sandwiched between a heat source plate and a constant temperature table, measurement by a steady method is performed using a portion where the sample is in contact with the constant temperature table. A sample is set on a copper plate, and the amount of heat W absorbed by a constant temperature table when the heat source plate is placed is measured. The amount of heat W is measured when the amount of absorption into the constant temperature table when the heat source plate is placed becomes constant. Further, after measuring the thickness D corresponding to the pressure when the heat source plate is placed using a compression elasticity tester, the apparent thermal conductivity k (W / mK) is expressed by the following equation (1). calculate.
k = (W * D) / (A * ΔT0) (Formula 1)
W: Calorie (W)
D: Fabric thickness (m)
A: Heat source plate area (m 2 )
ΔT0: Difference between hot plate temperature and test environment temperature (K)

(吸着熱測定)
吸着熱測定法として、空気供給口3fから調温調湿された空気を流し込み、試料が吸湿して発熱したときの試料の温度変化を温度測定センサー3bで計測する。流量調節コック5bを開く前から定温台に吸収される熱量Wが一定になるまでの間、試料裏面の温度履歴を記録する。試験中の試料裏面の最高温度と流量調節コックを開く前の試料裏面温度との差を最高上昇温度ΔTとする。
前記の熱伝導性と最高上昇温度から生地の温かさを判断する。
(Adsorption heat measurement)
As the adsorption heat measurement method, temperature-controlled air is flowed from the air supply port 3f, and the temperature change of the sample when the sample absorbs moisture and generates heat is measured by the temperature measurement sensor 3b. The temperature history of the back surface of the sample is recorded from before the flow rate adjustment cock 5b is opened until the amount of heat W absorbed by the constant temperature table becomes constant. The difference between the maximum temperature of the back of the sample under test and the temperature of the back of the sample before opening the flow control cock is defined as the maximum rise temperature ΔT.
The warmth of the dough is judged from the thermal conductivity and the maximum rising temperature.

(測定基準)
本発明者らが、冬季環境下(低温環境下)において、繊維構造物が吸湿する状態が得られる(汗をかく)着用試験を行い鋭意研究した結果から、前記の測定において最高上昇温度ΔTが1.5℃以上の場合に、着用時に優れた暖かさを得ることが出来る。しかし、最高上昇温度ΔTが1.5℃未満の場合は、着用時に優れた暖かさを得ることは出来ない。
(Measurement standard)
As a result of intensive studies conducted by the present inventors in a winter environment (under a low temperature environment) in which a fibrous structure absorbs moisture (perspires) and has conducted an extensive study, the maximum rise temperature ΔT in the above measurement is In the case of 1.5 degreeC or more, the warmth which was excellent at the time of wear can be obtained. However, when the maximum rise temperature ΔT is less than 1.5 ° C., it is not possible to obtain excellent warmth when worn.

本発明者らが、冬季環境下において、鋭意研究した結果、前記の測定において、見かけの熱伝導率kが0.053(W/mK)以下の場合、着用時に触れたときに冷たくひんやり感じることがない。しかし、見かけの熱伝導率kが0.053(W/mK)より大きい場合、着用時に触れたときに、冷たくひんやり感じ、不快感を生じる。   As a result of intensive studies conducted by the present inventors in the winter environment, in the above measurement, when the apparent thermal conductivity k is 0.053 (W / mK) or less, it feels cool and cool when touched during wearing. There is no. However, when the apparent thermal conductivity k is larger than 0.053 (W / mK), it feels cold and cool and uncomfortable when touched during wearing.

前記の二つの条件を満たす生地またはそのような生地を少なくとも一部に用いた衣料は実着においても温かみを感じることができる。これらの生地または衣料は寒冷時のスポーツウエア、下着(インナー)、Tシャツ等に適している。   A fabric satisfying the above two conditions or a garment using at least a part of such a fabric can feel warm even in actual wearing. These fabrics or clothes are suitable for cold sportswear, underwear (inner), T-shirts and the like.

以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例に制限されるものではない。以下の実施例の説明では前記の実施の形態の説明と重複する部分は省略する。また実施の形態と同じく図1〜図3を用いて説明する。
精密迅速熱物性測定装置2aとしてカトーテック株式会社製KES−F7(サーモラボII型)を、熱源板2bとしてKES−F7に接続されているBT−Boxを使用する。BT−Boxの縦横方向の大きさは、定温台3a上面をちょうど覆うことができる大きさである。次に定温台3aについて以下に示す。外観は縦(M1)80mm×横(L1)80mm×高さ(N1)60mmであり、上面部3aaは厚さ(N2)が2mmからなる銅板で構成される。中部3ab及び下部3acは鉄で構成され、中部3abの高さ(N3)は18mm、下部3acの高さ(N4)は40mmとする。定温台3aの中央領域には上面部3aaから下部3acの途中まで至る凹部3cを設ける。凹部3cは縦(M2)50mm×横(L2)10mmとし、上面部側から見た際に縦横方向に対称となるように中央領域に配置する。高さ方向は上面部からの距離(N5)が40mmとする。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the description of the following examples, the same parts as those in the above embodiment are omitted. The description will be made with reference to FIGS. 1 to 3 as in the embodiment.
KES-F7 (Thermo Lab II type) manufactured by Kato Tech Co., Ltd. is used as the precise rapid thermophysical property measuring apparatus 2a, and BT-Box connected to KES-F7 is used as the heat source plate 2b. The size of the BT-Box in the vertical and horizontal directions is a size that can just cover the upper surface of the constant temperature table 3a. Next, the thermostat 3a will be described below. The appearance is vertical (M1) 80 mm × horizontal (L1) 80 mm × height (N1) 60 mm, and the upper surface portion 3aa is formed of a copper plate having a thickness (N2) of 2 mm. The middle part 3ab and the lower part 3ac are made of iron. The height (N3) of the middle part 3ab is 18 mm, and the height (N4) of the lower part 3ac is 40 mm. A concave portion 3c extending from the upper surface portion 3aa to the middle of the lower portion 3ac is provided in the central region of the constant temperature table 3a. The recess 3c is 50 mm long (M2) × 10 mm wide (L2), and is arranged in the central region so as to be symmetrical in the vertical and horizontal directions when viewed from the upper surface side. In the height direction, the distance (N5) from the upper surface is 40 mm.

中部3abに設けた給水口3dと排水口3eは内径を5mmとし、給水口3dから流れ込んだ水はコの字状に中部内を循環し排水口3eから排出される。下部3acに設けた空気供給口3fは内径を10mmとする。   The water supply port 3d and the drainage port 3e provided in the middle part 3ab have an inner diameter of 5 mm, and the water flowing from the water supply port 3d circulates in the middle part in a U-shape and is discharged from the drainage port 3e. The air supply port 3f provided in the lower part 3ac has an inner diameter of 10 mm.

試験は20℃65%に調温調湿された環境下で行い、試料を少なくとも2時間放置し、調温調湿する。KES−F7(サーモラボII型)の電源を入れ、BT−Boxの温度を35℃、ガード板の温度を35.3℃に設定をし、安定するまで約1時間放置する。   The test is performed in an environment in which the temperature and humidity are adjusted to 20 ° C. and 65%, and the sample is left to stand for at least 2 hours to adjust the temperature and humidity. Turn on the power of KES-F7 (Thermo Lab II), set the temperature of BT-Box to 35 ° C and the temperature of the guard plate to 35.3 ° C, and leave it for about 1 hour until it stabilizes.

水気供給部4のポンプを作動させ、ヒーター4aで温めた20℃の水を定温台中部3ab内に循環させる。温湿度調節空気発生装置5aの電源を入れ、流し込む空気の温度を32℃、湿度を70%に設定をする。温度測定センサーの電源を入れる。   The pump of the water supply unit 4 is operated, and 20 ° C. water heated by the heater 4a is circulated in the constant temperature base middle part 3ab. The temperature / humidity adjusting air generator 5a is turned on, and the temperature of the flowing air is set to 32 ° C. and the humidity is set to 70%. Turn on the temperature sensor.

試料の大きさは縦45mm、横220mmとし、試料7の裏面が下になるように定温台3a上に置く。生地裏面に温度測定センサー3bが触れるように試料7を凹部3c内に垂らした後、熱源板2bを定温台上面部3aaに置き、試料7を熱源板2bと定温台上面部3aaで挟み込む。   The sample is 45 mm long and 220 mm wide, and is placed on the thermostat 3 a so that the back surface of the sample 7 faces down. After the sample 7 is hung in the recess 3c so that the temperature measurement sensor 3b touches the back surface of the cloth, the heat source plate 2b is placed on the constant temperature table upper surface portion 3aa, and the sample 7 is sandwiched between the heat source plate 2b and the constant temperature table upper surface portion 3aa.

温湿度調節空気発生装置5aにて温度32℃、湿度70%に調整した空気を空気供給口から凹部に供給する。流量は6.2mm/secになるように流量調節コック5bで調節する。前記の条件とすることで、下着実着時の衣服内空間の温湿度状態を再現できる。 Air adjusted to a temperature of 32 ° C. and a humidity of 70% by the temperature / humidity adjusting air generator 5a is supplied to the recess from the air supply port. The flow rate is adjusted by the flow rate adjusting cock 5b so that the flow rate becomes 6.2 mm 3 / sec. By setting it as the said conditions, the temperature / humidity state of the space in clothes at the time of underwear wearing can be reproduced.

熱源板2bを置いた時の定温台3aに吸収される熱量Wが一定になった時の値を記録する。その値から試料の見掛けの熱伝導率k(W/mK)を前記の式1を用いて計算する。
空気供給部5から空気が供給される前から、定温台3aに吸収される熱量Wが一定になるまでの間、試料裏面の温度履歴を計測し、最高上昇温度ΔTを出す。
本発明の測定装置では見掛けの熱伝導率と最高上昇温度(吸着熱)の両方を同時に測定することが可能である。
この熱伝導性と最高上昇温度ΔTから生地の温かさを判断する。見かけの熱伝導率kが0.053(W/mK)以下の場合、着用時に触れたときに冷たくひんやり感じることがなく、最高上昇温度ΔTが1.5℃以上の場合に、着用時に優れた暖かさを得ることが出来る。
Record the value when the amount of heat W absorbed by the constant temperature table 3a when the heat source plate 2b is placed becomes constant. From the value, the apparent thermal conductivity k (W / mK) of the sample is calculated using Equation 1 above.
Before the air is supplied from the air supply unit 5 and until the amount of heat W absorbed by the constant temperature table 3a becomes constant, the temperature history of the back surface of the sample is measured, and the maximum rise temperature ΔT is obtained.
The measuring device of the present invention can simultaneously measure both the apparent thermal conductivity and the maximum rising temperature (heat of adsorption).
The warmth of the dough is judged from this thermal conductivity and the maximum rising temperature ΔT. When the apparent thermal conductivity k is 0.053 (W / mK) or less, it does not feel cold and cool when touched at the time of wearing, and when the maximum rising temperature ΔT is 1.5 ° C. or more, it is excellent at the time of wearing. You can get warmth.

本発明の測定装置による値と実際の官能との整合性をみるために、熱伝導性及び吸湿発熱性について、測定装置による測定と官能テストを行った。
(熱伝導性の官能テスト)
冬季環境を想定した15℃50%RH環境下において、24歳以上50歳以下の被験者10名(内訳、男性5名、女性5名)の方に、試料を着用した後、冷たくひんやりするかを判定し、次の4段階(4点満点)で評価した。
4点: 極めて、冷たくひんやりしない。
3点: 冷たくひんやりしない。
2点: 冷たくひんやりする。
1点: 極めて、冷たくひんやりする。
In order to check the consistency between the value obtained by the measuring device of the present invention and the actual sensory function, the thermal conductivity and moisture absorption exothermic property were measured by the measuring device and the sensory test.
(Thermal conductivity sensory test)
In a 15 ° C 50% RH environment that assumes a winter environment, 10 subjects (breakdown, 5 men, 5 women) who are 24 to 50 years old should wear a sample and cool Judgment was made, and the evaluation was made in the following four stages (full score of 4 points).
4 points: Extremely cold and cool.
3 points: Cold and not cool.
2 points: Cold and cool.
1 point: Extremely cool and cool.

(吸湿発熱性の官能テスト)
トレッドミルを使用し、5km/hの速度で、20分間歩行して、暖かさ(吸湿発熱性)を4段階(4点満点)で評価した。
4点: 極めて、暖かい。
3点: 暖かい。
2点: 暖かくない。
1点: 極めて、暖かくない。
(Hygroscopic exothermic sensory test)
Using a treadmill and walking at a speed of 5 km / h for 20 minutes, the warmth (hygroscopic exothermic property) was evaluated in four steps (full score of 4).
4 points: Extremely warm.
3 points: Warm.
2 points: Not warm.
1 point: Not very warm.

測定用の試料においては、吸湿発熱性評価及び熱伝導性評価の物性の違いを評価しやすいことから、短繊維ポリエステルに架橋アクリル繊維を混紡する手段を用いた。(尚、編物の規格のインチは1インチ=2.54cmである。)   In the sample for measurement, since it is easy to evaluate the difference in physical properties between the hygroscopic exothermic evaluation and the thermal conductivity evaluation, a means of blending a short acrylic polyester with a crosslinked acrylic fiber was used. (The standard inch of the knitted fabric is 1 inch = 2.54 cm.)

(試料1)
短繊維ポリエステル(2.2dtex−38mm)70%/架橋アクリル(東洋紡績株式会社製モイスケア(登録商標)、2.2dtex―44mm)30%からなる40番手双糸の紡績糸を作成し、リブ組織(32インチ24ゲージ)の編み立てを実施した。さらに、通常のリラックス精錬、染色、乾燥後、繊維構造物を作成した。(目付=200g/m
(Sample 1)
40% double yarn spun yarn made of 30% short fiber polyester (2.2 dtex-38 mm) / cross-linked acrylic (Toyobo Co., Ltd. Moiscare (registered trademark), 2.2 dtex-44 mm) 30% was prepared, and the rib structure (32 inch 24 gauge) knitting was carried out. Furthermore, the fiber structure was created after normal relaxation refining, dyeing and drying. (Weight = 200 g / m 2 )

(試料2)
短繊維ポリエステル(2.2dtex−38mm)85重量%/架橋アクリル(東洋紡績株式会社製モイスケア(登録商標)、2.2dtex―44mm)15重量%からなる40番手双糸の紡績糸を作成し、リブ組織(32インチ24ゲージ)の編み立てを実施した。さらに、通常のリラックス精錬、染色、乾燥後、繊維構造物を作成した。(目付=210g/m
(Sample 2)
A spun yarn of 40 count double yarn consisting of 85% by weight of short fiber polyester (2.2 dtex-38 mm) / 15% by weight of cross-linked acrylic (Toyobo Co., Ltd., Moiscare (registered trademark), 2.2 dtex-44 mm), Ribbing (32 inch, 24 gauge) was knitted. Furthermore, the fiber structure was created after normal relaxation refining, dyeing and drying. (Weight = 210 g / m 2 )

(試料3)
短繊維ポリエステル(2.2dtex−38mm)90重量%/架橋アクリル(東洋紡績株式会社製モイスケア(登録商標)、2.2dtex―44mm)10重量%からなる40番手双糸の紡績糸を作成し、リブ組織(32インチ24ゲージ)の編み立てを実施した。さらに、通常のリラックス精錬、染色、乾燥後、繊維構造物を作成した。(目付=200g/m
(Sample 3)
A spun yarn of 40 count double yarn comprising 90% by weight of short fiber polyester (2.2 dtex-38 mm) / cross-linked acrylic (Toyobo Co., Ltd. Moiscare (registered trademark), 2.2 dtex-44 mm) 10% by weight was prepared. Ribbing (32 inch, 24 gauge) was knitted. Furthermore, the fiber structure was created after normal relaxation refining, dyeing and drying. (Weight = 200 g / m 2 )

(試料4)
短繊維ポリエステル(2.2dtex−38mm)92重量%/架橋アクリル(東洋紡績株式会社製モイスケア(登録商標)、2.2dtex―44mm)8重量%からなる40番手双糸の紡績糸を作成し、リブ組織(32インチ24ゲージ)の編み立てを実施した。さらに、通常のリラックス精錬、染色、乾燥後、繊維構造物を作成した。(目付=200g/m
(Sample 4)
A spun yarn of 40 count double yarn comprising 92% by weight of short fiber polyester (2.2 dtex-38 mm) / cross-linked acrylic (Toyobo Co., Ltd., Moiscare (registered trademark), 2.2 dtex-44 mm) 8% by weight was prepared. Ribbing (32 inch, 24 gauge) was knitted. Furthermore, the fiber structure was created after normal relaxation refining, dyeing and drying. (Weight = 200 g / m 2 )

(試料5)
綿100%からなる40番手単糸の紡績糸を作成し、リブ組織(14インチ12ゲージ)の編み立てを実施した。さらに、通常のリラックス精錬、染色、乾燥後、繊維構造物を作成した。(目付=180g/m
(Sample 5)
A spun yarn of 40th single yarn made of 100% cotton was prepared, and a rib structure (14 inches 12 gauge) was knitted. Furthermore, the fiber structure was created after normal relaxation refining, dyeing and drying. (Weight = 180 g / m 2 )

(試料6)
短繊維ポリエステル100%(2.2dtex−38mm)からなる40番手単糸の紡績糸を作成し、リブ組織(14インチ12ゲージ)の編み立てを実施した。さらに、通常のリラックス精錬、染色、乾燥後、繊維構造物を作成した。(目付=180g/m
(Sample 6)
A spun yarn of 40th single yarn made of 100% short fiber polyester (2.2 dtex-38 mm) was prepared, and a rib structure (14 inches, 12 gauge) was knitted. Furthermore, the fiber structure was created after normal relaxation refining, dyeing and drying. (Weight = 180 g / m 2 )

前記の各試料の吸湿発熱性(最高温度上昇)の測定結果、熱伝導性の測定結果、及びそれぞれの官能テストの結果(被験者10人の合計点=40点満点)を表1に示す。   Table 1 shows the measurement results of the moisture absorption exothermic property (maximum temperature rise), the thermal conductivity measurement results, and the results of the respective sensory tests (total score of 10 subjects = 40 points).

Figure 2006329746
Figure 2006329746

本発明によれば、吸着熱と熱伝導性を同時に計測でき、冬季環境下において、優れた着用感を得られる生地または衣料を判別することができ、冬物衣料の分野に貢献することができる。   ADVANTAGE OF THE INVENTION According to this invention, adsorption | suction heat and thermal conductivity can be measured simultaneously, the cloth | dough or clothing which can obtain the outstanding wearing feeling in winter environment can be discriminate | determined, and it can contribute to the field | area of winter clothing.

図1は本発明にかかる装置を示す模式図である。FIG. 1 is a schematic view showing an apparatus according to the present invention. 図2(a)は図1中のX−X線断面図、図2(b)は図1中のY−Y線断面図、図2(c)は図1中のZ−Z線断面図である。2A is a sectional view taken along line XX in FIG. 1, FIG. 2B is a sectional view taken along line YY in FIG. 1, and FIG. 2C is a sectional view taken along line ZZ in FIG. It is. 図3は図2(c)において試料をセットした状態を示す図である。FIG. 3 is a diagram showing a state where a sample is set in FIG.

符号の説明Explanation of symbols

1 測定装置
2 精密迅速熱物性測定部
2a 精密迅速熱物性測定装置
2b 熱源板
3 測定部
3a 定温台
3aa 上面部
3ab 中部
3ac 下部
3b 温度測定センサー
3c 凹部
3d 給水口
3e 排水口
3f 空気供給口
4 水供給部
4a ヒーター
4b ポンプ
4c 水用パイプ
5 空気供給部
5a 温湿度調節空気発生装置
5b 流量調節コック
5c 空気用パイプ
7 試料

DESCRIPTION OF SYMBOLS 1 Measuring device 2 Precision rapid thermophysical property measuring unit 2a Precision rapid thermophysical property measuring device 2b Heat source plate 3 Measuring unit 3a Constant temperature table 3aa Top surface part 3ab Middle part 3ac Lower part 3b Temperature measuring sensor 3c Concave part 3d Water supply port 3e Drain port 3f Air supply port 4 Water supply unit 4a Heater 4b Pump 4c Pipe for water 5 Air supply unit 5a Temperature / humidity adjustment air generator 5b Flow control cock 5c Air pipe 7 Sample

Claims (4)

吸着熱による上昇温度と見かけの熱伝導性とを用いて吸湿発熱性素材を評価することを特徴とする測定装置。   A measuring apparatus characterized by evaluating a moisture-absorbing exothermic material using an increase in temperature due to heat of adsorption and apparent thermal conductivity. 吸着熱による上昇温度と見かけの熱伝導性とを用いて吸湿発熱性素材を評価することを特徴とする測定方法。   A measurement method characterized by evaluating a moisture-absorbing exothermic material using an increase in temperature due to heat of adsorption and apparent thermal conductivity. 以下に示す(A)精密迅速熱物性測定部、(B)測定部、(C)水供給部、(D)空気供給部の各部で構成され、吸着熱による上昇温度と見かけの熱伝導性とを同時に測定可能とした吸湿発熱性素材の測定装置。
(A)精密迅速熱物性測定部は、精密迅速熱物性測定装置と熱源板で構成される。
(B)測定部は、定温を維持する定温台と温度測定センサーで構成され、前記定温台は上面部、中部及び下部で構成され、前記定温台の中央領域には上面部から下部の途中まで至る凹部を設け、前記凹部の底面に温度測定センサーを設け、
前記定温台の中部には前記水供給部から供給される定温の水を循環させるための給水口と排水口を設け、
前記定温台下部には前記空気供給部から供給される調温調湿された空気を凹部に届けるための空気供給口を設ける。
(C)水供給部はヒーター、ポンプ及び水用パイプで構成され、前記水用パイプによって前記ヒーターとポンプは給水口及び排水口に繋がれる。
(D)空気供給部は温湿度調節空気発生装置、流量調節コック及び空気用パイプで構成され、前記空気用パイプによって前記温湿度調節空気発生装置と前記空気供給口は繋がれ、前記空気用パイプに流量調節コックを設ける。
It consists of the following parts: (A) precise rapid thermophysical property measurement unit, (B) measurement unit, (C) water supply unit, (D) air supply unit, and the temperature rise due to adsorption heat and apparent thermal conductivity A device for measuring moisture-absorbing and exothermic materials that can simultaneously measure
(A) The precise rapid thermophysical property measuring unit is composed of a precise rapid thermophysical property measuring device and a heat source plate.
(B) The measurement unit is composed of a temperature table and a temperature measurement sensor for maintaining a constant temperature, and the temperature table is composed of an upper surface part, a middle part and a lower part, and the central region of the constant temperature table is from the upper surface part to the middle of the lower part. A recess that reaches, a temperature measurement sensor is provided on the bottom of the recess,
A water supply port and a drain port for circulating the constant temperature water supplied from the water supply unit are provided in the middle of the constant temperature table,
An air supply port is provided at the lower part of the constant temperature table to deliver the temperature-controlled and humidity-controlled air supplied from the air supply unit to the recess.
(C) The water supply unit is composed of a heater, a pump, and a water pipe, and the heater and the pump are connected to a water supply port and a drain port by the water pipe.
(D) The air supply unit includes a temperature / humidity adjusting air generating device, a flow rate adjusting cock, and an air pipe. The temperature / humidity adjusting air generating device and the air supply port are connected by the air pipe, and the air pipe. Provide a flow control cock in
請求項3に記載の測定装置を用いて、以下(1)〜(6)に示す条件及び順番で測定することで、吸着熱による上昇温度と見かけの熱伝導性とを同時に測定可能とした吸湿発熱性素材の測定方法。
(1)20℃65%に調温調湿された環境下で測定を行う。
(2)前記熱源板の温度は25〜45℃とし、安定するまで約1時間以上放置する。
(3)前記定温台中部にヒーターで温めた20℃の水を循環させ、定温台中部の温度を20℃に保つ。
(4)前記空気供給部から温度20〜35℃、湿度40〜100%の空気を凹部に流量1〜15mm/secとなるように流し込む。
(5)20℃65%の環境下で2時間以上、調温調湿した試料の生地を定温台に固定する。試料の生地の裏面に温度測定センサーが触れるように生地を垂らすと共に、熱源板と定温台上面部で生地を挟み込む。
(6)定温台上面部と熱源板の間に挟み込んだ部分で生地の熱伝導性を測定し、温度測定センサーに触れる部分で生地の吸着熱を測定する。


Using the measuring device according to claim 3, moisture absorption that enables measurement of the temperature rise due to adsorption heat and the apparent thermal conductivity can be performed simultaneously by measuring under the conditions and order shown in (1) to (6) below. Measuring method of exothermic material.
(1) Measurement is performed in an environment where the temperature and humidity are adjusted to 20 ° C. and 65%.
(2) The temperature of the heat source plate is 25 to 45 ° C., and is left for about 1 hour or more until it becomes stable.
(3) Circulating 20 ° C. water heated by a heater in the middle of the temperature-controlled table, and keeping the temperature in the temperature-controlled table at 20 ° C.
(4) Air having a temperature of 20 to 35 ° C. and a humidity of 40 to 100% is poured from the air supply unit into the recess so as to have a flow rate of 1 to 15 mm 3 / sec.
(5) Fix the dough of the temperature-controlled sample for 2 hours or more in an environment of 20 ° C. and 65% on a constant temperature table. The fabric is hung so that the temperature measurement sensor touches the back of the sample fabric, and the fabric is sandwiched between the heat source plate and the top surface of the constant temperature table.
(6) The thermal conductivity of the dough is measured at the portion sandwiched between the upper surface of the constant temperature table and the heat source plate, and the adsorption heat of the dough is measured at the portion touching the temperature measurement sensor.


JP2005151989A 2005-05-25 2005-05-25 Measuring instrument and measuring method for hygroscopic and exothermic material based on adsorption heat and thermal onductivity Pending JP2006329746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151989A JP2006329746A (en) 2005-05-25 2005-05-25 Measuring instrument and measuring method for hygroscopic and exothermic material based on adsorption heat and thermal onductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151989A JP2006329746A (en) 2005-05-25 2005-05-25 Measuring instrument and measuring method for hygroscopic and exothermic material based on adsorption heat and thermal onductivity

Publications (1)

Publication Number Publication Date
JP2006329746A true JP2006329746A (en) 2006-12-07

Family

ID=37551589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151989A Pending JP2006329746A (en) 2005-05-25 2005-05-25 Measuring instrument and measuring method for hygroscopic and exothermic material based on adsorption heat and thermal onductivity

Country Status (1)

Country Link
JP (1) JP2006329746A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185413A (en) * 2007-01-29 2008-08-14 Orion Mach Co Ltd Adsorption capacity measuring instrument of adsorbing material
JP2008185412A (en) * 2007-01-29 2008-08-14 Orion Mach Co Ltd Adsorption capacity measuring instrument of adsorbing material
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container
CN102744494A (en) * 2012-07-15 2012-10-24 沈阳工业大学 Device and method for measuring heat distribution of welding arc
WO2013125145A1 (en) 2012-02-24 2013-08-29 一般財団法人カケンテストセンター Heat absorption/generation measurement device and heat absorption/generation measurement method
TWI472754B (en) * 2012-11-28 2015-02-11 Taiwan Textile Res Inst Measuring apparatus and measuring method
JP2018165631A (en) * 2017-03-28 2018-10-25 パナソニックIpマネジメント株式会社 Estimation method of physical amount showing heat transfer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185413A (en) * 2007-01-29 2008-08-14 Orion Mach Co Ltd Adsorption capacity measuring instrument of adsorbing material
JP2008185412A (en) * 2007-01-29 2008-08-14 Orion Mach Co Ltd Adsorption capacity measuring instrument of adsorbing material
JP4674217B2 (en) * 2007-01-29 2011-04-20 オリオン機械株式会社 Adsorbent adsorption capacity measuring device
JP4674216B2 (en) * 2007-01-29 2011-04-20 オリオン機械株式会社 Adsorbent adsorption capacity measuring device
JP2011191115A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Heat value measuring container
WO2013125145A1 (en) 2012-02-24 2013-08-29 一般財団法人カケンテストセンター Heat absorption/generation measurement device and heat absorption/generation measurement method
CN104115007A (en) * 2012-02-24 2014-10-22 一般财团法人化检检验机构 Heat absorption/generation measurement device and heat absorption/generation measurement method
KR20140124751A (en) 2012-02-24 2014-10-27 잇빤자이단호진 카켄테스트센터 Heat absorption/generation measurement device and heat absorption/generation measurement method
US9297794B2 (en) 2012-02-24 2016-03-29 Kaken Test Center Sorption exothermicity measurement device and sorption exothermicity measurement method
CN102744494A (en) * 2012-07-15 2012-10-24 沈阳工业大学 Device and method for measuring heat distribution of welding arc
TWI472754B (en) * 2012-11-28 2015-02-11 Taiwan Textile Res Inst Measuring apparatus and measuring method
JP2018165631A (en) * 2017-03-28 2018-10-25 パナソニックIpマネジメント株式会社 Estimation method of physical amount showing heat transfer

Similar Documents

Publication Publication Date Title
JP2006329746A (en) Measuring instrument and measuring method for hygroscopic and exothermic material based on adsorption heat and thermal onductivity
Li et al. Mathematical simulation of heat and moisture transfer in a human-clothing-environment system
Hes et al. Heat, moisture and air transfer properties of selected woven fabrics in wet state
Wan et al. A transient thermal model of the human body–clothing–environment system
Houshyar et al. Evaluation and improvement of thermo-physiological comfort properties of firefighters’ protective clothing containing super absorbent materials
JP4869833B2 (en) Thermal resistance and moisture resistance measurement device
Hatch et al. In vivo cutaneous and perceived comfort response to fabric: part I: thermophysiological comfort determinations for three experimental knit fabrics
JP5100102B2 (en) A device for simulating human sweating and evaluating the vapor permeability and comfort of clothing
Dai et al. Effect of moisture transport on microclimate under T-shirts
Gunesoglu et al. Thermal contact properties of 2-yarn fleece knitted fabrics
KR100841722B1 (en) Method and apparatus for measuring drying time of quick wet and dried fabrics
Jeon et al. Psychophysical determination of moisture perception in high-performance shirt fabrics in relationtosweating level
Choi et al. Clothing temperature changes of phase change material-treated warm-up in cold and warm environments
Hes et al. Indirect measurement of moisture absorptivity of functional textile fabrics
Roberts et al. Thermoregulatory response to base layer garments during treadmill exercise
Marolleau et al. Influence of textile properties on thermal comfort
Zhu et al. Change of temperature of cotton and polyester fabrics in wetting and drying process
Yoo et al. Effects of multilayer clothing system array on water vapor transfer and condensation in cold weather clothing ensemble
CN108593708A (en) A kind of test device and evaluation method of fabric cooling function
Uttam Objective measurement of heat transport through clothing
Zhao et al. The effect of flow rate of a short sleeve air ventilation garment on torso thermal comfort in a moderate environment
Surdu et al. Comfort properties of multilayer textile materials for clothing
Masood et al. Development of knitted vest fabrics for human body thermoregulation
Hes et al. Principles of clothing comfort and their use in evaluation of sensorial and thermal comfort of men’s casual jacket
Baczek et al. The effect of moisture on thermal resistance and water vapour permeability of Nomex fabrics