JP2006328996A - Exhaust emission control device and exhaust emission control method - Google Patents

Exhaust emission control device and exhaust emission control method Download PDF

Info

Publication number
JP2006328996A
JP2006328996A JP2005150857A JP2005150857A JP2006328996A JP 2006328996 A JP2006328996 A JP 2006328996A JP 2005150857 A JP2005150857 A JP 2005150857A JP 2005150857 A JP2005150857 A JP 2005150857A JP 2006328996 A JP2006328996 A JP 2006328996A
Authority
JP
Japan
Prior art keywords
reactor
exhaust gas
concentration
nox
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005150857A
Other languages
Japanese (ja)
Inventor
Masaru Kakihana
大 垣花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005150857A priority Critical patent/JP2006328996A/en
Priority to PCT/JP2006/310831 priority patent/WO2006126720A1/en
Publication of JP2006328996A publication Critical patent/JP2006328996A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device and an exhaust emission control method of properly purifying nitrogen oxides included in exhaust gas exhausted from an automobile and a factory. <P>SOLUTION: This exhaust emission control device is characterized by having a reactor 20 arranged in an exhaust passage 70 and discharging to the exhaust gas, a detecting means 40m for detecting the concentration of the nitrogen oxides in the exhaust gas in the exhaust passage 70 on the downstream side of the reactor 20, and a control means 50 for controlling output of the reactor 20 on the basis of a comparing result between the concentration of the nitrogen oxides detected by the detecting means 40m and a predetermined reference value; and controls the output of the reactor 20 on the basis of its comparing result by comparing the detected concentration of the nitrogen oxides with the predetermined reference value by detecting the concentration of the nitrogen oxides in the exhaust gas in the exhaust passage 70 on the downstream side of the reactor 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排ガスを処理する排ガス浄化装置および排ガス浄化方法に関する。   The present invention relates to an exhaust gas purification apparatus and an exhaust gas purification method for treating exhaust gas.

一般に自動車、工場等から排出される排ガスには窒素酸化物等の有害物質が含まれていて、これらを触媒等の使用により浄化することが望まれている。しかしながら、排ガス中の酸素濃度が高い場合には、三元触媒等の触媒では窒素酸化物の浄化が困難になるという問題がある。   In general, exhaust gas discharged from automobiles, factories and the like contains harmful substances such as nitrogen oxides, and it is desired to purify them by using a catalyst or the like. However, when the oxygen concentration in the exhaust gas is high, there is a problem that it is difficult to purify nitrogen oxides with a catalyst such as a three-way catalyst.

そこで、例えば、窒素酸化物を放電により酸化し、酸化された窒素酸化物を吸着部で吸着し、その後吸着部に電界を加えて、吸着してイオン化した硝酸イオンを正極性側に濃縮し、最後に濃縮した硝酸イオンを還元することで窒素酸化物(NOx)を浄化することが提案されている(特許文献1参照)。   Therefore, for example, the nitrogen oxide is oxidized by discharge, the oxidized nitrogen oxide is adsorbed by the adsorption part, and then an electric field is applied to the adsorption part to concentrate the adsorbed and ionized nitrate ions to the positive polarity side, Finally, it has been proposed to purify nitrogen oxides (NOx) by reducing concentrated nitrate ions (see Patent Document 1).

特開2004−68797号公報JP 2004-68797 A

しかしながら、上記特許文献1に記載の如く排ガスに放電させると、窒素酸化物の浄化に適する反応、例えばNOが酸化されてNOになる反応が生じる場合もあるが、放電の条件によっては雰囲気温度が上昇して排ガス中のNに酸化が生じ、例えばNOが生じる可能性もある。これでは窒素酸化物の浄化を促すどころか、それを増加させることになり、窒素酸化物の浄化が適切に行われない可能性がある。 However, when the exhaust gas is discharged as described in Patent Document 1, a reaction suitable for the purification of nitrogen oxides, for example, a reaction in which NO is oxidized to NO 2 may occur, but depending on the discharge conditions, the ambient temperature May rise and oxidation may occur in N 2 in the exhaust gas, for example, NO may be generated. In this case, instead of promoting the purification of nitrogen oxides, it is increased, and there is a possibility that the purification of nitrogen oxides may not be performed properly.

そこで、本発明は、自動車、工場等から排出される排ガスに含まれる窒素酸化物を適切に浄化する排ガス浄化装置および排ガス浄化方法を提供することを目的とする。   Then, an object of this invention is to provide the exhaust gas purification apparatus and exhaust gas purification method which purify | clean appropriately the nitrogen oxide contained in the exhaust gas discharged | emitted from a motor vehicle, a factory, etc.

上記課題を解決するために、本発明による排ガス浄化装置は、排気通路に設けられ、排ガスに放電する反応器と、前記反応器の下流側の前記排気通路における前記排ガス中の窒素酸化物の濃度を検出する検出手段と、前記検出手段によって検出された窒素酸化物の濃度と所定の基準値との比較結果に基づいて、前記反応器の出力を制御する制御手段と、を備えることを特徴とする。   In order to solve the above problems, an exhaust gas purifying apparatus according to the present invention is provided in an exhaust passage and discharges into the exhaust gas, and the concentration of nitrogen oxides in the exhaust gas in the exhaust passage downstream of the reactor. And a control means for controlling the output of the reactor based on a comparison result between the concentration of nitrogen oxides detected by the detection means and a predetermined reference value. To do.

上記構成により、反応器が、反応器の下流側の排ガス中の窒素酸化物の濃度と所定の基準値との比較結果に基づいて制御されることとなるので、反応器を用いての窒素酸化物の浄化が適切に行われることが可能となる。   With the above configuration, the reactor is controlled based on the comparison result between the concentration of nitrogen oxides in the exhaust gas downstream of the reactor and a predetermined reference value, so that the nitrogen oxidation using the reactor is performed. It becomes possible to purify the object appropriately.

また、上記課題を解決するために、本発明による排ガス浄化方法は、排気通路を流れる排ガスに、該排気通路に設けられる反応器によって放電し、前記排ガス中の窒素酸化物の浄化を促進させる排ガス浄化方法であって、前記反応器の下流側の前記排気通路における前記排ガス中の窒素酸化物の濃度を検出するステップと、前記検出するステップにおいて検出された窒素酸化物の濃度と所定の基準値とを比較するステップと、前記比較の結果に基づいて、前記反応器の出力を制御するステップと、を備えることを特徴とする。   In order to solve the above-mentioned problem, the exhaust gas purification method according to the present invention discharges exhaust gas flowing through an exhaust passage by a reactor provided in the exhaust passage and promotes purification of nitrogen oxides in the exhaust gas. A purification method, the step of detecting the concentration of nitrogen oxides in the exhaust gas in the exhaust passage on the downstream side of the reactor, the concentration of nitrogen oxides detected in the detecting step and a predetermined reference value And a step of controlling the output of the reactor based on the result of the comparison.

これにより、反応器が、反応器の下流側の排ガス中の窒素酸化物の濃度と所定の基準値との比較結果に基づいて制御されるので、反応器を用いての窒素酸化物の浄化が適切に行われることが可能となる。   As a result, the reactor is controlled based on the comparison result between the concentration of nitrogen oxides in the exhaust gas downstream of the reactor and the predetermined reference value, so that the purification of nitrogen oxides using the reactor can be performed. It can be done appropriately.

望ましくは、前記基準値は、前記反応器よりも上流の前記排ガスにおける窒素酸化物の濃度である。これにより、反応器に入る前の排ガス中の窒素酸化物の濃度を基準として、反応器の出力が制御されることになる。   Preferably, the reference value is a concentration of nitrogen oxides in the exhaust gas upstream of the reactor. Thereby, the output of the reactor is controlled on the basis of the concentration of nitrogen oxides in the exhaust gas before entering the reactor.

また、前記制御するステップは、前記反応器の下流側の前記排気通路における窒素酸化物の濃度が、前記基準値を上回った場合に、前記反応器の動作を抑制するステップを含むことを特徴とする。これにより、反応器による窒素酸化物の増加が抑制されることになり、ひいては反応器の作動動力を節約することが可能となる。   Further, the controlling step includes a step of suppressing the operation of the reactor when the concentration of nitrogen oxides in the exhaust passage on the downstream side of the reactor exceeds the reference value. To do. As a result, an increase in nitrogen oxides by the reactor is suppressed, and as a result, the operating power of the reactor can be saved.

本発明によれば、自動車、工場等から排出される排ガスに含まれる窒素酸化物が適切に浄化される。   According to the present invention, nitrogen oxides contained in exhaust gas discharged from automobiles, factories and the like are appropriately purified.

本発明の実施形態について説明する前に、1対の電極からなる反応器により排ガスに放電させてNOとNOxの濃度がどのように変動するか、に関しての一実験結果について、図1を用いて説明する。この実験では、一定組成の排ガスを排気通路に流し、この排気通路に設けられた反応器によりその排ガスに向けて種々の値の電圧を印加することで放電を起させて、反応器から出てきた排ガスにおけるNO濃度(曲線t1)、NO濃度(曲線t2)、およびNOとNOとの和であるNOx濃度(曲線T)を測定した。図1の印加電圧「0kV」、すなわち反応器から排ガスに向けて放電されていない状態から、印加電圧を徐々に高くしていくと、NOx濃度は30kV付近まで概ね変化しないが、それ以上の高電圧が作用されるとNOx濃度が増す傾向にある(曲線T参照)。これは、曲線t1およびt2から明らかなように、主として減少傾向にあったNO濃度が増加傾向に変化することに起因する。すなわち、まず、印加電圧が0kVから徐々に高くされると、およそ20kVからNO濃度は、NOが酸化されてNOになることにより減少し始め、これに伴いNO濃度が増加する。この傾向はおよそ30kVまで続く。しかしながら、およそ30kVになると、排ガス中のNに高電圧が作用されてそれがOと反応が生じるなどしてNO(いわゆるサーマルNOx)が生じるために、NOの濃度が増加傾向に転じる。一方で、酸素濃度の低下に伴い、NOがNOに変化しにくくなり、NOは減少傾向に転じる。しかしながら、NO濃度の増加量が、NO濃度の減少量を上回るため、トータルのNOx濃度は増加傾向に転じるのである。これより、反応器への印加電圧を適切に制御しなければ、反応器を介すことで却ってNOxの浄化が行われ難くなる可能性があることが理解される。そこで、本実施形態では、NOxの浄化のレベルに応じて反応器への印加電圧を、適切な印加電圧に、例えば図1によるところの30kVから所定の範囲内になるように制御する。 Before describing the embodiment of the present invention, one experimental result regarding how the concentration of NO and NOx fluctuates by discharging to exhaust gas with a reactor comprising a pair of electrodes will be described with reference to FIG. explain. In this experiment, exhaust gas having a constant composition is caused to flow through an exhaust passage, and a discharge is generated by applying various values of voltage toward the exhaust gas by a reactor provided in the exhaust passage. NO gas concentration (curve t1), NO 2 concentration (curve t2), and NOx concentration (curve T), which is the sum of NO and NO 2 , were measured. When the applied voltage is gradually increased from the applied voltage “0 kV” in FIG. 1, that is, from the state in which the reactor is not discharged toward the exhaust gas, the NOx concentration does not substantially change to around 30 kV, but a higher level than that. When a voltage is applied, the NOx concentration tends to increase (see curve T). As apparent from the curves t1 and t2, this is mainly due to the change in the NO concentration that has been in a decreasing trend to an increasing trend. That is, first, when the applied voltage is gradually increased from 0 kV, the NO concentration starts to decrease as NO is oxidized to NO 2 from about 20 kV, and the NO 2 concentration increases accordingly. This trend continues to approximately 30 kV. However, when the voltage reaches approximately 30 kV, NO (so-called thermal NOx) is generated because a high voltage is applied to N 2 in the exhaust gas and reacts with O 2 to generate NO (so-called thermal NOx), so that the concentration of NO tends to increase. On the other hand, with decreasing oxygen concentration, NO is hardly changed into NO 2, NO 2 turns to decrease. However, since the increase amount of the NO concentration exceeds the decrease amount of the NO 2 concentration, the total NOx concentration starts to increase. From this, it is understood that if the voltage applied to the reactor is not properly controlled, it is difficult to purify NOx through the reactor. Therefore, in this embodiment, the applied voltage to the reactor is controlled to an appropriate applied voltage, for example, from 30 kV as shown in FIG. 1 within a predetermined range according to the NOx purification level.

以下、本発明の実施形態に係る排ガス浄化装置および排ガス浄化方法について、添付図面を参照しつつ詳細に説明する。   Hereinafter, an exhaust gas purification apparatus and an exhaust gas purification method according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図2は、本発明の実施形態における排ガス浄化装置10が、エンジン60を搭載した車両の排気系に適用されたところを示す概略構成図である。排ガス浄化装置10は、車両に搭載されたエンジン60の排気系、すなわちエンジン60の排気ポート(不図示)よりも下流側の排気通路70に設置され、その排気通路70は排気管72により区画形成されている。なお、本実施形態のエンジン60はディーゼルエンジンである。しかしながら、本発明に係る排ガス浄化装置は、各種の内燃機関、すなわち火花点火機関や圧縮点火機関の排気系などに適用され得、特に排ガス中の酸素濃度の高いリーンバーンガソリンエンジンなどに適用されても良い。   FIG. 2 is a schematic configuration diagram showing that the exhaust gas purification apparatus 10 according to the embodiment of the present invention is applied to an exhaust system of a vehicle on which the engine 60 is mounted. The exhaust gas purification apparatus 10 is installed in an exhaust system of an engine 60 mounted on a vehicle, that is, in an exhaust passage 70 downstream of an exhaust port (not shown) of the engine 60, and the exhaust passage 70 is partitioned by an exhaust pipe 72. Has been. In addition, the engine 60 of this embodiment is a diesel engine. However, the exhaust gas purifying apparatus according to the present invention can be applied to various internal combustion engines, that is, an exhaust system of a spark ignition engine or a compression ignition engine, and is particularly applied to a lean burn gasoline engine having a high oxygen concentration in exhaust gas. Also good.

本実施形態の排ガス浄化装置10は、反応器20と、触媒30と、NOx濃度計(NOxセンサ)40(40uと40m)と、それらを制御する制御装置(ECU)50とを含んで構成されている。反応器20は排気通路70に設けられ、反応器20よりも下流側の排気通路70に触媒30が設けられている。本実施形態のNOxセンサ40としては、反応器20よりも上流側の排気通路70にNOxセンサ40uが、反応器20よりも下流側であって触媒30よりも上流側の排気通路70にNOxセンサ40mが設けられている。   The exhaust gas purification apparatus 10 of the present embodiment includes a reactor 20, a catalyst 30, a NOx concentration meter (NOx sensor) 40 (40u and 40m), and a control device (ECU) 50 that controls them. ing. The reactor 20 is provided in the exhaust passage 70, and the catalyst 30 is provided in the exhaust passage 70 downstream from the reactor 20. As the NOx sensor 40 of this embodiment, the NOx sensor 40u is disposed in the exhaust passage 70 upstream of the reactor 20, and the NOx sensor 40 is disposed in the exhaust passage 70 downstream of the reactor 20 and upstream of the catalyst 30. 40m is provided.

本実施形態の反応器20は、排気通路70を流れる排ガスに向けて放電させるべく排気管72に設置される。反応器20は同軸円筒型のものであり、反応器20はそれ自体の軸線が排気通路70の軸線とほぼ一致するように、排気管72に組み込まれている。反応器20は、ケース22と、ケース22を貫いて延在する中心電極24と、この中心電極24が中心を通り且つケース22の外周面を包む接地電極26と、中心電極24にパルス電圧を印加する高電圧電源28とにより構成されている。なお、接地電極26は、電気的に接地26aされている。   The reactor 20 of this embodiment is installed in the exhaust pipe 72 so as to discharge toward the exhaust gas flowing through the exhaust passage 70. The reactor 20 is of a coaxial cylindrical type, and the reactor 20 is incorporated in the exhaust pipe 72 so that its own axis substantially coincides with the axis of the exhaust passage 70. The reactor 20 includes a case 22, a center electrode 24 that extends through the case 22, a ground electrode 26 that passes through the center of the case 24 and encloses the outer peripheral surface of the case 22, and a pulse voltage applied to the center electrode 24. And a high voltage power supply 28 to be applied. The ground electrode 26 is electrically grounded 26a.

反応器20の中心電極24は、排ガスの流れ方向と同方向に延びており、その中心電極24の上流側の端部には、金属結線28aを介して高電圧電源28が接続されている。中心電極24は、耐腐食性に優れたクロム鋼(例えば、10Cr5Al)で作製され得るが、それにのみ限定されるものではなく、他の耐腐食性に優れた金属その他の導電体を用いることができる。ケース22はセラミックス等の耐熱性に優れた材料で作製されることが望ましいが、ディーゼルエンジンであるので排気系の温度が低いエンジン60の場合には、ケース22はアクリル樹脂など耐熱性の比較的低い材料から作製されても良い。一方、接地電極26は、ステンレス鋼などの耐熱性および耐腐食性のある導電体で形成されている。高電圧電源28は、不図示の直流電源(例えば、車載バッテリ)の出力を昇圧して任意の電圧値および波形の直流パルス波を出力できるように、DC−DCコンバータおよびスイッチング回路を含んで構成されている。高電圧電源28は、中心電極24に所望の高電圧を印加するべく、後述するECU50からの制御出力により制御される。   The center electrode 24 of the reactor 20 extends in the same direction as the flow direction of the exhaust gas, and a high voltage power source 28 is connected to the upstream end of the center electrode 24 via a metal connection 28a. The center electrode 24 can be made of chromium steel having excellent corrosion resistance (for example, 10Cr5Al), but is not limited thereto, and other metals having excellent corrosion resistance and other conductors may be used. it can. The case 22 is preferably made of a material having excellent heat resistance such as ceramics. However, since the case 22 is a diesel engine and the engine 60 has a low exhaust system temperature, the case 22 is relatively heat resistant such as acrylic resin. It may be made from a low material. On the other hand, the ground electrode 26 is formed of a heat-resistant and corrosion-resistant conductor such as stainless steel. The high voltage power supply 28 includes a DC-DC converter and a switching circuit so that a DC pulse wave having an arbitrary voltage value and waveform can be output by boosting the output of a DC power supply (not shown) (for example, a vehicle-mounted battery). Has been. The high voltage power supply 28 is controlled by a control output from an ECU 50 described later so as to apply a desired high voltage to the center electrode 24.

本実施形態の触媒30は、NOx吸蔵還元型触媒(NSR触媒)であり、エンジン60から排出された排ガスから少なくとも窒素酸化物(NOx)を除去するべく設けられている。具体的には、触媒30は、ハニカム構造体を有するプラチナ/ロジウム系触媒であり、そこにNOx吸蔵機能を高めるためにバリウム(Ba)が担持されたものである。触媒成分として、それら以外にパラジウム、銅、マンガンなどが用いられても良い。触媒30は、少なくともNOxを浄化可能であればNSR触媒に限定されず、三元触媒であっても良い。例えば、三元触媒としては、酸素吸蔵機能を高めるためにセリウム(Ce)が担持されたプラチナ系触媒がある。   The catalyst 30 of the present embodiment is a NOx storage reduction catalyst (NSR catalyst), and is provided to remove at least nitrogen oxides (NOx) from the exhaust gas discharged from the engine 60. Specifically, the catalyst 30 is a platinum / rhodium catalyst having a honeycomb structure, on which barium (Ba) is supported in order to enhance the NOx occlusion function. In addition to these, palladium, copper, manganese, or the like may be used as the catalyst component. The catalyst 30 is not limited to an NSR catalyst as long as at least NOx can be purified, and may be a three-way catalyst. For example, as the three-way catalyst, there is a platinum catalyst on which cerium (Ce) is supported in order to enhance the oxygen storage function.

NOxセンサ40u、40mは、排気通路70を流れる排ガスにおけるNOxの濃度を検出する。   The NOx sensors 40u and 40m detect the concentration of NOx in the exhaust gas flowing through the exhaust passage 70.

ECU50は、CPU、ROM、RAM、A/D変換器、入力インタフェース、出力インタフェース等を含むマイクロコンピュータとして構成されている。ECU50の入力インタフェースにはNOxセンサ40u、40mが電気配線を介して接続されている。ECU50の出力インタフェースには、高電圧電源28が接続されている。そして、反応器20において高電圧電源28から中心電極24に印加される印加電圧が、検出されたNOx濃度と所定の基準値との比較結果に基づいて適切にNOxの酸化が促進されるように制御される。高電圧電源28への電圧指令信号を可変させることで、中心電極24への印加電圧が調整される。   The ECU 50 is configured as a microcomputer including a CPU, ROM, RAM, A / D converter, input interface, output interface, and the like. NOx sensors 40u and 40m are connected to the input interface of the ECU 50 via electric wiring. A high voltage power supply 28 is connected to the output interface of the ECU 50. The applied voltage applied from the high voltage power supply 28 to the center electrode 24 in the reactor 20 is appropriately promoted to oxidize NOx based on the comparison result between the detected NOx concentration and a predetermined reference value. Be controlled. The voltage applied to the center electrode 24 is adjusted by varying the voltage command signal to the high voltage power supply 28.

このような構成において、排気通路70を流れる排ガスに向けて、反応器20による放電が生じると、ある条件下ではプラズマが発生され、空気中の酸素分子Oに電子が衝突して酸素原子が生じ、この酸素原子が酸素分子と結合してオゾンOが生成される。このオゾンは酸化力が強いので、排ガスに含まれるNOx、特にNOは酸化されて、NOが生成し、触媒30へ導入されることになる。なお、酸素分子から生じた酸素原子が、例えばNOと反応することでもNOが生成される。 In such a configuration, when a discharge is generated by the reactor 20 toward the exhaust gas flowing through the exhaust passage 70, plasma is generated under certain conditions, and electrons collide with oxygen molecules O 2 in the air and oxygen atoms are generated. Oxygen atoms are combined with oxygen molecules to generate ozone O 3 . Since this ozone has a strong oxidizing power, NOx contained in the exhaust gas, particularly NO, is oxidized and NO 2 is generated and introduced into the catalyst 30. Note that NO 2 is also generated when oxygen atoms generated from oxygen molecules react with NO, for example.

一方、NSR触媒である触媒30上では、一般にNOxは、還元されてNやOにされることで浄化されるが、その前段階でNOxの酸化が行われるのが好適である。すなわち、例えばNOは、触媒30への導入より前に酸化されてNOとされてからNやOにされるのが好適である。触媒30に排ガスが導入される前に、上記の如く反応器20でNOxの酸化を促進することにより、NOxの浄化が効率よく行われることとなる。 On the other hand, on the catalyst 30 which is an NSR catalyst, NOx is generally purified by being reduced to N 2 or O 2 , but it is preferable that oxidation of NOx is performed in the previous stage. That is, for example, NO is preferably oxidized to NO 2 before being introduced into the catalyst 30 and then converted to N 2 or O 2 . Before exhaust gas is introduced into the catalyst 30, NOx purification is efficiently performed by promoting oxidation of NOx in the reactor 20 as described above.

しかしながら、上述の通りに、反応器20による排ガスへの放電の程度によっては、適切にNOxの浄化が行われない場合が生じ得る。そこで、本実施形態では、NOxの浄化レベルに応じて、反応器20による排ガスへの放電を制御することにしている。   However, as described above, depending on the degree of discharge to the exhaust gas by the reactor 20, there may be a case where NOx is not appropriately purified. Therefore, in the present embodiment, the discharge to the exhaust gas by the reactor 20 is controlled according to the NOx purification level.

以下に、反応器20への供給電力、すなわち中心電極24への印加電圧の制御について図3のフローチャートに基づいて説明する。   Hereinafter, the control of the power supplied to the reactor 20, that is, the voltage applied to the center electrode 24 will be described based on the flowchart of FIG.

まず、ECU50では、ステップS301において、後述する制御停止フラグが「0」であるかを判定する。初期状態では同フラグはリセットされているためここでは肯定される。次に、ステップS303で、NOxセンサ40uによる反応器20の上流側のNOx濃度(以下、第一NOx濃度と称する。)Cuが、またNOxセンサ40mによる反応器20の下流側のNOx濃度(以下、第二NOx濃度と称する。)Cmがそれぞれ検出されて、RAMに記憶される。次に、ステップS305で、RAMに記憶されている第二NOx濃度Cmが第一基準値Coより高いか否かが判定される。なお、第一基準値Coは、反応器20によりNOx浄化を促進する必要がないほど、排気通路を流れる排ガス中のNOx濃度が低いことを判定するための基準値であり、予め実験により求めてROMに記憶されている。   First, in step S301, the ECU 50 determines whether a control stop flag described later is “0”. Since the flag is reset in the initial state, it is affirmed here. Next, in step S303, the NOx concentration upstream of the reactor 20 by the NOx sensor 40u (hereinafter referred to as the first NOx concentration) Cu is also reduced by the NOx concentration downstream of the reactor 20 by the NOx sensor 40m (hereinafter referred to as the NOx concentration 40m). , Referred to as the second NOx concentration.) Cm is detected and stored in the RAM. Next, in step S305, it is determined whether or not the second NOx concentration Cm stored in the RAM is higher than the first reference value Co. The first reference value Co is a reference value for determining that the concentration of NOx in the exhaust gas flowing through the exhaust passage is so low that it is not necessary to promote NOx purification by the reactor 20, and is obtained in advance through experiments. Stored in ROM.

第二NOx濃度Cmが第一基準値Co以下と判断されると、ステップS307へ進み、後述するタイマカウンタ値nがリセットされ、またステップS309において、排ガスに向けて反応器20から放電されないように、反応器20における高電圧電源28からの印加電圧spが「0」、すなわちOFFにされて、該ルーチンは終了される。   When it is determined that the second NOx concentration Cm is equal to or less than the first reference value Co, the process proceeds to step S307, a timer counter value n described later is reset, and in step S309, the reactor 20 is not discharged toward the exhaust gas. The applied voltage sp from the high voltage power supply 28 in the reactor 20 is set to “0”, that is, turned OFF, and the routine is terminated.

一方、ステップS305で第二NOx濃度Cmが所定の第一基準値Coより高いと判断されると、ステップS311へ進み、RAMに記憶されている第二NOx濃度Cmが、同様にRAMに記憶されている第一NOx濃度Cuより高いか否かが判定される。すなわち、ステップS311では、第一NOx濃度Cuが所定の第二基準値として用いられる。そして、第二NOx濃度Cmが、第一NOx濃度Cu以下と判断されるとステップS313へ進み、タイマカウンタ値nがリセットされ、またステップS315で印加電圧spがsp1に設定される。この設定によって反応器20における印加電圧spがsp1となるように出力信号がECU50から発せられる。ここでいうsp1は、反応器20による排ガス中のNOxの酸化が好適に行われて例えばNOが生成される値である。例えば図1における30kVはこのsp1に相当する。 On the other hand, if it is determined in step S305 that the second NOx concentration Cm is higher than the predetermined first reference value Co, the process proceeds to step S311 and the second NOx concentration Cm stored in the RAM is similarly stored in the RAM. It is determined whether or not the first NOx concentration Cu is higher. That is, in step S311, the first NOx concentration Cu is used as the predetermined second reference value. When it is determined that the second NOx concentration Cm is equal to or lower than the first NOx concentration Cu, the process proceeds to step S313, the timer counter value n is reset, and the applied voltage sp is set to sp1 in step S315. With this setting, an output signal is issued from the ECU 50 so that the applied voltage sp in the reactor 20 becomes sp1. The term sp1 is a value that the reactor 20 for example NO 2 oxidation is suitably carried out in the NOx in the exhaust gas by generated. For example, 30 kV in FIG. 1 corresponds to this sp1.

一方、ステップS311で、第二NOx濃度Cmが第一NOx濃度Cuより高いと判断されると、ステップS317へ進む。ここで、第二NOx濃度Cmが第一NOx濃度Cuより高いことは、反応器20での放電によって排ガスのNOx濃度が高くなったことを意味する。この現象は、例えば排ガス中のNとOが反応して、望ましくないいわゆるサーマルNOxの生成が誘発されたことによるものと考えることができる。それ故、そのようなサーマルNOxが生成されないように、反応器20の動作、すなわち本実施形態では反応器20での印加電圧spを抑制することが必要とされる。そこで、ステップS317以下で、印加電圧spが抑制される。 On the other hand, if it is determined in step S311 that the second NOx concentration Cm is higher than the first NOx concentration Cu, the process proceeds to step S317. Here, the fact that the second NOx concentration Cm is higher than the first NOx concentration Cu means that the NOx concentration of the exhaust gas is increased by the discharge in the reactor 20. This phenomenon can be considered to be caused by, for example, the reaction of N 2 and O 2 in the exhaust gas to induce undesirable so-called thermal NOx production. Therefore, it is necessary to suppress the operation of the reactor 20, that is, the applied voltage sp in the reactor 20 in this embodiment so that such thermal NOx is not generated. Therefore, the applied voltage sp is suppressed at step S317 and subsequent steps.

ステップS317では、印加電圧spが抑制、すなわち低減される。具体的には、通常運転時の印加電圧sp1から、所定の減少量Δspが減じられた値によって、印加電圧spが更新される。そして印加電圧spがその更新されたものとなるように電圧指示信号がECU50から高電圧電源28へ発せられる。つまり、反応器20の下流側の排気通路における第二NOx濃度Cmが、所定の第二基準値である第一NOx濃度Cuを上回った場合に、反応器20の動作が抑制されるのである。また、タイマカウンタ値nがインクリメントされる(ステップS319)。このタイマカウンタ値nは、抑制された印加電圧spによる印加時間を計測するために用いられる。   In step S317, the applied voltage sp is suppressed, that is, reduced. Specifically, the applied voltage sp is updated by a value obtained by subtracting a predetermined decrease amount Δsp from the applied voltage sp1 during normal operation. Then, a voltage instruction signal is issued from the ECU 50 to the high voltage power supply 28 so that the applied voltage sp becomes the updated one. That is, the operation of the reactor 20 is suppressed when the second NOx concentration Cm in the exhaust passage on the downstream side of the reactor 20 exceeds the first NOx concentration Cu that is a predetermined second reference value. Also, the timer counter value n is incremented (step S319). The timer counter value n is used to measure the application time with the suppressed applied voltage sp.

このようにして抑制された印加電圧spの印加は、第二NOx濃度Cmが第一NOx濃度Cu以下になるまで(ステップS311)、繰り返し行われる。   The application of the applied voltage sp suppressed in this way is repeated until the second NOx concentration Cm becomes equal to or lower than the first NOx concentration Cu (step S311).

しかしながら、反応器20の動作を所定時間抑制しても、第二NOx濃度Cmが第一NOx濃度Cu以下にならない場合がある。そのような場合には、反応器20によってNOxの浄化が適切に促進されず、ひいては反応器20の故障が疑われる。そこで、ステップS321において、タイマカウンタ値nが、予めROMに記憶されている閾値xと比較され、タイマカウンタ値nが閾値x以上となると、否定されて、ステップS323へ進み、異常アラームが例えば運転者に向けて発せられると共に、反応器20の制御が停止されるべく、所定の制御停止フラグが「1」にセットされる。なお、同フラグは上述のステップS301で参照される結果、同フラグが「1」にセットされているため、ステップS309の処理が実行され、反応器20への電力供給がOFF(印加電圧sp=0)にされる。   However, even if the operation of the reactor 20 is suppressed for a predetermined time, the second NOx concentration Cm may not be equal to or lower than the first NOx concentration Cu. In such a case, the NOx purification is not properly promoted by the reactor 20, and thus the failure of the reactor 20 is suspected. Therefore, in step S321, the timer counter value n is compared with a threshold value x stored in advance in the ROM, and if the timer counter value n is equal to or greater than the threshold value x, the determination is negative and the process proceeds to step S323, and an abnormal alarm is generated, for example, And a predetermined control stop flag is set to “1” so that the control of the reactor 20 is stopped. Since the flag is set to “1” as a result of referring to step S301 described above, the process of step S309 is executed and the power supply to the reactor 20 is turned off (applied voltage sp = 0).

以上本実施形態の効果を確かめるために実験を行った。実験には上記装置をディーゼルエンジンを搭載した車両に適用し、10−15モードにおけるNOxセンサ40によって計測されるNOx浄化率と、反応器20への投入電力を計測した。なお、NOx浄化率を測定するため、反応器20よりも上流側のNOx濃度を上記NOxセンサ40uで測定すると共に、触媒30よりも下流側の排気通路70に追加のNOxセンサ40d(不図示)を設けて、そこでのNOx濃度をも計測した。そして電源の最大投入エネルギーである500W、50kVを反応器20に投入し続けた実験結果と比較した。この結果、反応器20への電力、すなわち印加電圧を調整しなかった比較例では、浄化率が70%、投入エネルギーが500Wであった。これに対して、上記本実施形態の制御に基づいて印加電圧を調整した例では、浄化率が85%、投入エネルギーが300Wであった。これにより、本実施形態の制御を行うことにより、サーマルNOxの発生を抑えつつNOxの浄化が促進されると共に、反応器20への供給電力が節約できることが明らかとなった。   As described above, experiments were conducted to confirm the effect of the present embodiment. In the experiment, the apparatus was applied to a vehicle equipped with a diesel engine, and the NOx purification rate measured by the NOx sensor 40 in the 10-15 mode and the input power to the reactor 20 were measured. In order to measure the NOx purification rate, the NOx concentration upstream of the reactor 20 is measured by the NOx sensor 40u, and an additional NOx sensor 40d (not shown) is disposed in the exhaust passage 70 downstream of the catalyst 30. The NOx concentration there was also measured. And it compared with the experimental result which continued charging 500W and 50kV which are the maximum input energy of a power supply into the reactor 20. FIG. As a result, in the comparative example in which the power to the reactor 20, that is, the applied voltage was not adjusted, the purification rate was 70% and the input energy was 500W. In contrast, in the example in which the applied voltage was adjusted based on the control of the present embodiment, the purification rate was 85% and the input energy was 300W. As a result, it has been clarified that the control of this embodiment promotes the purification of NOx while suppressing the generation of thermal NOx and saves the power supplied to the reactor 20.

以上、本発明を好適な実施形態に基づいて説明したけれども、本発明は内燃機関の排気系ばかりでなく、工場等からの排気系など種々の排気系に適用可能である。また、反応器20は、電力の作用により排ガスを浄化することが可能であればプラズマ生成の有無を問わず、また同軸円筒型に限らず平行平板型のものなど他の形式のものであっても良い。また、上記実施形態では反応器20の下流側の排気通路70に触媒30を配置したが、配置されるのは触媒に限定されず、その他ガスを吸収、貯蔵するような装置や、電気等の力により排ガス中のNOxを直接分解する装置であっても良い。さらに、上記実施形態では、NOxセンサを反応器20の上流側、すなわち排ガス発生源と反応器20との間と、反応器20と触媒30との間に設けたが、反応器20の下流側の排気通路70に少なくとも一つ配置されれば良い。もちろんそれが少なくとも一つそこに設けられるのであれば、他にいくつ排気通路70に設けられても良い。   Although the present invention has been described based on the preferred embodiments, the present invention is applicable not only to an exhaust system of an internal combustion engine but also to various exhaust systems such as an exhaust system from a factory. The reactor 20 may be of any other type, such as a parallel plate type as well as a coaxial cylindrical type, as long as it can purify exhaust gas by the action of electric power. Also good. In the above embodiment, the catalyst 30 is disposed in the exhaust passage 70 on the downstream side of the reactor 20. However, the catalyst 30 is not limited to the catalyst, and other devices such as an apparatus that absorbs and stores gas, electricity, etc. An apparatus that directly decomposes NOx in exhaust gas by force may be used. Furthermore, in the above embodiment, the NOx sensor is provided upstream of the reactor 20, that is, between the exhaust gas generation source and the reactor 20, and between the reactor 20 and the catalyst 30. It suffices that at least one exhaust passage 70 is disposed. Of course, any number of exhaust passages 70 may be provided as long as at least one of them is provided there.

また、上記実施形態では電圧値sp1を固定値としたが、排ガスに含まれるNOx濃度に応じて最適な印加電圧も変動するので、第一NOx濃度Cuに応じて所定のマップを参照する等により、印加電圧sp1を変化させることとしてもよい。また、電圧値sp1は、反応器20より上流側の第一NOx濃度Cuばかりでなく、反応器20より下流側のNOx濃度、例えば第二NOx濃度Cmに応じて決定されても良い。さらには、それがエンジンの運転状態によっても変動されるのが好ましいので、それは排ガスの温度、触媒の温度、排ガス量、エンジン回転数、およびエンジン負荷のいずれかまたはそれらの内の2以上のものの組合せに応じて決定されても良い。なお、そのような場合には、対応するセンサ、例えば温度センサ、回転数センサ、負荷センサが適宜設けられ、あるいはエンジン60に既に設けられているこれらのセンサの検出値が利用される。   In the above embodiment, the voltage value sp1 is a fixed value. However, since the optimum applied voltage also varies depending on the NOx concentration contained in the exhaust gas, the predetermined map is referred to according to the first NOx concentration Cu, etc. The applied voltage sp1 may be changed. Further, the voltage value sp1 may be determined according to not only the first NOx concentration Cu upstream from the reactor 20, but also the NOx concentration downstream from the reactor 20, for example, the second NOx concentration Cm. Furthermore, since it is preferably also fluctuated depending on the operating condition of the engine, it can be one of two or more of exhaust gas temperature, catalyst temperature, exhaust gas amount, engine speed, and engine load. It may be determined according to the combination. In such a case, corresponding sensors, for example, a temperature sensor, a rotation speed sensor, and a load sensor are appropriately provided, or detection values of these sensors already provided in the engine 60 are used.

また、上記実施形態では、NOxセンサ40mにより検出された反応器20の下流側のNOx濃度Cmを、NOxセンサ40uにより検出された反応器20の上流側のNOx濃度Cuと比較することとしたが(ステップS311)、この比較の対象としては、実測された上流側のNOx濃度Cuでなく、固定値を用いても良い。   In the above embodiment, the NOx concentration Cm on the downstream side of the reactor 20 detected by the NOx sensor 40m is compared with the NOx concentration Cu on the upstream side of the reactor 20 detected by the NOx sensor 40u. (Step S311) As a comparison target, a fixed value may be used instead of the actually measured upstream NOx concentration Cu.

なお、上記実施形態では、本発明をある程度の具体性をもって説明したが、本発明については、特許請求の範囲に記載された発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。すなわち、本発明は特許請求の範囲およびその等価物の範囲および趣旨に含まれる修正および変更を包含するものである。   In the above embodiment, the present invention has been described with a certain degree of concreteness, but various modifications and changes can be made to the present invention without departing from the spirit and scope of the invention described in the claims. It must be understood that. That is, the present invention includes modifications and changes that fall within the scope and spirit of the appended claims and their equivalents.

反応器での印加電圧に対するNO、NO、NOxの濃度の変化の一例を表したグラフである。NO with respect to the applied voltage in the reactor is a graph showing an example of changes in the concentration of NO 2, NOx. 本発明の実施形態における排ガス浄化装置がエンジンを搭載した車両の排気系に適用されたところを示す概略構成図である。It is a schematic block diagram which shows the place which the exhaust gas purification apparatus in embodiment of this invention was applied to the exhaust system of the vehicle carrying an engine. 本発明の実施形態における排ガス浄化装置の制御フローチャートの一例である。It is an example of the control flowchart of the exhaust gas purification apparatus in the embodiment of the present invention.

符号の説明Explanation of symbols

10 排ガス浄化装置
20 反応器
22 ケース
24 中心電極
26 接地電極
26a 接地
28 高電圧電源
30 触媒
40u、40m NOxセンサ
60 エンジン
70 排気通路
72 排気管
DESCRIPTION OF SYMBOLS 10 Exhaust gas purification apparatus 20 Reactor 22 Case 24 Center electrode 26 Ground electrode 26a Ground 28 High voltage power supply 30 Catalyst 40u, 40m NOx sensor 60 Engine 70 Exhaust passage 72 Exhaust pipe

Claims (4)

排気通路に設けられ、排ガスに放電する反応器と、
前記反応器の下流側の前記排気通路における前記排ガス中の窒素酸化物の濃度を検出する検出手段と、
前記検出手段によって検出された窒素酸化物の濃度と所定の基準値との比較結果に基づいて、前記反応器の出力を制御する制御手段と、
を備えることを特徴とする排ガス浄化装置。
A reactor provided in the exhaust passage for discharging into exhaust gas;
Detecting means for detecting the concentration of nitrogen oxides in the exhaust gas in the exhaust passage downstream of the reactor;
Control means for controlling the output of the reactor based on a comparison result between the concentration of nitrogen oxides detected by the detection means and a predetermined reference value;
An exhaust gas purification apparatus comprising:
排気通路を流れる排ガスに、該排気通路に設けられる反応器によって放電し、前記排ガス中の窒素酸化物の浄化を促進させる排ガス浄化方法であって、
前記反応器の下流側の前記排気通路における前記排ガス中の窒素酸化物の濃度を検出するステップと、
前記検出するステップにおいて検出された窒素酸化物の濃度と所定の基準値とを比較するステップと、
前記比較の結果に基づいて、前記反応器の出力を制御するステップと、
を備えることを特徴とする排ガス浄化方法。
The exhaust gas flowing through the exhaust passage is discharged by a reactor provided in the exhaust passage, and the exhaust gas purification method for promoting the purification of nitrogen oxides in the exhaust gas,
Detecting the concentration of nitrogen oxides in the exhaust gas in the exhaust passage downstream of the reactor;
Comparing the concentration of nitrogen oxides detected in the detecting step with a predetermined reference value;
Controlling the output of the reactor based on the result of the comparison;
An exhaust gas purification method comprising:
前記基準値は、前記反応器よりも上流の前記排ガスにおける窒素酸化物の濃度であることを特徴とする請求項2に記載の排ガス浄化方法。   The exhaust gas purification method according to claim 2, wherein the reference value is a concentration of nitrogen oxides in the exhaust gas upstream of the reactor. 前記制御するステップは、前記反応器の下流側の前記排気通路における窒素酸化物の濃度が、前記基準値を上回った場合に、前記反応器の動作を抑制するステップを含むことを特徴とする請求項2または3に記載の排ガス浄化方法。
The step of controlling includes the step of suppressing the operation of the reactor when the concentration of nitrogen oxide in the exhaust passage on the downstream side of the reactor exceeds the reference value. Item 4. The exhaust gas purification method according to Item 2 or 3.
JP2005150857A 2005-05-24 2005-05-24 Exhaust emission control device and exhaust emission control method Withdrawn JP2006328996A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005150857A JP2006328996A (en) 2005-05-24 2005-05-24 Exhaust emission control device and exhaust emission control method
PCT/JP2006/310831 WO2006126720A1 (en) 2005-05-24 2006-05-24 Exhaust gas purification apparatus and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150857A JP2006328996A (en) 2005-05-24 2005-05-24 Exhaust emission control device and exhaust emission control method

Publications (1)

Publication Number Publication Date
JP2006328996A true JP2006328996A (en) 2006-12-07

Family

ID=37452133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150857A Withdrawn JP2006328996A (en) 2005-05-24 2005-05-24 Exhaust emission control device and exhaust emission control method

Country Status (2)

Country Link
JP (1) JP2006328996A (en)
WO (1) WO2006126720A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096655A1 (en) * 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for hybrid vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117231328A (en) * 2019-03-11 2023-12-15 南加利福尼亚大学 System and method for plasma-based abatement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159035A (en) * 1991-02-18 1994-06-07 Nagao Kogyo:Kk Exhaust emission control device of diesel engine for vehicle
JPH0559934A (en) * 1991-08-27 1993-03-09 Hitachi Ltd Internal combustion engine and its discharge denitration device
JP2002155731A (en) * 2000-11-21 2002-05-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2004340037A (en) * 2003-05-15 2004-12-02 Toyota Motor Corp Abnormality determination method for exhaust emission control device and exhaust emission control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096655A1 (en) * 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for hybrid vehicle

Also Published As

Publication number Publication date
WO2006126720A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4321485B2 (en) Exhaust gas purification apparatus and method
WO2015045380A1 (en) Gas sensor control device
JP2002266626A (en) Exhaust emission control device for internal combustion engine
JP2020105990A (en) Exhaust system
JP2006328996A (en) Exhaust emission control device and exhaust emission control method
JP2009216067A (en) Catalyst deterioration determination device, and catalyst deterioration determination method
JP2001159309A (en) Exhaust emission control device
JP4872637B2 (en) Function recovery device and function recovery method for exhaust gas purification catalyst
JP7019463B2 (en) Engine system
JP4543754B2 (en) Power supply method for discharge reactor
JP7088073B2 (en) Gas sensor controller
JP6864587B2 (en) Exhaust gas purification system
JPH07102955A (en) Low-pollution automobile
JPH06336915A (en) Exhaust emission control device of internal combustion engine
JPH06292817A (en) Nox-containing gas purifying method and purifying device
JP7393999B2 (en) Plasma reactor device for exhaust gas purification
US10436091B2 (en) Emission control device
JP7224876B2 (en) exhaust system
JPH06335621A (en) Exhaust gas treating device for automobile
JP6957283B2 (en) Engine system
JP7393998B2 (en) Plasma reactor device for exhaust gas purification
JP2002129946A (en) Exhaust emission purifying device for internal combustion engine
JP2017014976A (en) Applied power controller of plasma reactor
JP2023161518A (en) exhaust system
KR100326273B1 (en) In-line adsorber having electrically heated catalyst and method of controlling the same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070406