JP2006329676A - Method and apparatus for measuring content in sealed letter - Google Patents

Method and apparatus for measuring content in sealed letter Download PDF

Info

Publication number
JP2006329676A
JP2006329676A JP2005149940A JP2005149940A JP2006329676A JP 2006329676 A JP2006329676 A JP 2006329676A JP 2005149940 A JP2005149940 A JP 2005149940A JP 2005149940 A JP2005149940 A JP 2005149940A JP 2006329676 A JP2006329676 A JP 2006329676A
Authority
JP
Japan
Prior art keywords
gap
measurement
measured
sealed letter
contents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005149940A
Other languages
Japanese (ja)
Inventor
Koji Mochizuki
孔二 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Foundation for Science and Technology Promotion
Original Assignee
Hamamatsu Foundation for Science and Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation for Science and Technology Promotion filed Critical Hamamatsu Foundation for Science and Technology Promotion
Priority to JP2005149940A priority Critical patent/JP2006329676A/en
Publication of JP2006329676A publication Critical patent/JP2006329676A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring a content in a sealed letter, which can precisely and simply determining the number, thickness, material and the like of content sheets without opening it, by assuring a measurement value and a reference value being unaffected by changes in a measurement environment. <P>SOLUTION: The apparatus comprises: three electrodes making up two spaces which are a measurement space and a reference space disposed at prescribed intervals; a measurement circuit for measuring physical values of the two spaces; and a determining means which calculates a ratio of respective physical values of the measurement space and the reference space measured by the measurement circuit and determines at least one of the number, thickness and material of the content sheets contained in the sealed letter. The three electrodes are arranged so as to be laminated or side by side, whereby the measurement space and the reference space are arranged close to each other, and both spaces are set in the same environment. Moreover, the measurement circuit performs as a signal processing circuit for a differential capacitive sensor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば封書を開封することなく(非破壊)、非接触で、内容物の枚数等を高い精度で判定することができる封書内容物の測定方法及び測定装置に関する。   The present invention relates to a sealed content measurement method and a measurement apparatus capable of determining the number of content and the like with high accuracy without opening a sealed letter (non-destructive), for example.

従来、静電容量を用いて被測定物の厚さや重さを測定する測定装置としては、例えば図12に示すものが知られている。この測定装置は、固定的に対向配置された主電極101と対向電極102との間に被測定物103を介挿させて、電極101、102間の物理量である静電容量C10を測定し、この測定した静電容量C10と予め設定されている基準値とを比較して、被測定物103の枚数等を求めるものである。なお、かかる測定装置に関する文献としては、例えば特許文献1がある。
特開平8−029112号公報
Conventionally, as a measuring apparatus for measuring the thickness and weight of an object to be measured using electrostatic capacitance, for example, the one shown in FIG. 12 is known. This measuring apparatus interposes a device under test 103 between a main electrode 101 and a counter electrode 102 that are fixedly opposed to each other, and measures a capacitance C10 that is a physical quantity between the electrodes 101 and 102. The measured capacitance C10 is compared with a preset reference value to obtain the number of objects 103 to be measured. In addition, there exists patent document 1 as literature regarding this measuring apparatus, for example.
Japanese Patent Laid-Open No. 8-029112

しかしながら、このような測定装置にあっては、測定した静電容量C10と予め記憶される基準値とを単に比較し、静電容量C10の大きさに応じて被測定物103の枚数を求める方式であるため、電極101、102間の静電容量が気温や湿度等の使用場所の環境により変化した場合に、この変化した状態で測定した静電容量C10を予め設定されている一定の基準値と比較しただけでは、被測定物103自体の静電容量C10を精度良く測定することが困難で、被測定物103の枚数を高精度に判定(測定)することが難しい。   However, in such a measuring apparatus, the measured capacitance C10 is simply compared with a reference value stored in advance, and the number of objects to be measured 103 is determined according to the size of the capacitance C10. Therefore, when the capacitance between the electrodes 101 and 102 changes depending on the environment of the place of use such as temperature and humidity, the capacitance C10 measured in this changed state is set to a predetermined reference value. It is difficult to accurately measure the capacitance C10 of the measurement object 103 itself, and it is difficult to determine (measure) the number of the measurement objects 103 with high accuracy.

本発明は、このような事情に鑑みてなされたもので、その目的は、測定環境の変化に影響されない基準値及び測定値を確保することにより、封書内容物の枚数、厚み、材質等を開封することなく精度良くかつ簡単に判定することが可能な封書内容物の測定方法及び測定装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to open the number, thickness, material, etc. of sealed contents by ensuring a reference value and a measurement value that are not affected by changes in the measurement environment. It is an object of the present invention to provide a measuring method and measuring apparatus for sealed contents that can be accurately and easily determined without the need to do so.

かかる目的を達成すべく、本発明のうち請求項1に記載の測定方法は、所定の間隔を有する3つの電極によって測定間隙と基準間隙の2つの間隙を形成し、前記測定間隙に所定枚数の内容物が収容された封書を介挿させてその物理量を測定すると共に前記基準間隙の物理量を測定し、この測定した両物理量の比を求めて前記封書内に収容された内容物の枚数、厚み、材質の少なくとも一つを判定することを特徴とする。   In order to achieve such an object, in the measurement method according to claim 1 of the present invention, two gaps of a measurement gap and a reference gap are formed by three electrodes having a predetermined gap, and a predetermined number of sheets are formed in the measurement gap. The physical quantity is measured by inserting a sealed letter containing the contents, and the physical quantity of the reference gap is measured, and the number of the contents contained in the sealed letter is obtained by determining the ratio of the measured physical quantities. Determining at least one of the materials.

この場合、前記封書は、請求項2に記載の発明のように、前記測定間隙の一端開口部から他端開口部に向けて通過することにより該測定間隙内に介挿されることが好ましく、また、請求項3に記載の発明のように、前記基準間隙に基準物を介挿させた状態で測定間隙の物理量が測定されることが好ましい。   In this case, as in the invention described in claim 2, it is preferable that the sealed letter is inserted into the measurement gap by passing from one end opening to the other end opening of the measurement gap. As in the third aspect of the invention, it is preferable that the physical quantity of the measurement gap is measured in a state where a reference object is inserted in the reference gap.

また、本発明のうち請求項4に記載の測定装置は、所定の間隔を有して配置されて測定間隙と基準間隙の2つの間隙を形成する3つの電極と、前記2つの間隙の物理量を測定する測定回路と、該測定回路で測定した測定間隙と基準間隙の各物理量の比を求めて、封書内に収容されている内容物の枚数、厚み、材質の少なくとも一つを判定する判定手段と、を備えることを特徴とする。   According to a fourth aspect of the present invention, there is provided a measuring apparatus according to a fourth aspect of the present invention, wherein three electrodes that are arranged with a predetermined interval to form two gaps of a measurement gap and a reference gap, and a physical quantity of the two gaps are measured. Measuring circuit to be measured, and determination means for determining a ratio of each physical quantity of the measurement gap and the reference gap measured by the measurement circuit and determining at least one of the number, thickness and material of the contents contained in the sealed letter And.

そして、この場合、前記3つの電極は、請求項5に記載の発明のように、厚さ方向に積層配置されるかもしくは平面方向に並設配置されることにより、測定間隙と基準間隙が近接配置されて両間隙が同環境に設定されていることが好ましい。また、前記測定回路は、請求項6に記載の発明のように、差動容量型センサの信号処理回路として機能することが好ましい。   In this case, the three electrodes are stacked in the thickness direction or arranged side by side in the plane direction as in the invention described in claim 5 so that the measurement gap and the reference gap are close to each other. It is preferable that both gaps are set in the same environment. Moreover, it is preferable that the measurement circuit functions as a signal processing circuit of a differential capacitive sensor as in the invention described in claim 6.

本発明のうち請求項1に記載の測定方法によれば、3つの電極により測定間隙と基準間隙の2つの間隙が形成され、所定枚数の内容物が収容された封書を測定間隙に介挿させてその物理量を測定すると共に基準間隙の物理量を測定し、この測定した両物理量の比を求めることにより、封書内に収容された内容物の枚数や厚みあるいは材質の少なくとも一つを判定するため、環境の変化に係わらず測定間隙内の封書の物理量と基準間隙の物理量とを高精度に測定できて、封書を開封等することなく内容物の枚数等を精度良く測定することができると共に、封書を測定間隙に介挿させるだけでその内容物の枚数等を簡単に測定することができる。   According to the measuring method of the first aspect of the present invention, two gaps, a measurement gap and a reference gap, are formed by three electrodes, and a sealed letter containing a predetermined number of contents is inserted into the measurement gap. In order to determine at least one of the number, thickness, or material of the contents contained in the sealed letter by measuring the physical quantity and measuring the physical quantity of the reference gap, and determining the ratio of both measured physical quantities. Regardless of environmental changes, the physical quantity of the sealed letter in the measurement gap and the physical quantity of the reference gap can be measured with high accuracy, and the number of contents can be accurately measured without opening the sealed letter. It is possible to easily measure the number of contents, etc., simply by inserting them into the measurement gap.

また、請求項2に記載の発明によれば、請求項1に記載の発明の効果に加え、封書が測定間隙の一端開口部から他端開口部に向けて通過することにより測定間隙内に介挿されるため、測定間隙内に封書を連続的に供給できて、内容物の枚数等の測定作業を効率的に行うことができる。   Further, according to the invention described in claim 2, in addition to the effect of the invention described in claim 1, the sealed letter passes through the measurement gap from one end opening toward the other opening. Therefore, the sealed letter can be continuously supplied into the measurement gap, and the number of contents can be measured efficiently.

また、請求項3に記載の発明によれば、請求項1または2に記載の発明の効果に加え、基準間隙に基準物を介挿させた状態で測定間隙の物理量が測定されるため、例えば測定間隙に介挿される封書と同じ枚数等の内容物が収容された封書を基準間隙に基準物として介挿させることにより、基準物に対する良否判定を確実かつ簡単に行うことができて、連続的に供給される封書の枚数等の確認(測定作業)を一層効率的に行うことができる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, since the physical quantity of the measurement gap is measured in a state where the reference object is inserted in the reference gap, By inserting a sealed letter containing the same number of contents as the sealed letter inserted in the measurement gap as a reference article in the reference gap, it is possible to make a pass / fail judgment with respect to the reference object reliably and easily. Confirmation (measurement work) of the number of sealed letters supplied to the printer can be performed more efficiently.

また、請求項4に記載の測定装置によれば、測定間隙と基準間隙の2つの間隙を形成する3つの電極と、測定間隙及び基準間隙の物理量をそれぞれ測定する測定回路と、2つの間隙の物理量を測定してその比を求めることにより、封書内に収容されている内容物の枚数や厚みあるいは材質の少なくとも一つを判定する判定手段とを備えるため、環境の変化に係わらず測定間隙内の封書の物理量と基準間隙の物理量とを高精度に測定できて、封書を開封等することなく内容物の枚数等を精度良く測定することができると共に、封書を測定間隙に介挿させるだけでその内容物の枚数等を簡単に測定することができる。   According to the measurement device of claim 4, the three electrodes forming the two gaps of the measurement gap and the reference gap, the measurement circuit for measuring the physical quantities of the measurement gap and the reference gap, respectively, and the two gaps It is equipped with a judgment means that determines at least one of the number, thickness, or material of the contents contained in the sealed letter by measuring the physical quantity and obtaining the ratio thereof, so that the measurement gap can be measured regardless of environmental changes. The physical quantity of the sealed letter and the physical quantity of the reference gap can be measured with high accuracy, the number of contents etc. can be measured accurately without opening the sealed letter, etc. The number of contents can be easily measured.

また、請求項5に記載の発明によれば、請求項4に記載の発明の効果に加え、3つの電極が積層状態もしくは並設状態で近接配置されることにより、測定間隙と基準間隙が同環境に設定されているため、気温、湿度等に係わらず両間隙の環境を同じ環境に設定できて、測定間隙内に介挿される封書の内容物の枚数等を一層精度良く測定することができる。   Further, according to the invention described in claim 5, in addition to the effect of the invention described in claim 4, the measurement gap and the reference gap are made the same by arranging the three electrodes in a stacked state or a juxtaposed state. Because the environment is set, the environment of both gaps can be set to the same environment regardless of temperature, humidity, etc., and the number of contents of the sealed letter inserted in the measurement gap can be measured with higher accuracy. .

さらに、請求項6に記載の発明によれば、請求項4または5に記載の発明の効果に加え、測定回路が差動容量型センサの信号処理回路として機能するため、測定間隙内に介挿される封書の物理量及び基準間隙の物理量として静電容量を使用できて、内容物の枚数等に応じた静電容量によってその枚数等をより一層精度良く測定することができる。   Further, according to the invention described in claim 6, in addition to the effect of the invention described in claim 4 or 5, the measurement circuit functions as a signal processing circuit of the differential capacitive sensor, and therefore is inserted in the measurement gap. Capacitance can be used as the physical quantity of the sealed letter and the physical quantity of the reference gap, and the number of sheets can be measured with higher accuracy by the capacitance according to the number of contents.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1〜図6は、本発明に係わる測定装置の第1実施形態を示し、図1がその基本構成図、図2が電極部分の説明図、図3が信号処理回路の回路図、図4がその波形図、図5が測定装置を組み込んだ封書一括処理機の概略構成図、図6が内容物の枚数と出力電圧の関係を示すグラフである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 6 show a first embodiment of a measuring apparatus according to the present invention, FIG. 1 is a basic configuration diagram thereof, FIG. 2 is an explanatory diagram of an electrode portion, FIG. 3 is a circuit diagram of a signal processing circuit, and FIG. Fig. 5 is a waveform diagram, Fig. 5 is a schematic configuration diagram of a sealed letter batch processor incorporating a measuring device, and Fig. 6 is a graph showing the relationship between the number of contents and the output voltage.

図1に示すように、測定装置1は、電極2と、この電極2に接続された測定回路としての信号処理回路3と、この信号処理回路3に接続された判定手段としての判定回路4等を備えている。前記電極2は、上下方向に積層状態で固定的に配置された第1電極2a〜第3電極2cで構成され、第1電極2aと第2電極2bが電極支持具5により所定間隔で水平状態で支持され、第1電極2aと第3電極2cが例えばケース状の電極支持具6に水平状態で支持されている。なお、電極支持具5、6は同じ材質で形成されて、温度等の環境変化に応じて例えば同じ量だけ熱膨張するように設定されている。また、各電極2には、外線が接地された同軸ケーブル7の一端がそれぞれ接続され、この各ケーブル7の他端が信号処理回路3の所定の入力端子に接続されると共に、この信号処理回路3と判定回路4が所定のケーブル8によって接続されている。   As shown in FIG. 1, a measuring apparatus 1 includes an electrode 2, a signal processing circuit 3 as a measurement circuit connected to the electrode 2, a determination circuit 4 as a determination means connected to the signal processing circuit 3, and the like. It has. The electrode 2 is composed of a first electrode 2 a to a third electrode 2 c that are fixedly arranged in a stacked state in the vertical direction, and the first electrode 2 a and the second electrode 2 b are in a horizontal state at a predetermined interval by the electrode support 5. The first electrode 2a and the third electrode 2c are supported in a horizontal state by, for example, a case-like electrode support 6. The electrode supports 5 and 6 are made of the same material, and are set to thermally expand, for example, by the same amount according to environmental changes such as temperature. Each electrode 2 is connected to one end of a coaxial cable 7 whose external line is grounded, and the other end of each cable 7 is connected to a predetermined input terminal of the signal processing circuit 3. 3 and the determination circuit 4 are connected by a predetermined cable 8.

そして、前記各電極2は、図2(a)に示すように、その外形形状が長方形状でかつ所定板厚の銅板等により同一形状に形成されて厚さ方向に積層されることによって、第1電極2aと第2電極2bとの間に基準間隙K1が形成され、第2電極2bと第3電極2cとの間に測定間隙K2が形成されている。これにより、測定間隙K2と基準間隙K1が上下方向に近接配置された状態に設定されて、図2(b)に示すように、基準間隙K1に空気を誘電体とする静電容量C1が作られた状態となり、測定間隙K2に空気を誘電体とする静電容量C2が作られた状態となっている。   Each electrode 2 is formed in the same shape by a copper plate or the like having a rectangular outer shape and a predetermined plate thickness, as shown in FIG. A reference gap K1 is formed between the first electrode 2a and the second electrode 2b, and a measurement gap K2 is formed between the second electrode 2b and the third electrode 2c. As a result, the measurement gap K2 and the reference gap K1 are set close to each other in the vertical direction, and as shown in FIG. 2B, a capacitance C1 using air as a dielectric is created in the reference gap K1. Thus, a capacitance C2 using air as a dielectric is formed in the measurement gap K2.

前記信号処理回路3は、図3に示すように、差動容量型センサ10を含んだインターフェイス回路11によって構成されている。このインターフェイス回路11は、−1倍の増幅器A3と、反転増幅器A1と、大きさの等しい4つの抵抗R1、R2、R3、R4と、発振器12等を備えている。なお、破線部内の回路13は、演算増幅器A1の入力に流れ込むバイアス電流によって演算増幅器A1の正相入力端子の電圧に電荷が溜まるのを防ぐために設けられている。   As shown in FIG. 3, the signal processing circuit 3 includes an interface circuit 11 including a differential capacitive sensor 10. The interface circuit 11 includes a -1 × amplifier A3, an inverting amplifier A1, four resistors R1, R2, R3, and R4 having the same size, an oscillator 12, and the like. The circuit 13 in the broken line portion is provided in order to prevent charges from being accumulated in the voltage of the positive phase input terminal of the operational amplifier A1 due to the bias current flowing into the input of the operational amplifier A1.

そして、このインターフェイス回路11は、図4に示すように、出力電圧voであり、決められた方形波voscが入力された際に、アナログスイッチとクロック信号φa、φbの働きによってvoscが正になった時のvoをvoaとして、voscが負になった時のvoをvobとしてそれぞれのコンデンサに電圧を保存する。そして、図示しない演算部により下記式1として演算出力されるようになっている。また、後述するように被測定物である封書9(図1及び図5参照)が測定間隙K2を通過した際に、インターフェイス回路11内において差動容量型センサ10が機能して、電圧変位量△voが出力演算され、例えば入力方形波voscが△voscだけ変化したとすると、電圧v1、v2、voも△v1、△v2、△voずつ変化するようになっている。
v−out=voa−vob・・・・・・・・・・・・・・・・・・(式1)
As shown in FIG. 4, the interface circuit 11 has an output voltage vo, and when a predetermined square wave vosc is input, vosc becomes positive by the action of the analog switch and the clock signals φa and φb. The voltage is stored in each capacitor by setting vo at the time of vo as vo and vo when vosc becomes negative as vob. And it is computed and output as the following formula 1 by a computing unit (not shown). Further, as will be described later, when the sealed letter 9 (refer to FIGS. 1 and 5) as the object to be measured passes through the measurement gap K2, the differential capacitance sensor 10 functions in the interface circuit 11, and the voltage displacement amount If Δvo is output and, for example, the input square wave vosc changes by Δvosc, the voltages v1, v2, and vo also change by Δv1, Δv2, and Δvo, respectively.
v-out = voa-vob (Equation 1)

また、演算増幅器A1の反転入力端子が仮想接地点であることから、常に電圧は0v一定で、演算増幅器A1の反転入力端子に流れ込む電荷△Qが常に変化しない(=0)ため、下記式2という出力(オフセット電圧が加算された電圧)が得られるようになっている。なお、出力後の処理回路にてオフセット電圧を打ち消しあうためのアナログスイッチ回路を加えることにより、voa及びvobの値を得て、v−out=voa−vobの出力値を得ることができ、これにより式3に示す出力が得られるようになっている。また、被測定物が通過した際の出力電圧の変化分△v−outは2△voになっている。
vo={(C2−C1)/(C2+C1)}vosc+[オフセット電圧]・・(式2)
v−out={(C2−C1)/(C2+C1)}[voscの振幅]・・(式3)
Further, since the inverting input terminal of the operational amplifier A1 is a virtual ground point, the voltage is always constant at 0v, and the charge ΔQ flowing into the inverting input terminal of the operational amplifier A1 does not always change (= 0). Output (voltage obtained by adding an offset voltage) is obtained. By adding an analog switch circuit for canceling the offset voltage in the processing circuit after output, the values of voa and vob can be obtained, and the output value of v-out = voa-vob can be obtained. Thus, the output shown in Equation 3 is obtained. Further, the change Δv-out of the output voltage when the object to be measured passes is 2Δvo.
vo = {(C2-C1) / (C2 + C1)} vosc + [offset voltage] (Equation 2)
v-out = {(C2-C1) / (C2 + C1)} [amplitude of vosc] (Equation 3)

図1に示す前記判定回路4は、例えばマイコン等によって構成された図示しない記憶部、判定部等を備え、記憶部には、後述する出力電圧と封書9の内容物の枚数に関するテーブルと、出力電圧と前記テーブルに基づいて判定(測定)された内容物の枚数等が記憶されるようになっている。   The determination circuit 4 shown in FIG. 1 includes a storage unit, a determination unit, and the like (not shown) configured by, for example, a microcomputer. The storage unit includes a table relating to the output voltage and the number of contents of the sealed letter 9 described later, and an output. The number of contents determined (measured) based on the voltage and the table is stored.

次に、前記測定装置1の具体的な使用状態の構成とその動作の一例を、図5及び図6等に基づいて説明する。図5に示すように、本発明の測定装置1が組み込まれる封書一括処理機14は、測定装置1の第3電極2cの長手方向の両側に、ベルトコンベア等からなる上流側と下流側の封書送り機構15a、15bが水平状態で設置され、上流側の封書送り機構15aの始端部上方には処理前封書貯留部16が設けられ、下流側の封書送り機構15bの終端部下方には処理済み封書受部17が設けられている。   Next, an example of a specific configuration and operation of the measuring apparatus 1 will be described with reference to FIGS. As shown in FIG. 5, the sealed letter batch processor 14 in which the measuring apparatus 1 of the present invention is incorporated has upstream and downstream sealed letters formed of a belt conveyor or the like on both sides in the longitudinal direction of the third electrode 2c of the measuring apparatus 1. The feeding mechanisms 15a and 15b are installed in a horizontal state, a pre-processed sealed letter storage section 16 is provided above the start end of the upstream sealed letter feeding mechanism 15a, and processed at the lower end of the downstream sealed letter feeding mechanism 15b. A sealed letter receiving unit 17 is provided.

そして、この封書一括処理機14は、測定装置1の測定間隙K2に封書9が介挿されていない初期状態において、処理前封書処理部16に貯留された封書9が1通ずつ上流側の封書送り機構15aに供給されて、該送り機構15aにより下流側に搬送されその終端部から測定装置1の測定間隙K2内に送り込まれる。この測定間隙K2内に封書9が送り込まれて介挿されると、測定装置1が作動して第2電極2bと第3電極2cにより測定間隙K2の静電容量C2が測定されると共に、例えばこの測定間隙K2の静電容量C2と同時に第1電極2aと第2電極2bにより基準間隙K1の静電容量C1も測定される。なお、この基準間隙K1の静電容量C1の測定は、測定間隙K2と同時ではなく、予め測定しておくことも勿論可能である   Then, in the initial state where the sealed letter 9 is not inserted in the measurement gap K2 of the measuring apparatus 1, the sealed letter batch processing machine 14 stores the sealed letter 9 stored in the pre-processed sealed letter processing unit 16 one by one on the upstream side. Supplied to the feeding mechanism 15a, conveyed downstream by the feeding mechanism 15a, and fed into the measurement gap K2 of the measuring apparatus 1 from its end portion. When the sealed letter 9 is fed into the measurement gap K2 and inserted, the measurement apparatus 1 is activated and the capacitance C2 of the measurement gap K2 is measured by the second electrode 2b and the third electrode 2c. Simultaneously with the capacitance C2 of the measurement gap K2, the capacitance C1 of the reference gap K1 is also measured by the first electrode 2a and the second electrode 2b. It should be noted that the measurement of the capacitance C1 of the reference gap K1 is not simultaneous with the measurement gap K2, but can of course be measured in advance.

両間隙K1、K2の静電容量C1、C2が測定されると、これが信号処理回路3の出力端子から出力されて判定回路4に入力され、判定回路4は、この入力された両静電容量C1、C2に基づいて、下記式4により出力電圧を演算する。この時、演算される出力電圧は、両静電容量C1、C2の測定値の比によって求められることから、測定場所の気温や湿度等の環境変化に影響を受けることがなくなる。
出力電圧=定数×(C1−C2)/(C1+C2)・・・・・(式4)
When the capacitances C1 and C2 of the gaps K1 and K2 are measured, they are output from the output terminal of the signal processing circuit 3 and input to the determination circuit 4, and the determination circuit 4 receives the input both capacitances. Based on C1 and C2, the output voltage is calculated by the following equation 4. At this time, the calculated output voltage is obtained by the ratio of the measured values of both capacitances C1 and C2, and therefore is not affected by environmental changes such as the temperature and humidity at the measurement location.
Output voltage = constant × (C1-C2) / (C1 + C2) (Equation 4)

式4に基づいて出力電圧が演算されると、この出力電圧に基づいて判定回路4の判定部で封書9の内容物の枚数が判定(測定)される。この判定は、判定回路4の記憶部に、予め実験等によって求めた、例えば図6に示すような枚数と出力電圧との相関関係を示すテーブルを記憶させ、このテーブルと出力電圧とを比較することにより行われ、例えば出力電圧が60mVの場合は枚数が2枚で、出力電圧が90mVの場合は枚数が8枚と判定されることになる。なお、図6のテーブルにおいて、各枚数の対応した出力電圧としては、隣接する枚数において重ならない所定幅の値が使用され、このテーブルは、前記封書一括処理機14を設置する設置場所において、設置当初に求めてこれを判定回路4の記憶部に記憶設定することが精度向上の面からも好ましい。   When the output voltage is calculated based on Expression 4, the determination unit of the determination circuit 4 determines (measures) the number of contents of the sealed letter 9 based on the output voltage. For this determination, a table showing the correlation between the number of sheets and the output voltage, for example, as shown in FIG. For example, when the output voltage is 60 mV, the number of sheets is determined to be two, and when the output voltage is 90 mV, the number of sheets is determined to be eight. In the table of FIG. 6, as the output voltage corresponding to each number of sheets, a value of a predetermined width that does not overlap in the adjacent number of sheets is used, and this table is installed at the installation place where the sealed letter batch processor 14 is installed. It is preferable from the viewpoint of accuracy improvement that it is initially obtained and stored in the storage unit of the determination circuit 4.

そして、判定回路4の判定部で測定間隙K2を通過した封書9の内容物の枚数が判定されると、この判定結果が判定回路4の記憶部に記憶される。この時、記憶部に記憶される枚数は、上流側の封書送り機構15aから測定間隙K2に連続的に供給される各封書9にリンクされて記憶され、これらの全てのデータが必要に応じて判定回路4の記憶部から取り出されるようになっている。   When the determination unit of the determination circuit 4 determines the number of contents of the sealed letter 9 that has passed through the measurement gap K2, the determination result is stored in the storage unit of the determination circuit 4. At this time, the number of sheets stored in the storage unit is stored by being linked to each sealed letter 9 continuously supplied from the upstream sealed letter feeding mechanism 15a to the measurement gap K2, and all these data are stored as necessary. The data is taken out from the storage unit of the determination circuit 4.

なお、前記封書一括処理機14において、例えば同一枚数の内容物が収容された封書9の内容物枚数の確認を行う場合には、下流側の封書送り機構15bの所定位置に図示しない枚数不良封書排出部を設け、測定装置1で枚数不良が測定された封書をこの枚数不良封書排出部に排出させる構成とすれば良い。このように構成すれば、処理済み封書受部17に同一枚数の内容物が収容された封書9のみをストックすることができる。また、測定装置1が組み込まれる装置としては、封書内容物の枚数を確認する前述した封書一括処理機14等に限らず、例えば内容物を封書9に封入する一括処理機等の一部に組み込みこと等もできる。   For example, when the number of contents of the sealed letter 9 containing the same number of contents is checked in the sealed letter batch processor 14, a defective number of unsealed letters (not shown) is placed at a predetermined position of the downstream letter feeding mechanism 15b. What is necessary is just to set it as the structure which provides a discharge part and discharges the sealed letter in which the number defect was measured by the measuring apparatus 1 to this number defective letter discharge part. If comprised in this way, only the sealed letter 9 in which the same number of contents were accommodated in the processed sealed letter receiving part 17 can be stocked. Further, the apparatus into which the measuring apparatus 1 is incorporated is not limited to the above-described package batch processing machine 14 or the like for confirming the number of sealed contents, but is incorporated into a part of a batch processing machine or the like that seals the contents in the sealed letter 9, for example. You can also.

このように、上記実施形態の測定装置1にあっては、測定間隙K2と基準間隙K1の2つの間隙を形成する第1電極2a〜第3電極2bと、測定間隙K2及び基準間隙K1の静電容量C1、C2をそれぞれ測定する信号処理回路3と、2つの間隙K1、K2の測定した静電容量C1、C2に基づいて比を求めて封書9内に収容されている内容物の枚数を判定する判定回路4を備えるため、測定間隙K2内の封書9の静電容量C2と基準間隙K1の静電容量C1を同一測定環境下で測定できると共に、測定間隙K2と基準間隙K1の静電容量C1、C2の比を求めて枚数を判定することから、環境に影響されることなく、両間隙K1、K2の静電容量C1、C2を高精度に測定することができる。   As described above, in the measurement apparatus 1 of the above embodiment, the first electrode 2a to the third electrode 2b forming the two gaps of the measurement gap K2 and the reference gap K1, and the static of the measurement gap K2 and the reference gap K1. The signal processing circuit 3 for measuring the capacitances C1 and C2, respectively, and the number of contents contained in the sealed letter 9 by obtaining a ratio based on the measured capacitances C1 and C2 of the two gaps K1 and K2. Since the determination circuit 4 is provided, the electrostatic capacity C2 of the sealed letter 9 in the measurement gap K2 and the electrostatic capacity C1 of the reference gap K1 can be measured in the same measurement environment, and the electrostatic capacity of the measurement gap K2 and the reference gap K1 can be measured. Since the ratio is determined by determining the ratio of the capacitances C1 and C2, the capacitances C1 and C2 of the gaps K1 and K2 can be measured with high accuracy without being affected by the environment.

また、第1電極2a〜第3電極2bが上下方向(厚さ方向)に積層状態で近接配置されているため、気温、湿度等に係わらず両間隙K1、K2内の環境を常に同じ環境に簡単に設定できると共に、第1電極2a〜第3電極2cを支持する電極支持具5、6が同一材質で形成されているため、その熱膨張等を同一に設定できて、測定間隙K2と基準間隙K1の熱等に対する変形度合いを略同量とし得て、両間隙K2、K1の環境を常に一定に維持することができる。これらにより、封書9を開封等することなくその内容物の枚数を精度良く測定することができると共に、封書9を測定間隙K2に介挿させるだけでその内容物の枚数を簡単に測定することが可能となる。   In addition, since the first electrode 2a to the third electrode 2b are arranged close together in the vertical direction (thickness direction), the environment in both the gaps K1, K2 is always the same regardless of the temperature, humidity, etc. Since the electrode supports 5 and 6 that support the first electrode 2a to the third electrode 2c are formed of the same material, the thermal expansion and the like can be set to be the same, and the measurement gap K2 and the reference The degree of deformation of the gap K1 with respect to heat or the like can be made substantially the same, and the environment of both the gaps K2 and K1 can always be kept constant. Thus, the number of contents can be accurately measured without opening the sealed letter 9, and the number of contents can be easily measured simply by inserting the sealed letter 9 in the measurement gap K2. It becomes possible.

また、信号処理回路3が第1電極2a〜第3電極2cで形成される差動容量型センサ10の信号を処理するインターフェイス回路11で構成されているため、測定間隙K2内に介挿される封書9の物理量として静電容量を使用できて、内容物の枚数に応じた静電容量C2によってその枚数をより一層精度良く測定することができる。また、測定間隙K2と基準間隙K1の両静電容量C1、C2を測定することにより枚数が測定されるため、測定装置1自体に大電流を使用する必要がなくなると共に、同軸ケーブル7の使用により効果的なノイズ対策を容易に施すことができる。特に、信号処理回路3を電極2の近くに配置することにより、同軸ケーブル7の長さを短くできて、確実なノイズ対策を施すことができて、安全性と信頼性に優れた測定装置1の提供が可能となる。   Further, since the signal processing circuit 3 includes the interface circuit 11 that processes the signal of the differential capacitance sensor 10 formed by the first electrode 2a to the third electrode 2c, a sealed letter inserted in the measurement gap K2. An electrostatic capacity can be used as the physical quantity of 9, and the number can be measured with higher accuracy by the electrostatic capacity C2 corresponding to the number of contents. In addition, since the number of sheets is measured by measuring both the capacitances C1 and C2 of the measurement gap K2 and the reference gap K1, it is not necessary to use a large current for the measurement apparatus 1 itself, and the use of the coaxial cable 7 Effective noise countermeasures can be easily taken. In particular, by arranging the signal processing circuit 3 near the electrode 2, the length of the coaxial cable 7 can be shortened, a reliable noise countermeasure can be taken, and the measuring apparatus 1 excellent in safety and reliability. Can be provided.

また、本発明の測定装置1を使用した封書一括処理機14によれば、測定間隙K2に封書送り機構15aにより封書9を一通ずつ連続して送り込んで該測定間隙K2を通過させることにより、内容物の枚数が自動的に測定されるため、多数の封書9の内容物の測定を一括処理できて、例えば封書9の内容物の枚数確認作業や封書9への内容物の封入作業等を効率的に処理することが可能となる。   Moreover, according to the sealed letter batch processor 14 using the measuring apparatus 1 of the present invention, the sealed letter 9 is continuously fed into the measuring gap K2 one by one by the sealed letter feeding mechanism 15a and is passed through the measuring gap K2. Since the number of items is automatically measured, the measurement of the contents of a large number of sealed letters 9 can be processed at one time. For example, the number of contents of the sealed letters 9 can be checked and the contents sealed in the sealed letters 9 can be efficiently processed. Can be processed automatically.

なお、前記測定装置1における信号処理回路3は、図3に示すインターフェイス回路11に限定されず、例えば、図7及び図8に示すインターフェイス回路18を使用することもできる。このインターフェイス回路18は、比較器としての演算増幅器A1と、加算器と積分器としての演算増幅器A2と、を備え、演算増幅器による微分回路の部分を反転入力の加算回路としても利用し、演算増幅器による反転増幅回路とあわせて加算回路として働かせると共に、外部回路から励起信号を導入する代わりに、比較器を付け足し積分器と組み合わせて弛張発信回路を作ることにより、回路内から励起信号を供給できるようにしたものである。   Note that the signal processing circuit 3 in the measurement apparatus 1 is not limited to the interface circuit 11 shown in FIG. 3, and for example, the interface circuit 18 shown in FIGS. 7 and 8 can be used. This interface circuit 18 includes an operational amplifier A1 as a comparator, and an operational amplifier A2 as an adder and an integrator. The differential circuit portion of the operational amplifier is also used as an inverting input addition circuit. In addition to acting as an adder circuit together with the inverting amplifier circuit, the excitation signal can be supplied from within the circuit by adding a comparator instead of introducing the excitation signal from an external circuit to create a relaxation oscillation circuit in combination with an integrator. It is a thing.

そして、このインターフェイス回路18の場合、図8に示すように、励起信号電圧v1はTの周期をもつ方形波であり、コンデンサC1を流れる電流は抵抗R1とR3も流れる電流で、コンデンサC2を流れる電流は抵抗R2とR4も流れる電流である。また、vout=−v4となり、C1とC2は演算増幅器A3とA2の仮想接地点とv2の点に接続されていることから、C2を流れる電流はC1を流れる電流の(C2/C1)倍となる。これにより、下記式5の出力電圧が得られて、出力電圧voutが図8に示す方形波として出力されることになる。
vout={(C2−C1)/(C2+C1)}v1・・・・(式5)
In the case of this interface circuit 18, as shown in FIG. 8, the excitation signal voltage v1 is a square wave having a period of T, and the current flowing through the capacitor C1 is the current flowing through the resistors R1 and R3 and flows through the capacitor C2. The current is a current that also flows through the resistors R2 and R4. Since vout = −v4 and C1 and C2 are connected to the virtual ground point of the operational amplifiers A3 and A2 and the point of v2, the current flowing through C2 is (C2 / C1) times the current flowing through C1. Become. As a result, an output voltage of the following equation 5 is obtained, and the output voltage vout is output as a square wave shown in FIG.
vout = {(C2-C1) / (C2 + C1)} v1 (Equation 5)

この回路構成によれば、新たな検出回路を加えることなしにV2が電源電圧に飽和することを防止できると共に、トランジューサの容量が演算増幅器の出力部または仮想接地点に接続されて、レシオメトリック処理に対して寄生容量の影響を最小限にできることになる。このように、本発明に係わる信号処理回路3としては、差動容量型のセンサ信号をレシオメトリック処理可能な各種の回路を使用することができる。   According to this circuit configuration, it is possible to prevent V2 from saturating the power supply voltage without adding a new detection circuit, and the capacitance of the transducer is connected to the output part of the operational amplifier or the virtual ground point, so that the ratiometric The influence of the parasitic capacitance on the processing can be minimized. As described above, as the signal processing circuit 3 according to the present invention, various circuits capable of ratiometric processing of differential capacitance type sensor signals can be used.

また、前記第1実施形態の測定装置1においては、第1電極2a〜第3電極2cを全て同一の大きさに形成したが、例えば図9に示すように、第2電極2bを第1電極2aと第3電極2cより一回り小さく設定しても良い。このように構成すれば、測定間隙K2と基準間隙K1の両方を形成する第2電極2bの全面が常に第1電極2aと第3電極2cに対応する状態となり、両間隙K1、K2を常に同一の環境に容易に設定できることになる。なお、この第1電極2a〜第3電極2cの形態は、後述する第2実施形態の第1電極2a〜第3電極2cにも適用することができる。   In the measuring apparatus 1 of the first embodiment, the first electrode 2a to the third electrode 2c are all formed to have the same size. For example, as shown in FIG. 9, the second electrode 2b is used as the first electrode. You may set slightly smaller than 2a and the 3rd electrode 2c. With this configuration, the entire surface of the second electrode 2b forming both the measurement gap K2 and the reference gap K1 always corresponds to the first electrode 2a and the third electrode 2c, and the gaps K1 and K2 are always the same. It can be easily set to the environment. The forms of the first electrode 2a to the third electrode 2c can also be applied to the first electrode 2a to the third electrode 2c of the second embodiment to be described later.

図10及び図11は、本発明に関わる測定装置の第2実施形態を示している。以下、上記第1実施形態と同一部位には同一符号を付して説明する。この実施形態の測定装置1の特徴は、電極を形成する第1電極2a〜第3電極2cを全て上下方向に積層状態とするのではなく、第1電極2a〜第3電極2cを平面状に配置して、測定間隙K2と基準間隙K1を平面方向に近接して設けた点にある。   10 and 11 show a second embodiment of the measuring apparatus according to the present invention. Hereinafter, the same parts as those in the first embodiment will be described with the same reference numerals. The characteristic of the measuring apparatus 1 of this embodiment is that the first electrode 2a to the third electrode 2c forming the electrodes are not all stacked in the vertical direction, but the first electrode 2a to the third electrode 2c are planarized. The measurement gap K2 and the reference gap K1 are provided close to each other in the plane direction.

すなわち、第1電極2aと第3電極2cを近接した状態で水平状態で配置し、この両電極2a、2cの隣接部分の上方に所定の間隙寸法を有して第2電極2bを水平状態で配置する。これにより、第1電極2aの略右半分と第2電極2bの略左半分とにより基準間隙K1が形成され、第3電極2cの略左半分と第2電極2bの略右半分により測定間隙K2が形成されることになる。そして、この測定装置19の場合は、図11(a)に示すように、測定間隙K2間に封書9が矢印イの如く通過することにより介挿されて封書9の静電容量が測定されることになる。この第2の実施形態の測定装置1においても、測定間隙K2と基準間隙K1を近接配置できて、前記第1実施形態と同様の作用効果を得ることができる他に、電極2の高さ寸法を低くし得ることから、測定装置1の薄型化等が図れることになる。   In other words, the first electrode 2a and the third electrode 2c are arranged in a horizontal state in the proximity of each other, and the second electrode 2b is placed in a horizontal state with a predetermined gap dimension above the adjacent portions of both the electrodes 2a and 2c. Deploy. Thereby, the reference gap K1 is formed by the substantially right half of the first electrode 2a and the substantially left half of the second electrode 2b, and the measurement gap K2 is formed by the substantially left half of the third electrode 2c and the substantially right half of the second electrode 2b. Will be formed. In the case of this measuring device 19, as shown in FIG. 11 (a), the sealed letter 9 is inserted between the measuring gaps K2 as indicated by the arrow A, and the capacitance of the sealed letter 9 is measured. It will be. Also in the measuring apparatus 1 of the second embodiment, the measurement gap K2 and the reference gap K1 can be arranged close to each other, and the same effect as the first embodiment can be obtained. Therefore, it is possible to reduce the thickness of the measuring apparatus 1.

ところで、この実施形態においては、基準間隙K1に物体を介挿させないで誘電体が空気のみである場合について説明したが、例えば合否の基準となる基準物を基準間隙K1に常に介挿させておくことで、封書9内の内容物の枚数判定等を高精度で行うようにしても良い。すなわち、図10の二点鎖線で示すように、基準間隙K1に、測定間隙K2に嵌挿される封書9と同じ枚数の内容物が収容された基準物20を封書9の測定開始前に固定状態でセットする。   By the way, in this embodiment, the case where the dielectric is only air without inserting an object in the reference gap K1 has been described. However, for example, a reference object serving as a pass / fail reference is always inserted in the reference gap K1. Thus, the number of contents in the sealed letter 9 may be determined with high accuracy. That is, as shown by a two-dot chain line in FIG. 10, the reference object 20 containing the same number of contents as the sealed letter 9 inserted in the measuring gap K2 is fixed in the reference gap K1 before the measurement of the sealed letter 9 is started. Set with.

そして、基準間隙K1に基準物20をセットした状態で、測定間隙K2に測定すべき封書9を順次供給して介挿させその静電容量C2を測定すると共に、予め基準物20が介挿されている基準間隙K1の静電容量C1を測定し、この両静電容量C1、C2の比によって測定間隙K2に介挿された封書9の枚数を判定(測定)する。この判定は、基準間隙K1に基準物20が介挿されていることから、この基準物20の枚数に対して例えば略同じか同じでないかが判定、すなわち測定間隙K2の封書9の枚数確認(枚数の合否判定等)が行われることになる。   Then, with the reference object 20 set in the reference gap K1, the sealed letter 9 to be measured is sequentially supplied and inserted into the measurement gap K2, the capacitance C2 is measured, and the reference object 20 is inserted in advance. The capacitance C1 of the reference gap K1 is measured, and the number of sealed letters 9 inserted in the measurement gap K2 is determined (measured) based on the ratio between the capacitances C1 and C2. In this determination, since the reference object 20 is inserted in the reference gap K1, it is determined whether it is substantially the same or not the same as the number of the reference object 20, that is, confirmation of the number of envelopes 9 in the measurement gap K2 ( The number of sheets is accepted or rejected).

この測定方法における基準物20は、例えば図12に示す長尺状の基準物で形成され、図12(b)に示すように、2枚、4枚、6枚、8枚、10枚の内容物がそれぞれ収容された封書9と同形態の基準部20a、20b、20c、20d、20eを有している。そして、この基準物20の各基準部20a〜20dが、測定間隙K2に供給される測定物として封書9の内容物の枚数に応じて、図12(a)に示すように矢印ロ方向に移動して基準間隙K1に固定状態でセットされて使用される。   The reference object 20 in this measurement method is formed of, for example, a long reference object shown in FIG. 12, and the contents of 2, 4, 6, 8, 10 are shown in FIG. 12 (b). It has the reference | standard part 20a, 20b, 20c, 20d, 20e of the same form as the sealed letter 9 in which each thing was accommodated. Then, the reference portions 20a to 20d of the reference object 20 move in the direction of the arrow B as shown in FIG. 12 (a) according to the number of contents of the sealed letter 9 as the measurement object supplied to the measurement gap K2. Thus, the reference gap K1 is set and used in a fixed state.

これにより、一つの基準物20を各種枚数の封書9の枚数判定等に使用できて、測定作業の効率化等が図れることになる。この基準物20としては、図示した例に限定されず、予め所定枚数に対応した単独の封書9からなる基準物を使用しても良いし、封書に限らず、これに代用可能な他の適宜材質の基準物を使用することも勿論可能である。また、この基準物20を使用した測定方法は、図1に示す測定装置1にも適用し得ることは言うまでもない。   As a result, one reference object 20 can be used for determining the number of envelopes 9 of various numbers, and the efficiency of measurement work can be improved. The reference object 20 is not limited to the illustrated example, and a reference object consisting of a single sealed letter 9 corresponding to a predetermined number of sheets may be used in advance. Of course, it is also possible to use a reference material. Needless to say, the measuring method using the reference object 20 can also be applied to the measuring apparatus 1 shown in FIG.

なお、上記各実施形態においては、封書9内の内容物を紙としてその枚数を測定(判定)する例について説明したが、本発明に係わる測定装置1は、例えば材質(誘電率)が判明している紙を基準間隙K1に1枚介挿させて測定間隙K2に介挿した紙の厚みを測定したり、材質の判明している紙を基準間隙K1に複数枚介挿させて測定間隙K2に介挿した紙の厚さ(すなわち枚数)を測定することもできる。また、静電容量がそれぞれ判明している2種類の紙を基準間隙K1に介挿させた後に、測定間隙K2に介挿した紙がどの種類かを測定、すなわち紙の材質を測定することもでき、これらの場合、内容物の枚数や厚みあるいは材質の単独測定に限らず、枚数と材質、厚みと材質を同時に測定したり枚数と厚み及び材質の全てを同時に測定する等、少なくとも一つを測定できるように構成すれば良い。   In each of the above-described embodiments, the example in which the contents in the sealed letter 9 are measured (determined) using paper as the content has been described. However, the measuring apparatus 1 according to the present invention has been found to have a material (dielectric constant), for example. One sheet of paper is inserted into the reference gap K1 to measure the thickness of the paper inserted into the measurement gap K2, or a plurality of sheets of known material are inserted into the reference gap K1 to measure the gap K2. It is also possible to measure the thickness (that is, the number of sheets) of the paper inserted in the sheet. In addition, after inserting two types of paper, each of which has a known capacitance, into the reference gap K1, it is possible to measure which type of paper is inserted into the measurement gap K2, that is, to measure the material of the paper. In these cases, it is not limited to the single measurement of the number, thickness, or material of the contents, but at least one of the number, material, thickness and material is measured at the same time, or all of the number, thickness, and material are measured simultaneously. What is necessary is just to comprise so that it can measure.

また、本発明における被測定物としての内容物も紙に限らず、例えばカードのようなプラスチック、布あるいはこれらの組み合わせ等の各種内容物についても同様に適用することができる。さらに、本発明は、基準間隙K1の静電容量C1に基づいて測定間隙K2に介挿される被測定物の枚数、厚み、材質等の測定に限らず、例えば厚みが判明している物体を基準間隙K1に介挿させて、測定間隙K2に介挿した被測定物の誘電率を測定する装置にも適用できるし、また、被測定物の大きさが電極と同程度でその厚みと材質が判明している場合で、測定間隙K2に寸法と材質が決まっている被測定物を通過させる際の、静電容量や被測定物と電極の距離の変化等を測定する装置にも適用できる。   In addition, the contents as the object to be measured in the present invention are not limited to paper, but can be similarly applied to various contents such as plastic such as a card, cloth, or a combination thereof. Furthermore, the present invention is not limited to the measurement of the number, thickness, material, etc. of objects to be measured inserted into the measurement gap K2 based on the capacitance C1 of the reference gap K1, for example, an object whose thickness is known is used as a reference. The present invention can be applied to an apparatus for measuring the dielectric constant of an object to be measured inserted in the gap K1 and measuring the dielectric constant of the object to be measured. When it is known, the present invention can also be applied to an apparatus for measuring a change in capacitance, a distance between an object to be measured and an electrode when passing an object to be measured having a dimension and material passed through the measurement gap K2.

さらにまた、上記各実施形態における、電極2の形状、測定回路3や判定回路4の構成等も一例であって、例えば第1電極2a〜第3電極2cの形状を平面視で菱形や円形に形成したり、測定回路3と判定回路4を1枚のプリント基板上に構築してこれらを一つの電子部品とする等、本発明の各発明に係わる要旨を逸脱しない範囲において適宜に変更することができる。   Furthermore, the shape of the electrode 2 and the configuration of the measurement circuit 3 and the determination circuit 4 in each of the above embodiments are also examples. For example, the shape of the first electrode 2a to the third electrode 2c is a rhombus or a circle in plan view. The measurement circuit 3 and the determination circuit 4 are formed on a single printed circuit board to form a single electronic component, etc., and may be changed as appropriate without departing from the scope of the present invention. Can do.

本発明は、封書の内容物の枚数等を測定する物理量として静電容量を使用した測定装置に限らず、例えば抵抗やインダクタンス等の物理量を使用した測定装置にも適用できる。   The present invention can be applied not only to a measuring device that uses a capacitance as a physical quantity for measuring the number of contents of a sealed letter, but also to a measuring device that uses a physical quantity such as resistance or inductance.

本発明に係わる測定装置の第1実施形態を示す概略構成図1 is a schematic configuration diagram showing a first embodiment of a measuring apparatus according to the present invention. 同その電極部分の説明図Illustration of the electrode part 同信号処理回路の回路図Circuit diagram of the signal processing circuit 同その波形図Waveform diagram 同測定装置を組み込んだ封書一括処理機の概略構成図Schematic configuration diagram of sealed letter batch processing machine incorporating the same measuring device 同枚数と出力電圧との関係を示すグラフGraph showing the relationship between the same number and output voltage 同信号処理回路の変形例を示す回路図Circuit diagram showing a modification of the signal processing circuit 同その波形図Waveform diagram 同電極の変形例を示す斜視図及び平面図A perspective view and a plan view showing a modification of the electrode 本発明に係わる測定装置の第2実施形態を示す概略構成図The schematic block diagram which shows 2nd Embodiment of the measuring apparatus concerning this invention. 同その電極部分の説明部The explanation part of the electrode part 同その測定方法の変形例を示す説明図Explanatory drawing showing a modification of the same measurement method 従来の測定装置を示す概略構成図Schematic configuration diagram showing a conventional measuring device

符号の説明Explanation of symbols

1・・・・・・・・・測定装置
2・・・・・・・・・電極
2a・・・・・・・・第1電極
2b・・・・・・・・第2電極
2c・・・・・・・・第3電極
3・・・・・・・・・信号処理回路
4・・・・・・・・・判定回路
5、6・・・・・・・電極支持具
7、8・・・・・・・ケーブル
9・・・・・・・・・封書
10・・・・・・・・差動容量型センサ
11・・・・・・・・インターフェイス回路
12・・・・・・・・発振器
14・・・・・・・・封書一括処理機
15a、15b・・・封書送り機構
16・・・・・・・・処理前封書貯留部
17・・・・・・・・処理済み封書受部
18・・・・・・・・インターフェイス回路
20・・・・・・・・基準物
20a〜20e・・・基準部
K1・・・・・・・・基準間隙
K2・・・・・・・・測定間隙
C1、C2・・・・・静電容量
DESCRIPTION OF SYMBOLS 1 ... Measuring device 2 ... Electrode 2a ... 1st electrode 2b ... 2nd electrode 2c ... ······ Third electrode 3 ········································································ 5 ······ Cable 9 ········································································································ Interface circuit 12 ... Oscillator 14 ... Sealed letter batch processing machine 15a, 15b ... Sealed letter feeding mechanism 16 ... ... Pre-processed sealed letter storage part 17 ... ... Process Sealed letter receiving unit 18 ... Interface circuit 20 ... Reference object 20a to 20e ... Reference part K1 ... Reference gap K2 ...・... measurement gap C1, C2 ····· capacitance

Claims (6)

所定の間隔を有する3つの電極によって測定間隙と基準間隙の2つの間隙を形成し、前記測定間隙に所定枚数の内容物が収容された封書を介挿させてその物理量を測定すると共に前記基準間隙の物理量を測定し、この測定した両物理量の比を求めて前記封書内に収容された内容物の枚数、厚み、材質の少なくとも一つを判定することを特徴とする封書内容物の測定方法。   Two gaps of a measurement gap and a reference gap are formed by three electrodes having a predetermined gap, and a physical quantity is measured by inserting a sealed letter containing a predetermined number of contents in the measurement gap, and the reference gap is measured. A method for measuring sealed contents, characterized in that a physical quantity is measured and a ratio of both measured physical quantities is determined to determine at least one of the number, thickness, and material of the contents contained in the sealed letter. 前記封書は、前記測定間隙の一端開口部から他端開口部に向けて通過することにより該測定間隙内に介挿されることを特徴とする請求項1に記載の封書内容物の測定方法。   The method for measuring sealed contents according to claim 1, wherein the sealed letter is inserted into the measurement gap by passing from one end opening to the other end opening of the measurement gap. 前記基準間隙に基準物を介挿させた状態で測定間隙の物理量が測定されることを特徴とする請求項1または2に記載の封書内容物の測定方法。   The method for measuring sealed contents according to claim 1 or 2, wherein a physical quantity of the measurement gap is measured in a state in which a reference object is inserted in the reference gap. 所定の間隔を有して配置されて測定間隙と基準間隙の2つの間隙を形成する3つの電極と、前記2つの間隙の物理量を測定する測定回路と、該測定回路で測定した測定間隙と基準間隙の各物理量の比を求めて、封書内に収容されている内容物の枚数、厚み、材質の少なくとも一つを判定する判定手段と、を備えることを特徴とする封書内容物の測定装置。   Three electrodes that are arranged with a predetermined interval to form two gaps of a measurement gap and a reference gap, a measurement circuit that measures a physical quantity of the two gaps, a measurement gap measured by the measurement circuit, and a reference An apparatus for measuring the contents of a sealed letter, comprising: a determination unit that obtains a ratio of each physical quantity of the gap and determines at least one of the number, thickness, and material of the contents contained in the sealed letter. 前記3つの電極は、厚さ方向に積層配置されるかもしくは平面方向に並設配置されることにより、測定間隙と基準間隙が近接配置されて両間隙が同環境に設定されていることを特徴とする請求項4に記載の封書内容物の測定装置。   The three electrodes are laminated in the thickness direction or arranged side by side in the plane direction so that the measurement gap and the reference gap are arranged close to each other, and both gaps are set in the same environment. The measuring apparatus for sealed contents according to claim 4. 前記測定回路は、差動容量型センサの信号処理回路として機能することを特徴とする請求項4または5に記載の封書内容物の測定装置。   6. The sealed content measuring apparatus according to claim 4, wherein the measuring circuit functions as a signal processing circuit of a differential capacitance type sensor.
JP2005149940A 2005-05-23 2005-05-23 Method and apparatus for measuring content in sealed letter Pending JP2006329676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149940A JP2006329676A (en) 2005-05-23 2005-05-23 Method and apparatus for measuring content in sealed letter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149940A JP2006329676A (en) 2005-05-23 2005-05-23 Method and apparatus for measuring content in sealed letter

Publications (1)

Publication Number Publication Date
JP2006329676A true JP2006329676A (en) 2006-12-07

Family

ID=37551521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149940A Pending JP2006329676A (en) 2005-05-23 2005-05-23 Method and apparatus for measuring content in sealed letter

Country Status (1)

Country Link
JP (1) JP2006329676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117354A (en) * 2008-11-11 2010-05-27 Upek Inc Pixel sensing circuit with common mode compensation
JP2021124838A (en) * 2020-02-03 2021-08-30 凸版印刷株式会社 Package with taking-out detection function, taking-out detection method and program
JP7484197B2 (en) 2020-02-03 2024-05-16 Toppanホールディングス株式会社 Packaging with removal detection function, removal detection method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117354A (en) * 2008-11-11 2010-05-27 Upek Inc Pixel sensing circuit with common mode compensation
JP2021124838A (en) * 2020-02-03 2021-08-30 凸版印刷株式会社 Package with taking-out detection function, taking-out detection method and program
JP7484197B2 (en) 2020-02-03 2024-05-16 Toppanホールディングス株式会社 Packaging with removal detection function, removal detection method and program

Similar Documents

Publication Publication Date Title
EP2880644B1 (en) Smoke detection using change in permittivity of capacitor air dielectric
CN103890593B (en) Strengthen by using the linearity of neutralizing capacitor and the linear activated capacitive transducer of calibration automatically on sheet
JP4755283B2 (en) Paper thickness detector
US8474315B2 (en) Capacitive liquid-level sensor
CN105806206B (en) Thickness detection apparatus
CN105318819B (en) The detection device of film thickness
KR20180122437A (en) Film thickness measuring device
EP2803055B1 (en) Method and apparatus for detecting smoke in an ion chamber
JP4198306B2 (en) Capacitive sensor, semiconductor manufacturing apparatus, and liquid crystal display element manufacturing apparatus
CN105277297A (en) Force sensor with compensation
JP2006329676A (en) Method and apparatus for measuring content in sealed letter
JP6272624B2 (en) Paper sheet thickness detection sensor and bill discrimination unit
JP6790409B2 (en) Position detection device and position detection method
US5966018A (en) Apparatus for measuring variations in thickness of elongated samples of thin plastic film
JP3197515U (en) Liquid level sensor
JP2010025782A (en) Liquid level sensor
CN104677484B (en) Vibration and dynamic acceleration sensing using capacitors
US11879861B2 (en) Method for measuring a conductivity of a medium
JP5225410B2 (en) Capacitance detection device, resistance detection device
JP4872989B2 (en) Capacitance type sensor component, object mounting body, semiconductor manufacturing apparatus, and liquid crystal display element manufacturing apparatus
CN106352783B (en) Thickness detection device
US20220397441A1 (en) Sensor Device and Method for Determining Properties of a Liquid
Hassanzadeh et al. Relative humidity measurement using capacitive sensors
JPS61116603A (en) Detector
JPH06286906A (en) Recording paper dislocation detector