JP2006328923A - Waterproofed construction member for exterior wall - Google Patents

Waterproofed construction member for exterior wall Download PDF

Info

Publication number
JP2006328923A
JP2006328923A JP2005179865A JP2005179865A JP2006328923A JP 2006328923 A JP2006328923 A JP 2006328923A JP 2005179865 A JP2005179865 A JP 2005179865A JP 2005179865 A JP2005179865 A JP 2005179865A JP 2006328923 A JP2006328923 A JP 2006328923A
Authority
JP
Japan
Prior art keywords
carbon atoms
group
weight
oxide
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005179865A
Other languages
Japanese (ja)
Inventor
Hiroshi Shirakawa
寛 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa Prefectural Government
Original Assignee
Kagawa Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa Prefectural Government filed Critical Kagawa Prefectural Government
Priority to JP2005179865A priority Critical patent/JP2006328923A/en
Publication of JP2006328923A publication Critical patent/JP2006328923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive construction member for an exterior wall by manufacturing the member for the wall by using industrial wastes, and by applying durable waterproof treatment on the surface of the member. <P>SOLUTION: The wall member has a waterproof hardened film constituted of a clay calcined body, a carbonic-acid solidified body and an organic/inorganic hybrid film. Then the organic/inorganic hybrid film of the construction member for the exterior wall is derived from an organic silicon compound and an inorganic oxide particulate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭酸固化体および粘土焼成体上に硬化皮膜を有する建築部材用コーティング膜に関し、特に防水性を付与することで屋外からの湿気を室内に持ち込まないだけでなく、撥水性、耐候性に優れ、生産性も良好な建築用壁材に関する。  The present invention relates to a coating film for a building member having a cured film on a carbonated solid body and a clay fired body, and in particular, not only does not bring moisture from the outside into the room by providing waterproofness, but also water repellency and weather resistance. The present invention relates to a wall material for building which is excellent in productivity and excellent in productivity.

炭酸固化技術は古くから漆喰壁などに利用されてきた。漆喰壁は堅牢で耐久性に優れ、多孔質であることから調湿特性を有し、日本のようなモンスーン気候下では夏涼しく冬暖かいという住宅建材として優れた特質を有している。さらに、近年のシックハウス問題がクロースアップされてるが、漆喰中の未反応の消石灰がホルマリンを吸着・分解すこことは広く知られている。この炭酸固化技術を用いることで上述した材料特性を保持しつつ、さらに調湿性能を付与した調湿建材に関する発明が先になされている(例えば、特許文献1〜4参照)。  Carbonation technology has long been used for plaster walls. Stucco walls are durable, durable and porous, and therefore have humidity control characteristics. Under monsoon climates like Japan, they have excellent properties as residential building materials that are cool in summer and warm in winter. Furthermore, although the recent sick house problem has been closed up, it is widely known that unreacted slaked lime in stucco adsorbs and decomposes formalin. The invention regarding the humidity-control building material which gave the humidity-controlling performance, maintaining the material characteristic mentioned above by using this carbonation solidification technique was made | formed previously (for example, refer patent documents 1-4).

これら炭酸固化技術においては、焼き物のように高温(1000〜1200℃程度)で焼成する必要がないため、生産コストを下げることができる。強度的にも、使用原料の種類により焼き物レンガやタイルと同等の強度を得ることが可能である(例えば、特許文献5参照)。
しかしながら、炭酸固化体は多孔質(図1)であり、その表面は親水性であるため、外部からの水分を吸収しやすいという利点がある反面、室内にまでその水分を持ち込むという弊害がある。また、多孔質であるため、汚れが付着しやすいという問題点がある。このため、漆喰壁の利点を有しつつ、表面の汚れ防止や室内への湿気の持込を防ぐことが望まれている。
In these carbonate solidification techniques, it is not necessary to fire at a high temperature (about 1000 to 1200 ° C.) as in the case of pottery, so that the production cost can be reduced. In terms of strength as well, it is possible to obtain the same strength as pottery bricks and tiles depending on the type of raw materials used (see, for example, Patent Document 5).
However, since the carbonic acid solidified body is porous (FIG. 1) and its surface is hydrophilic, there is an advantage that it easily absorbs moisture from the outside, but there is an adverse effect of bringing the moisture into the room. Moreover, since it is porous, there is a problem that dirt easily adheres. For this reason, while having the advantage of a stucco wall, it is desired to prevent surface contamination and prevent moisture from being brought into the room.

炭酸固化体を壁材としてそのまま使用すると、多孔質であるため、材料表面から雨などの水分が焼き物などの内部に浸透し、最終的には室内へ湿気を持ち込むという弊害が起こる。また、その表面は非常に汚れやすく、いったん汚れが炭酸固化体内部に入ると、その汚れを落とすことは非常に難しい。そこで古くから焼き物表面を汚れにくくし、洗浄性を向上させる目的で釉薬が広く用いられてきた。この釉薬は、耐久性に優れるが、高温で焼成する必要がある。炭酸固化自体、室温で行うため、釉薬の使用は考慮できない。また、釉薬自体はガラス質であるため、汚れ防止にはなるものの、建築材料のような広い面積を処理することは事実上困難である。  If the carbonic acid solidified body is used as it is as a wall material, it is porous, so that moisture such as rain penetrates into the interior of the baked goods from the surface of the material and eventually brings moisture into the room. Moreover, the surface is very easy to get dirty, and once the dirt enters the carbonized solid, it is very difficult to remove the dirt. Therefore, glazes have been widely used for the purpose of making the surface of the pottery resistant to dirt and improving the cleanability. This glaze is excellent in durability but needs to be fired at high temperature. Since carbonation itself takes place at room temperature, the use of glaze cannot be considered. Moreover, since the glaze itself is glassy, it can prevent dirt, but it is practically difficult to treat a large area such as a building material.

そこで現在では、建築部材に撥水特性を付与する目的として、その表面に高分子樹脂による撥水コートなどが行われている(例えば、特許文献6〜8参照)。その方法としては、アルキルアルコキシシラン化合物系化合物をコンクリートなどに塗布する方法がとられている。しかしながら、これら撥水性樹脂は、加水分解反応によってある程度は脱水縮合反応により重合が進むものの、成膜性に優れるものではなく、建築部材としての使用としては、耐久性に問題がある。  Therefore, at present, for the purpose of imparting water-repellent properties to building members, a water-repellent coating with a polymer resin is performed on the surface thereof (for example, see Patent Documents 6 to 8). As the method, a method of applying an alkylalkoxysilane compound-based compound to concrete or the like is employed. However, although these water-repellent resins are polymerized by a dehydration condensation reaction to some extent by a hydrolysis reaction, they are not excellent in film formability and have a problem in durability when used as a building member.

炭酸固化体表面に直接樹脂を塗布する場合、表面の気孔内(図1)に樹脂が取り込まれてしまう。そのため、撥水性能発現に必要なだけの樹脂を炭酸固化体表面に残存させるためには、高価な高分子樹脂が多量に必要であり、表面に樹脂成分が多く存在することで表面の質感や強度も低下するという問題点がある。そこで、炭酸固化体からなる外壁材には適度な粘性のある撥水性高分子樹脂を直接塗布・乾燥することで、表面上に比較的薄く撥水コーティングを行うなどの方法がとられているが、従来のコーティング原料では耐候性及び耐磨耗性に問題があった。  When the resin is directly applied to the surface of the carbonate solidified body, the resin is taken into the pores (FIG. 1) on the surface. Therefore, a large amount of expensive polymer resin is required to leave the amount of resin necessary for the water repellency performance on the surface of the carbonic acid solidified body. There is a problem that the strength also decreases. Therefore, the outer wall material made of a solidified carbonic acid is applied with a water-repellent polymer resin having an appropriate viscosity and dried, so that a relatively thin water-repellent coating is applied on the surface. However, the conventional coating materials have problems in weather resistance and wear resistance.

特許文献3には、セラミックス焼成前に撥水性物質を原料の中に含有させ、500〜800℃前後で焼成することで、耐久性ある撥水性被膜がセラミックス表面に成膜できると記載してある。このようにすることで、焼成後のセラミックスに撥水性を付与できるが、撥水性物質が高温では分解してしまい、セラミックス本来の焼成温度では焼くことができないためにセラミックス自身の強度が低下するという問題点を有する。
特願2004−237779号 特願2004−237780号 特願2004−237781号 特願2004−237782号 特願2003−420138号 特開2005−67921号公報 特開2004−244903号公報 特開2002−60283号公報
Patent Document 3 describes that a durable water-repellent coating can be formed on the ceramic surface by including a water-repellent substance in the raw material before firing the ceramic and firing at around 500 to 800 ° C. . By doing so, water repellency can be imparted to the fired ceramic, but the water repellent material decomposes at high temperature, and the ceramic itself cannot be fired at the original firing temperature of the ceramic, so the strength of the ceramic itself is reduced. Has a problem.
Japanese Patent Application No. 2004-237779 Japanese Patent Application No. 2004-237780 Japanese Patent Application No. 2004-237781 Japanese Patent Application No. 2004-237782 Japanese Patent Application No. 2003-420138 JP 2005-67921 A JP 2004-244903 A JP 2002-60283 A

本発明は前記の課題を解決するためになされたもので、耐候性に優れ、生産性に優れた防水性壁用建築部材の提供を目的とする。  The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a waterproof wall building member having excellent weather resistance and excellent productivity.

本発明によれば、耐候性、防水性に優れ、生産性も良好な壁用建築部材を得ることができる。  ADVANTAGE OF THE INVENTION According to this invention, the building member for walls excellent in weather resistance and waterproofness, and favorable productivity can be obtained.

上述した目的は以下の手段により解決された。その手段とは、有機珪素化合物と特定の無機酸化物粒子を含有したコーティング組成物を、粘土焼結体及び炭酸固化体表面に塗布し、硬化処理することで得られる壁用建築部材である。  The object described above has been solved by the following means. The means is a building member for a wall obtained by applying a coating composition containing an organosilicon compound and specific inorganic oxide particles to the surface of a clay sintered body and a carbonate solidified body, followed by curing treatment.

本発明では、炭酸固化体表面上に無機酸化物粒子、有機珪素化合物と硬化剤を含むコーティング組成物より構成される防水膜を有することを特徴とする。無機酸化物粒子は、酸化アルミニウム、酸化珪素、酸化鉄、酸化スズ、酸化チタン、酸化亜鉛及びこれらの複合酸化物などが挙げられる。  In this invention, it has the waterproof film comprised from the coating composition containing an inorganic oxide particle, an organic silicon compound, and a hardening | curing agent on the carbonic acid solidified body surface, It is characterized by the above-mentioned. Examples of the inorganic oxide particles include aluminum oxide, silicon oxide, iron oxide, tin oxide, titanium oxide, zinc oxide, and composite oxides thereof.

次に、本発明では有機珪素化合物が、一般式(II)で示される化合物の一種であるオルガノシラン化合物と上述の無機酸化物粒子を、コーティング組成物に用いることにより、高濃度の微粒子状無機酸化物を含有するコーティング膜を粘土焼結体及び炭酸固化体表面上に施すことができ、長期間において良好な防水性能を発揮する。この場合、一般式(II)で示される化合物の一種であるオルガノシラン化合物と無機酸化物粒子を酸触媒存在下、適宜攪拌することで、オルガノシラン化合物のシリルエーテル部分が加水分解反応を起こし、無機酸化物粒子表面の水酸基と脱水縮合するとこで、無機酸化物粒子表面の改質を行うことが可能である。このように無機酸化物粒子の表面を改質することで、防水性能はさらに長期間持続する。  Next, in the present invention, the organosilicon compound is a kind of the compound represented by the general formula (II) and the above-described inorganic oxide particles are used in the coating composition, whereby a high concentration of fine inorganic particles A coating film containing an oxide can be applied on the surface of the clay sintered body and the carbonate solidified body, and exhibits good waterproof performance over a long period of time. In this case, the silyl ether portion of the organosilane compound causes a hydrolysis reaction by appropriately stirring the organosilane compound and inorganic oxide particles, which are a kind of the compound represented by the general formula (II), in the presence of an acid catalyst. The surface of the inorganic oxide particles can be modified by dehydration condensation with the hydroxyl groups on the surface of the inorganic oxide particles. By thus modifying the surface of the inorganic oxide particles, the waterproof performance can be maintained for a longer period of time.

本発明のコーティング組成物において、無機酸化物粒子として砕石廃泥(山石を粉砕し、骨材を採取した後に残る廃泥)、フライアッシュ(火力発電所において排出される石炭飛灰)などの無機系廃棄物を用いることができる。この場合、平均粒子径が35μm〜1μmであることが望ましく、また、酸化アルミニウム、酸化珪素、酸化チタン、酸化鉄、酸化セリウム、酸化亜鉛などのコロイド粒子及びそれらの複合コロイド粒子とともに用いることもできる。  In the coating composition of the present invention, inorganic oxide particles such as crushed waste mud (waste mud remaining after grinding stones and collecting aggregates), fly ash (coal fly ash discharged from a thermal power plant), etc. System waste can be used. In this case, it is desirable that the average particle diameter is 35 μm to 1 μm, and it can be used together with colloidal particles such as aluminum oxide, silicon oxide, titanium oxide, iron oxide, cerium oxide, zinc oxide, and composite colloidal particles thereof. .

本発明のコーティング組成物において、有機珪素化合物は、下記一般式(I)
(R(RSi(OR4−(a+b)・・・・(I)
(式中、R及びRは、それぞれ独立に、官能基を有する若しくは有しない炭素数1〜10の一価の炭化水素、Rは炭素数1〜8のアルキル基、炭素数6〜10のアリール基、炭素数7〜10のアラルキル基または炭素数1〜8のアシル基、a及びbは0または1を示し、複数のORは互いに同一でも異なっていてもよい。)で表される化合物、下記一般式(III)

Figure 2006328923
(式中のR及びRは、それぞれ独立に、官能基を有する若しくは有しない炭素数1〜5の一価の炭化水素、X及びXは、それぞれ独立に、炭素数1〜4のアルキル基、炭素数1〜4のアシル基、Yは炭素数1〜20の二価の炭化水素基、xおよびyはそれぞれ0または1を示し、複数のXは互いに同一でも異なっていてもよく、また、複数のXは互いに同一でも異なっていてもよい。)で表される化合物、及びこれらの加水分解物の中から選ばれる少なくとも一種類であるであることが望ましい。In the coating composition of the present invention, the organosilicon compound has the following general formula (I):
(R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
(Wherein R 1 and R 3 are each independently a monovalent hydrocarbon having 1 to 10 carbon atoms with or without a functional group, R 2 is an alkyl group having 1 to 8 carbon atoms, and 6 to 6 carbon atoms) 10 aryl groups, aralkyl groups having 7 to 10 carbon atoms, or acyl groups having 1 to 8 carbon atoms, a and b each represents 0 or 1, and a plurality of OR 2 may be the same as or different from each other. The following general formula (III)
Figure 2006328923
(In the formula, R 6 and R 7 are each independently a monovalent hydrocarbon having 1 to 5 carbon atoms with or without a functional group, and X 1 and X 2 are each independently having 1 to 4 carbon atoms. Alkyl group, an acyl group having 1 to 4 carbon atoms, Y is a divalent hydrocarbon group having 1 to 20 carbon atoms, x and y each represents 0 or 1, and a plurality of X 1 are the same or different from each other Or a plurality of X 2 may be the same or different from each other), and at least one kind selected from these hydrolysates is desirable.

前記一般式(I)において、R及びRで示される炭素数1〜10の一価の炭化水素としては、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜10のアリール基、炭素数7〜10のアラルキル基をあげることができる。このアルキル基およびアルケニル基は、直鎖状、分岐状、環状のいずれであってもよく、アルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、イソブチル基、ペンチル基、シクロヘキシル基などが挙げられる。また、アルケニル基の例としては、ビニル基、アリル基、ブテニル基、ヘキセニル基などが、アリール基の例としては、フェニル基、トリル基、キシリル基、ナフチル基などが挙げられ、アラルキル基の例としては、ベンジル基、フェネチル基、ナフチルメチル基などが挙げられる。これらの炭化水素基には、官能基が導入されていてもよく、該官能基としては、例えば、ハロゲン原子、グリシドキシ基、エポキシ基、アミノ基、シアノ基、メルカプト基などがあげられる。In the general formula (I), the monovalent hydrocarbon having 1 to 10 carbon atoms represented by R 1 and R 3, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, carbon atoms A 6-10 aryl group and a C7-10 aralkyl group can be mentioned. The alkyl group and alkenyl group may be linear, branched, or cyclic. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an isobutyl group, and a pentyl group. And a cyclohexyl group. Examples of alkenyl groups include vinyl, allyl, butenyl, and hexenyl groups. Examples of aryl groups include phenyl, tolyl, xylyl, and naphthyl groups. Examples of aralkyl groups Examples thereof include a benzyl group, a phenethyl group, and a naphthylmethyl group. A functional group may be introduced into these hydrocarbon groups, and examples of the functional group include a halogen atom, a glycidoxy group, an epoxy group, an amino group, a cyano group, and a mercapto group.

官能基を有する炭素数1〜10の一価の炭化水素基の例としては、グリキシドメチル基、α−グリシドキシエチル基、β−グリシドキシエチル基、α−グリシドキシプロピル基、β−グリシドキシプロピル基、γ−グリシドキシプロピル基、(3,4−エポキシシクロヘキシル)メチル基、β−(3,4−エポキシシクロヘキシル)エチル基、γ−(3,4−エポキシシクロヘキシル)プロピル基、クロロメチル基、γ−クロロプロピル基、γ−メタクリルオキシプロピル基などが挙げられる。  Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms having a functional group include a glyoxide methyl group, an α-glycidoxyethyl group, a β-glycidoxyethyl group, an α-glycidoxypropyl group, β-glycidoxypropyl group, γ-glycidoxypropyl group, (3,4-epoxycyclohexyl) methyl group, β- (3,4-epoxycyclohexyl) ethyl group, γ- (3,4-epoxycyclohexyl) Examples thereof include a propyl group, a chloromethyl group, a γ-chloropropyl group, and a γ-methacryloxypropyl group.

一方、Rにおいて、炭素数1〜8のアルキル基は、直鎖状、分岐状、環状のいずれであってもよく、その例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、ペンチル基、シクロヘキシル基などが挙げられ、炭素数6〜10のアリール基の例としては、フェニル基、トリル基、キシリル基などが挙げられ、炭素数7〜10のアラルキル基の例としては、ベンジル基、フェネチル基などが挙げられ、炭素数1〜8のアシル基としては、例えば、アセチル基などが挙げられる。On the other hand, in R 2 , the alkyl group having 1 to 8 carbon atoms may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. N-butyl group, isobutyl group, pentyl group, cyclohexyl group and the like, and examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group and the like, and 7 to 10 carbon atoms. Examples of the aralkyl group include a benzyl group and a phenethyl group, and examples of the acyl group having 1 to 8 carbon atoms include an acetyl group.

前記一般式(III)において、X及びXで示される炭素数1〜4のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、インプロピル基、n−ブチル基、イソブチル基などが挙げられ、炭素数1〜4のアシル基としては、例えば、アセチル基が望ましく挙げられる。このX及びXは、互いに同一でも異なっていてもよい。
またR及びRで示される炭素数1〜5の一価の炭化水素としては、炭素数1〜5のアルキル基及び炭素数2〜5のアルケニル基が挙げられる。これらは、直鎖状、分岐状のいずれであってもよく、アルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、ペンチル基などが挙げられ、アルケニル基の例としては、ビニル基、アリル基、ブテニル基などが挙げられる。これらの炭化水素基には官能基が導入されていてもよく、該官能基及び官能基を有する炭化水素としては、前記一般式(I)のR及びRの説明で示したものと同じものを挙げることができる。このR及びRは、互いに同一であっても異なっていてもよい。
In the general formula (III), examples of the alkyl group having 1 to 4 carbon atoms represented by X 1 and X 2 include a methyl group, an ethyl group, an n-propyl group, an impropyl group, an n-butyl group, and isobutyl. Examples of the acyl group having 1 to 4 carbon atoms include an acetyl group. X 1 and X 2 may be the same as or different from each other.
Moreover, as a C1-C5 monovalent hydrocarbon shown by R < 6 > and R < 7 >, a C1-C5 alkyl group and a C2-C5 alkenyl group are mentioned. These may be either linear or branched, and examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a pentyl group. Examples of alkenyl groups include vinyl, allyl, and butenyl groups. A functional group may be introduced into these hydrocarbon groups, and the functional group and the hydrocarbon having the functional group are the same as those described in the description of R 1 and R 3 in the general formula (I). Things can be mentioned. R 6 and R 7 may be the same as or different from each other.

Yで示される炭素数1〜20の二価の炭化水素としては、アルキレン基、アルキリデン基が好ましく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基などを挙げることができる。
x及びyはそれぞれ0または1を示し、複数のOX及びOXは、互いに同一であっても異なっていてもよい。前記一般式(III)で表される化合物の例としては、メチレンビス(メチルジメトキシシラン)、エチレンビス(エチルジメトキシシラン)、プロピレンビス(エチルジエトキシシラン)などが挙げられる。
The divalent hydrocarbon having 1 to 20 carbon atoms represented by Y is preferably an alkylene group or an alkylidene group, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group and a hexylene group. it can.
x and y each represents 0 or 1, and the plurality of OX 1 and OX 2 may be the same as or different from each other. Examples of the compound represented by the general formula (III) include methylenebis (methyldimethoxysilane), ethylenebis (ethyldimethoxysilane), propylenebis (ethyldiethoxysilane), and the like.

本発明のコーティング組成物は、有機珪素化合物として、前記一般式(I)、(III)で表される化合物及びその加水分解物の中から一種を選択して用いてもよく、二種以上を選択し、組み合わせてもよい。また、加水分解組成物は一般に(I)、(III)で表される化合物に、水酸化ナトリウムやアンモニウム水溶液などの塩基性水溶液、塩酸水溶液などの酸性水溶液を添加し攪拌することにより調整することができる。
本発明のコーティング組成物は、所望により、硬化剤、または塗布時における濡れ性の向上を目的として各種の有機溶剤や界面活性剤、紫外線吸収剤、光安定剤、老化防止剤などもコーティング組成物及び硬化膜の物性に影響を与えない限り添加することができる。
The coating composition of the present invention may be used as an organosilicon compound by selecting one of the compounds represented by the general formulas (I) and (III) and a hydrolyzate thereof. You may choose and combine. The hydrolysis composition is generally prepared by adding a basic aqueous solution such as sodium hydroxide or an aqueous ammonium solution or an acidic aqueous solution such as an aqueous hydrochloric acid solution to the compounds represented by (I) and (III) and stirring them. Can do.
The coating composition of the present invention may be coated with a curing agent or various organic solvents, surfactants, ultraviolet absorbers, light stabilizers, anti-aging agents, etc. for the purpose of improving wettability during coating. And can be added as long as the physical properties of the cured film are not affected.

また、本発明のコーティング組成物は、さらに微粒子状無機酸化物を含有るすことが望ましい。微粒子状無機酸化物としては、特に制限はなく、従来公知のものの中から、任意のものを選択して用いることができる。微粒子状無機酸化物の例としては、酸化アルミニウム、酸化珪素、酸化チタン、酸化スズ、酸化セリウムなどの単体酸化金属微粒子、あるいは、砕石廃泥やフライアッシュなどの無機系廃棄物を挙げることができる。この場合の微粒子状無機酸化物の平均粒径は、1〜500nm程度のコロイド粒子から数十μm程度までが望ましい。  Moreover, it is desirable that the coating composition of the present invention further contains a fine particle inorganic oxide. There is no restriction | limiting in particular as a fine particle inorganic oxide, It can select and use arbitrary things from conventionally well-known things. Examples of the particulate inorganic oxide include simple metal oxide fine particles such as aluminum oxide, silicon oxide, titanium oxide, tin oxide and cerium oxide, or inorganic waste such as crushed stone waste mud and fly ash. . In this case, the average particle size of the particulate inorganic oxide is preferably from about 1 to 500 nm of colloidal particles to about several tens of μm.

コーティング組成物を全量を基準とした場合、微粒子状無機化合物の望ましい含有量は、粘土焼結体及び炭酸固化体の開気孔率や原料となる粘土などの粒径によって具なるが、10〜35重量%を添加することが望ましい。また、本発明のコーティング組成物からなる硬化膜中に含有される微粒子状無機酸化物の望ましい含有量は、粘土焼結体及び炭酸固化体の表面粗さや開気孔率によって表面状態が異なるため、ケースバイケースではあるが、前記コーティング組成物全量を基準にした場合の微粒子状無機酸化物の添加料を10〜35重量%とすると、30〜60重量%と程度である。  When the coating composition is based on the total amount, the desirable content of the particulate inorganic compound depends on the open porosity of the clay sintered body and the carbonate solidified body and the particle size of the raw clay, etc. It is desirable to add weight percent. In addition, since the desirable content of the particulate inorganic oxide contained in the cured film composed of the coating composition of the present invention varies depending on the surface roughness and open porosity of the clay sintered body and the carbonate solidified body, Although it is case-by-case, when the additive amount of the particulate inorganic oxide based on the total amount of the coating composition is 10 to 35% by weight, it is about 30 to 60% by weight.

本発明において、粘土焼結体及び炭酸固化体表面にコーティング組成物を塗布する手段としては、例えば、ディッピング法、スピンコート法、スプレー法など、通常行われる方法が適用できる。コーティング組成物の硬化は、熱風乾燥または活性エネルギー線照射によって行い、70〜250℃程度の熱風中で行うことが望ましい。また、本発明を炭酸固化体表面と同様に多孔質体である焼き物についても行うことで、焼き物表面に置いても防水特性を付与することができる。  In the present invention, as a means for applying the coating composition to the surface of the clay sintered body and the carbonate solidified body, a commonly performed method such as a dipping method, a spin coating method, or a spray method can be applied. Curing of the coating composition is preferably performed by hot air drying or active energy ray irradiation and in hot air of about 70 to 250 ° C. Moreover, even if it puts on the surface of a pottery thing by performing this invention also about the pottery which is a porous body similarly to the carbonic acid solidified body surface, a waterproof characteristic can be provided.

本発明において、防水膜を形成するための粘土焼結体及び炭酸固化体原料は、工業用粘土鉱物だけに限定されることはなく、火力発電所から排出されるフライアッシュ、砕石廃泥及び石材スラッジなどのいわゆる無機系廃棄物を用いることもできる。
また、多孔質体である焼き物の表面においても、本防水性膜を炭酸固化体表面と同様に性膜することができる。
In the present invention, the clay sintered body and the carbonate solidified body material for forming the waterproof film are not limited to industrial clay minerals, but fly ash, crushed waste mud and stone materials discharged from a thermal power plant So-called inorganic waste such as sludge can also be used.
Further, the waterproof film can be formed on the surface of the porcelain that is a porous body in the same manner as the surface of the carbonated solid body.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例において得られた防水処理品の物性評価は以下のようにして行った。
(1)粒度測定
原料粒度は、次のようにして行った。水道水に溶解しない原料については水道水を用い、水道水に溶解する原料についてはエタノールを用いて、懸濁液とし、適切な濃度に調整した後、粒度分析器(Microtrac HRA model No.9320−X100)を使用してレーザー回折散乱法により測定した。
(2)防水膜の耐久試験方法
キセノンウエザーメーター(スガ試験機(株)スーパーキセノンウェザーメーターSX75−WAP)により耐候性試験を次のような条件で行った。槽内温度30℃、湿度50%RHの条件下、500時間連続照射した検体を用いて、吸水率を測定した。
(3)吸水率
焼結体について、乾燥重量W1、大気圧3時間吸水させた重量W2、を測定し、((W2−W1)/W1)×100により測定した。炭酸固化体表面に防水膜を施すことで、炭酸固化体内部への水の浸入が減少するため、吸水率は、防水処理品は未処理品に比べ、吸水率が減少することが予想される。そこで防水性能を比較するため、上記の方法で得られる吸水率の比較を行うとことした。
(4)使用した廃棄物
以下実施例に使用した廃棄物中に含まれる主な構成元素を示す。

Figure 2006328923
表1に示す成分分析には蛍光X線分析装置(理学電気工業(株)RIX2000)を使用し、酸化物表示で示すものとする。
(5)実施例に使用した試験体の作成方法
入交産業製消石灰(雪印、#100)150重量部、フライアッシュ(平均粒径24.7μm)100重量部、砕石廃泥(平均粒径21.2μm)250重量部を乳鉢にて混合し、さらに純水8重量部を加えて混合した。次に30MPaの圧力で一軸プレス成形し、50×50×5mmの成形体を作成した。このようにして得られた成形体を密閉容器に入れた後、0.02MPaまで減圧し、次いで二酸化炭素ガスにより、0.05MPaまで加圧した状態で2時間保持することで炭酸固化体を得た。EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In addition, the physical property evaluation of the waterproofing product obtained in the Example was performed as follows.
(1) Particle size measurement The raw material particle size was measured as follows. For raw materials that do not dissolve in tap water, tap water is used, and for raw materials that dissolve in tap water, a suspension is prepared using ethanol and adjusted to an appropriate concentration, and then a particle size analyzer (Microtrac HRA model No. 9320-) is prepared. X100) was measured by laser diffraction scattering method.
(2) Durability test method for waterproofing membrane A weather resistance test was performed under the following conditions using a xenon weather meter (Super Xenon Weather Meter SX75-WAP). The water absorption rate was measured using a specimen that was irradiated continuously for 500 hours under the conditions of an internal temperature of 30 ° C. and a humidity of 50% RH.
(3) Water Absorption Rate The sintered body was measured for dry weight W1 and weight W2 absorbed by atmospheric pressure for 3 hours, and measured by ((W2−W1) / W1) × 100. By applying a waterproof film to the surface of the carbonated solidified body, water intrusion into the carbonated solidified body is reduced, so the water absorption rate is expected to decrease for waterproofed products compared to untreated products. . Therefore, in order to compare the waterproof performance, it was decided to compare the water absorption obtained by the above method.
(4) Used waste The main constituent elements contained in the waste used in the examples are shown below.
Figure 2006328923
In the component analysis shown in Table 1, a fluorescent X-ray analyzer (Rigaku Denki Kogyo Co., Ltd. RIX2000) is used, and is shown in oxide display.
(5) Method for preparing test specimens used in the examples 150 parts by weight of slaked lime (Snow Mark, # 100) manufactured by Ichiko Sangyo, 100 parts by weight of fly ash (average particle size 24.7 μm), waste crushed stone (average particle size 21) 0.2 μm) 250 parts by weight was mixed in a mortar, and 8 parts by weight of pure water was further added and mixed. Next, uniaxial press molding was performed at a pressure of 30 MPa to prepare a molded body of 50 × 50 × 5 mm. After putting the molded body thus obtained into a sealed container, the pressure is reduced to 0.02 MPa, and then the carbonic acid solidified body is obtained by holding for 2 hours while being pressurized to 0.05 MPa with carbon dioxide gas. It was.

ガラス製容器に、コロイダルシリカ(スノーテックス−40、日産化学)2重量部、有機ケイ素化合物のトリフルオロプロピルトリメトキシシラン10重量部、γ−グリシドキシプロピルトリメトキシシラン10重量部、0.5N塩酸0.4重量部、水5.2重量部を加えた液を、室温にて8時間攪拌後、室温にて16時間放置して加水分解溶液を得た。この溶液に、イソプロピルアルコール10重量部、n−ブチルアルコール10重量部、シリコーン系界面活性剤0.02重量部、紫外線吸収剤0.01重量部を加え、室温にて8時間攪拌後、アルミニウムアセチルアセトネート0.3重量部を加えて、室温にて8時間攪拌することでコーティング液を得た。
このようにして得られたコーティング液を、上記の炭酸固化成形体の表面にDIPコーティングした後、100℃で2時間乾燥加熱して硬化膜を作製した。この場合、防水処理前の吸水率は9.4%であったが、防水処理後の吸水率は、0.4%であり、良好な防水性を示した。また、キセノンウエザーメーターによる防水膜の耐久試験後の吸水率は0.7%であった。
In a glass container, 2 parts by weight of colloidal silica (Snowtex-40, Nissan Chemical), 10 parts by weight of organosilicon compound trifluoropropyltrimethoxysilane, 10 parts by weight of γ-glycidoxypropyltrimethoxysilane, 0.5N A solution obtained by adding 0.4 parts by weight of hydrochloric acid and 5.2 parts by weight of water was stirred at room temperature for 8 hours and then allowed to stand at room temperature for 16 hours to obtain a hydrolyzed solution. To this solution, 10 parts by weight of isopropyl alcohol, 10 parts by weight of n-butyl alcohol, 0.02 part by weight of a silicone surfactant and 0.01 part by weight of an ultraviolet absorber were added, and stirred for 8 hours at room temperature. A coating solution was obtained by adding 0.3 parts by weight of acetonate and stirring at room temperature for 8 hours.
The coating solution thus obtained was DIP-coated on the surface of the carbonic acid solidified molded body, and then dried and heated at 100 ° C. for 2 hours to prepare a cured film. In this case, the water absorption before the waterproofing treatment was 9.4%, but the water absorption after the waterproofing treatment was 0.4%, indicating good waterproofness. Moreover, the water absorption after the durability test of the waterproof film with a xenon weather meter was 0.7%.

ガラス製容器に、フライアッシュ(平均粒径24.7μm)3重量部、γ−グリシドキシプロピルトリメトキシシラン20重量部、0.5N塩酸0.4重量部、水5.2重量部を加えた液を、室温にて8時間攪拌後、室温にて16時間放置して加水分解溶液を得た。この溶液に、イソプロピルアルコール10重量部、n−ブチルアルコール10重量部、シリコーン系界面活性剤0.02重量部、紫外線吸収剤0.01重量部を加え、室温にて8時間攪拌後、アルミニウムアセチルアセトネート0.3重量部を加えて、室温にて8時間攪拌することでコーティング液を得た。
このようにして得られたコーティング液を、上記の炭酸固化成形体の表面にDIPコーティングした後、100℃で2時間乾燥加熱して硬化膜を作製した。この場合、防水処理前の吸水率は9.2%であったが、防水処理後の吸水率は、0.8%であり、良好な防水性を示した。また、キセノンウエザーメーターによる防水膜の耐久試験後の吸水率は2.1%であった。
Add 3 parts by weight of fly ash (average particle size 24.7 μm), 20 parts by weight of γ-glycidoxypropyltrimethoxysilane, 0.4 parts by weight of 0.5N hydrochloric acid, and 5.2 parts by weight of water to a glass container. The solution was stirred at room temperature for 8 hours and then allowed to stand at room temperature for 16 hours to obtain a hydrolyzed solution. To this solution, 10 parts by weight of isopropyl alcohol, 10 parts by weight of n-butyl alcohol, 0.02 part by weight of a silicone surfactant and 0.01 part by weight of an ultraviolet absorber were added, and stirred for 8 hours at room temperature. A coating solution was obtained by adding 0.3 parts by weight of acetonate and stirring at room temperature for 8 hours.
The coating solution thus obtained was DIP-coated on the surface of the carbonic acid solidified molded body, and then dried and heated at 100 ° C. for 2 hours to prepare a cured film. In this case, the water absorption before the waterproofing treatment was 9.2%, but the water absorption after the waterproofing treatment was 0.8%, indicating a good waterproof property. Moreover, the water absorption after the durability test of the waterproof film with a xenon weather meter was 2.1%.

ガラス製容器に、コロイダルシリカ(スノーテックス−40、日産化学)2重量部、有機ケイ素化合物のメチルトリメトキシシラン10重量部、γ−グリシドキシプロピルトリメトキシシラン10重量部、0.5N塩酸0.4重量部、水5.2重量部を加えた液を、室温にて8時間攪拌後、室温にて16時間放置して加水分解溶液を得た。この溶液に、イソプロピルアルコール10重量部、n−ブチルアルコール10重量部、シリコーン系界面活性剤0.02重量部、紫外線吸収剤0.01重量部を加え、室温にて8時間攪拌後、アルミニウムアセチルアセトネート0.3重量部を加えて、室温にて8時間攪拌することでコーティング液を得た。
このようにして得られたコーティング液を、上記の炭酸固化成形体の表面にDIPコーティングした後、100℃で2時間乾燥加熱して硬化膜を作製した。この場合、防水処理前の吸水率は8.9%であったが、防水処理後の吸水率は、1.2%であり、良好な防水性を示した。また、キセノンウエザーメーターによる防水膜の耐久試験後の吸水率は4.1%であった。
In a glass container, 2 parts by weight of colloidal silica (Snowtex-40, Nissan Chemical), 10 parts by weight of an organosilicon compound, methyltrimethoxysilane, 10 parts by weight of γ-glycidoxypropyltrimethoxysilane, 0.5N hydrochloric acid 0 A solution obtained by adding 0.4 parts by weight and 5.2 parts by weight of water was stirred at room temperature for 8 hours and then allowed to stand at room temperature for 16 hours to obtain a hydrolyzed solution. To this solution, 10 parts by weight of isopropyl alcohol, 10 parts by weight of n-butyl alcohol, 0.02 part by weight of a silicone surfactant and 0.01 part by weight of an ultraviolet absorber were added, and stirred for 8 hours at room temperature. A coating solution was obtained by adding 0.3 parts by weight of acetonate and stirring at room temperature for 8 hours.
The coating solution thus obtained was DIP-coated on the surface of the carbonic acid solidified molded body, and then dried and heated at 100 ° C. for 2 hours to prepare a cured film. In this case, the water absorption before the waterproofing treatment was 8.9%, but the water absorption after the waterproofing treatment was 1.2%, indicating good waterproofness. In addition, the water absorption after the durability test of the waterproof film using a xenon weather meter was 4.1%.

比較例1Comparative Example 1

ガラス製容器に、コロイダルシリカ(スノーテックス−40、日産化学)2重量部、γ−グリシドキシプロピルトリメトキシシラン20重量部、水5.2重量部を加えた液を、室温にて8時間攪拌後、室温にて16時間放置して加水分解溶液を得た。この溶液に、イソプロピルアルコール10重量部、n−ブチルアルコール10重量部、シリコーン系界面活性剤0.02重量部、紫外線吸収剤0.01重量部を加え、室温にて8時間攪拌後、アルミニウムアセチルアセトネート0.3重量部を加えて、室温にて8時間攪拌することでコーティング液を得た。
このようにして得られたコーティング液を、上記の炭酸固化成形体の表面にDIPコーティングした後、100℃で2時間乾燥加熱して硬化膜を作製した。この場合、防水処理前の吸水率は9.0%であったが、防水処理後の吸水率は、5.1%であった。また、キセノンウエザーメーターによる防水膜の耐久試験後の吸水率は8.7%であった。
A solution obtained by adding 2 parts by weight of colloidal silica (Snowtex-40, Nissan Chemical Co., Ltd.), 20 parts by weight of γ-glycidoxypropyltrimethoxysilane, and 5.2 parts by weight of water to a glass container for 8 hours at room temperature. After stirring, the mixture was allowed to stand at room temperature for 16 hours to obtain a hydrolysis solution. To this solution, 10 parts by weight of isopropyl alcohol, 10 parts by weight of n-butyl alcohol, 0.02 part by weight of a silicone surfactant and 0.01 part by weight of an ultraviolet absorber were added, and stirred for 8 hours at room temperature. A coating solution was obtained by adding 0.3 parts by weight of acetonate and stirring at room temperature for 8 hours.
The coating solution thus obtained was DIP-coated on the surface of the carbonic acid solidified molded body, and then dried and heated at 100 ° C. for 2 hours to prepare a cured film. In this case, the water absorption before waterproofing was 9.0%, but the water absorption after waterproofing was 5.1%. Further, the water absorption after the durability test of the waterproof film with a xenon weather meter was 8.7%.

防水処理前の炭酸固化体表面(多孔質表面)の断面の概略図である。It is the schematic of the cross section of the carbonic acid solidification body surface (porous surface) before waterproofing processing. 防水処理後の炭酸固化体表面の断面の概略図である。It is the schematic of the cross section of the carbonic acid solidified body surface after a waterproofing process.

符号の説明Explanation of symbols

1:炭酸固化体表面
2:内部気孔
3:防水膜部分
1: Carbonated solid surface 2: Internal pores 3: Waterproof membrane part

Claims (4)

粘土焼結体及び炭酸固化体表面に設けられた硬化皮膜が、(A)金属酸化物粒子と、(B)有機珪素化合物と硬化剤を含むコーティング組成物を塗布したのち、硬化処理を熱風加熱または活性エネルギー線照射により成膜を行うことを特徴とする防水性硬化皮膜を有する外壁用建築部材。  The cured film provided on the surface of the clay sintered body and the carbonate solidified body is coated with (A) metal oxide particles, (B) a coating composition containing an organosilicon compound and a curing agent, and then the curing treatment is heated with hot air. Or the building member for outer walls which has a waterproof cured film characterized by forming into a film by active energy ray irradiation. (A)成分の金属酸化物粒子が酸化アルミニウム、酸化珪素、酸化チタン、酸化鉄、酸化セリウム、酸化亜鉛、砕石廃泥、フライアッシュのコロイド粒子及びそれらの複合コロイド粒子またはそれら金属酸化物粒子の平均粒径が35μm〜1μmの粉体の中から選ばれる少なくとも1種である請求項1に記載の防水性硬化被膜を有する外壁用建築部材。  (A) The component metal oxide particles are aluminum oxide, silicon oxide, titanium oxide, iron oxide, cerium oxide, zinc oxide, crushed stone waste mud, fly ash colloid particles and composite colloid particles thereof or metal oxide particles thereof. The building member for an outer wall having a waterproof cured coating according to claim 1, which is at least one selected from powders having an average particle diameter of 35 μm to 1 μm. (B)成分の有機珪素化合物が、下記一般式(I)
(R(RSi(OR4−(a+b) ・・・・(I)
(式中のR及びRは、それぞれ独立に、官能基を有する若しくは有しない炭素数1〜10の一価の炭化水素、Rは炭素数1〜8のアルキル基、炭素数6〜10のアリール基、炭素数7〜10のアラルキル基または炭素数1〜8のアシル基、a及びbは0または1を示し、複数のORは互いに同一でも異なっていてもよい。)で表される化合物、下記一般式(II)
Si(OR4−m・・・・(II)
(式中のRは末端にフッ化メチル基を有する、または、フッ化アルキル基を有する炭素数1〜10の一価の炭化水素、Rは炭素数1〜3の一価の炭化水素またはアシル基、mは0、1または2を示し、Rが複数ある場合、複数のRは互いに同一でも異なっていてもよく、複数のORは互いに同一でも異なっていてもよい。)で表される化合物、下記一般式(III)
Figure 2006328923
(式中のR及びRは、それぞれ独立に、官能基を有する若しくは有しない炭素数1〜5の一価の炭化水素、X及びXは、それぞれ独立に、炭素数1〜4のアルキル基、炭素数1〜4のアシル基、Yは炭素数1〜20の二価の炭化水素基、xおよびyはそれぞれ0または1を示し、複数のXは互いに同一でも異なっていてもよく、また、複数のXは互いに同一でも異なっていてもよい。)で表される化合物、及びこれらの加水分解物の中から選ばれる少なくとも一種類である請求項1または2に記載の防水性硬化被膜を有する外壁用建築部材。
The organosilicon compound as component (B) is represented by the following general formula (I)
(R 1 ) a (R 3 ) b Si (OR 2 ) 4- (a + b) (I)
(In the formula, R 1 and R 3 are each independently a monovalent hydrocarbon having 1 to 10 carbon atoms with or without a functional group, R 2 is an alkyl group having 1 to 8 carbon atoms, and 6 to 6 carbon atoms. 10 aryl groups, aralkyl groups having 7 to 10 carbon atoms, or acyl groups having 1 to 8 carbon atoms, a and b each represents 0 or 1, and a plurality of OR 2 may be the same as or different from each other. The following general formula (II)
R 4 m Si (OR 5 ) 4-m ... (II)
(In the formula, R 4 is a monovalent hydrocarbon having 1 to 10 carbon atoms having a methyl fluoride group or a fluorinated alkyl group at the end, and R 5 is a monovalent hydrocarbon having 1 to 3 carbon atoms. or an acyl group, m represents 0, 1 or 2, if R 4 is plural, R 4 may be the same or different from each other, a plurality of oR 5 may be the same or different from each other.) A compound represented by the following general formula (III)
Figure 2006328923
(In the formula, R 6 and R 7 are each independently a monovalent hydrocarbon having 1 to 5 carbon atoms with or without a functional group, and X 1 and X 2 are each independently having 1 to 4 carbon atoms. Alkyl group, an acyl group having 1 to 4 carbon atoms, Y is a divalent hydrocarbon group having 1 to 20 carbon atoms, x and y each represents 0 or 1, and a plurality of X 1 are the same or different from each other And a plurality of X 2 may be the same or different from each other.) And at least one kind selected from hydrolysates thereof. A building member for an outer wall having a waterproof cured coating.
消石灰、フライアッシュ、砕石廃泥について、それぞれの重量比が3:2:5の割合で混合され、炭酸ガス雰囲気中で固化させた炭酸固化体表面に、請求項2に記載の(A)成分に対して請求項3に記載の(B)を重量比10〜3の割合で混合した液と硬化剤を含むコーティング組成物を塗布したのち、硬化処理を熱風加熱または活性エネルギー線照射により成膜を行うことを特徴とする防水性硬化皮膜を有する外壁用建築部材。  The component (A) according to claim 2, wherein the slaked lime, fly ash, and crushed stone waste mud are mixed at a ratio of 3: 2: 5 by weight and solidified in a carbon dioxide gas atmosphere. On the other hand, after applying a coating composition containing a curing agent and a liquid in which (B) according to claim 3 is mixed at a weight ratio of 10 to 3, the curing treatment is performed by heating with hot air or irradiation with active energy rays. A building member for an outer wall having a waterproof cured film.
JP2005179865A 2005-05-23 2005-05-23 Waterproofed construction member for exterior wall Pending JP2006328923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179865A JP2006328923A (en) 2005-05-23 2005-05-23 Waterproofed construction member for exterior wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179865A JP2006328923A (en) 2005-05-23 2005-05-23 Waterproofed construction member for exterior wall

Publications (1)

Publication Number Publication Date
JP2006328923A true JP2006328923A (en) 2006-12-07

Family

ID=37550884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179865A Pending JP2006328923A (en) 2005-05-23 2005-05-23 Waterproofed construction member for exterior wall

Country Status (1)

Country Link
JP (1) JP2006328923A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444838A (en) * 1990-06-12 1992-02-14 Toray Ind Inc Coating article
JPH08302285A (en) * 1995-05-02 1996-11-19 Nitsupan Kenkyusho:Kk Coating method
JP2000334373A (en) * 1999-03-24 2000-12-05 Matsushita Electric Works Ltd Inorganic coated article
JP2005097059A (en) * 2003-09-26 2005-04-14 Tagawa Sangyo Kk Method for manufacturing molded product and manufacturing apparatus using the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444838A (en) * 1990-06-12 1992-02-14 Toray Ind Inc Coating article
JPH08302285A (en) * 1995-05-02 1996-11-19 Nitsupan Kenkyusho:Kk Coating method
JP2000334373A (en) * 1999-03-24 2000-12-05 Matsushita Electric Works Ltd Inorganic coated article
JP2005097059A (en) * 2003-09-26 2005-04-14 Tagawa Sangyo Kk Method for manufacturing molded product and manufacturing apparatus using the method

Similar Documents

Publication Publication Date Title
KR101577463B1 (en) Mixture containing organosilicon compound and use thereof
AU678386B2 (en) Solvent-free organosiloxane composition and its use
EP1904415B1 (en) Hydrophobing minerals and filler materials
US8129461B2 (en) Silica-based coating composition and its use for coating cement-bonded objects
JP5345673B2 (en) Building materials incorporating hydrophobic silicone resin
CN104193289B (en) A kind of hydrophobicity protective coating and preparation method thereof
KR100820276B1 (en) Composition compound for repairing concrete structure, manufacturing method thereof and repairing method of concrete structure using the composition compound
CN102300833A (en) Fluorine-free composition for water-repellent coating of surfaces having improved beading properties
CA2684244C (en) Light weight additive, method of making and uses thereof
JP2005531477A5 (en)
KR100954450B1 (en) Coating composition of ultra-polymer smart ceramic and method of surface treatment for concrete structure or steel structure
JPH073163A (en) Solventless liquid organosiloxane composition and use thereof
US10882787B2 (en) Method for manufacturing a surface-treated particulate inorganic material
CN103570272A (en) Nano permeable silicone waterproofing agent and preparation method of waterproofing agent
KR102363749B1 (en) High ductility, quick-hardening and ultra-early strength type cement concrete composition modified by polymer modifier and the construction method for road pavement using the same
KR101722753B1 (en) Ceramic coating composition with strengthened durability and method for eco-friendly protecting and strengthening surface of concrete or metal structure
KR102412745B1 (en) Method for strengthening and protecting surface of structure eco-friendly using eco-friendly penetrating inorganic concrete reinforcement and protective agent composition and eco-friendly inorganic coating agent composition
KR102439535B1 (en) Waterproofing and anti-corrosion method of structure surface using ozone-resistant paint
JP2006328923A (en) Waterproofed construction member for exterior wall
JP5399870B2 (en) Coating composition and coated product thereof
CA1103528A (en) Process for rendering building materials hydrophobic
JP2004315343A (en) Silica-dispersed liquid
KR20130059750A (en) Waterproofing cement composition and its manufacturing method
KR100502278B1 (en) Coating compositions that manufactured by organic-inorganic crosslinked polymer for the protection of concrete structure and its manufacture method
KR100581379B1 (en) Preparation method of composition for water-proof, erosion-proof, halotolerance or protection from neutralization of concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130