JP2006329633A - Method for measuring optical characteristic of optical member, optical member and optical device - Google Patents

Method for measuring optical characteristic of optical member, optical member and optical device Download PDF

Info

Publication number
JP2006329633A
JP2006329633A JP2005148919A JP2005148919A JP2006329633A JP 2006329633 A JP2006329633 A JP 2006329633A JP 2005148919 A JP2005148919 A JP 2005148919A JP 2005148919 A JP2005148919 A JP 2005148919A JP 2006329633 A JP2006329633 A JP 2006329633A
Authority
JP
Japan
Prior art keywords
sample
optical
measured
transmittance
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148919A
Other languages
Japanese (ja)
Other versions
JP5103711B2 (en
Inventor
Hideki Ohara
秀樹 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005148919A priority Critical patent/JP5103711B2/en
Publication of JP2006329633A publication Critical patent/JP2006329633A/en
Application granted granted Critical
Publication of JP5103711B2 publication Critical patent/JP5103711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To resolve a problem that measurement is impossible in a state without surface loss at all during measurement due to re-adhesion in an environment after washing even if any process is applied in washing during optical characteristic measurement of optical members. <P>SOLUTION: The method has a step for washing a sample for measurement and a sample for monitoring in the same batch, a step for conveying in the same environment and a step for measuring the optical characteristic in the same batch. The surface loss is calculated by using the measured value of the sample for monitoring, and the transmissivity of the sample to be measured and reflectivity are corrected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学部材の光学特性測定方法に関し、特に、Fレーザ(157nm)、ArF(193nm)、KrF(248nm)、エキシマレーザや非線形光学効果を利用した固体レーザ、その他の深紫外光もしくは真空紫外光を用いた装置に用いられる光学部材の光学特性測定方法並びに光学部材及び光学装置に関するものである。 The present invention relates to a method for measuring optical characteristics of an optical member, and in particular, F 2 laser (157 nm), ArF (193 nm), KrF (248 nm), excimer laser, solid-state laser using nonlinear optical effect, other deep ultraviolet light, The present invention relates to a method for measuring optical characteristics of an optical member used in an apparatus using vacuum ultraviolet light, an optical member, and an optical device.

近年、VLSIは、高集積化、高機能化が進行しており、ウェハ上の微細加工技術が要求されており、その加工方法として光リソグラフィーによる方法が行われている。この光リソグラフィー技術の要である露光装置の投影レンズには、高い結像性能(解像度、焦点深度)が要求されている。   In recent years, VLSI has been highly integrated and highly functionalized, and a fine processing technique on a wafer is required. As a processing method thereof, a method using photolithography is performed. High imaging performance (resolution, depth of focus) is required for the projection lens of the exposure apparatus, which is the key to this photolithography technique.

解像度と焦点深度は、露光に用いる光の波長とレンズのNA(開口数)によって決まる。露光波長λが同一の場合には、細かいパターンほど回折光の角度が大きくなるので、レンズのNAが大きくなければ回折光を取り込めなくなる。また、露光波長λが短いほど、同一パターンにおける回折光の角度は小さくなるので、レンズのNAは小さくてよいことになる。
解像度と焦点深度は次式により表される。
The resolution and the depth of focus are determined by the wavelength of light used for exposure and the NA (numerical aperture) of the lens. When the exposure wavelength λ is the same, the angle of the diffracted light increases as the pattern becomes finer. Therefore, the diffracted light cannot be captured unless the lens NA is large. Also, the shorter the exposure wavelength λ, the smaller the angle of diffracted light in the same pattern, so the NA of the lens may be smaller.
Resolution and depth of focus are expressed by the following equations.

[数1]
解像度=k・λ/NA
[Equation 1]
Resolution = k 1 · λ / NA

[数2]
焦点深度=k・λ/(NA)
(ここでk,kは比例定数)
上式より、解像度を向上させるためには、レンズのNAを大きくする(レンズを大口径化する)か、あるいは露光波長λを短くすればよく、またλを短くするほうが焦点深度の点で有利であることがわかる。
[Equation 2]
Depth of focus = k 2 · λ / (NA) 2
(Where k 1 and k 2 are proportional constants)
From the above equation, in order to improve the resolution, it is sufficient to increase the NA of the lens (increasing the diameter of the lens) or shorten the exposure wavelength λ, and shortening λ is advantageous in terms of depth of focus. It can be seen that it is.

光の短波長化について述べると、現在では露光波長がしだいに短くなり、KrFエキシマレーザ光(波長248nm)、ArFエキシマレーザ光(波長193nm)を光源とする露光装置が市場に登場してきている。さらに、Fレーザ光(波長157nm)を光源とする露光装置の開発も、半導体産業界において待望されている。 Regarding the shortening of the light wavelength, at present, the exposure wavelength is gradually shortened, and an exposure apparatus using KrF excimer laser light (wavelength 248 nm) and ArF excimer laser light (wavelength 193 nm) as a light source has appeared on the market. Furthermore, the development of an exposure apparatus using a F 2 laser beam (wavelength 157 nm) as a light source is also expected in the semiconductor industry.

光リソグラフィー光学系は、解像度を極限まで高めているため、各種波面収差の補正のためレンズ枚数が多く、光路長が長い。そのため、光リソグラフィー装置の光学系に用いる光学材料にわずかでも吸収があると、光学系全体では光量の低下の影響が大きくなり、ウェハ面上での照度が不充分となる。例えば、1mの光路長では、1cm辺りの透過損失量が0.5%の場合でも、最終的に光の強度は0.995100=0.606つまり61%にまで減少してしまう。そのため、使用される光学部材については、1cm辺りの内部透過率は99.5%以上であることが望ましく、なるべく100%に近いほどよい。 Since the optical lithography optical system increases the resolution to the limit, the number of lenses is large and the optical path length is long for correcting various wavefront aberrations. Therefore, if there is even a slight absorption in the optical material used in the optical system of the photolithography apparatus, the entire optical system is greatly affected by a decrease in the amount of light, and the illuminance on the wafer surface becomes insufficient. For example, with an optical path length of 1 m, even when the transmission loss amount per 1 cm is 0.5%, the light intensity finally decreases to 0.995 100 = 0.606, that is, 61%. Therefore, it is desirable for the optical member to be used to have an internal transmittance of about 99.5% or more per 1 cm, and as close as possible to 100%.

また、光学材料に吸収があると光吸収による光学材料(レンズ)の温度上昇が結像性能を低下させるという問題も起こる。   In addition, if the optical material has absorption, a problem that the temperature rise of the optical material (lens) due to light absorption deteriorates the imaging performance.

これらのことから、透過率の高い材料を選別するために光学材料のわずかな吸収を正確に測定することが、非常に重要になってきている。   For these reasons, it has become very important to accurately measure the slight absorption of optical materials in order to select materials with high transmittance.

測定値の精度を表す量として、標準偏差σがしばしば用いられる。N回測定を行ったときの標準偏差σは次の式で与えられる。   The standard deviation σ is often used as a quantity representing the accuracy of the measured value. The standard deviation σ when N measurements are performed is given by the following equation.

[数3]
σ=√{Σ(Xi−<X>)/(N−1)}
ここでXi (i=1, 2,・・・, N)は各測定値、<X>は測定値の平均値を表す。
[Equation 3]
σ = √ {Σ (Xi− <X>) 2 / (N−1)}
Here, Xi (i = 1, 2,..., N) represents each measured value, and <X> represents an average value of the measured values.

測定値のバラつきが正規分布を取るとき、真の値がXとすると、1回の測定値がX±σの間に入る確率は68%であり、X±2σに入る確率は95%となる。
ここで、実際に10mmの厚さのサンプルで1cm辺りの内部透過率が99.5%を超えるか否かの判断が必要とされる場合を想定すると、確実に合否判別をするためには68%の精度では不十分であり、悪くとも2σで0.2%、望ましくは2σで0.1%以下の精度で透過率が測定できることが必要である。
When the variation of measured values has a normal distribution, if the true value is X, the probability that one measured value falls between X ± σ is 68%, and the probability of entering X ± 2σ is 95%. .
Here, assuming a case where it is necessary to determine whether or not the internal transmittance per 1 cm exceeds 99.5% in a sample having a thickness of 10 mm, 68 % Accuracy is insufficient, and it is necessary that the transmittance can be measured with an accuracy of 0.2% at 2σ, or preferably 0.1% or less at 2σ.

しかしながら、分光器で測定する透過率には、測定したいサンプル内部の吸収以外に、サンプルに付着しているサンプル以外の物質による吸収の影響やサンプルそのものの表面の状態による光の散乱など、外的因子も含まれてしまう。これらの外的因子は、1%〜数%程度の精度を必要とする測定においては、なんら問題のない場合も多いが、0.1%の精度が必要な場合、大きな影響を及ぼすものとなる。   However, the transmittance measured with a spectroscope is not limited to the absorption inside the sample to be measured, but the external influence such as the influence of absorption by substances other than the sample adhering to the sample and the scattering of light due to the surface condition of the sample itself. Factors are also included. These external factors often have no problem in the measurement requiring accuracy of about 1% to several percent, but have a great influence when accuracy of 0.1% is required. .

そこで、これまで透過率の測定精度を上げるための試みが数々なされてきた。
例えば、特許文献1においては、測定誤差を低減するため、高精度な測定サンプルの規格が提示されている。
Thus, many attempts have been made to improve the measurement accuracy of transmittance.
For example, in Patent Document 1, a highly accurate measurement sample standard is presented in order to reduce measurement errors.

また、特許文献2においては、複数の厚さの異なるサンプルの透過率を測定し、該複数の値から厚さが0の時の透過率を想定し、該想定透過率と理論透過率の差から求めた表面損失をあらかじめ算出した上で、固定値である表面損失分を透過率の実測値に加算し、内部透過率を算出する方法が提示されている。図4に、従来の方法における透過率の測定方法を示したフローチャートの一例を示す。被測定サンプルの表面処理を行い、被測定サンプルの透過率を測定し、表面損失分(固定値)を用いて被測定サンプルの透過率を補正する、という処理を経る。   In Patent Document 2, the transmittance of a plurality of samples having different thicknesses is measured, the transmittance when the thickness is 0 is assumed from the plurality of values, and the difference between the assumed transmittance and the theoretical transmittance is determined. A method has been proposed in which the surface loss obtained from the above is calculated in advance, and the surface loss, which is a fixed value, is added to the measured value of the transmittance to calculate the internal transmittance. FIG. 4 shows an example of a flowchart showing a transmittance measuring method in the conventional method. A surface treatment is performed on the sample to be measured, the transmittance of the sample to be measured is measured, and the transmittance of the sample to be measured is corrected using the surface loss (fixed value).

ここで、材料の内部透過率について述べる。   Here, the internal transmittance of the material will be described.

一般的な分光光度計で測定されるのは、表面での反射などの損失を含んだ透過率(Tr)またはその透過率から計算される吸収係数(α)である。測定物がない状態での、検出器に入る光の強度I、測定物を透過した場合のその強度I、測定物の厚さd[cm]とすると、以下の関係式が成り立つ。 What is measured by a general spectrophotometer is a transmittance (Tr) including a loss such as reflection on the surface or an absorption coefficient (α) calculated from the transmittance. Assuming that the intensity I 0 of light entering the detector in the absence of the measurement object, the intensity I when transmitted through the measurement object, and the thickness d [cm] of the measurement object, the following relational expression holds.

[数4]
Tr(d)=I/I ・・・(1)
[Equation 4]
Tr (d) = I / I 0 (1)

[数5]
α=−(1/d)log(Tr(d)) ・・・(2)
また、表面でのフレネル反射率(R)は、屈折率nとして
[Equation 5]
α = − (1 / d) log e (Tr (d)) (2)
Moreover, the Fresnel reflectance (R) on the surface is expressed as a refractive index n.

[数6]
R=(n−1)/(n+1) ・・・(3)
であり、この表面でのフレネル反射が2面で多重反射をするとすれば、その多重反射を除いた透過率(内部透過率)Ti(d)は、
[Equation 6]
R = (n−1) 2 / (n + 1) 2 (3)
If the Fresnel reflection on this surface is multiple reflection on two surfaces, the transmittance (internal transmittance) Ti (d) excluding the multiple reflection is

[数7]
Tr(d)=(1−R)・Ti(d)/(1−R・Ti(d))・・・(4)
と透過率(Tr)と結びつけることができる。157.6nmにおける真空中での屈折率(絶対屈折率)の値、1.5593から上記の関係式を用いて、Ti(0)=1.0の場合を計算すると、Ts=0.909、つまり90.9%が、内部損失が0%の場合の、理論透過率(フレネル反射を含む)の値ということになる。しかし、実際には表面では、フレネル反射以外の損失が存在している。表面に吸着した水や炭化水素などが原因であると考えている。
[Equation 7]
Tr (d) = (1-R) 2 · Ti (d) / (1-R 2 · Ti (d) 2 ) (4)
And the transmittance (Tr). Using the above relational expression from the value of refractive index (absolute refractive index) in vacuum at 157.6 nm, 1.5593, when calculating the case of Ti (0) = 1.0, Ts = 0.909, That is, 90.9% is the value of theoretical transmittance (including Fresnel reflection) when the internal loss is 0%. In reality, however, there is a loss other than Fresnel reflection on the surface. The cause is water or hydrocarbon adsorbed on the surface.

つまり、分光光度計で測定される透過率(Tr)または吸収係数(α)には、表面のフレネル反射とその他の表面損失に、測定物の内部損失(吸収+散乱)が含まれた形で測定されるのである。したがって、内部透過率の値を算出するためには、フレネル反射以外の表面損失を見積もらなければならない。   In other words, the transmittance (Tr) or absorption coefficient (α) measured with a spectrophotometer includes the internal loss (absorption + scattering) of the measured object in addition to the Fresnel reflection and other surface loss of the surface. It is measured. Therefore, in order to calculate the value of internal transmittance, surface loss other than Fresnel reflection must be estimated.

また内部透過率Tiは、サンプルの厚さにより変化する量であるため、測定値を比較するためには、厚さをある一定の値に固定して比較する必要がある.同一の物体を、厚さd1で測定した内部透過率Ti(d1)と、厚さd2で測定した内部透過率Ti(d2)の間には次の関係が成り立つ。   Further, since the internal transmittance Ti is an amount that varies depending on the thickness of the sample, in order to compare the measured values, the thickness needs to be fixed to a certain value and compared. The following relationship holds between the internal transmittance Ti (d1) measured at the thickness d1 and the internal transmittance Ti (d2) measured at the thickness d2 for the same object.

[数8]
Ti(d2)d1=Ti(d1)d2 ・・・(5a)
変形して
[Equation 8]
Ti (d2) d1 = Ti (d1) d2 (5a)
Transform

[数9]
Ti(d2)=Ti(d1)(d2/d1) ・・・(5b)
(5b)式を用いると、ある厚さでの内部透過率から、別の異なる厚さでの内部透過率に簡単に変換することができる。
特開平8−75649号公報 特開2002−286913号公報
[Equation 9]
Ti (d2) = Ti (d1) (d2 / d1) (5b)
When the equation (5b) is used, the internal transmittance at a certain thickness can be easily converted to the internal transmittance at another different thickness.
JP-A-8-75649 JP 2002-286913 A

しかしながら、本発明者が鋭意研究を重ねた結果、洗浄にどのような処理を施しても、洗浄処理後の環境中での再付着などがあり、測定時に全く表面損失分のない状態で測定は不可能であることがわかった。特に、測定波長が短波長になるにつれ、表面に付着している物質の吸収量が大きくなり、長波長では影響が小さい量であっても、短波長では無視できない影響が生じてしまうことがわかった。なかでも、真空紫外域と呼ばれる180nm以下の波長においてはその影響が大きいことがわかった。   However, as a result of extensive research conducted by the inventor, no matter what kind of treatment is applied to the cleaning, there are re-adhesion in the environment after the cleaning treatment, etc. I found it impossible. In particular, as the measurement wavelength becomes shorter, the amount of absorption of substances adhering to the surface increases, and even if the amount of influence is small at long wavelengths, it can be seen that there is an effect that cannot be ignored at short wavelengths. It was. In particular, it has been found that the influence is large at a wavelength of 180 nm or less called a vacuum ultraviolet region.

さらに、たとえ同一条件の表面処理を行ったとしても、測定バッチごとに表面損失分はある程度の範囲を持ってばらつくことがわかった。さらに、この測定バッチごとの表面損失分のバラつきが、1cm辺り99.5%以上であることを判別しなければならない光リソグラフィー装置用光学材料の選別において、非常に悪影響を与えているということがわかった。   Further, it was found that even if the surface treatment was performed under the same conditions, the surface loss varies with a certain range for each measurement batch. Furthermore, the variation of the surface loss for each measurement batch has a very adverse effect on the selection of the optical material for the optical lithography apparatus that must be determined to be 99.5% or more per 1 cm. all right.

内部透過率を算出する方法として、厚さが異なる複数の測定物を用意し、その測定された透過率の値から単位長さあたりの内部透過率、吸収係数、フレネル反射以外の表面損失を見積もることもできる。しかし、複数の測定物を用意する複雑さ、それらが同一な内部透過率または吸収係数を持つという仮定をしなければならない、という問題点もある。   As a method of calculating internal transmittance, prepare multiple objects with different thicknesses, and estimate the internal transmittance per unit length, absorption coefficient, and surface loss other than Fresnel reflection from the measured transmittance values. You can also. However, there is also the problem that the complexity of preparing a plurality of objects to be measured and the assumption that they have the same internal transmittance or absorption coefficient must be made.

そこで、測定バッチごとに表面損失分を考慮し、透過率を補正する方法を検討した。その結果、以下の工程による光学部材の光学特性測定方法を実施することにより、本発明に至った。   Therefore, a method for correcting the transmittance was examined in consideration of the surface loss for each measurement batch. As a result, the present invention has been achieved by carrying out a method for measuring optical characteristics of optical members according to the following steps.

即ち、請求項1に記載の発明は、被測定サンプル及びモニター用サンプルを同一バッチで洗浄する工程と、該洗浄された被測定サンプル及び該モニター用サンプルを同一環境で運搬する工程と、該運搬された被測定サンプル及び該モニター用サンプルの光学特性を同一バッチで測定する工程を有し、該モニター用サンプルの該測定値を用いて前記被測定サンプルの透過率又は反射率を補正する工程を有することを特徴とする光学部材の光学特性測定方法である。   That is, the invention described in claim 1 includes a step of washing the sample to be measured and the sample for monitoring in the same batch, a step of carrying the washed sample to be measured and the sample for monitoring in the same environment, and the carrying Measuring the optical characteristics of the measured sample and the monitoring sample in the same batch, and correcting the transmittance or reflectance of the measured sample using the measured value of the monitoring sample It is the optical characteristic measuring method of the optical member characterized by having.

請求項2に記載の発明は、請求項1に記載の光学部材の光学特性測定方法において、前記透過率又は反射率を補正する工程とは、前記モニター用サンプルの測定値から表面損失分を算出し、該表面損失分を用いて前記被測定サンプルの透過率又は反射率を補正する工程であることを特徴とする光学部材の光学特性測定方法である。   According to a second aspect of the present invention, in the method for measuring an optical property of an optical member according to the first aspect, the step of correcting the transmittance or the reflectance calculates a surface loss from a measured value of the monitor sample. And a method for measuring the optical characteristics of the optical member, wherein the surface loss is used to correct the transmittance or reflectance of the sample to be measured.

請求項3に記載の発明は、請求項1又は請求項2に記載の光学部材の光学特性測定方法において、透過率が既知であるサンプルをモニター用サンプルとして用いることを特徴とする光学部材の光学特性測定方法である。   According to a third aspect of the present invention, in the optical property measurement method for an optical member according to the first or second aspect, a sample having a known transmittance is used as a monitor sample. This is a characteristic measurement method.

請求項4に記載の発明は、請求項3に記載の光学部材の光学特性測定方法において、複数の厚さの異なるサンプルの透過率を測定し、該複数の値から厚さが0の時の透過率を推定し、該推定透過率と理論透過率の差から求めた表面損失分を用いて、内部透過率を算出したサンプルを透過率が既知であるモニター用サンプルとして用いることを特徴とする光学部材の光学特性測定方法である。   According to a fourth aspect of the present invention, in the optical property measuring method of the optical member according to the third aspect, the transmittance of a plurality of samples having different thicknesses is measured, and when the thickness is zero from the plurality of values, Using the surface loss calculated from the difference between the estimated transmittance and the theoretical transmittance, the sample whose internal transmittance is calculated is used as a monitor sample whose transmittance is known. It is a method for measuring optical characteristics of an optical member.

請求項5に記載の発明は、請求項1から4の何れか1つに記載の被測定光学特性測定方法を用いて測定されたサンプルを、透過率が既知であるモニター用サンプルとして用いることを特徴とする光学部材の光学特性測定方法である。   According to a fifth aspect of the present invention, a sample measured using the measured optical property measuring method according to any one of the first to fourth aspects is used as a monitor sample having a known transmittance. This is a characteristic optical property measuring method for an optical member.

請求項6に記載の発明は、請求項1から5の何れか1つに記載の光学特性測定方法において、透過率とは、ある特定の厚さにおける内部透過率である事を特徴とする光学部材の光学特性測定方法である。   According to a sixth aspect of the present invention, in the optical characteristic measurement method according to any one of the first to fifth aspects, the transmittance is an internal transmittance at a specific thickness. This is a method for measuring optical characteristics of a member.

請求項7に記載の発明は、請求項1から6の何れか1つに記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる洗浄とは、湿式洗浄又は乾式洗浄であることを特徴とする光学部材の光学特性測定方法である。   A seventh aspect of the present invention is the method for measuring optical properties of an optical member according to any one of the first to sixth aspects, wherein cleaning used in the same batch for the sample to be measured and the sample for monitoring is wet. An optical property measurement method for an optical member, wherein the optical property is cleaning or dry cleaning.

請求項8に記載の発明は、請求項7に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる乾式洗浄とは、波長250nm以下の光を照射することであることを特徴とする光学部材の光学特性測定方法である。   The invention according to claim 8 is the method for measuring optical properties of an optical member according to claim 7, wherein the dry cleaning used in the same batch for the sample to be measured and the sample for monitoring is irradiation with light having a wavelength of 250 nm or less. This is a method for measuring the optical characteristics of an optical member.

請求項9に記載の発明は、請求項7に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる乾式洗浄とは、レーザを照射することであることを特徴とする光学部材の光学特性測定方法である。   The invention according to claim 9 is the optical property measurement method of the optical member according to claim 7, wherein the dry cleaning used in the same batch for the sample to be measured and the sample for monitoring is to irradiate a laser. This is a method for measuring optical characteristics of an optical member.

請求項10に記載の発明は、請求項9に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる前記レーザとは、ArFエキシマレーザであることを特徴とする光学部材の光学特性測定方法である。   According to a tenth aspect of the present invention, in the optical property measurement method for an optical member according to the ninth aspect, the laser used in the same batch for the sample to be measured and the sample for monitoring is an ArF excimer laser. This is a characteristic optical property measuring method for an optical member.

請求項11に記載の発明は、請求項9に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる前記レーザとは、Fレーザであることを特徴とする光学部材の光学特性測定方法である。 The invention described in claim 11 is the optical property measurement method for an optical member according to claim 9, wherein the laser used in the same batch for the sample to be measured and the sample for monitoring is an F 2 laser. This is a characteristic optical property measuring method for an optical member.

請求項12に記載の発明は、請求項9から11の何れか1つに記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに照射するレーザは、エネルギー密度0.1mJ/cm/pulse以上、250mJ/cm/pulse以下の何れかの強度で、照射数1000パルス以上、10000000パルス以下の何れかのパルス数であることを特徴とする光学部材の光学特性測定方法である。 A twelfth aspect of the present invention is the method for measuring an optical property of an optical member according to any one of the ninth to eleventh aspects, wherein the laser irradiated to the sample to be measured and the sample for monitoring has an energy density of 0.00. 1mJ / cm 2 / pulse or more, either the intensity of the following 250mJ / cm 2 / pulse, irradiated number 1000 or more pulses, the optical characteristic measurement of the optical member, which is a number or a pulse of less 10000000 pulse Is the method.

請求項13に記載の発明は、請求項1から12のいずれか1つに記載の光学部材の光学特性測定方法において、前記光学特性の測定に用いられる光の波長が180nm以上250nm以下であることを特徴とする光学部材の光学特性測定方法である。   A thirteenth aspect of the present invention is the optical property measurement method for an optical member according to any one of the first to twelfth aspects, wherein a wavelength of light used for the measurement of the optical property is 180 nm or more and 250 nm or less. This is a method for measuring the optical characteristics of an optical member.

請求項14に記載の発明は、請求項1から13の何れか1つに記載の光学部材の光学特性測定方法において、前記光学特性の測定に用いられる光の波長が180nm以下であることを特徴とする光学部材の光学特性測定方法である。   The invention according to claim 14 is the optical property measurement method for an optical member according to any one of claims 1 to 13, wherein the wavelength of light used for measurement of the optical property is 180 nm or less. This is a method for measuring optical characteristics of an optical member.

請求項15に記載の発明は、請求項1から14の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルと前記被測定サンプルは同一物質であることを特徴とする光学部材の光学特性測定方法である。   The invention according to claim 15 is the optical property measurement method for an optical member according to any one of claims 1 to 14, wherein the monitor sample and the sample to be measured are the same substance. It is a method for measuring optical characteristics of an optical member.

請求項16に記載の発明は、請求項1から15の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルと前記被測定サンプルは同一の厚さであることを特徴とする光学部材の光学特性測定方法である。   The invention according to claim 16 is the method for measuring optical properties of an optical member according to any one of claims 1 to 15, wherein the monitor sample and the sample to be measured have the same thickness. This is a method for measuring optical characteristics of an optical member.

請求項17に記載の発明は、請求項1から15の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルの厚さは、前記被測定サンプルの厚さよりも薄いことを特徴とする光学部材の光学特性測定方法である。   According to a seventeenth aspect of the present invention, in the optical property measuring method for an optical member according to any one of the first to fifteenth aspects, the thickness of the monitor sample is thinner than the thickness of the sample to be measured. This is a method for measuring the optical characteristics of an optical member.

請求項18に記載の発明は、請求項1から17の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルの厚さが1mm以上30mm以下であることを特徴とする光学部材の光学特性測定方法である。   The invention according to claim 18 is the method of measuring optical properties of an optical member according to any one of claims 1 to 17, wherein the thickness of the monitor sample is 1 mm or more and 30 mm or less. It is a method for measuring optical characteristics of an optical member.

請求項19に記載の発明は、請求項1から18の何れか1つに記載の光学特性において、内部透過率が99.0%以上のサンプルを前記モニター用サンプルとして使用することを特徴とする光学部材の光学特性測定方法である。   The invention according to claim 19 is characterized in that in the optical characteristics according to any one of claims 1 to 18, a sample having an internal transmittance of 99.0% or more is used as the monitor sample. It is a method for measuring optical characteristics of an optical member.

請求項20に記載の発明は、請求項1から19の何れか1つに記載の光学部材の光学特性測定方法において、透過率の測定精度が、標準偏差の2倍で0.2%以下であることを特徴とする光学部材の光学特性測定方法である。   According to a twentieth aspect of the present invention, in the optical characteristic measurement method for an optical member according to any one of the first to twentieth aspects, the transmittance measurement accuracy is 0.2% or less that is twice the standard deviation. A method for measuring optical characteristics of an optical member.

請求項21に記載の発明は、請求項1から20の何れか1つに記載の光学部材の光学特性測定方法において、測定対象物が光学ガラス、石英ガラス又は結晶材料であることを特徴とする光学特性測定方法である。   The invention according to claim 21 is the method for measuring optical properties of an optical member according to any one of claims 1 to 20, wherein the object to be measured is optical glass, quartz glass, or a crystal material. It is an optical property measuring method.

請求項22に記載の発明は、請求項1から21の何れか1つに記載の光学特性測定方法を用いて品質検査を行い基準を満足したものであることを特徴とする光学部材である。   A twenty-second aspect of the present invention is an optical member characterized in that a quality inspection is performed using the optical characteristic measuring method according to any one of the first to twenty-first aspects and a standard is satisfied.

請求項23に記載の発明は、光源を用いる装置であって、該装置の光学系を構成する光学材料の少なくとも1つ以上が、請求項22に記載の光学部材であることを特徴とする光学装置である。   The invention according to claim 23 is an apparatus using a light source, wherein at least one of the optical materials constituting the optical system of the apparatus is the optical member according to claim 22. Device.

請求項24に記載の発明は、請求項23に記載の装置であって、光源として用いる光の波長が180nm以上250nm以下であることを特徴とする光学装置。   The invention according to claim 24 is the apparatus according to claim 23, wherein the wavelength of light used as the light source is 180 nm or more and 250 nm or less.

請求項25に記載の発明は、請求項23に記載の装置であって、光源として用いる光の波長が180nm以下であることを特徴とする光学装置である。   A twenty-fifth aspect of the present invention is the optical device according to the twenty-third aspect, wherein the wavelength of light used as the light source is 180 nm or less.

請求項26に記載の発明は、請求項23から25の何れかに記載の光学装置が、光リソグラフィー装置であることを特徴とする光学装置である。   The invention described in claim 26 is an optical apparatus characterized in that the optical apparatus according to any one of claims 23 to 25 is a photolithographic apparatus.

上記請求項1乃至26に記載の発明によれば、装置に使用する光学部材の透過率又は反射率を高精度で測定することが可能になる。その結果、装置の性能を精度よく予測することが可能となり、したがって、露光精度のばらつきを押さえた品質の高い装置を提供できる。さらに、装置に使用する透過率又は反射率の検査を確実に行うことができる。   According to the invention described in claims 1 to 26, it becomes possible to measure the transmittance or reflectance of the optical member used in the apparatus with high accuracy. As a result, it is possible to accurately predict the performance of the apparatus, and therefore it is possible to provide a high-quality apparatus that suppresses variations in exposure accuracy. Further, the transmittance or reflectance used in the apparatus can be reliably tested.

以下に、本発明の実施の形態を示す。まず、被測定サンプルと同一の物質であるモニター用サンプルを用意する。モニター用サンプルは厚さは限定されないが、内部透過率が判明していなければならない。内部透過率の判明しているサンプルがない場合は、次のようにして準備できる。   Embodiments of the present invention are shown below. First, a monitoring sample that is the same substance as the sample to be measured is prepared. The sample for monitoring is not limited in thickness, but the internal transmittance must be known. If there is no sample whose internal transmittance is known, it can be prepared as follows.

例えば同一ブロックの近接する位置から採取するなどした、同一厚さでの内部透過率の値が同一と考えられる、複数の厚さの異なるサンプルを用意する。それぞれのサンプルの平行2平面を同様に光学研磨する。表面の汚れを清浄にするため洗浄する。ここで洗浄とは超音波洗浄やIPAベーパを用いるIPA洗浄などの湿式洗浄、紫外光を照射するUV洗浄などの乾式洗浄のほか、エキシマレーザ照射など、表面を清浄にする効果のある処理であれば何でも良いが、それぞれのサンプルの表面状態を同一にするため、同一バッチで洗浄することが必要である。
さらにそれぞれのサンプルの表面状態を同一にするため、同一環境で運搬した後、測定したい特定波長での透過率を同一バッチで測定する。図2は、透過率と厚みの関係を表す図である。図中に示すように、測定値に基づいて透過率Trの値を各厚さごとにプロットする。これらの線を結ぶように近似直線Pを求めると、サンプルの厚さが0mmでの、透過率Tr(0)が得られる。このTr(0)は厚さが0mmとして、内部損失がない状態を想定しているが、フレネル反射及びフレネル反射以外の表面損失を含むものである。図3にフレネル反射、フレネル反射以外の表面損失h、厚さaでの内部損失、理論透過率Ts、厚さ0mmでの透過率、厚さaでの透過率測定値の関係を図示する。してみれば、ここで表面損失hとすると、ここで内部損失およびフレネル反射以外の表面損失hはないがフレネル反射を含む理論透過率がTsの値であり、Tr(0)は内部損失はないが、フレネル反射及びフレネル反射以外の表面損失hを含む値であるため、
For example, a plurality of samples having different thicknesses, which are considered to have the same internal transmittance value at the same thickness, such as a sample taken from a close position of the same block, are prepared. The two parallel planes of each sample are similarly optically polished. Wash to clean the surface. In this case, the cleaning is a process having an effect of cleaning the surface such as wet cleaning such as ultrasonic cleaning and IPA cleaning using IPA vapor, dry cleaning such as UV cleaning irradiating ultraviolet light, and excimer laser irradiation. However, in order to make the surface state of each sample the same, it is necessary to wash in the same batch.
Furthermore, in order to make the surface state of each sample the same, after transporting in the same environment, the transmittance at a specific wavelength to be measured is measured in the same batch. FIG. 2 is a diagram illustrating the relationship between transmittance and thickness. As shown in the figure, the value of the transmittance Tr is plotted for each thickness based on the measured value. When the approximate straight line P is obtained so as to connect these lines, the transmittance Tr (0) when the thickness of the sample is 0 mm is obtained. This Tr (0) is assumed to have a thickness of 0 mm and no internal loss, but includes Fresnel reflection and surface loss other than Fresnel reflection. FIG. 3 illustrates the relationship between Fresnel reflection, surface loss h other than Fresnel reflection, internal loss at thickness a, theoretical transmittance Ts, transmittance at 0 mm thickness, and measured transmittance at thickness a. Assuming that the surface loss h is here, there is no surface loss h other than internal loss and Fresnel reflection, but the theoretical transmittance including Fresnel reflection is the value of Ts, and Tr (0) Although it is a value including surface loss h other than Fresnel reflection and Fresnel reflection,

[数10]
h=Ts−Tr(0)・・・(6)
が算出される。この表面損失hは同様な表面の研磨を行い、同一バッチで洗浄し、同一バッチで測定を行った場合には同一とみなせる。そして、この測定に用いたサンプルの内部透過率Tiは、そのフレネル反射を含まない表面損失h、損失を含んだ透過率Trの測定値、理論透過率Tsから以下の式により算出される。
[Equation 10]
h = Ts−Tr (0) (6)
Is calculated. This surface loss h can be regarded as the same when the same surface is polished, washed in the same batch, and measured in the same batch. The internal transmittance Ti of the sample used for this measurement is calculated from the surface loss h not including the Fresnel reflection, the measured value of the transmittance Tr including the loss, and the theoretical transmittance Ts by the following equation.

[数11]
Ti(d)=(Tr(d)+h)/Ts・・・(7)
したがって、(7)式より、
[Equation 11]
Ti (d) = (Tr (d) + h) / Ts (7)
Therefore, from equation (7)

[数12]
Ti(a)=(Tr(a)+h)/Ts
となる。Ti(a)は、厚さaのサンプルの内部透過率であり、測定バッチにはよらない普遍的な値である。
[Equation 12]
Ti (a) = (Tr (a) + h) / Ts
It becomes. Ti (a) is the internal transmittance of the sample of thickness a, and is a universal value that does not depend on the measurement batch.

こうして、内部透過率Ti(a)のモニター用サンプルが得られる。続いて、被測定サンプルと、このモニター用サンプルを同一バッチで洗浄する。ここで洗浄とは超音波洗浄やIPAベーパを用いるIPA洗浄などの湿式洗浄、紫外光を照射するUV洗浄などの乾式洗浄のほか、エキシマレーザ照射など、表面を清浄にする効果のある処理であれば何でも良いが、それぞれのサンプルの表面状態を同一にするため、同一バッチで洗浄することが必要である。また、表面状態を同一にするため、両サンプルを同一環境下で運搬後、同一バッチでの透過率を測定する。図1は、本発明における透過率の測定方法を示したフローチャートの一例である。   In this way, a sample for monitoring internal transmittance Ti (a) is obtained. Subsequently, the sample to be measured and the sample for monitoring are washed in the same batch. In this case, the cleaning is a process having an effect of cleaning the surface such as wet cleaning such as ultrasonic cleaning and IPA cleaning using IPA vapor, dry cleaning such as UV cleaning irradiating ultraviolet light, and excimer laser irradiation. However, in order to make the surface state of each sample the same, it is necessary to wash in the same batch. Moreover, in order to make the surface state the same, the transmittance | permeability in the same batch is measured after conveying both samples in the same environment. FIG. 1 is an example of a flowchart showing a transmittance measuring method in the present invention.

ついで、モニター用サンプルの透過率測定値Trmから、この測定における表面損失hmを算出する。内部透過率はTi(a)であることがわかっているので、(7)式からTi(a)=(Trm(a)+hm)/Ts、すなわち   Next, the surface loss hm in this measurement is calculated from the transmittance measurement value Trm of the monitor sample. Since the internal transmittance is known to be Ti (a), Ti (a) = (Trm (a) + hm) / Ts from the equation (7), that is,

[数13]
hm=Ti(a)・Ts−Trm(a)・・・(8)
が簡単に導き出せる。
[Equation 13]
hm = Ti (a) · Ts−Trm (a) (8)
Can be easily derived.

最後に、被測定サンプルの透過率測定値Trvから被測定サンプルの内部透過率Tivを求める。同一バッチで洗浄し、同一バッチで測定しているので、表面損失分はモニター用サンプルの表面損失分hmと同じであるとみなせる。そこで(7)式よりTiv(d)=(Trv(d)+hm)/Tsと算出できる。   Finally, the internal transmittance Tiv of the sample to be measured is obtained from the measured transmittance value Trv of the sample to be measured. Since the same batch is washed and measured in the same batch, the surface loss can be considered to be the same as the surface loss hm of the monitoring sample. Therefore, Tiv (d) = (Trv (d) + hm) / Ts can be calculated from the equation (7).

本発明において、モニター用サンプルと被測定サンプルは1個ずつである必要はなく、1個のモニター用サンプルに対して複数個の被測定サンプルを同時に測定しても良い。この場合、同時に測定する被測定サンプルすべてを、モニター用サンプルと同一バッチで洗浄し、同一バッチで測定することが必要である。   In the present invention, it is not necessary to have one monitor sample and one sample to be measured, and a plurality of samples to be measured may be simultaneously measured for one monitor sample. In this case, it is necessary to wash all the samples to be measured at the same time in the same batch as the monitoring sample and measure in the same batch.

また、モニター用サンプルに求められる条件は内部透過率が既知であるということであるだけなので、一度上記のように厚さの異なる複数のサンプルからモニター用サンプルの内部透過率Ti(a)を求めておけば、これ以後、厚さの異なる複数のサンプルを測定する必要はない。内部透過率は普遍的な値であるので、このモニター用サンプルを繰り返し用いればよい。   Further, since the only requirement for the monitor sample is that the internal transmittance is known, the internal transmittance Ti (a) of the monitor sample is obtained from a plurality of samples having different thicknesses as described above. In this case, it is not necessary to measure a plurality of samples having different thicknesses thereafter. Since the internal transmittance is a universal value, this monitoring sample may be used repeatedly.

さらに、モニター用サンプルとして、本発明を用いて、一度被測定サンプルとして内部透過率Tiv(d)を求めたサンプルを、次の機会には内部透過率Tiv(d)を持つモニター用サンプルとして流用することも可能である。
また、上記の方法では測定ごとの表面損失の算出に内部透過率(Ti)を用いて計算を行っているが、必ずしも内部透過率(Ti)で算出しなくても良く、表面損失分を含まず内部透過率、吸収係数、フレネル反射のみの透過率(Tr+h)を用いて計算を行っても、同様に測定ごとの表面損失分を求めることは可能である。
Furthermore, as a sample for monitoring, the present invention is used as a sample for monitoring, and a sample for which internal transmittance Tiv (d) has been obtained once is used as a sample for monitoring having internal transmittance Tiv (d) at the next opportunity. It is also possible to do.
In the above method, the calculation of the surface loss for each measurement is performed using the internal transmittance (Ti), but it is not always necessary to calculate the internal loss (Ti), and the surface loss is included. Even if the calculation is performed using the internal transmittance, the absorption coefficient, and the transmittance of only Fresnel reflection (Tr + h), the surface loss for each measurement can be similarly obtained.

さらにまた、上記の方法では、モニター用サンプルは被測定サンプルと同一の物質であるとしたが、必ずしもモニター用サンプルは被測定サンプルと同一の物質である必要はなく、異なる物質であっても本発明の適用は可能である。モニター用サンプルと被測定サンプルの物質が異なる場合、同一波長における両者の屈折率は異なるため、理論透過率Tsが異なるが、モニター用サンプルに対応する理論透過率Tsmから表面損失分hを算出し、該表面損失分hと被測定用サンプルに対応した理論透過率Tsmから被測定サンプルの透過率を算出することが可能である。ただし、物質が異なることによって、表面状態が大きく異なる場合もあるので、モニター用サンプルと測定用サンプルは同一物質である方が望ましい。
(実施例1)
Furthermore, in the above method, the monitor sample is the same substance as the sample to be measured. However, the monitor sample does not necessarily have to be the same substance as the sample to be measured. The invention can be applied. When the monitor sample and the sample to be measured are different, the refractive index of the two at the same wavelength is different, so the theoretical transmittance Ts is different, but the surface loss h is calculated from the theoretical transmittance Tsm corresponding to the monitor sample. The transmittance of the sample to be measured can be calculated from the surface loss h and the theoretical transmittance Tsm corresponding to the sample to be measured. However, since the surface state may vary greatly depending on the substance, it is desirable that the monitor sample and the measurement sample are the same substance.
Example 1

まず、モニター用サンプルを得るために、内部透過率の値が同一と考えられる、厚さの異なるフッ化カルシウム結晶を用意した。   First, in order to obtain a sample for monitoring, calcium fluoride crystals having different thicknesses and having the same internal transmittance value were prepared.

人工的に化学合成されたフッ化カルシウム原料を用いて、ブリッジマン法により結晶成長させたインゴットの隣接部位から、直径30mm、厚さ3、10、20、40mmの4種類の試験片を採取し、平行2平面を光学研磨した。表面のよごれを洗浄するため、4種類のサンプルに対して同一バッチでIPA洗浄を行った。洗浄後、アクトンリサーチ製真空紫外分光光度計CAMSの測定チャンバー内に同時に4種類のサンプルをセットし、それぞれのサンプルについて、波長140nmから200nmまでの分光透過率を測定した。その157.6nmでの透過率の値を厚さに対してプロットし、この近似直線を外挿した厚さ0mmでの透過率Tr(0)=90.2%を(6)式に代入して、表面損失分として、h=90.9−90.2=0.7[%]と見積もった。この表面損失は、同一バッチで同一の洗浄工程を経たもの、そして同一測定装置で同時に測定している場合には同一と考えてよいものである。また、この測定における10mm厚さのサンプルの透過率の測定値Tr(10)=90.0%に、該表面損失分h=0.7%を加算した値 90.7%が、この10mm厚さのサンプルの表面損失を含まない(内部透過率、吸収係数、フレネル反射のみの)透過率である。式(7)より、この表面損失を含まない透過率Tr(10)+h=90.7%を、理論透過率
Ts=90.9%で除した値99.8%が、157.6nmにおける、この10mm厚さのサンプルの内部透過率(Ti)であり、測定バッチにはよらない普遍的な値である。
Four types of test specimens with a diameter of 30 mm, thicknesses of 3, 10, 20, and 40 mm were collected from adjacent parts of an ingot crystal-grown by the Bridgeman method using artificially synthesized calcium fluoride raw materials. The two parallel planes were optically polished. In order to clean the surface dirt, IPA cleaning was performed on four types of samples in the same batch. After washing, four types of samples were simultaneously set in a measurement chamber of a vacuum ultraviolet spectrophotometer CAMS manufactured by Acton Research, and the spectral transmittance from a wavelength of 140 nm to 200 nm was measured for each sample. The transmittance value at 157.6 nm is plotted against the thickness, and the transmittance Tr (0) = 90.2% at a thickness of 0 mm obtained by extrapolating this approximate line is substituted into the equation (6). Thus, h = 90.9-90.2 = 0.7 [%] was estimated as the surface loss. This surface loss may be considered to be the same when the same batch is subjected to the same cleaning process and is simultaneously measured by the same measuring device. Further, the value 90.7% obtained by adding the surface loss h = 0.7% to the measured value Tr (10) = 90.0% of the transmittance of the 10 mm-thickness sample in this measurement is 10 mm thickness. This is the transmittance (not including internal transmittance, absorption coefficient, and Fresnel reflection only) that does not include the surface loss of the sample. From the equation (7), the value 99.8% obtained by dividing the transmittance Tr (10) + h = 90.7% not including the surface loss by the theoretical transmittance Ts = 90.9% is 157.6 nm. The internal transmittance (Ti) of this 10 mm thick sample is a universal value that does not depend on the measurement batch.

次に、上記のように内部透過率を求めた直径30mm、厚さ10mmのサンプルをモニター用サンプルとして、直径30mm、厚さ10mmの被測定サンプルと同一バッチでIPA洗浄を行った。洗浄後、モニター用サンプルと被測定サンプルの157.6nmでの透過率を分光光度計を用いて、同一バッチで測定した。
ついで、モニター用サンプルの測定値から、この測定時の表面損失分を求めた。モニター用サンプルの内部透過率Tim(0)=99.8%(=0.998)に理論透過率90.9%を乗じて得られる透過率(表面損失分を含まず内部透過率、吸収係数、フレネル反射のみの透過率)90.7%から今回の測定値Trm(0)=89.9%を減じて得られる値0.8%が今回の測定時の表面損失分(hm)である。
Next, IPA cleaning was performed in the same batch as the sample to be measured having a diameter of 30 mm and a thickness of 10 mm, using the sample having a diameter of 30 mm and a thickness of 10 mm obtained for the internal transmittance as described above as a monitor sample. After washing, the transmittance at 157.6 nm of the sample for monitoring and the sample to be measured was measured in the same batch using a spectrophotometer.
Next, the surface loss at the time of this measurement was determined from the measured value of the monitor sample. Transmittance obtained by multiplying internal transmittance Tim (0) = 99.8% (= 0.998) of the sample for monitoring by theoretical transmittance of 90.9% (internal transmittance and absorption coefficient not including surface loss) The value of 0.8% obtained by subtracting the current measured value Trm (0) = 89.9% from 90.7% (transmittance of only Fresnel reflection) is the surface loss (hm) at the time of the current measurement. .

ついで、被測定サンプルの測定値Trv(10)=89.7%に表面損失hm=0.8%を加える。この値90.5%が、10mm厚さの被測定サンプルの表面損失を含まない(内部透過率、吸収係数、フレネル反射のみの)透過率である。そして、その求めた値をTs=90.9で除した値99.6%が、この被測定サンプルの10mm厚さでの内部透過率Tiv(10)である。
このモニター用サンプルと被測定サンプルを同一バッチで洗浄し、同一バッチで測定する作業を5回繰り返した。その結果を表1に記した。
Next, the surface loss hm = 0.8% is added to the measured value Trv (10) = 89.7% of the sample to be measured. This value of 90.5% is the transmittance not including the surface loss of the sample to be measured having a thickness of 10 mm (only the internal transmittance, the absorption coefficient, and the Fresnel reflection). Then, a value 99.6% obtained by dividing the obtained value by Ts = 90.9 is the internal transmittance Tiv (10) of the sample to be measured at a thickness of 10 mm.
The monitoring sample and the sample to be measured were washed in the same batch, and the operation of measuring in the same batch was repeated five times. The results are shown in Table 1.

Figure 2006329633
Figure 2006329633

表1に示すとおり被測定サンプルの内部透過率の測定精度を標準偏差の2倍(2σ)で表すと0.1%であった。   As shown in Table 1, when the measurement accuracy of the internal transmittance of the sample to be measured was expressed by twice the standard deviation (2σ), it was 0.1%.

なお、本発明は以下の実施の例の詳細な数字や記述に限定されるものではないことは言うまでもない。例えば、本実施例においてはFレーザ光を用いた装置に使用されるフッ化物結晶の例を示したため、測定波長は157.6nmであるが、もちろん、本発明は他の波長でも有効である。たとえば、ArFエキシマレーザ光を用いた装置に使用されるフッ化物結晶の場合は、測定波長を193.4nmにし、193.4nmにおける真空中の屈折率と式(1)から式(4)を用いて、内部損失が0%の場合の透過率を算出し、その後は波長157.6nmの場合と同様の手順を踏めばよい。また、ここではフッ化カルシウム結晶について本発明を実施した例を示してあるが、他の光学材料、たとえば石英ガラスなどの光学ガラス、水晶、フッ化マグネシウムなどの他の結晶などにおいても、内部透過率を測定する手法は共通するものであり、本発明は極めて効果的である。
(実施例2)
Needless to say, the present invention is not limited to the detailed numbers and descriptions of the following embodiments. For example, in this embodiment, an example of a fluoride crystal used in an apparatus using F 2 laser light has been shown, and thus the measurement wavelength is 157.6 nm. Of course, the present invention is also effective at other wavelengths. . For example, in the case of a fluoride crystal used in an apparatus using ArF excimer laser light, the measurement wavelength is 193.4 nm, and the refractive index in vacuum at 193.4 nm and the equations (1) to (4) are used. Then, the transmittance when the internal loss is 0% is calculated, and thereafter, the same procedure as in the case of the wavelength of 157.6 nm may be taken. Although an example in which the present invention is carried out is shown here with respect to a calcium fluoride crystal, internal transmission is also possible in other optical materials such as optical glass such as quartz glass, other crystals such as quartz and magnesium fluoride. The technique for measuring the rate is common, and the present invention is extremely effective.
(Example 2)

実施例2として、実施例1で被測定サンプルとして透過率を求めたサンプルを、透過率既知のモニター用サンプルとして用いた例を説明する。実施例1において内部透過率が99.6%と求められた直径30mm、厚さ10mmのサンプルをモニター用サンプルとして、直径30mm、厚さ10mmの被測定サンプルと同一バッチでUV洗浄を行った。UV洗浄後、モニター用サンプルと被測定サンプルを同時に分光光度計にセットし、分光光度計を用いて、157.6nmでの透過率を同一バッチで測定した。   As Example 2, an example will be described in which the sample whose transmittance was obtained as the sample to be measured in Example 1 was used as a monitor sample with known transmittance. A sample having a diameter of 30 mm and a thickness of 10 mm, whose internal transmittance was determined to be 99.6% in Example 1, was used as a monitor sample, and UV cleaning was performed in the same batch as the sample to be measured having a diameter of 30 mm and a thickness of 10 mm. After UV cleaning, the sample for monitoring and the sample to be measured were simultaneously set in a spectrophotometer, and the transmittance at 157.6 nm was measured in the same batch using the spectrophotometer.

ついで、モニター用サンプルの測定値から、この測定時の表面損失分を求めた。モニター用サンプルの内部透過率Tim(0)=99.6%(=0.996)に理論透過率Ts=90.9%を乗じて得られる透過率(表面損失分を含まず内部透過率、吸収係数、フレネル反射のみの透過率)90.5%から今回の測定値Trm(0)=89.5%を減じて得られる値1.0%が今回の測定時の表面損失分(hm)である。   Next, the surface loss at the time of this measurement was determined from the measured value of the monitor sample. Transmittance obtained by multiplying internal transmittance Tim (0) = 99.6% (= 0.996) of the sample for monitoring by theoretical transmittance Ts = 90.9% (internal transmittance not including surface loss) Absorption coefficient, transmittance of Fresnel reflection only) 90.5%, the current measurement value Trm (0) = 89.5%, the value obtained by 1.0% is the surface loss (hm) during this measurement. It is.

ついで、被測定サンプルの測定値Trv(10)=89.8%に表面損失hm=1.0%を加える。この値90.8%が、10mm厚さの被測定サンプルの表面損失を含まない(内部透過率、吸収係数、フレネル反射のみの)透過率である。そして、その求めた値をTs=90.9で除した値99.9%が、この被測定サンプルの10mm厚さでの内部透過率(Tiv)である。   Next, the surface loss hm = 1.0% is added to the measured value Trv (10) = 89.8% of the sample to be measured. This value of 90.8% is the transmittance not including the surface loss of the sample to be measured having a thickness of 10 mm (only the internal transmittance, the absorption coefficient, and the Fresnel reflection). Then, the value 99.9% obtained by dividing the obtained value by Ts = 90.9 is the internal transmittance (Tiv) at the thickness of 10 mm of the sample to be measured.

このモニター用サンプルと被測定サンプルを同一バッチで洗浄し、同一バッチで測定する作業を5回繰り返した。その結果を表2に記した。   The monitoring sample and the sample to be measured were washed in the same batch, and the operation of measuring in the same batch was repeated five times. The results are shown in Table 2.

Figure 2006329633
Figure 2006329633

表2に示すとおり被測定サンプルの内部透過率の測定精度を標準偏差の2倍(2σ)で表すと0.2%であった。
(実施例3)
As shown in Table 2, the measurement accuracy of the internal transmittance of the sample to be measured was 0.2% when expressed by twice the standard deviation (2σ).
(Example 3)

実施例3として、モニター用サンプルと被測定サンプルの厚さの異なる場合の例を以下に説明する。   As Example 3, an example in which the thickness of the monitor sample and the sample to be measured are different will be described below.

まずフレネル反射を含んだ表面損失の値を求めるために、内部透過率の値が同一と考えられる、厚さの異なるフッ化カルシウム結晶を用意した。   First, in order to obtain the value of surface loss including Fresnel reflection, calcium fluoride crystals having different thicknesses and having the same internal transmittance value were prepared.

人工的に化学合成されたフッ化カルシウム原料を用いて、ブリッジマン法により結晶成長させたインゴットの隣接部位から、直径30mm、厚さ3、10、20mmの3種類の試験片を採取し、平行2平面を光学研磨した。表面を洗浄するため、この3種のサンプルを同時にFレーザ照射装置の中に配置し、4mJ/cm2/pulseのエネルギー密度のFレーザを、1000000パルス照射した。 Three types of test pieces with a diameter of 30 mm, thicknesses of 3, 10, and 20 mm were collected from adjacent parts of an ingot crystal-grown by the Bridgman method using calcium fluoride raw materials that were artificially chemically synthesized. Two planes were optically polished. In order to clean the surface, these three types of samples were simultaneously placed in an F 2 laser irradiation apparatus, and 1 million pulses of an F 2 laser having an energy density of 4 mJ / cm 2 / pulse were irradiated.

洗浄後、分光光度計の測定チャンバー内に同時に3種類のサンプルをセットし、それぞれのサンプルについて、分光光度計で波長157.6nmの分光透過率を測定した。透過率の値を厚さに対してプロットし、この近似直線を外挿した厚さ0mmでの透過率Tr(0)=90.7%から、表面損失分として、h=90.9−90.7=0.2[%]と見積もった。この表面損失は、同一バッチで同一の洗浄工程を経たもの、そして同一測定装置で同時に測定している場合には同一と考えてよいものである。また、この測定における3mm厚さのサンプルの透過率Tr=90.6%に、該表面損失分h=0.2%を加算した値 90.8%が、この3mm厚さのサンプルの表面損失を含まない(内部透過率、吸収係数、フレネル反射のみの)透過率である。この表面損失を含まない透過率90.8%を、理論透過率Ts=90.9%で除した値99.9%が、157.6nmにおける、この3mm厚さのサンプルの3mm厚さでの内部透過率Ti(3)であり、測定バッチにはよらない普遍的な値である。   After washing, three types of samples were set simultaneously in the measurement chamber of the spectrophotometer, and the spectral transmittance at a wavelength of 157.6 nm was measured with the spectrophotometer for each sample. The transmittance value is plotted against the thickness. From the transmittance Tr (0) = 90.7% at a thickness of 0 mm obtained by extrapolating the approximate line, h = 90.9−90 as the surface loss. .7 = 0.2 [%]. This surface loss may be considered to be the same when the same batch is subjected to the same cleaning process and is simultaneously measured by the same measuring device. In addition, the value 90.8% obtained by adding the surface loss h = 0.2% to the transmittance Tr = 90.6% of the sample of 3 mm thickness in this measurement is the surface loss of the sample of 3 mm thickness. (Internal transmittance, absorption coefficient, Fresnel reflection only). A value of 99.9% obtained by dividing the transmittance of 90.8% not including the surface loss by the theoretical transmittance Ts = 90.9% is 15 mm, and the sample of 3 mm thickness at 157.6 nm is 3 mm thick. The internal transmittance Ti (3) is a universal value that does not depend on the measurement batch.

次に、上記のように内部透過率を求めた直径30mm、厚さ3mmのサンプルをモニター用サンプルとして、直径30mm、厚さ20mmの被測定サンプルと同一バッチで、4mJ/cm2/pulseのエネルギー密度のF2レーザーを、1000000パルス照射した。照射後、モニター用サンプルと被測定サンプルの157.6nmでの透過率を分光光度計を用いて、同一バッチで測定した。ついで、モニター用サンプルの測定値から、この測定時の表面損失分を求めた。 モニター用サンプルの内部透過率Tim(0)=99.9%(=0.999)に理論透過率Ts=90.9%を乗じて得られる透過率(表面損失分を含まず内部透過率、吸収係数、フレネル反射のみの透過率)90.8%から今回の測定値Trm(0)=90.3%を減じて得られる値0.5%が今回の測定時の表面損失分hmである。   Next, an energy density of 4 mJ / cm 2 / pulse was obtained in the same batch as the sample to be measured having a diameter of 30 mm and a thickness of 20 mm, using the sample having a diameter of 30 mm and a thickness of 3 mm as determined above for the internal transmittance. 1 million pulses of the F2 laser. After irradiation, the transmittance at 157.6 nm of the monitor sample and the sample to be measured was measured in the same batch using a spectrophotometer. Next, the surface loss at the time of this measurement was determined from the measured value of the monitor sample. Transmittance obtained by multiplying internal transmittance Tim (0) = 99.9% (= 0.999) of the monitor sample by theoretical transmittance Ts = 90.9% (internal transmittance not including surface loss, The value 0.5% obtained by subtracting the current measured value Trm (0) = 90.3% from 90.8% (absorption coefficient, transmittance of Fresnel reflection only) is the surface loss hm during the current measurement. .

ついで、被測定サンプルの測定値Trv(20)=89.0%に表面損失hm=0.5%を加える。この値89.5%が、20mm厚さの被測定サンプルの表面損失を含まない(内部透過率、吸収係数、フレネル反射のみの)透過率である。そして、その求めた値を90.9で除した値98.5%が、この被測定サンプルの20mm厚さでの内部透過率Tiv(20)である。この20mm厚さの内部透過率98.6%から、式(5b)を用いて変換すると、このサンプルの10mm厚さでの内部透過率Tiv(10)は99.2%となる。   Next, the surface loss hm = 0.5% is added to the measured value Trv (20) = 89.0% of the sample to be measured. This value of 89.5% is the transmittance (including only the internal transmittance, absorption coefficient, and Fresnel reflection) of the sample to be measured having a thickness of 20 mm. Then, the value 98.5% obtained by dividing the obtained value by 90.9 is the internal transmittance Tiv (20) of the sample to be measured at a thickness of 20 mm. When the internal transmittance 98.6% at the 20 mm thickness is converted using the equation (5b), the internal transmittance Tiv (10) at the 10 mm thickness of this sample is 99.2%.

このモニター用サンプルと被測定サンプルを同一バッチで洗浄し、同一バッチで測定する作業を5回繰り返した。その結果を表3に記した。   The monitoring sample and the sample to be measured were washed in the same batch, and the operation of measuring in the same batch was repeated five times. The results are shown in Table 3.

Figure 2006329633
Figure 2006329633

表3に示すとおり被測定サンプルの内部透過率の測定精度を標準偏差の2倍(2σ)で表すと0.1%であった。   As shown in Table 3, the measurement accuracy of the internal transmittance of the sample to be measured was 0.1% when expressed as twice the standard deviation (2σ).

本発明と比較する例として、従来の方法の透過率の測定を行った。まず、表面損失分を得るために、内部透過率の値が同一と考えられる、厚さの異なるフッ化カルシウム結晶を用意した。   As an example for comparison with the present invention, the transmittance of a conventional method was measured. First, in order to obtain the surface loss, calcium fluoride crystals having different thicknesses and having the same internal transmittance value were prepared.

人工的に化学合成されたフッ化カルシウム原料を用いて、ブリッジマン法により結晶成長させたインゴットの隣接部位から、直径30mm、厚さ3、10、20、40mmの4種類の試験片を採取し、平行2平面を光学研磨した。表面のよごれを洗浄するため、4種類のサンプルに対して同一バッチでIPA洗浄を行った。洗浄後、分光光度計の測定チャンバー内に同時に4種類のサンプルをセットし、それぞれのサンプルについて、分光光度計で波長140nmから200nmまでの分光透過率を測定した。その157.6nmでの透過率の値を厚さに対してプロットし、この近似直線を外挿した厚さ0mmでの透過率90.2%から、表面損失分として、h=90.9−90.2=0.7[%]と見積もった。この0.7%を同一条件で洗浄した場合の表面損失分として採用した。   Four types of test specimens with a diameter of 30 mm, thicknesses of 3, 10, 20, and 40 mm were collected from adjacent parts of an ingot crystal-grown by the Bridgeman method using artificially synthesized calcium fluoride raw materials. The two parallel planes were optically polished. In order to clean the surface dirt, IPA cleaning was performed on four types of samples in the same batch. After washing, four types of samples were set simultaneously in the measurement chamber of the spectrophotometer, and the spectral transmittance from a wavelength of 140 nm to 200 nm was measured for each sample with the spectrophotometer. The transmittance value at 157.6 nm was plotted against the thickness, and the transmittance was 90.2% at a thickness of 0 mm obtained by extrapolating this approximate straight line. It was estimated that 90.2 = 0.7 [%]. This 0.7% was adopted as the surface loss when washed under the same conditions.

次に、厚さ10mmの被測定サンプルだけを、同一の条件でIPA洗浄を行い、分光光度計で157.6nmの透過率を測定した。測定値Trv(10)=89.7%に表面損失h=0.7%を加えた値90.4%が、10mm厚さの被測定サンプルの表面損失を含まない(内部透過率、吸収係数、フレネル反射のみの)透過率である。そして、その求めた値をTs=90.9%で除した値99.4%が、この被測定サンプルの10mm厚さでの内部透過率(Tiv)である。   Next, only a sample to be measured having a thickness of 10 mm was subjected to IPA cleaning under the same conditions, and a transmittance of 157.6 nm was measured with a spectrophotometer. The measured value Trv (10) = 89.7% plus the surface loss h = 0.7% does not include the surface loss of the sample to be measured having a thickness of 10 mm (internal transmittance, absorption coefficient). , Transmittance of Fresnel reflection only). A value 99.4% obtained by dividing the obtained value by Ts = 90.9% is the internal transmittance (Tiv) at a thickness of 10 mm of the sample to be measured.

この被測定サンプルだけを同一条件で洗浄し、測定する作業を5回繰り返した。その結果を表4に記した。   Only this sample to be measured was washed under the same conditions, and the measurement operation was repeated five times. The results are shown in Table 4.

Figure 2006329633
Figure 2006329633

表4に示すとおり被測定サンプルの内部透過率の測定精度を標準偏差の2倍(2σ)で表すと0.4%であった。   As shown in Table 4, when the measurement accuracy of the internal transmittance of the sample to be measured was expressed by twice the standard deviation (2σ), it was 0.4%.

本発明の光学測定で用いる光学材料としては、光学ガラス、石英ガラス及び結晶材料等がある。結晶材料とは、水晶及びフッ化物結晶等がある。フッ化物結晶とは、フッ化カルシウム、フッ化バリウム又はフッ化マグネシウム等である。   Examples of the optical material used in the optical measurement of the present invention include optical glass, quartz glass, and crystal material. Crystal materials include quartz and fluoride crystals. The fluoride crystal is calcium fluoride, barium fluoride, magnesium fluoride, or the like.

本発明における光学部材の光学特性測定方法を示したフローチャートの一例である。It is an example of the flowchart which showed the optical characteristic measuring method of the optical member in this invention. 透過率と厚さの関係を表す図である。It is a figure showing the relationship between the transmittance | permeability and thickness. 各種損失と透過率等との関係を表す図である。It is a figure showing the relationship between various loss, the transmittance | permeability, etc. FIG. 従来の方法における光学部材の光学特性測定方法を示したフローチャートの一例である。It is an example of the flowchart which showed the optical characteristic measuring method of the optical member in the conventional method.

Claims (26)

被測定サンプル及びモニター用サンプルを同一バッチで洗浄する工程と、該洗浄された被測定サンプル及び該モニター用サンプルを同一環境で運搬する工程と、該運搬された被測定サンプル及び該モニター用サンプルの光学特性を同一バッチで測定する工程を有し、該モニター用サンプルの該測定値を用いて前記被測定サンプルの透過率又は反射率を補正する工程を有することを特徴とする光学部材の光学特性測定方法。 A step of washing the sample to be measured and the sample for monitoring in the same batch, a step of carrying the washed sample to be measured and the sample for monitoring in the same environment, and a step of carrying the sample to be measured and the sample for monitoring An optical characteristic of an optical member, comprising the step of measuring optical characteristics in the same batch, and the step of correcting the transmittance or reflectance of the sample to be measured using the measured value of the sample for monitoring Measuring method. 請求項1に記載の光学部材の光学特性測定方法において、前記透過率又は反射率を補正する工程とは、前記モニター用サンプルの測定値から表面損失分を算出し、該表面損失分を用いて前記被測定サンプルの透過率又は反射率を補正する工程であることを特徴とする光学部材の光学特性測定方法。 In the optical characteristic measuring method of the optical member according to claim 1, the step of correcting the transmittance or reflectance calculates a surface loss from a measured value of the monitor sample, and uses the surface loss. A method for measuring optical characteristics of an optical member, comprising correcting the transmittance or reflectance of the sample to be measured. 請求項1又は請求項2に記載の光学部材の光学特性測定方法において、透過率が既知であるサンプルをモニター用サンプルとして用いることを特徴とする光学部材の光学特性測定方法。 The method for measuring optical properties of an optical member according to claim 1 or 2, wherein a sample having a known transmittance is used as a sample for monitoring. 請求項3に記載の光学部材の光学特性測定方法において、複数の厚さの異なるサンプルの透過率を測定し、該複数の値から厚さが0の時の透過率を推定し、該推定透過率と理論透過率の差から求めた表面損失分を用いて、内部透過率を算出したサンプルを透過率が既知であるモニター用サンプルとして用いることを特徴とする光学部材の光学特性測定方法。 4. The optical property measurement method for an optical member according to claim 3, wherein the transmittance of a plurality of samples having different thicknesses is measured, the transmittance when the thickness is 0 is estimated from the plurality of values, and the estimated transmission A method for measuring optical characteristics of an optical member, wherein a sample whose internal transmittance is calculated using a surface loss obtained from a difference between the transmittance and the theoretical transmittance is used as a monitor sample whose transmittance is known. 請求項1から4の何れか1つに記載の被測定光学特性測定方法を用いて測定されたサンプルを、透過率が既知であるモニター用サンプルとして用いることを特徴とする光学部材の光学特性測定方法。 An optical property measurement of an optical member, characterized in that a sample measured by using the optical property measurement method to be measured according to any one of claims 1 to 4 is used as a monitor sample having a known transmittance. Method. 請求項1から5の何れか1つに記載の光学特性測定方法において、透過率とは、ある特定の厚さにおける内部透過率である事を特徴とする光学部材の光学特性測定方法。 6. The optical property measuring method according to claim 1, wherein the transmittance is an internal transmittance at a specific thickness. 請求項1から6の何れか1つに記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる洗浄とは、湿式洗浄又は乾式洗浄であることを特徴とする光学部材の光学特性測定方法。 7. The optical property measuring method for an optical member according to claim 1, wherein the cleaning used in the same batch for the sample to be measured and the sample for monitoring is wet cleaning or dry cleaning. A method for measuring optical characteristics of an optical member. 請求項7に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる乾式洗浄とは、波長250nm以下の光を照射することであることを特徴とする光学部材の光学特性測定方法。 The optical property measurement method for an optical member according to claim 7, wherein the dry cleaning used in the same batch for the sample to be measured and the sample for monitoring is to irradiate light having a wavelength of 250 nm or less. A method for measuring optical characteristics of an optical member. 請求項7に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる乾式洗浄とは、レーザを照射することであることを特徴とする光学部材の光学特性測定方法。 The optical property measurement method for an optical member according to claim 7, wherein the dry cleaning used in the same batch for the sample to be measured and the sample for monitoring is to irradiate a laser. Characteristic measurement method. 請求項9に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる前記レーザとは、ArFエキシマレーザであることを特徴とする光学部材の光学特性測定方法。 10. The optical property measurement method for an optical member according to claim 9, wherein the laser used in the same batch for the sample to be measured and the monitor sample is an ArF excimer laser. Method. 請求項9に記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに同一バッチで用いる前記レーザとは、Fレーザであることを特徴とする光学部材の光学特性測定方法。 An optical characteristic measuring method of the optical member according to claim 9, wherein the said laser used in the same batch to be measured the sample and the monitoring sample, measuring the optical characteristics of the optical member, which is a F 2 laser Method. 請求項9から11の何れか1つに記載の光学部材の光学特性測定方法において、前記被測定サンプル及び前記モニター用サンプルに照射するレーザは、エネルギー密度0.1mJ/cm/pulse以上、250mJ/cm/pulse以下の何れかの強度で、照射数1000パルス以上、10000000パルス以下の何れかのパルス数であることを特徴とする光学部材の光学特性測定方法。 12. The method of measuring an optical property of an optical member according to claim 9, wherein the laser to be irradiated to the sample to be measured and the sample for monitoring has an energy density of 0.1 mJ / cm 2 / pulse or more and 250 mJ. A method for measuring optical characteristics of an optical member, characterized in that the intensity is any one of / cm 2 / pulse or less and the number of pulses is any number of 1000 pulses or more and 10000000 pulses or less. 請求項1から12のいずれか1つに記載の光学部材の光学特性測定方法において、前記光学特性の測定に用いられる光の波長が180nm以上250nm以下であることを特徴とする光学部材の光学特性測定方法。 13. The optical property measurement method for an optical member according to claim 1, wherein a wavelength of light used for the measurement of the optical property is 180 nm or more and 250 nm or less. Measuring method. 請求項1から13の何れか1つに記載の光学部材の光学特性測定方法において、前記光学特性の測定に用いられる光の波長が180nm以下であることを特徴とする光学部材の光学特性測定方法。 14. The optical property measurement method for an optical member according to claim 1, wherein a wavelength of light used for the measurement of the optical property is 180 nm or less. . 請求項1から14の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルと前記被測定サンプルは同一物質であることを特徴とする光学部材の光学特性測定方法。 15. The method for measuring optical characteristics of an optical member according to claim 1, wherein the monitoring sample and the sample to be measured are the same substance. 請求項1から15の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルと前記被測定サンプルは同一の厚さであることを特徴とする光学部材の光学特性測定方法。 16. The optical property measuring method for an optical member according to claim 1, wherein the monitor sample and the sample to be measured have the same thickness. . 請求項1から15の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルの厚さは、前記被測定サンプルの厚さよりも薄いことを特徴とする光学部材の光学特性測定方法。 16. The optical property measurement method for an optical member according to claim 1, wherein a thickness of the monitor sample is thinner than a thickness of the sample to be measured. Measuring method. 請求項1から17の何れか1つに記載の光学部材の光学特性測定方法において、前記モニター用サンプルの厚さが1mm以上30mm以下であることを特徴とする光学部材の光学特性測定方法。 18. The optical property measurement method for an optical member according to claim 1, wherein the monitor sample has a thickness of 1 mm to 30 mm. 請求項1から18の何れか1つに記載の光学特性において、内部透過率が99.0%以上のサンプルを前記モニター用サンプルとして使用することを特徴とする光学部材の光学特性測定方法。 19. The optical characteristic measuring method according to claim 1, wherein a sample having an internal transmittance of 99.0% or more is used as the monitor sample. 請求項1から19の何れか1つに記載の光学部材の光学特性測定方法において、透過率の測定精度が、標準偏差の2倍で0.2%以下であることを特徴とする光学部材の光学特性測定方法。 20. The optical property measurement method for an optical member according to claim 1, wherein the measurement accuracy of transmittance is 0.2% or less at twice the standard deviation. Optical property measurement method. 請求項1から20の何れか1つに記載の光学部材の光学特性測定方法において、測定対象物が光学ガラス、石英ガラス又は結晶材料であることを特徴とする光学特性測定方法。 21. The optical property measuring method for an optical member according to claim 1, wherein the object to be measured is optical glass, quartz glass, or a crystal material. 請求項1から21の何れか1つに記載の光学特性測定方法を用いて品質検査を行い基準を満足したものであることを特徴とする光学部材。 An optical member characterized in that a quality inspection is performed using the optical characteristic measuring method according to any one of claims 1 to 21 and a standard is satisfied. 光源を用いる装置であって、該装置の光学系を構成する光学材料の少なくとも1つ以上が、請求項22に記載の光学部材であることを特徴とする光学装置。 23. An optical device using a light source, wherein at least one of optical materials constituting an optical system of the device is the optical member according to claim 22. 請求項23に記載の装置であって、光源として用いる光の波長が180nm以上250nm以下であることを特徴とする光学装置。 24. The optical device according to claim 23, wherein the wavelength of light used as the light source is not less than 180 nm and not more than 250 nm. 請求項23に記載の装置であって、光源として用いる光の波長が180nm以下であることを特徴とする光学装置。 24. The optical device according to claim 23, wherein the wavelength of light used as the light source is 180 nm or less. 請求項23から25の何れかに記載の光学装置が、光リソグラフィー装置であることを特徴とする光学装置。
The optical apparatus according to claim 23, wherein the optical apparatus is an optical lithography apparatus.
JP2005148919A 2005-05-23 2005-05-23 Method for measuring optical characteristics of optical member Expired - Fee Related JP5103711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148919A JP5103711B2 (en) 2005-05-23 2005-05-23 Method for measuring optical characteristics of optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148919A JP5103711B2 (en) 2005-05-23 2005-05-23 Method for measuring optical characteristics of optical member

Publications (2)

Publication Number Publication Date
JP2006329633A true JP2006329633A (en) 2006-12-07
JP5103711B2 JP5103711B2 (en) 2012-12-19

Family

ID=37551484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148919A Expired - Fee Related JP5103711B2 (en) 2005-05-23 2005-05-23 Method for measuring optical characteristics of optical member

Country Status (1)

Country Link
JP (1) JP5103711B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284309A (en) * 2000-03-31 2001-10-12 Shin Etsu Handotai Co Ltd Treatment method of container
JP2002047097A (en) * 2000-08-01 2002-02-12 Nikon Corp Optical material, and measurement method for internal transmittance and absorption coefficient thereof
JP2002193697A (en) * 2000-12-27 2002-07-10 Nikon Corp Method for producing fluoride crystal and fluoride crystal produced thereby
JP2004286596A (en) * 2003-03-20 2004-10-14 Denso Corp Method for inspecting fuel path component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284309A (en) * 2000-03-31 2001-10-12 Shin Etsu Handotai Co Ltd Treatment method of container
JP2002047097A (en) * 2000-08-01 2002-02-12 Nikon Corp Optical material, and measurement method for internal transmittance and absorption coefficient thereof
JP2002193697A (en) * 2000-12-27 2002-07-10 Nikon Corp Method for producing fluoride crystal and fluoride crystal produced thereby
JP2004286596A (en) * 2003-03-20 2004-10-14 Denso Corp Method for inspecting fuel path component

Also Published As

Publication number Publication date
JP5103711B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
US10274370B2 (en) Inspection apparatus and method
KR101882892B1 (en) Method and apparatus for measuring a structure on a substrate, models for error correction, computer program products for implementing such methods &amp; apparatus
JP4701208B2 (en) Method for characterizing transmission loss of optical system, method for measuring substrate characteristics, and inspection apparatus
JP5489002B2 (en) Method and apparatus for DUV transmission mapping
US11131629B2 (en) Apparatus and methods for measuring phase and amplitude of light through a layer
KR102315797B1 (en) Method and apparatus for polarized reticle inspection
KR20190053280A (en) Phase contrast monitoring for extreme ultraviolet (EUV) mask defect inspection
JP2018535426A (en) Non-contact thermal measurement of VUV optical elements
JP4051474B2 (en) Method for measuring transmittance of optical member for ultraviolet
JP2002195962A (en) Improved method for measuring irradiated stability of crystal
JP5103711B2 (en) Method for measuring optical characteristics of optical member
Ehret et al. A new high-aperture 193 nm microscope for the traceable dimensional characterization of micro-and nanostructures
US6989904B2 (en) Method of determining local structures in optical crystals
Boher et al. New method for determination of the photoresist Dill parameters using spectroscopic ellipsometry
US11914289B2 (en) Method and apparatus for determining an effect of one or more pixels to be introduced into a substrate of a photolithographic mask
Zavecz et al. Rapid and precise monitor of reticle haze
Wells et al. Optical path and image performance monitoring of a full-field 157-nm scanner
Wurm et al. Comparative scatterometric CD and edge profile measurements on a MoSi mask using different scatterometers
Kubo et al. Immersion exposure tool for the 45-nm HP mass production
Engel et al. Present and future industrial metrology needs for qualification of high-quality optical microlithography materials
Chen et al. Defect printability analysis by lithographic simulation from high resolution mask images
Kang Optical path and image performance monitoring of a full-field 157-nm scanner
Wang et al. Improving the measurement performance of angle-resolved scattermetry by use of pupil optimization
Boher et al. A New Purged UV Spectroscopic Ellipsometer to characterize 157nm nanolithographic materials
Haze-Page Rapid and precise monitor of reticle haze

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5103711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees