JP2006328546A - Method for producing clean steel - Google Patents

Method for producing clean steel Download PDF

Info

Publication number
JP2006328546A
JP2006328546A JP2006216608A JP2006216608A JP2006328546A JP 2006328546 A JP2006328546 A JP 2006328546A JP 2006216608 A JP2006216608 A JP 2006216608A JP 2006216608 A JP2006216608 A JP 2006216608A JP 2006328546 A JP2006328546 A JP 2006328546A
Authority
JP
Japan
Prior art keywords
molten steel
steel
refining
ladle
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006216608A
Other languages
Japanese (ja)
Other versions
JP4793159B2 (en
Inventor
Kingo Sasame
欽吾 笹目
Masayuki Aizawa
正幸 相澤
Muneaki Yamada
統明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006216608A priority Critical patent/JP4793159B2/en
Publication of JP2006328546A publication Critical patent/JP2006328546A/en
Application granted granted Critical
Publication of JP4793159B2 publication Critical patent/JP4793159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of easily producing a clean steel extremely low in oxygen content without impairing productivity by performing the whole process of a secondary refining under a pressure-reducing condition. <P>SOLUTION: In the producing method for clean steel, the secondary refining for molten steel is separated into a first process and a second process, and in the first process, the refining using slag under reduced pressure to the molten steel held in a ladle and the temperature-rising of the molten steel, are performed, and successively, in the second process, the treatment for separating and removing inclusions by circulating the molten steel between the ladle and a reduced pressure vessel. It is desirable to be ≤1.33×10<SP>4</SP>Pa vacuum degree in the atmosphere in contact with the molten steel, ≤1.25 L/min/t supplying quantity of inert gas from the bottom part of the ladle, ≤50 kW input power and ≥10 min the circulating time of the molten steel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非金属介在物の含有量の少ない清浄鋼の製造方法に関し、さらに詳しくは、溶鋼の二次精錬に際し、真空アーク脱ガス炉および環流式真空脱ガス装置を用いて清浄鋼を安定して溶製する方法に関するものである。   The present invention relates to a method for producing clean steel with a low content of non-metallic inclusions, and more specifically, in the secondary refining of molten steel, the clean steel is stabilized using a vacuum arc degassing furnace and a reflux vacuum degassing apparatus. And the method of melting.

近年、軸受鋼などに代表される清浄鋼では、より高い清浄性が要求されており、その実現のために疲労強度や冷間加工性に大きく影響を及ぼす非金属介在物の含有量を低減させ、鋼の清浄性の指針となる酸素含有量を低下させることが求められている。これに対応して、従来より清浄鋼の製造には、真空アーク脱ガス法(以下、「VAD法」とも記す)や取鍋精錬(LF)−環流式真空脱ガス(RH)プロセス法(以下、「LF−RH法」とも記す)が積極的に採用されてきた。しかしながら、上記VAD法やLF−RH法には以下に述べる問題がある。   In recent years, clean steel typified by bearing steel has been required to have higher cleanliness. To achieve this, the content of non-metallic inclusions that greatly affect fatigue strength and cold workability is reduced. There is a need to reduce the oxygen content, which is a guideline for the cleanliness of steel. Correspondingly, the production of clean steel has been conventionally performed by the vacuum arc degassing method (hereinafter also referred to as “VAD method”) or the ladle refining (LF) -circular vacuum degassing (RH) process method (hereinafter referred to as “VAD method”) , Also referred to as the “LF-RH method”). However, the VAD method and the LF-RH method have the following problems.

VAD法による清浄鋼の製造においては、精錬処理を減圧下で行うため、処理中に大気の侵入による溶鋼酸化の影響を受けないという利点があるが、脱ガス処理時における取鍋内のスラグの流動を制御することが困難であることから、鋼中にはスラグに起因する介在物、またスラグの流動による耐火物の溶損に起因する介在物が存在する。このような理由から、VAD法により安定して製造することが可能な鋼中の酸素含有量は8ppm程度であり、今日の清浄鋼に対する厳しい基準に対応するためには十分とはいえない。   In the production of clean steel by the VAD method, since the refining process is performed under reduced pressure, there is an advantage that it is not affected by the oxidation of molten steel due to air intrusion during the process, but the slag in the ladle during the degassing process Since it is difficult to control the flow, there are inclusions in the steel due to slag and inclusions due to refractory erosion due to slag flow. For these reasons, the oxygen content in steel that can be stably produced by the VAD method is about 8 ppm, which is not sufficient to meet the strict standards for today's clean steel.

この問題に対して、特許文献1には、底部に不活性ガス吹込み口を備えた溶鋼取鍋を収容する精錬炉容器と、アーク加熱用電極を有し、真空下で溶鋼の加熱または脱ガスを行う精錬炉であって、脱ガス時に溶鋼中に浸漬してその内側に溶鋼の露出部分を確保するための円筒型耐火物(シュノーケル)を有し、この円筒型耐火物の内径と取鍋内径との比が規定され、溶鋼中への円筒型耐火物の浸漬深さが調節可能とされた精錬炉が開示されている。この炉を使用すれば、溶鋼中に浸漬するシュノーケルの内径を適度に拡大することにより、取鍋内の溶鋼が攪拌されにくくなるので、スラグの巻き込みを抑制することは可能である。しかし、一方では、新たに耐火物を溶鋼中へ浸漬させることになるため、アーク加熱によって溶損する耐火物量が増大し、耐火物に起因する介在物量は逆に増加するおそれがある。   In order to solve this problem, Patent Document 1 has a refining furnace vessel that accommodates a molten steel ladle having an inert gas inlet at the bottom, and an electrode for arc heating, and heating or removing the molten steel under vacuum. A refining furnace that performs gas, and has a cylindrical refractory (snorkel) that is immersed in the molten steel during degassing to secure an exposed portion of the molten steel. A refining furnace is disclosed in which a ratio to the inner diameter of the pan is defined and the immersion depth of the cylindrical refractory into the molten steel is adjustable. If this furnace is used, it becomes difficult to stir the molten steel in the ladle by appropriately increasing the inner diameter of the snorkel immersed in the molten steel, and therefore it is possible to suppress the slag entrainment. However, on the other hand, since the refractory is newly immersed in the molten steel, the amount of refractory that is melted by arc heating increases, and the amount of inclusions attributed to the refractory may increase.

一方、LF−RH法による清浄鋼の製造では、スラグによる精錬および介在物の浮上分離機能がLFおよびRHプロセスにより分担されているので、スラグおよび溶損耐火物に起因する鋼中介在物量は、VAD法による場合と比較して低水準である。しかし、LF処理は大気雰囲気中で行われるため、大気の巻き込みを完全に防止することはできず、これが鋼中の酸素含有量を上昇させる原因となる。   On the other hand, in the production of clean steel by the LF-RH method, the refining by slag and the floating separation function of inclusions are shared by the LF and RH processes, so the amount of inclusions in steel due to slag and refractory refractories is Compared to the case of the VAD method, the level is low. However, since the LF treatment is performed in an air atmosphere, the entrainment of air cannot be completely prevented, which causes the oxygen content in the steel to increase.

この問題に対して、特許文献2には、溶鋼を取鍋精錬炉に移注して精錬し、次いで環流式真空脱ガスを行う鋼の製造工程において、取鍋精錬炉における精錬を60分以下とし、環流式真空脱ガス装置による溶鋼の環流量を全溶鋼の8倍以上として脱ガスを25分以上行う高清浄度鋼の製造方法が開示されている。同文献に開示された方法によれば、耐火物あるいはスラグからの汚染による鋼中酸素含有量の上昇を防止するとともに、大型介在物の生成を防止することにより、清浄度の高い鋼を製造することができるとされている。   In response to this problem, Patent Document 2 discloses that in a steel manufacturing process in which molten steel is transferred to a ladle refining furnace and refined and then subjected to reflux vacuum degassing, refining in the ladle refining furnace is performed for 60 minutes or less. And a manufacturing method of high cleanliness steel in which degassing is performed for 25 minutes or more by setting the ring flow rate of molten steel by a reflux vacuum degassing apparatus to 8 times or more of the total molten steel. According to the method disclosed in this document, high purity steel is manufactured by preventing the increase in oxygen content in steel due to contamination from refractories or slag and preventing the formation of large inclusions. It is supposed to be possible.

しかし、生産性および製造コストの観点から、環流式真空脱ガス装置において工業的に許容される環流時間は、通常、長くとも15〜20分程度が限界である。したがって、この方法を実操業に適用することによって安定的に酸素含有量の低い鋼を得ることは困難である。このような理由から、LF−RHプロセス法により安定的に製造することが可能な鋼の酸素含有量は6ppm程度であり、この精錬方法を用いたとしても、最近の厳しい清浄鋼の基準に対しては十分な対応ができない。   However, from the viewpoints of productivity and manufacturing cost, the circulation time that is industrially acceptable in the reflux type vacuum degassing apparatus is usually limited to about 15 to 20 minutes at the longest. Therefore, it is difficult to stably obtain a steel having a low oxygen content by applying this method to actual operation. For this reason, the oxygen content of steel that can be stably produced by the LF-RH process method is about 6 ppm. Is not enough.

特開平9−170015号公報(特許請求の範囲および段落[0010])JP-A-9-170015 (Claims and paragraph [0010]) 特開2001−342516号公報(特許請求の範囲および段落[0007]〜[0012])JP 2001-342516 A (Claims and paragraphs [0007] to [0012])

本発明は上記した従来方法の問題点に鑑みてなされたものであり、減圧下において溶鋼を精錬することにより、生産性を阻害することなく、かつ容易に酸素含有量が4.5ppm以下の清浄鋼を製造することのできる清浄鋼の製造方法を提供することを目的としている。   The present invention has been made in view of the problems of the above-described conventional methods, and by purifying molten steel under reduced pressure, it is easy to clean the oxygen content of 4.5 ppm or less without hindering productivity. It aims at providing the manufacturing method of the clean steel which can manufacture steel.

本発明者らは、上述の課題を解決するために、大気による酸化を受けない状態でスラグおよび溶損耐火物に由来する鋼中の介在物を効果的に除去し、生産性の低下をともなうことなく、酸素含有量の低い清浄鋼を容易に溶製できる清浄鋼の製造方法を検討し、下記の(a)〜(d)の知見を得て、上記の本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors effectively remove inclusions in steel derived from slag and refractory refractories without being oxidized by the atmosphere, with a reduction in productivity. The present invention has been completed by studying a method for producing clean steel that can easily melt clean steel having a low oxygen content, and obtaining the following findings (a) to (d).

(a)溶鋼の二次精錬を、スラグを用いた溶鋼の精錬(以下、「スラグ精錬」ともいう)および溶鋼の昇熱工程、ならびに溶鋼の環流による溶鋼中介在物の分離除去工程に分離し、両工程を減圧下にて行うことにより、大気による溶鋼の酸化を防止し、かつ、鋼中の介在物を効率的に除去して、酸素含有量の極めて低い清浄鋼を製造することができる。   (A) Secondary refining of molten steel is separated into molten steel refining using slag (hereinafter also referred to as “slag refining”) and molten steel heating process, and separation and removal process of inclusions in molten steel by circulating molten steel. By performing both steps under reduced pressure, it is possible to produce a clean steel having an extremely low oxygen content by preventing the oxidation of molten steel by the atmosphere and efficiently removing inclusions in the steel. .

(b)前記(a)の両工程において大気による溶鋼の酸化を十分に抑制するとともに溶鋼の攪拌を促進するためには雰囲気の真空度を1.33×104Pa以下(100Torr以下)とすることが好ましい。また、溶鋼のスラグ精錬を行うに際しては、取鍋底部から攪拌ガスとして例えばアルゴンガスのような不活性ガスを供給し、その供給量は、溶鋼中へのスラグの巻き込みを助長しにくい範囲である溶鋼1トン(t)当たり1.25リットル(L)/分以下(以下、「1.25L/分/t以下」とも記す)とすることが好ましい。 (B) In order to sufficiently suppress the oxidation of molten steel by the atmosphere in both steps (a) and to promote stirring of the molten steel, the degree of vacuum of the atmosphere is set to 1.33 × 10 4 Pa or less (100 Torr or less). It is preferable. In addition, when performing slag refining of molten steel, an inert gas such as argon gas is supplied as a stirring gas from the bottom of the ladle, and the supply amount is in a range in which it is difficult to promote slag entrainment in the molten steel. It is preferable to use 1.25 liters (L) / min or less (hereinafter also referred to as “1.25 L / min / t or less”) per ton (t) of molten steel.

(c)溶鋼の昇熱に際しては、取鍋耐火物の溶損による溶鋼の清浄性の低下を抑制する観点から、昇熱のための投入電力量を溶鋼1トン(t)当たり50kW以下(以下、「50kW/t以下」とも記す)とすることが好ましい。   (C) When the molten steel is heated, from the viewpoint of suppressing the deterioration of the cleanliness of the molten steel due to the melting loss of the ladle refractory, the input electric energy for the heating is 50 kW or less per 1 ton (t) of molten steel (hereinafter, And “50 kW / t or less”).

(d)溶鋼の環流による溶鋼中介在物の分離除去工程では、溶鋼中の介在物を十分に分離除去するために、溶鋼の環流時間を10分以上とすることが好ましい。   (D) In the step of separating and removing inclusions in the molten steel by circulating the molten steel, it is preferable to set the circulating time of the molten steel to 10 minutes or more in order to sufficiently separate and remove the inclusions in the molten steel.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)〜(5)に示される清浄鋼の製造方法にある。   This invention is completed based on said knowledge, The summary exists in the manufacturing method of the clean steel shown by following (1)-(5).

(1)溶鋼の二次精錬を第1工程および第2工程に分離し、前記第1工程では取鍋内に収容した溶鋼に対して減圧下でスラグを用いた精錬および溶鋼の昇熱処理を行い、続く第2工程では取鍋内と減圧槽内との間で溶鋼を環流させることにより介在物の分離除去処理を行うことを特徴とする清浄鋼の製造方法(以下「第1発明」とも記す)。   (1) Secondary refining of molten steel is separated into a first step and a second step. In the first step, the molten steel accommodated in the ladle is subjected to refining using slag under reduced pressure and a heat treatment of the molten steel. In the subsequent second step, the inclusions are separated and removed by circulating the molten steel between the ladle and the decompression tank (hereinafter also referred to as “first invention”). ).

(2)前記の溶鋼の二次精錬を行うにあたり、溶鋼と接する雰囲気の真空度を1.33×104Pa以下とすることを特徴とする前記(1)に記載の清浄鋼の製造方法(以下「第2発明」とも記す)。 (2) In the secondary refining of the molten steel, the degree of vacuum of the atmosphere in contact with the molten steel is 1.33 × 10 4 Pa or less. Hereinafter also referred to as “second invention”).

(3)前記のスラグを用いた精錬を行うにあたり、取鍋底部から不活性ガスを溶鋼1トン(t)当たり1.25リットル(L)/分以下の流量で供給することを特徴とする前記(1)または(2)に記載の清浄鋼の製造方法(以下「第3発明」とも記す)。   (3) In performing refining using the slag, the inert gas is supplied from the bottom of the ladle at a flow rate of 1.25 liters (L) / min or less per 1 ton (t) of molten steel. (1) The manufacturing method of the clean steel as described in (2) (henceforth "the 3rd invention").

(4)前記の溶鋼の昇熱を行うにあたり、昇熱のために投入する電力量を溶鋼1トン(t)当たり50kW以下とすることを特徴とする前記(1)〜(3)のいずれかに記載の清浄鋼の製造方法(以下「第4発明」とも記す)。   (4) Any of the above (1) to (3), wherein the amount of electric power supplied for heating is 50 kW or less per 1 ton (t) of molten steel when the molten steel is heated. The method for producing clean steel according to (1) (hereinafter also referred to as “fourth invention”).

(5)前記の溶鋼の環流による介在物の分離除去において、溶鋼の環流時間を10分以上とすることを特徴とする前記(1)〜(4)のいずれかに記載の清浄鋼の製造方法(以下「第5発明」とも記す)。   (5) The method for producing clean steel according to any one of (1) to (4) above, wherein in the separation and removal of inclusions by recirculation of the molten steel, the recirculation time of the molten steel is 10 minutes or more. (Hereinafter also referred to as “fifth invention”).

本発明において、「二次精錬」とは、鋼の製鋼過程において、転炉またはアーク溶解炉から出鋼された鋼を、溶鋼中のガス成分量の調整、介在物量の減少などを目的として、減圧条件下、不活性ガス雰囲気下などの雰囲気中で処理する精錬を意味する。   In the present invention, "secondary refining" is a steel produced from a converter or arc melting furnace in the steel making process, for the purpose of adjusting the amount of gas components in the molten steel, reducing the amount of inclusions, etc. It means refining that is performed in an atmosphere such as an inert gas atmosphere under reduced pressure.

「減圧下」とは、雰囲気圧力が1.6×104Pa以下(120Torr以下)の場合を意味し、「清浄鋼」とは、酸素含有量すなわち、鋼中の溶存酸素および介在物中の酸素の合計量である全酸素含有量が4.5ppm以下である鋼を意味する。 “Under reduced pressure” means that the atmospheric pressure is 1.6 × 10 4 Pa or less (120 Torr or less), and “clean steel” means the oxygen content, that is, dissolved oxygen in steel and inclusions in inclusions. It means steel having a total oxygen content of 4.5 ppm or less, which is the total amount of oxygen.

「不活性ガス」とは、周期律表18族の元素を意味し、例えばアルゴン、ヘリウム、ネオンなどのガスが該当し、鋼の精錬工程では一般にアルゴンガスが使用される。   The “inert gas” means an element belonging to Group 18 of the periodic table, for example, a gas such as argon, helium, or neon, and argon gas is generally used in a steel refining process.

本発明の清浄鋼の製造方法によれば、溶鋼のスラグ精錬および昇熱工程ならびに介在物の分離除去工程を分け、それら一連の精錬工程における処理を減圧雰囲気中において行うので、大気酸化の影響を受けることなく、スラグおよび溶損耐火物に由来する鋼中介在物を効率的に分離除去することができる。その結果、本発明の方法によれば、RH脱ガス処理における環流時間の延長などによる生産性の低下をともなうことなく、鋼中酸素含有量の極めて低い清浄鋼を安定的に、かつ容易に製造することができる。   According to the method for producing clean steel of the present invention, the slag refining and heating process of molten steel and the separation and removal process of inclusions are separated, and the treatment in the series of refining processes is performed in a reduced-pressure atmosphere. Without receiving, the inclusions in the steel derived from the slag and the refractory refractory can be efficiently separated and removed. As a result, according to the method of the present invention, it is possible to stably and easily produce a clean steel having a very low oxygen content in the steel without a decrease in productivity due to an extension of the reflux time in the RH degassing process. can do.

本発明の方法は、前記のとおり、溶鋼の二次精錬を第1工程および第2工程に分離し、前記第1工程では取鍋内に収容した溶鋼に対して減圧下でスラグを用いた精錬および溶鋼の昇熱処理を行い、続く第2工程では取鍋内と減圧槽内との間で溶鋼を環流させることにより介在物の分離除去処理を行う清浄鋼の製造方法である。以下に、本発明の方法についてさらに詳しく説明する。   In the method of the present invention, as described above, secondary refining of molten steel is separated into a first step and a second step, and in the first step, refining using slag under reduced pressure is performed on the molten steel contained in the ladle. In addition, in the subsequent second step, the molten steel is subjected to a heat treatment, and in the subsequent second step, the inclusion is separated and removed by circulating the molten steel between the ladle and the vacuum tank. Hereinafter, the method of the present invention will be described in more detail.

図1は、本発明の清浄鋼の製造方法を模式的に示す系統図であり、同図において、破線により囲まれた部分が本発明で対象とする工程範囲である。   FIG. 1 is a system diagram schematically showing a method for producing clean steel according to the present invention. In FIG. 1, a portion surrounded by a broken line is a process range targeted by the present invention.

1)アーク溶解炉または転炉により酸化精錬した溶鋼を、所望の成分組成および温度に調整した後、取鍋に注入する。   1) The molten steel oxidatively refined by an arc melting furnace or converter is adjusted to a desired component composition and temperature, and then poured into a ladle.

2)スラグストッパー、スラグドラッガーなどにより取鍋内のスラグを除去した後、取鍋を真空アーク脱ガス炉(VAD)などの真空槽内に配置し、取鍋内の溶鋼の上部にスラグを添加する。   2) After removing the slag in the ladle with a slag stopper, slag dragger, etc., place the ladle in a vacuum tank such as a vacuum arc degassing furnace (VAD) and add slag to the top of the molten steel in the ladle. To do.

3)二次精錬の第1工程では、取鍋底部から攪拌ガスとしてアルゴンガスなどの不活性ガスを供給し、取鍋中の溶鋼を還元精錬する(図1中の(a)により示す処理)。還元精錬処理中の溶鋼と接する雰囲気の真空度は、大気による溶鋼の酸化を十分に防止するとともに溶鋼の攪拌を促進できる程度の真空度とすることが必要であり、1.33×104Pa以下とすることが好ましい。 3) In the first step of secondary refining, an inert gas such as argon gas is supplied as a stirring gas from the bottom of the ladle, and the molten steel in the ladle is reduced and refined (treatment indicated by (a) in FIG. 1). . The degree of vacuum of the atmosphere in contact with the molten steel during the refining treatment needs to be a degree of vacuum that can sufficiently prevent the molten steel from being oxidized by the atmosphere and promote stirring of the molten steel, and is 1.33 × 10 4 Pa. The following is preferable.

なお、期待効果を得る上で真空度の下限値を特に規定する必要はないが、実際の操業においては、設定真空度が低すぎると、設定真空度に到達するまでの所要時間が長くなり、その結果、処理時間が延長されることとなる。したがって、操業能率の面から、上記真空度は1.33×103Pa以上とすることが好ましい。 In order to obtain the expected effect, it is not necessary to specify the lower limit of the degree of vacuum.However, in actual operation, if the set vacuum level is too low, the time required to reach the set vacuum level becomes longer. As a result, the processing time is extended. Therefore, from the viewpoint of operational efficiency, the degree of vacuum is preferably 1.33 × 10 3 Pa or more.

4)上記3)の二次精錬第1工程において、取鍋底部から攪拌ガスとして供給する不活性ガスの好ましい流量の範囲を確認するため、不活性ガスの供給量が鋼中の酸素含有量に及ぼす効果について調査試験を行った。試験は、表1に示される成分組成を有する溶鋼を使用し、表2に示されるとおりの条件でArガス供給量を変化させて行った。   4) In the first step of secondary refining of 3) above, in order to confirm the preferable flow rate range of the inert gas supplied as the stirring gas from the ladle bottom, the supply amount of the inert gas is adjusted to the oxygen content in the steel. A survey test was conducted on the effect. The test was performed by using molten steel having the component composition shown in Table 1 and changing the Ar gas supply amount under the conditions shown in Table 2.

Figure 2006328546
Figure 2006328546

Figure 2006328546
Figure 2006328546

表2に示したとおり、上記の調査試験では、二次精錬の第1工程に用いたVAD法において、取鍋底部から溶鋼中に供給するArガスの流量を変化させ、鋼中の酸素含有量に及ぼす効果を調査した。   As shown in Table 2, in the above investigation test, in the VAD method used in the first step of secondary refining, the flow rate of Ar gas supplied from the bottom of the ladle into the molten steel was changed, and the oxygen content in the steel The effects on

図2は、本発明法による処理後の鋼中酸素含有量に及ぼす第1工程でのArガス供給量の効果を示す図である。図2の結果によれば、鋼中酸素含有量はArガス供給量が低下するにつれて低下し、鋼中酸素含有量を4.0ppm以下とするためには、Arガス供給量を1.25L/分/t以下とすることが好ましいことがわかる。この理由は、不活性ガスの流量が多すぎると溶鋼中へのスラグ巻き込みが助長されるからである。   FIG. 2 is a graph showing the effect of the Ar gas supply amount in the first step on the oxygen content in steel after the treatment according to the method of the present invention. According to the results of FIG. 2, the oxygen content in the steel decreases as the Ar gas supply rate decreases, and in order to keep the oxygen content in the steel to 4.0 ppm or less, the Ar gas supply amount is 1.25 L / It turns out that it is preferable to set it as min / t or less. The reason for this is that slag entrainment in molten steel is promoted when the flow rate of the inert gas is too large.

なお、不活性ガスの流量が少なすぎると溶鋼の攪拌力が低下するので、還元精錬の効果を確保する観点から、Arガス供給量は0.63L/分/t以上とすることが好ましい。   In addition, since the stirring power of molten steel will fall if there is too little flow volume of an inert gas, it is preferable that Ar gas supply amount shall be 0.63 L / min / t or more from a viewpoint of ensuring the effect of reductive refining.

5)上記3)の二次精錬第1工程における還元精錬と並行して、溶鋼の昇熱処理を行う(図1中の(b)により示す処理)。昇熱は、溶鋼中に挿入した電極を介して溶鋼に通電する一般的な昇熱方式によればよい。   5) In parallel with the reduction refining in the first step of secondary refining in 3) above, the molten steel is subjected to a heat treatment (treatment shown by (b) in FIG. 1). The heat increase may be performed by a general heat increase method in which the molten steel is energized through an electrode inserted in the molten steel.

溶鋼の昇熱処理のための投入電力量が鋼中の酸素含有量に及ぼす効果を調査するため、前記と同様に表1に示される成分組成を有する溶鋼を使用し、二次精錬第1工程のVAD法の条件を表3に示すとおり変化させて試験を行った。   In order to investigate the effect of the input power amount for the heat treatment of the molten steel on the oxygen content in the steel, the molten steel having the component composition shown in Table 1 was used in the same manner as described above. The test was conducted by changing the conditions of the VAD method as shown in Table 3.

Figure 2006328546
Figure 2006328546

図3は、本発明法による処理後の鋼中酸素含有量に及ぼす第1工程での昇熱用投入電力原単位の効果を示す図である。図3の結果から、鋼中酸素含有量は昇熱用投入電力原単位の増加とともに上昇すること、および、鋼中酸素含有量を4.0ppm以下とするためには、昇熱用投入電力原単位(溶鋼1t当たりの昇温用投入電力量)を50kW/t以下とすることが好ましいことがわかる。その理由は、昇熱用投入電力原単位が50kW/tを超えて高くなると、取鍋耐火物の溶損量が増大し、溶鋼の清浄性が低下しやすくなるからである。   FIG. 3 is a diagram showing the effect of the input heat intensity for heating in the first step on the oxygen content in steel after the treatment according to the present invention method. From the results shown in FIG. 3, in order to increase the oxygen content in the steel as the heating power input unit increases, and to reduce the oxygen content in the steel to 4.0 ppm or less, the heating power input power source is increased. It can be seen that it is preferable to set the unit (heating input power amount per 1 ton of molten steel) to 50 kW / t or less. The reason is that if the heating power input unit for heating is higher than 50 kW / t, the amount of erosion of the ladle refractory increases and the cleanliness of the molten steel tends to decrease.

6)さらに、上記3)〜5)の二次精錬第1工程における還元精錬および溶鋼の昇熱とともに、溶鋼の成分組成の粗調整を行ってもよい(同図中の(c)により示す処理)。   6) Furthermore, the coarse adjustment of the component composition of the molten steel may be performed together with the reduction refining and the temperature increase of the molten steel in the second step of the secondary refining of the above 3) to 5) (treatment shown by (c) in FIG. ).

7)還元精錬、溶鋼の昇熱および成分組成の粗調整が終了した溶鋼を、二次精錬の第2工程において、RH真空脱ガス装置などの環流式真空脱ガス装置を用いて環流させることにより溶鋼の脱ガス処理を行う(同図中の(d)により示す処理)。上記の処理とともに溶鋼成分組成の最終調整を行うこともできる。二次精錬の第2工程において、溶鋼の環流時間が短いと介在物の十分な分離除去が行われない可能性があるので、環流時間は10分以上とすることが好ましい。なお、生産性を確保し、製造コストを抑制する観点から、環流時間は15分以下とすることが好ましい。
また、減圧槽内の真空度は、前記二次精錬の第1工程中の(a)の場合と同様に、1.33×104Pa以下とすることが好ましい。
7) By recirculating the molten steel after reduction refining, heating of the molten steel and rough adjustment of the component composition using a recirculating vacuum degassing apparatus such as an RH vacuum degassing apparatus in the second step of secondary refining. The molten steel is degassed (treatment indicated by (d) in the figure). The final adjustment of the molten steel component composition can be performed together with the above treatment. In the second step of secondary refining, if the reflux time of the molten steel is short, there is a possibility that the inclusions are not sufficiently separated and removed, so the reflux time is preferably 10 minutes or more. Note that the reflux time is preferably 15 minutes or less from the viewpoint of ensuring productivity and suppressing manufacturing costs.
Moreover, it is preferable that the vacuum degree in a decompression tank shall be 1.33 * 10 < 4 > Pa or less similarly to the case of (a) in the 1st process of the said secondary refining.

上記の方法によれば、溶鋼のスラグ精錬機能および溶鋼中の介在物の分離除去機能を分離し、かつ一連の精錬処理を減圧下で行うので、大気による溶鋼酸化の影響を完全に排除した状態でスラグおよび溶損耐火物に起因する鋼中介在物を効率的に分離除去することができる。その結果、鋼中酸素含有率が4.5ppm以下の清浄鋼を安定して、かつ簡便に製造することが可能である。   According to the above method, the slag refining function of molten steel and the separation and removal function of inclusions in the molten steel are separated, and a series of refining treatments are performed under reduced pressure, so the influence of molten steel oxidation by the atmosphere is completely eliminated Thus, inclusions in steel caused by slag and refractory refractories can be separated and removed efficiently. As a result, it is possible to stably and easily manufacture a clean steel having an oxygen content in steel of 4.5 ppm or less.

本発明に係る清浄鋼の製造方法の効果を確認するため、下記に示す鋼の製造試験を行い、その結果を評価した。   In order to confirm the effect of the method for producing clean steel according to the present invention, the following steel production tests were conducted and the results were evaluated.

前記の表1に示す成分組成を有する溶鋼を用い、図1に示す工程にしたがって精錬を行った。表4に、本発明例および比較例の各試験条件を示した。   Using molten steel having the component composition shown in Table 1, refining was performed according to the process shown in FIG. Table 4 shows the test conditions for the inventive examples and comparative examples.

Figure 2006328546
Figure 2006328546

同表において、試験番号1〜6は、本発明で規定する条件を満足する本発明例についての試験であり、二次精錬の第1工程としてVAD法を、また、同第2工程としてRH真空脱ガス法を使用した。これに対して、試験番号7は、二次精錬第1工程のVAD法による処理のみを行い、同第2工程の処理を行わなかった比較例についての試験であり、試験番号8は、同第1工程として大気圧下での処理を行うLF法を用い、また、同第2工程としてRH法を用いるLF−RH法を適用した比較例についての試験である。   In the same table, test numbers 1 to 6 are tests for the present invention examples that satisfy the conditions specified in the present invention. The VAD method is used as the first step of secondary refining, and the RH vacuum is used as the second step. A degassing method was used. On the other hand, test number 7 is a test for a comparative example in which only the processing by the VAD method in the first step of the secondary refining is performed and the processing in the second step is not performed. This is a test for a comparative example using the LF method in which the treatment under atmospheric pressure is performed as one step and the LF-RH method using the RH method as the second step.

図4は、本発明例および比較例についての試験における鋼中酸素含有量の低減状況を示す図である。   FIG. 4 is a diagram showing a state of reduction of the oxygen content in steel in the test for the inventive example and the comparative example.

本発明で規定する条件を満足する本発明例の試験番号1〜6では、本発明例で規定する条件を満たさない比較例の試験番号7および8に比較して、鋼中酸素含有量が3.5〜4.5ppm程度にまで低減されており、鋼の清浄性が著しく向上している。   In the test numbers 1 to 6 of the present invention examples that satisfy the conditions specified in the present invention, the oxygen content in the steel is 3 in comparison with the test numbers 7 and 8 of the comparative examples that do not satisfy the conditions specified in the present invention examples. It is reduced to about 5-4.5 ppm, and the cleanliness of steel is remarkably improved.

試験番号1〜6のうちで、試験番号1および6の試験は、第2発明で規定する真空度、第3発明で規定する不活性ガス供給量、第4発明で規定する投入電力量および第5発明で規定する溶鋼の環流時間のいずれの条件をも満足する試験である。これらの試験番号1および6の試験では、上記の真空度の条件を満たさない試験番号2、不活性ガス供給量の条件を満たさない試験番号3、投入電力量の条件を満たさない試験番号4および溶鋼環流時間の条件を満たさない試験番号5のいずれの場合よりも、鋼中酸素含有量が低下しており、特に良好な清浄性が得られている。   Among the test numbers 1 to 6, the tests of test numbers 1 and 6 are the degree of vacuum specified by the second invention, the supply amount of inert gas specified by the third invention, the input power amount specified by the fourth invention and 5 This test satisfies all conditions of the reflux time of molten steel specified in the invention. In these tests No. 1 and No. 6, Test No. 2 that does not satisfy the above-mentioned vacuum condition, Test No. 3 that does not satisfy the inert gas supply amount condition, Test No. 4 that does not satisfy the input power amount condition, and The oxygen content in the steel is lower than in any case of test number 5 that does not satisfy the condition of the molten steel reflux time, and particularly good cleanliness is obtained.

上記の本発明例に対して、比較例についての試験である試験番号7および8では、鋼中酸素含有量が6〜8ppm程度と高く、鋼の清浄性は劣ったものとなった。   In contrast to the above-described examples of the present invention, in test numbers 7 and 8, which are tests for comparative examples, the oxygen content in the steel was as high as about 6 to 8 ppm, and the cleanliness of the steel was inferior.

本発明の清浄鋼の製造方法によれば、溶鋼のスラグ精錬および昇熱工程ならびに介在物の分離除去工程を分け、それら一連の精錬工程における処理を減圧雰囲気中において行うので、大気酸化の影響を全く受けることなく、スラグおよび溶損耐火物に由来する鋼中介在物を効率的に分離除去することができる。その結果、本発明の方法によれば、RH脱ガス処理における環流時間の延長などによる生産性の低下をともなうことなく、鋼中酸素含有量の極めて低い清浄鋼を安定的に、かつ容易に製造することができる。したがって、本発明の方法は、酸素含有量が4.5ppm以下の清浄鋼を、生産性を阻害することなく、かつ容易に製造できる清浄鋼の製造方法として、精錬技術分野において広範に適用できる。   According to the method for producing clean steel of the present invention, the slag refining and heating process of molten steel and the separation and removal process of inclusions are separated, and the treatment in the series of refining processes is performed in a reduced-pressure atmosphere. Without being received at all, the inclusions in the steel derived from the slag and the refractory refractory can be separated and removed efficiently. As a result, according to the method of the present invention, it is possible to stably and easily produce a clean steel having a very low oxygen content in the steel without a decrease in productivity due to an extension of the reflux time in the RH degassing process. can do. Therefore, the method of the present invention can be widely applied in the refining technical field as a clean steel manufacturing method that can easily manufacture clean steel having an oxygen content of 4.5 ppm or less without impairing productivity.

本発明の方法を模式的に示す系統図である。It is a systematic diagram which shows the method of this invention typically. 本発明法による処理後の鋼中酸素含有量に及ぼす第1工程でのArガス供給量の効果を示す図である。It is a figure which shows the effect of the Ar gas supply amount in the 1st process which has on the oxygen content in the steel after the process by this invention method. 本発明法による処理後の鋼中酸素含有量に及ぼす第1工程での昇熱用投入電力原単位の効果を示す図である。It is a figure which shows the effect of the input power basic unit for the heating in the 1st process which has on the oxygen content in steel after the process by this invention method. 本発明法および比較法による鋼中の酸素含有量の低減状況を示す図である。It is a figure which shows the reduction condition of the oxygen content in steel by this invention method and a comparative method.

Claims (5)

溶鋼の二次精錬を第1工程および第2工程に分離し、前記第1工程では取鍋内に収容した溶鋼に対して減圧下でスラグを用いた精錬および溶鋼の昇熱処理を行い、続く第2工程では取鍋内と減圧槽内との間で溶鋼を環流させることにより介在物の分離除去処理を行うことを特徴とする清浄鋼の製造方法。   The secondary refining of the molten steel is separated into the first step and the second step. In the first step, the molten steel accommodated in the ladle is subjected to refining using slag under reduced pressure and the heat treatment of the molten steel. A process for producing clean steel characterized in that in two steps, the inclusions are separated and removed by circulating the molten steel between the ladle and the vacuum tank. 前記の溶鋼の二次精錬を行うにあたり、溶鋼と接する雰囲気の真空度を1.33×104Pa以下とすることを特徴とする請求項1に記載の清浄鋼の製造方法。 2. The method for producing clean steel according to claim 1, wherein in performing the secondary refining of the molten steel, a degree of vacuum of an atmosphere in contact with the molten steel is 1.33 × 10 4 Pa or less. 前記のスラグを用いた精錬を行うにあたり、取鍋底部から不活性ガスを溶鋼1トン(t)当たり1.25リットル(L)/分以下の流量で供給することを特徴とする請求項1または2に記載の清浄鋼の製造方法。   The refining using the slag is characterized in that an inert gas is supplied from the bottom of the ladle at a flow rate of 1.25 liters (L) / min or less per 1 ton (t) of molten steel. 2. The method for producing clean steel according to 2. 前記の溶鋼の昇熱を行うにあたり、昇熱のために投入する電力量を溶鋼1トン(t)当たり50kW以下とすることを特徴とする請求項1〜3のいずれかに記載の清浄鋼の製造方法。   The clean steel according to any one of claims 1 to 3, wherein the amount of electric power supplied for heating is set to 50 kW or less per ton (t) of molten steel in performing the heating of the molten steel. Production method. 前記の溶鋼の環流による介在物の分離除去において、溶鋼の環流時間を10分以上とすることを特徴とする請求項1〜4のいずれかに記載の清浄鋼の製造方法。
The method for producing clean steel according to any one of claims 1 to 4, wherein in the separation and removal of inclusions by recirculation of the molten steel, the recirculation time of the molten steel is 10 minutes or more.
JP2006216608A 2006-08-09 2006-08-09 Manufacturing method of clean steel Active JP4793159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216608A JP4793159B2 (en) 2006-08-09 2006-08-09 Manufacturing method of clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216608A JP4793159B2 (en) 2006-08-09 2006-08-09 Manufacturing method of clean steel

Publications (2)

Publication Number Publication Date
JP2006328546A true JP2006328546A (en) 2006-12-07
JP4793159B2 JP4793159B2 (en) 2011-10-12

Family

ID=37550526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216608A Active JP4793159B2 (en) 2006-08-09 2006-08-09 Manufacturing method of clean steel

Country Status (1)

Country Link
JP (1) JP4793159B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240338A (en) * 1993-02-18 1994-08-30 Sumitomo Metal Ind Ltd Method for desulfurizing molten steel
JPH08218111A (en) * 1995-02-14 1996-08-27 Sumitomo Metal Ind Ltd Method for reducing entrapment of slag into molten steel
JPH10168511A (en) * 1996-12-11 1998-06-23 Sumitomo Metal Ind Ltd Method for temperature-raising and refining molten steel
JP2000129335A (en) * 1998-10-20 2000-05-09 Nkk Corp Production of extra-low sulfur steel excellent in cleanliness
JP2001262218A (en) * 2000-03-21 2001-09-26 Kawasaki Steel Corp Method for producing high cleanliness steel
JP2001342512A (en) * 2000-06-05 2001-12-14 Sanyo Special Steel Co Ltd Highly clean steel and production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240338A (en) * 1993-02-18 1994-08-30 Sumitomo Metal Ind Ltd Method for desulfurizing molten steel
JPH08218111A (en) * 1995-02-14 1996-08-27 Sumitomo Metal Ind Ltd Method for reducing entrapment of slag into molten steel
JPH10168511A (en) * 1996-12-11 1998-06-23 Sumitomo Metal Ind Ltd Method for temperature-raising and refining molten steel
JP2000129335A (en) * 1998-10-20 2000-05-09 Nkk Corp Production of extra-low sulfur steel excellent in cleanliness
JP2001262218A (en) * 2000-03-21 2001-09-26 Kawasaki Steel Corp Method for producing high cleanliness steel
JP2001342512A (en) * 2000-06-05 2001-12-14 Sanyo Special Steel Co Ltd Highly clean steel and production method

Also Published As

Publication number Publication date
JP4793159B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5132177B2 (en) Method for producing ultra-low Si, ultra-low C, ultra-low S high Ni-Fe alloy steel
JP6686837B2 (en) Highly clean steel manufacturing method
CN113337727B (en) Slag for preparing high-nitrogen steel through pressurized electroslag remelting for inhibiting burning loss of magnesium and rare earth and using method thereof
JP6040957B2 (en) Method of melting high S low N alloy steel
JP2008303406A (en) Method for manufacturing high-cleanliness steel
JP2006341268A (en) Apparatus and method for continuously manufacturing copper alloy
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
RU2572117C1 (en) Method of production of superalloys based on nickel and alloyed by rare-earth metals
JP4793159B2 (en) Manufacturing method of clean steel
JP4722772B2 (en) Manufacturing method of high cleanliness steel
JP2018066031A (en) Manufacturing method of high cleanliness steel
JP5590056B2 (en) Manufacturing method of highly clean steel
KR101159928B1 (en) Vaccum refining method of ultra low carbon steel
KR101796088B1 (en) Refining method of alloy steel
JP2005272958A (en) Method for utilizing vacuum-degassing apparatus
JP4884802B2 (en) Manufacturing method of high clean steel
JP4882249B2 (en) Manufacturing method of high clean steel
JP2017171983A (en) Method for reducing coarse inclusion by lf treatment
JP4839658B2 (en) Refining method of bearing steel
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
KR20200075651A (en) Refining method of high-purity molten steel
JP4582826B2 (en) Manufacturing method of clean steel with RH degassing equipment
JP2006233254A (en) Method for producing high cleanliness steel
JPS63161113A (en) Method for refining steel
JP5314939B2 (en) Method for producing high alloy ultra low carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Ref document number: 4793159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350