JP2006326712A - Endless track system wall traveling robot having crossing-over mechanism - Google Patents

Endless track system wall traveling robot having crossing-over mechanism Download PDF

Info

Publication number
JP2006326712A
JP2006326712A JP2005150553A JP2005150553A JP2006326712A JP 2006326712 A JP2006326712 A JP 2006326712A JP 2005150553 A JP2005150553 A JP 2005150553A JP 2005150553 A JP2005150553 A JP 2005150553A JP 2006326712 A JP2006326712 A JP 2006326712A
Authority
JP
Japan
Prior art keywords
vacuum
traveling
belt
suction
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005150553A
Other languages
Japanese (ja)
Inventor
Kenji Hayashi
健治 林
Mineo Nishibori
峯夫 西堀
Takashi Sakamoto
高志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STELLA GIKEN KK
Original Assignee
STELLA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STELLA GIKEN KK filed Critical STELLA GIKEN KK
Priority to JP2005150553A priority Critical patent/JP2006326712A/en
Publication of JP2006326712A publication Critical patent/JP2006326712A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an endless track system wall traveling robot having a function for crossing over a traveling obstacle on a building wall. <P>SOLUTION: This robot comprises an accommodation space for absorbing deformation due to bending flexure of a flexible adsorption traveling belt along a crossing-over mechanism on a traveling contact surface side, and a posture control mechanism for controlling swing of the adsorption traveling belt on the traveling contact surface side vertically to a winding direction of the belt, so as to cross over the obstacle. An auxiliary adsorption mechanism gripped by rotary arms swingable in a vertical direction to the traveling wall is provided at front and rear parts in a moving direction of the wall adsorption traveling robot, so as to enhance an adsorption force and an energizing force in crossing over the obstacle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建造物の垂直外壁面における走行障害物の乗越え機構を有する無限軌道方式の壁面走行ロボットに関する。   The present invention relates to a wall traveling robot of an endless track system having a mechanism for getting over a traveling obstacle on a vertical outer wall surface of a building.

従来、建造物の垂直外壁走行に利用されている無限軌道方式の壁面吸着走行車では、特開平10−082169号広報に記載される様に、左右両側に、それぞれ駆動手段によって周回駆動される無端ベルト部材と、該無端ベルト部材の外面側の周回部位を壁面に吸着させる吸着手段とを備えた吸着移動無限軌道機構を備え、前記無端ベルトは、屈曲可能な基板の外面側に弾性部材によって複数の吸着室が形成されると共に、該吸着室と対応する前記基板の所定位置に吸気孔が形成され、前記吸着手段は、前記無端ベルト部材の周回軌道の内側に当該周回軌道に沿って配設されたガイド板に、それぞれ吸引手段によって独立して吸引される前記無端ベルト部材の周回方向に長い複数の吸引孔が前記無端ベルト部材の周回方向に不連続で並設されて構成され、前記吸着手段がその吸引孔と合致した前記基板の吸気孔を介して前記基板の吸着室内を吸引することで前記無端ベルトが壁面に吸着し、該無端ベルトの周回によって移動するよう構成されていることを特徴とする壁面吸着移動装置である。   Conventionally, in an endless track type wall surface adsorbing traveling vehicle used for vertical outer wall traveling of a building, as described in JP-A-10-082169, endlessly driven on both sides by driving means. A suction moving endless track mechanism having a belt member and a suction means for sucking a circumferential portion on the outer surface side of the endless belt member to a wall surface, wherein the endless belt includes a plurality of elastic members on the outer surface side of the bendable substrate. And a suction hole is formed at a predetermined position of the substrate corresponding to the suction chamber, and the suction means is disposed along the circular track inside the circular track of the endless belt member. A plurality of suction holes, which are long in the circumferential direction of the endless belt member that is independently sucked by the suction means, are discontinuously arranged in the circumferential direction of the endless belt member. The endless belt is attracted to the wall surface by the suction means sucking the suction chamber of the substrate through the suction hole of the substrate that matches the suction hole, and moved by the circulation of the endless belt. It is the wall surface adsorption movement device characterized by being carried out.

また、特開平5−50955号広報に記載されるように、フレームの前後両端部にそれぞれ回転自在に取り付けられた左右一対のスプロケットと、これら左右一対のスプロケットをそれぞれ独立に駆動する左右一対の駆動モータと、前記前後のスプロケットに巻き掛けられる左右一対の無端チェーンと、これら無端チェーンの一部を構成するチェーンリンクにそれぞれ基端部が取り付けられた伸縮可能な筒体と、これら筒体の先端部にそれぞれ取り付けられ且つ走行壁面に対して密着し得る吸着パッドと、前記フレームに設けられ且つ前記筒体の伸縮を伴って前記走行壁面に密着する前記吸着パッドに対応した当該ベローズ内をそれぞれ真空引きする吸引手段とを具えたクローラ型壁面吸着走行である。   Moreover, as described in JP-A-5-50955, a pair of left and right sprockets rotatably attached to both front and rear ends of the frame, and a pair of left and right drives for independently driving the pair of left and right sprockets, respectively. A motor, a pair of left and right endless chains wound around the front and rear sprockets, a telescopic cylinder having base ends attached to chain links forming part of the endless chain, and distal ends of these cylinders Vacuum pads in the bellows corresponding to the suction pads attached to the running wall and attached to the running wall and in close contact with the running wall provided with the expansion and contraction of the cylindrical body, respectively. This is a crawler-type wall surface adsorbing traveling having a suction means for pulling.

建築物の壁面吸着移動装置及びそれを利用した壁面清掃装置 特開平10−82169号公報Building wall surface adsorption moving device and wall surface cleaning device using the same クローラ型壁面吸着走行ロボット 特開平5−50955号公報Crawler type wall surface adsorbing traveling robot Japanese Patent Laid-Open No. 5-50955 壁面吸着移動装置 特開平11−171063号広報Wall surface adsorbing and moving device Japanese Patent Laid-Open No. 11-171063 壁面吸着自走装置 特開平3−016887号広報Wall adsorption self-propelled device 真空吸着自走式台車 特開平5−254464号広報Vacuum adsorption self-propelled dolly JP-A-5-254464 クローラー型壁面吸着走行ロボット 特開平5−4594号広報Crawler-type wall-adsorption traveling robot クローラー型壁面吸着自走装置 特開平5−12378号広報Crawler type wall surface adsorption self-propelled device 壁面移動装置 特開平7−280734号広報Wall moving device Japanese Patent Laid-Open No. 7-280734 壁面吸着清掃装置 特開平8−207839号広報Wall surface adsorption cleaning device 建造物の壁面清掃器及びそれを備えた壁面清掃装置 特開平10−33439号広報Wall cleaner for building and wall cleaning device provided with the same ウォールクリーナ用吸着ユニット 特開平10−86865号広報Adsorbing unit for wall cleaner JP-A-10-86865 ウォールクリーナユニット 特開平10−86866号広報Wall cleaner unit Japanese Patent Laid-Open No. 10-86866 外装壁面クリーナ 特開平2003−247340号広報Exterior wall cleaner Japanese Patent Application Laid-Open No. 2003-247340

前記建造物の壁面吸着移動装置及びそれを利用した壁面清掃装置(特開平10−82169号公開)においては、吸着走行の為の真空室を周回軌道外周部に形成した無端ベルト基板の周回軌道内周面には低摩擦係数の摺動性シートと弾性体シートを貼着した吸着機構が摺接している。この様な構造においては、前記無端ベルト外周部に吸着室を形成する弾性部材の弾力性及び前記無端ベルト基板内周面に摺接する摺動用弾性体シートの弾力性の範囲でしか壁面の凹凸対応ができず、真空漏れが発生し易く、コンクリ、モルタル、タイル等の多種な壁面や凹凸面、クラックを有する壁面への対応ができず走行安定性に劣るとの課題があった。   In the wall surface adsorption moving device of the building and the wall surface cleaning device using the same (Japanese Patent Laid-Open No. 10-82169), in the circular orbit of an endless belt substrate in which a vacuum chamber for adsorption traveling is formed on the outer periphery of the circular track A suction mechanism having a low-friction coefficient slidable sheet and an elastic sheet adhered thereto is in sliding contact with the peripheral surface. In such a structure, it is possible to cope with irregularities on the wall surface only within the range of the elasticity of the elastic member that forms the suction chamber on the outer peripheral portion of the endless belt and the elasticity of the sliding elastic sheet that is in sliding contact with the inner peripheral surface of the endless belt substrate. There is a problem in that it is difficult to perform vacuum leakage, and is inferior in running stability because it cannot cope with various wall surfaces such as concrete, mortar, and tile, uneven surfaces, and wall surfaces having cracks.

また、クローラ型壁面吸着走行ロボット(特開平5−50955号公報)においては、
周回駆動する1対の無端チェーンに基部を枢設された伸縮可能な吸着筒体と該筒体の先端に吸着パッドを固設した構造であり、無端チェーンの弛み及び筒体の伸縮を利用することにより凹凸壁面への吸着性能は向上したが、障害物の乗越え走行はできず運用性に劣るとの課題があった。
In the crawler type wall surface adsorbing traveling robot (Japanese Patent Laid-Open No. 5-50955),
The structure is such that a pair of endless chains that are driven to rotate and a telescopic suction cylinder having a base portion pivoted and a suction pad fixed to the tip of the cylinder are used to take advantage of the slack of the endless chain and the expansion and contraction of the cylinder. As a result, the adsorption performance to the uneven wall surface was improved, but there was a problem that the vehicle could not travel over obstacles and was inferior in operability.

本発明は、従来技術の無限軌道方式壁面吸着走行ロボットの上記の様な課題を解決し、凹凸壁面での安定走行と障害物乗越え機能実現による運用性に優れた無限軌道方式壁面吸着走行ロボットを提供することを目的とするものである。   The present invention solves the above-mentioned problems of the conventional endless track type wall-adsorbing traveling robot of the prior art, and provides an endless track type wall-adsorbing traveling robot excellent in operability by realizing stable traveling on the uneven wall surface and obstacle overpassing function. It is intended to provide.

本発明における無限軌道方式の壁面吸着走行ロボットにおいて、
無端吸着走行ベルト機構部7の外側の所定位置に複数列欠成された真空室7−4に連通し走行接面部のみを真空引きする真空連通切替機構部8、9を、前記吸着走行ベルト機構部の周回軌道内側の所定位置に離設することにより、前記吸着走行ベルトが乗越え障害物形状に沿った自在な屈曲をしても前記真空連通切替機構部8、9に接触せずに、前記吸着走行ベルトの障害物形状に沿った屈曲撓みの変形を吸収する収納空間を設けることができる。
且つ、前記吸着走行ベルト7−1に固設されたベルト固定ステー7−5の両端に嵌設された1対の無端チェーン7−8周回軌道の垂直方向両端を姿勢制御アイドラー11−5、11−6からなる挟持機構により挟持し、該挟持機構を一端に軸着する姿勢制御軸11−3の他端をカム機構11−1や他のアクチェータにより接面の垂直上下方向へ揺動させる姿勢制御機構11を前記吸着走行ベルト7−1の周回方向の両側所定位置に複数個を設け、吸着走行ベルト7−1を乗越え障害物の形状に沿った自在な屈曲制御を可能とできる。
ここで前記吸着走行ベルトの屈曲撓みの変形を収納する空間を設ける方法としては、無端吸着走行ベルト機構部17の周回軌道方向の内面に摺動シート17−4を設け、表面に該摺動シートと摺接する摺動シート18−1を備え真空連通を行う摺動真空ブロック18−3を、スプリング等の弾性体18−7により前記吸着走行ベルト17の周回軌道と垂直方向に付勢させる真空連通切換機構18を、前記吸着走行ベルトの周回軌道内側に離設することによっても、前記スプリング等の弾性体18−7の伸縮により障害物乗越え時の該吸着走行ベルトの自在な屈曲撓み変形を収納する空間を設けることができる。
In the endless track method wall surface adsorption traveling robot in the present invention,
The vacuum communication switching mechanism portions 8 and 9 that communicate with the vacuum chambers 7-4 formed in a plurality of rows at predetermined positions outside the endless suction traveling belt mechanism portion 7 and evacuate only the traveling contact surface portion are provided as the suction traveling belt mechanism. By separating from the predetermined position inside the circular orbit of the part, even if the adsorption traveling belt freely bends along the obstacle shape without contacting the vacuum communication switching mechanism parts 8 and 9, A storage space that absorbs the deformation of bending and bending along the obstacle shape of the suction traveling belt can be provided.
In addition, the posture control idlers 11-5 and 11 are connected to both ends of a pair of endless chains 7-8 that are fitted to both ends of a belt fixing stay 7-5 fixed to the suction traveling belt 7-1. A posture in which the other end of the posture control shaft 11-3 is clamped by a clamping mechanism consisting of -6 and is pivotally attached to one end by the cam mechanism 11-1 or other actuator in the vertical vertical direction of the contact surface. A plurality of control mechanisms 11 are provided at predetermined positions on both sides of the suction traveling belt 7-1 in the circumferential direction so that the bending control can be performed along the shape of the obstacle over the suction traveling belt 7-1.
Here, as a method of providing a space for accommodating the bending and bending deformation of the adsorption traveling belt, a sliding sheet 17-4 is provided on the inner surface of the endless adsorption traveling belt mechanism 17 in the direction of the orbit, and the sliding sheet is provided on the surface. A vacuum communication for urging a sliding vacuum block 18-3, which includes a sliding sheet 18-1 that is in sliding contact with a vacuum, in a direction perpendicular to the orbit of the suction traveling belt 17 by an elastic body 18-7 such as a spring. Even when the switching mechanism 18 is separated from the inside of the orbit of the suction traveling belt, the flexible traveling deformation of the suction traveling belt when overcoming an obstacle is accommodated by the expansion and contraction of the elastic body 18-7 such as the spring. A space to perform can be provided.

前記真空室7−4を真空引きする真空切換機構部の真空切替バー9に、真空漏れ時には大気圧と真空との差圧を自動感知し作動する真空連通開閉弁の自動真空弁10を装備し、乗越え時の真空漏れによる吸着力の低下防止ができる。   The vacuum switching bar 9 of the vacuum switching mechanism for evacuating the vacuum chamber 7-4 is equipped with an automatic vacuum valve 10 as a vacuum communication on / off valve that automatically senses and operates the differential pressure between atmospheric pressure and vacuum when a vacuum leaks. It is possible to prevent the adsorption force from being lowered due to vacuum leakage when getting over.

前記壁面吸着走行ロボット2の移動方向の前後に、走行壁面に対し垂直方向に旋回可能な回転アーム5U、5Dにより掴持された補助吸着機構6U、6Dを備え、前記壁面吸着走行ロボット2の走行壁面への吸着力と付勢力を制御可能とし走行安定ができる。   Before and after the movement direction of the wall surface adsorption traveling robot 2, auxiliary adsorption mechanisms 6U and 6D gripped by rotating arms 5U and 5D that can pivot in a direction perpendicular to the traveling wall surface are provided. It is possible to control the adsorption force and the urging force to the wall surface and to stabilize the running.

本発明によれば、前記吸着走行ベルトが走行障害物の形状に沿った自在な屈曲撓みの変形を吸収する収納空間を接面側に設け、前記吸着走行ベルトの接面部での高さ制御を行う機構を設けたので、壁面における障害物の乗越え走行ができる。
これにより、無限軌道方式壁面吸着走行ロボットが有する走行障害物の乗越えが出来ないとの課題を解決し、無限軌道方式が有する構造の簡易性、高速走行性、低コストの特徴を生かした利用し易い汎用性に優れた壁面吸着走行ロボットを実現できる。
尚、自動真空弁を設けたときは、障害物乗越えにおいても生成された吸着真空の漏れが防止されるので、真空ポンプ等の真空装置が小型のもので良い効果がある。
尚、補助吸着機構を壁面吸着走行ロボットの進行方向前後に装備したときは、該走行ロボットが走行壁面に付勢されるので、垂直壁面における安定した乗越え走行に効果がある。
尚、吸着走行ベルト外周部の弾性体に欠成された真空室内部に保護脚を固設したときは、真空室の形状変化の防止ができ、弾性体を過重負荷から保護するので、真空吸着力の向上と該吸着走行ベルトの長寿命化に効果がある。
According to the present invention, a storage space is provided on the contact surface side in which the suction traveling belt absorbs free bending deformation along the shape of the traveling obstacle, and height control at the contact surface portion of the suction traveling belt is performed. Since the mechanism to perform is provided, it is possible to travel over obstacles on the wall surface.
This solves the problem that the traveling obstacles of the endless track system wall-adsorbing traveling robot cannot be overcome, and makes use of the simplicity of the structure, high speed travelability, and low cost characteristics of the endless track system. A wall-adsorption traveling robot with excellent versatility that is easy to implement can be realized.
When the automatic vacuum valve is provided, leakage of the suction vacuum generated even when the obstacle is climbed is prevented, so that a small vacuum device such as a vacuum pump can be used.
In addition, when the auxiliary suction mechanism is installed before and after the traveling direction of the wall surface adsorption traveling robot, the traveling robot is biased to the traveling wall surface, which is effective for stable overriding traveling on the vertical wall surface.
In addition, when a protective leg is fixed in the vacuum chamber inside the suction belt outer peripheral part, the shape of the vacuum chamber can be prevented and the elastic body is protected from overloading. This is effective in improving the force and extending the life of the adsorption traveling belt.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1ないし図8は、本発明に係る実施の形態を説明するためのものである。
図1は乗越え機構を有する走行ユニット2台を連結してなる壁面吸着走行ロボットの走行方向前後に補助吸着機構を備えた全体斜視図であり、補助吸着機構と吸着走行ベルトの障害物乗越え時における自在な屈曲変形を吸収する収納空間の形成方法を図示するためのものである。図2は姿勢制御機構の一部斜視図であり、吸着走行ベルトの障害物乗越え時における該走行ベルトを周回軌道垂直方向に高さ制御する方法を図示するためのものである。図3は真空切替連通機構部の一部斜視図であり、収納空間を設けるために吸着走行ベルトと離設された真空切換連通機構を図示するためのものである。図4は図3の真空切替連通機構部のa−a断面図であり、また図5は図3のb−b断面図であり、真空漏れを自動感知作動する自動真空弁を図示する為のものである。図6は吸着走行ベルトの一部斜視図であり、図7はそのa−a断面図であり内部構造を詳細に説明する為のものである。図8は吸着機構の変形例の一部斜視図であり、吸着走行ベルトの障害物乗越え時における自在な屈曲撓みの変形を吸収する収納空間の他の形成方法を図示するためのものである。
以下順を追って説明する。
1 to 8 are for explaining an embodiment according to the present invention.
FIG. 1 is an overall perspective view including auxiliary suction mechanisms before and after the traveling direction of a wall-surface adsorption traveling robot formed by connecting two traveling units having a climbing mechanism. It is for illustrating the formation method of the storage space which absorbs a flexible bending deformation. FIG. 2 is a partial perspective view of the attitude control mechanism for illustrating a method of controlling the height of the traveling belt in the direction of the orbit when the suction traveling belt is over the obstacle. FIG. 3 is a partial perspective view of the vacuum switching communication mechanism, which illustrates the vacuum switching communication mechanism that is separated from the suction traveling belt to provide a storage space. 4 is a cross-sectional view taken along the line aa of the vacuum switching communication mechanism unit of FIG. 3, and FIG. 5 is a cross-sectional view taken along the line bb of FIG. 3 for illustrating an automatic vacuum valve that automatically detects a vacuum leak. Is. FIG. 6 is a partial perspective view of the suction traveling belt, and FIG. 7 is a sectional view taken along the line aa for explaining the internal structure in detail. FIG. 8 is a partial perspective view of a modified example of the suction mechanism, and is for illustrating another method of forming a storage space that absorbs deformation of free bending and bending when the suction traveling belt passes over an obstacle.
The following will be described in order.

図1に図示する壁面吸着走行ロボットの走行ユニット2において、長方体をなす外枠15の短辺側前部に駆動モータ3を固設し、該駆動モータの駆動軸に回転軸12−1を回動可能に係合する。該回転軸12−1には1対の駆動歯車13a、13bを左右両端に嵌着し、その内側に同一PCDの左右1対の駆動歯車14a、14bを嵌着する。また外枠15の短辺側後部にも回転軸12−2を回動可能に固設し、該回転軸12−2にも歯車13c、13dを嵌着し、その内側にも同一PCDの歯車14c、14dを嵌着する。前記前後左右両端に配置された歯車において、左側歯車13a、13c間には該歯車の回動により回転する無端チェーン7−8を嵌合橋架する。右側歯車13b、13d間にも同様に該無端チェーン7−8を嵌合橋架する。左右1対で橋架された該無端チェーン7−8間にはベルト固定ステー7−5を架設する。該ベルト固定ステー7−5は両端をコ字形に折曲形成し、その両端折曲部には穿設されたチェーンリンク支持孔7−12(図7に図示)に前記無端チェーンのチェーンリンクを枢着する。無端吸着走行ベルト7−1を載設する為の前記ベルト固定ステー7−5は該吸着走行ベルトの真空室を真空切替連通機構部に連通する為、該無端吸着走行ベルト周回外側部の弾性体7−3に欠成された周回方向の真空室列数と同数の前記ベルト固定ステー7−5が左右1対の前記無端チェーン7−8の所定位置に枢着架設される。
前記ベルト固定ステー7−5は前記無端吸着走行ベルト弾性体に欠成された真空室内7−4に配設された内部ステー7−9(図7に図示)との間で吸着走行ベルト基板7−2を挟持し且つ前記ベルト固定ステーに螺設された真空継手7−6(図7に図示)は真空引き孔7−10(図7に図示)及び真空室7−4に配設された内部ステー7−9(図7に図示)に掘穿されたを通じて真空室7−4に連通させ挟設する。
前記により、前記駆動モータの回転駆動により歯車13a、13b、13c、13d及び歯車14a、14b、14c、14dは同期回転し、該歯車13a、13b、13c、13dの回転により前記無端チェーン及び該無端チェーンに係合する前記無端吸着走行ベルトは回転する。また真空切替ベルト8−1は、該真空切替ベルトに載設された真空駒8−2に螺設された真空継手8−3が前記歯車14a、14b、14c、14dの歯に咬合する形で該歯車14a及び14b、14c及び14d間に巻着される。従って前記歯車14a、14b、14c、14dの回動に伴い、該歯車に咬合付勢される前記真空切替ベルトは回転駆動力を得て真空切替バー9−1(図2に図示)の外周を該真空切替バーに摺接し回動することになる。
前記無端吸着走行ベルトの真空室に連通する前記ベルト固定ステーに螺設された真空継手7−6は真空チューブ7−7により前記真空切替連通部の前記真空切替ベルト8−1に載設された真空駒8−2に螺設された前記真空継手8−3に真空連通すが、前記真空切替ベルト7−1と前記真空切替ベルト8−1が同期回動する為に該真空切替ベルトと該真空切替ベルト間に橋架された真空チューブ7−7が捩れ切断することはなく真空連通できることになる。
上記機構により、前記無端吸着走行ベルト7−1とこれに真空連通し切替を行う前記真空連通切替機構部の真空切替ベルト8−1は各々分離装設が可能となり、両ベルト間に乗越え障害物の形状に沿った前記吸着走行ベルトの自在な屈曲を吸収する収納空間の確保が可能となった。
In the traveling unit 2 of the wall surface adsorption traveling robot shown in FIG. 1, a drive motor 3 is fixed to the front part on the short side of the outer frame 15 that forms a rectangular parallelepiped, and a rotating shaft 12-1 is used as a drive shaft of the drive motor. Is engaged so as to be rotatable. A pair of drive gears 13a and 13b are fitted to the left and right ends of the rotary shaft 12-1, and a pair of left and right drive gears 14a and 14b of the same PCD are fitted to the inside thereof. A rotating shaft 12-2 is fixed to the rear portion of the outer frame 15 so as to be rotatable, and gears 13c and 13d are fitted to the rotating shaft 12-2. 14c and 14d are fitted. In the gears arranged at the front, rear, left and right ends, an endless chain 7-8 that rotates by the rotation of the gear is bridged between the left gears 13a and 13c. The endless chain 7-8 is similarly bridged between the right gears 13b and 13d. A belt fixing stay 7-5 is installed between the endless chain 7-8 bridged in a pair of left and right. The belt fixing stay 7-5 is bent in a U shape at both ends, and the chain link of the endless chain is inserted into a chain link support hole 7-12 (shown in FIG. 7) drilled at both ends of the belt fixing stay 7-5. Pivot. The belt fixing stay 7-5 for mounting the endless suction traveling belt 7-1 communicates the vacuum chamber of the suction traveling belt with the vacuum switching communication mechanism portion, so that the elastic body at the outer periphery of the endless suction traveling belt is provided. The same number of belt fixing stays 7-5 as the number of vacuum chamber rows in the circumferential direction, which are lacking in 7-3, are pivotally mounted at predetermined positions of the pair of left and right endless chains 7-8.
The belt fixing stay 7-5 is disposed between the endless suction traveling belt elastic body and the inner stay 7-9 (shown in FIG. 7) disposed in the vacuum chamber 7-4. -2 and the screw joint 7-6 (shown in FIG. 7) screwed to the belt fixing stay are disposed in the vacuum suction hole 7-10 (shown in FIG. 7) and the vacuum chamber 7-4. Through the pierced hole in the internal stay 7-9 (shown in FIG. 7), it is communicated with the vacuum chamber 7-4.
Accordingly, the gears 13a, 13b, 13c, and 13d and the gears 14a, 14b, 14c, and 14d are rotated synchronously by the rotational drive of the drive motor, and the endless chain and the endless are rotated by the rotation of the gears 13a, 13b, 13c, and 13d. The endless adsorption traveling belt engaged with the chain rotates. The vacuum switching belt 8-1 is formed in such a manner that a vacuum joint 8-3 screwed to a vacuum piece 8-2 mounted on the vacuum switching belt meshes with the teeth of the gears 14a, 14b, 14c, 14d. It is wound between the gears 14a and 14b, 14c and 14d. Accordingly, as the gears 14a, 14b, 14c, and 14d rotate, the vacuum switching belt engaged with the gears obtains a rotational driving force and moves the outer periphery of the vacuum switching bar 9-1 (shown in FIG. 2). The vacuum switch bar slides and rotates.
A vacuum joint 7-6 screwed to the belt fixing stay communicating with the vacuum chamber of the endless adsorption traveling belt is mounted on the vacuum switching belt 8-1 of the vacuum switching communication portion by a vacuum tube 7-7. The vacuum joint 8-3 screwed to the vacuum piece 8-2 communicates with the vacuum, but the vacuum switching belt 7-1 and the vacuum switching belt 8-1 are rotated synchronously so that the vacuum switching belt 7-1 The vacuum tubes 7-7 bridged between the vacuum switching belts can be communicated with each other without being twisted and cut.
By the above mechanism, the endless adsorption traveling belt 7-1 and the vacuum switching belt 8-1 of the vacuum communication switching mechanism for switching the vacuum communication to the belt can be separated and installed, and the obstacles between the belts can be overcome. As a result, it is possible to secure a storage space that absorbs the flexible bending of the adsorption traveling belt along the shape.

図1及び図2に図示される姿勢制御機構11は、前記ベルト固定ステー7−5を通じて前記無端吸着走行ベルト7−1に係合する左右1対の前記無端チェーン7−8の周回方向上下端を上下複数の姿勢制御アイドラー11−5、11−6により狭持する形で姿勢制御軸11−3の一端に固設する。該姿勢制御軸の他端にはカム機構のカム溝11−2と滑合する図示されないアイドラーを軸着し、該姿勢制御軸11−3は上下滑合可能な様に固定金具11−4により前記外枠15に固設する。これにより前記カム溝11−2での図示されないアイドラーの滑合上下運動は前記姿勢制御軸11−3により前記姿勢制御アイドラー11−5、11−6に練達される為、前記吸着走行ベルト周回方向の前記外枠15の左右両側面に列設した所定個数の図示されないモータの回転制御を通じたカム機構上下動により前記無端吸着ベルトの壁面からの上下高を自在に制御でき、請求項1に関わる障害物乗越え時の前記吸着走行ベルト7−1の自在な制御ができた。
ここでは、前記カム機構の替わりにアクチェータを利用することもできる。
The posture control mechanism 11 shown in FIGS. 1 and 2 is configured such that a pair of left and right endless chains 7-8 that engage with the endless suction traveling belt 7-1 through the belt fixing stays 7-5 are upper and lower ends in the circumferential direction. Is fixed to one end of the attitude control shaft 11-3 so as to be sandwiched by a plurality of attitude control idlers 11-5 and 11-6. An idler (not shown) that slides on the cam groove 11-2 of the cam mechanism is attached to the other end of the posture control shaft, and the posture control shaft 11-3 is fixed by a fixing bracket 11-4 so as to be vertically slidable. Fixed to the outer frame 15. Thereby, the sliding up and down motion of the idler (not shown) in the cam groove 11-2 is reached to the posture control idlers 11-5 and 11-6 by the posture control shaft 11-3, so that the suction traveling belt is rotated in the circumferential direction. The vertical height from the wall surface of the endless suction belt can be freely controlled by the vertical movement of the cam mechanism through rotation control of a predetermined number of motors (not shown) arranged on the left and right side surfaces of the outer frame 15. The suction running belt 7-1 can be freely controlled when the obstacle is passed.
Here, an actuator can be used instead of the cam mechanism.

図3乃至図5に図示する真空連通切替機構部8、9及び真空自動弁10に関して説明する。
真空連通切替機構部の真空切替ベルト8において、前記無端真空切替ベルト8−1には摺動を通じて前記真空切替バー9と真空連通切替を行う為に周回方向の所定定位置に真空引き孔8−5(図4に図示)を穿孔連設し、該真空切替ベルト内周面には前記真空切替バー9との摺動性に優れた摺動シート8−4を接着する。該ベルト外周面には真空駒8−2を該真空駒に形成された真空引き孔8−5(図4に図示)を連設された前記真空引き孔8−5と連通整合させ、該真空駒の長方体長手方向を該ベルト周回方向と垂直に接着載設する。前記真空駒8−2の短手両面中央部には前記真空引き孔8−5に連通する真空継手8−3を螺設する。該真空駒両面に螺設された該真空継手8−3は真空チューブ7−7により前記ベルト固定ステー7−5に螺設された真空継手7−6に連通し前記吸着走行ベルト7−1の真空室7−4を真空引きする。
The vacuum communication switching mechanisms 8 and 9 and the automatic vacuum valve 10 shown in FIGS. 3 to 5 will be described.
In the vacuum switching belt 8 of the vacuum communication switching mechanism portion, the endless vacuum switching belt 8-1 is slid into the vacuum pulling hole 8- at a predetermined fixed position in the circumferential direction in order to perform vacuum communication switching with the vacuum switching bar 9 through sliding. 5 (shown in FIG. 4) is continuously drilled, and a sliding sheet 8-4 excellent in slidability with the vacuum switching bar 9 is bonded to the inner peripheral surface of the vacuum switching belt. On the outer peripheral surface of the belt, a vacuum piece 8-2 is communicated with and aligned with the vacuum drawing hole 8-5 (shown in FIG. 4) formed in the vacuum piece. The rectangular parallelepiped longitudinal direction of the piece is attached and mounted perpendicularly to the belt circumferential direction. A vacuum joint 8-3 communicating with the vacuum drawing hole 8-5 is screwed at the center of the short side of the vacuum piece 8-2. The vacuum joint 8-3 screwed on both sides of the vacuum piece communicates with the vacuum joint 7-6 screwed to the belt fixing stay 7-5 by a vacuum tube 7-7. The vacuum chamber 7-4 is evacuated.

真空連通切替機構部の真空切替バー9において、前記真空切替ベルト8との接面摺動により真空連通切替を行う為に長方体長軸方向の所定定位置に真空引き孔9−7(図4に図示)を穿孔連設し、該孔内に真空自動弁10の作動空間を設け、該空間から連通する共通真空室10−5を設ける。
長方体様をなす真空切替バー9−1の前記真空引き孔9−7が穿孔された面に、長軸方向所定定位置に真空引き孔9−7(図4に図示)を連設した真空漏れを無くす為の弾性体9−5及び摺動性を高める為の摺動シート9−4を固設する。また前記真空切替バー9−1の真空引き孔9−7と反対面には真空シール材9−8を狭持し真空吸引部に連通する真空継手9−2を螺設した真空室蓋9−6を固設する。
この前記真空切替バー9−1は、前記無端真空切替ベルト8−1の内周側に摺動面が該真空切替ベルトの内周面と摺動様に装設され、該真空切替ベルトの周回回動により前記真空引き孔9−7と前記真空引き孔8−5が連通整合した場合にのみ前記吸着走行ベルトの真空室を真空引きすることになる。
前記真空切替ベルト8−1に屈曲自在な素材を用いた為、前記真空切替バーの弾性体9−5との効果と相俟って自らの真空吸引力により密着摺動が可能となり、摺動性・密着性に優れた軽量・小型の真空連通切替機構が出来た。
In the vacuum switching bar 9 of the vacuum communication switching mechanism portion, the vacuum pulling hole 9-7 (see FIG. 4) is formed at a predetermined fixed position in the long axis direction of the rectangular parallelepiped in order to switch the vacuum communication by sliding the contact surface with the vacuum switching belt 8. The vacuum automatic valve 10 is provided with a working space in the hole, and a common vacuum chamber 10-5 communicating with the space is provided.
A vacuum pulling hole 9-7 (shown in FIG. 4) is continuously provided at a predetermined fixed position in the long axis direction on the surface of the vacuum switching bar 9-1 having a rectangular parallelepiped shape where the vacuum pulling hole 9-7 is formed. An elastic body 9-5 for eliminating vacuum leakage and a sliding sheet 9-4 for improving slidability are fixed. Further, a vacuum chamber cover 9-9 is provided in which a vacuum joint 9-2 is screwed on the surface opposite to the vacuum pulling hole 9-7 of the vacuum switching bar 9-1 and a vacuum joint 9-2 is screwed. 6 is fixed.
The vacuum switching bar 9-1 has a sliding surface mounted on the inner peripheral side of the endless vacuum switching belt 8-1 so as to slide with the inner peripheral surface of the vacuum switching belt. The vacuum chamber of the suction traveling belt is evacuated only when the evacuation hole 9-7 and the evacuation hole 8-5 are in communication and alignment by rotation.
Since a flexible material is used for the vacuum switching belt 8-1, in combination with the effect of the elastic body 9-5 of the vacuum switching bar, it is possible to slide tightly by its own vacuum suction force. A lightweight and compact vacuum communication switching mechanism with excellent properties and adhesion was achieved.

真空自動弁10においては、前記真空引き孔9−7に連通する前記真空切替バー9−1に穿設された弁真空室10−1内に該真空引き孔と同数の前記真空自動弁が収納埋設(図4及び図5に図示)される。前記真空引き孔9−7に連通する弁真空室は逆凸様円柱状に形成し逆凸部底辺には調整螺子10−4支持孔及び共通真空室10−8に連通する弁室連通孔10−5を穿設する。前記弁真空室に滑動自在に嵌合する小口径逆凸様円体状に形成された真空切替弁10−2には大径部に真空流量調整孔10−3が設けられ底端部中心には前記弁真空室10−1の底部中心に穿設された前記整螺子支持孔を貫通した調整螺子10−4が螺入される。前記真空切替弁10−2低部に押上付勢力を与える為前記弁真空室10−1の小径円柱内にはスプリング10−6が設けられている。
前記真空切替バー9の或る真空引き孔9−7において、万一該真空引き孔に大気流入が生じた場合には該真空引き孔に連通する弁真空室10−1に内設される前記真空切替弁10−2の上面部に気差圧から生じる大気流の下方付勢力により押下げられ該真空切替弁10−2底部は弁座底10−7に密着し蓋をすることにより前記真空流量調整孔10−3を経由し連通させる微量流量以上の大幅な大気流入を防止し一定真空度の維持を行う。
吸着走行において真空漏れに係る状況が改善し大気流入がなくなった場合には、前記真空引き孔9−7は前記前記真空流量調整孔10−3を経由し常に真空引きされている為前記真空切替弁10−2の上面部と底面部の気圧差は改善し、前記スプリング10−6により押上付勢された該真空切替弁10−2は押上げられ該真空切替弁と弁座底との密着状況を解除することにより再び真空連通することになる。前記調整螺子10−4は、前記真空切替弁10−2の前記弁真空室底部からの高さを調整し該真空切替弁の良好な滑動を調整するためのものである
障害物乗越え走行においても前記吸着走行ベルト真空室で一定の真空度を維持し良好な吸着力を確保できる請求項2に係る自動真空弁が出来た。吸着走行においても真空漏れを無くしたことにより小型小排気量の真空ポンプの利用が可能となった。
In the automatic vacuum valve 10, the same number of the automatic vacuum valves as the number of the vacuum holes are accommodated in the valve vacuum chamber 10-1 formed in the vacuum switching bar 9-1 communicating with the vacuum hole 9-7. Buried (shown in FIGS. 4 and 5). The valve vacuum chamber communicating with the vacuum drawing hole 9-7 is formed in a reverse convex cylindrical shape, and a valve chamber communication hole 10 communicating with the adjusting screw 10-4 support hole and the common vacuum chamber 10-8 is formed at the bottom of the reverse convex portion. Drill -5. The vacuum switching valve 10-2 formed in a small-diameter reverse convex circular shape that is slidably fitted into the valve vacuum chamber is provided with a vacuum flow rate adjusting hole 10-3 in the large diameter portion and at the center of the bottom end. The adjusting screw 10-4 penetrating through the screw adjusting hole formed in the center of the bottom of the valve vacuum chamber 10-1 is screwed. A spring 10-6 is provided in a small-diameter column of the valve vacuum chamber 10-1 in order to give a pushing biasing force to the lower part of the vacuum switching valve 10-2.
In a certain vacuuming hole 9-7 of the vacuum switching bar 9, in the unlikely event that an air inflow occurs in the vacuuming hole, the valve vacuum chamber 10-1 communicating with the vacuuming hole is provided in the valve vacuum chamber 10-1. The vacuum switching valve 10-2 is pushed down by the downward urging force of the atmospheric flow generated from the air pressure difference on the upper surface of the vacuum switching valve 10-2, and the bottom of the vacuum switching valve 10-2 comes into close contact with the valve seat bottom 10-7 to cover the vacuum. A large amount of air flowing in excess of a minute flow rate communicating through the flow rate adjusting hole 10-3 is prevented, and a constant degree of vacuum is maintained.
When the situation related to the vacuum leakage is improved in the suction traveling and the inflow of air is stopped, the vacuum suction hole 9-7 is always evacuated through the vacuum flow rate adjusting hole 10-3, so that the vacuum switching is performed. The pressure difference between the upper surface portion and the bottom surface portion of the valve 10-2 is improved, and the vacuum switching valve 10-2 pushed up by the spring 10-6 is pushed up so that the vacuum switching valve and the valve seat bottom are in close contact with each other. By releasing the situation, the vacuum communication is resumed. The adjusting screw 10-4 is for adjusting the height of the vacuum switching valve 10-2 from the bottom of the valve vacuum chamber and adjusting the good sliding of the vacuum switching valve. The automatic vacuum valve according to claim 2, which can maintain a certain degree of vacuum in the suction traveling belt vacuum chamber and secure a good suction force. The vacuum pump with small and small displacement can be used by eliminating the vacuum leak in the adsorption run.

図6または図7に図示する吸着走行ベルトにおいて、無端吸着走行ベルトの外周側に欠成した真空室を備える弾性体を接着した吸着走行ベルトを形成する構造は一般的であるため、本吸着走行ベルトにも同様な方式を用いた。
前記無端吸着走行ベルト7−1はゴム等の屈曲自在なベルト基板7−2に、該吸着走行ベルト周回方向と垂直に長方形状で短辺が弓形をなす切欠から形成される前記真空室7−4を複数列欠成したスポンジ等の独立発泡材からなる弾性体7−3を接着し無端ベルトを形成する。前記無端吸着走行ベルト外周側の前記弾性体に欠成された真空室7−4に対応する所定位置を、該真空室に連通する真空継手7−6を螺設するベルト固定ステー7−12と前記真空室7−4内に配設された内部ステー7−9とで前記無端吸着走行ベルト基板7−2を狭持螺着する。前記吸着走行ベルト基板7−2及び前記内部ステー7−9には前記真空室7−4と前記真空継手7−6とを連通する真空引き孔7−10が穿設されている為、前記無端真空切替ベルト8−1の回動により、該真空切替ベルトに載設された真空駒8−2に螺設される前記真空継手8−3と前記ベルト固定ステー7−12に螺設された前記真空継手7−6とが真空チューブ7−7を介して連通し、前記無端吸着走行ベルトの真空室7−4を真空引きすることにより壁面吸着力を得ることができる。
前記真空室7−4の形成素材において、小凹凸の荒れた壁面への吸着時に真空を漏らさず吸着力を高める為に凹凸面に追随自在なスポンジ弾性体を一般に用いるが、壁面吸着における圧縮弾性限界を超える繰返しの強力な真空押圧力により弾性体劣化が早まることになる。
本実施例では、弾性体で形成された前記真空室7−4の隔壁高より低く真空押圧力により弾性体が圧縮された場合に弾性体が圧縮弾性限界を超えない様に押圧力を受ける様に高さを調整し且つ長方形短辺方向が円形を成す前記真空室7−4隔壁側面の真空吸引による内側に引込防止を狙った支柱の役割を果す様に幅及び形状を調整した摩擦係数の高いゴム等の硬質弾性体からなる保護脚7−11を、前記真空室7−4に配設され前記ベルト固定ステー7−12との間で前記無端吸着走行ベルト基板7−2狭持する前記内部ステー7−9の長手方向の両端に固設した。
この前記保護脚7−11を固設したことにより、要をなす前記真空室7−4の吸着時形状変化による真空吸着力低下を防止でき、吸着走行ベルト7−1の弾性体7−3において外周側に懸かる登坂力と内周側に懸かる重力により生じる引裂力や壁面への押圧力等の過重な力を保護脚で受ける為弾性体の劣化防止が可能となり、吸着走行ベルトの長寿命化と吸着走行時の安定化が図れた。
In the suction traveling belt shown in FIG. 6 or FIG. 7, since the structure in which the suction traveling belt is formed by adhering an elastic body having a vacuum chamber lacking on the outer peripheral side of the endless suction traveling belt, the suction traveling belt is generally used. A similar system was used for the belt.
The endless suction traveling belt 7-1 is formed on a bendable belt substrate 7-2 made of rubber or the like, in the vacuum chamber 7- formed by a rectangular shape perpendicular to the circumferential direction of the suction traveling belt and having a short side forming an arcuate shape. An endless belt is formed by adhering an elastic body 7-3 made of a closed foam material such as sponge in which a plurality of rows 4 are formed. A belt fixing stay 7-12 for screwing a vacuum joint 7-6 communicating with the vacuum chamber at a predetermined position corresponding to the vacuum chamber 7-4 formed in the elastic body on the outer peripheral side of the endless adsorption traveling belt; The endless suction traveling belt substrate 7-2 is nipped and screwed with an internal stay 7-9 disposed in the vacuum chamber 7-4. Since the suction traveling belt substrate 7-2 and the internal stay 7-9 are provided with a vacuum suction hole 7-10 for communicating the vacuum chamber 7-4 and the vacuum joint 7-6, the endless By the rotation of the vacuum switching belt 8-1, the vacuum joint 8-3 screwed on the vacuum piece 8-2 mounted on the vacuum switching belt and the belt fixing stay 7-12 are screwed. The vacuum joint 7-6 communicates with the vacuum tube 7-7, and the wall surface adsorption force can be obtained by evacuating the vacuum chamber 7-4 of the endless adsorption traveling belt.
In the material for forming the vacuum chamber 7-4, a sponge elastic body that can follow the concavo-convex surface is generally used in order to increase the adsorbing force without leaking the vacuum when adsorbing to the rough wall surface. Elastic body deterioration is accelerated by repeated strong vacuum pressing force exceeding the limit.
In this embodiment, when the elastic body is compressed by the vacuum pressing force lower than the partition wall height of the vacuum chamber 7-4 formed of an elastic body, the elastic body receives the pressing force so as not to exceed the compression elastic limit. The friction coefficient of which the width and the shape are adjusted so as to play the role of a strut aiming at prevention of pulling inward by vacuum suction of the vacuum chamber 7-4 side wall of the vacuum chamber 7-4 where the rectangular short side direction is circular. The protective leg 7-11 made of a hard elastic body such as high rubber is disposed in the vacuum chamber 7-4 and sandwiched between the belt fixing stay 7-12 and the endless suction traveling belt substrate 7-2. The inner stays 7-9 were fixed at both ends in the longitudinal direction.
By fixing the protective leg 7-11, it is possible to prevent the vacuum suction force from being lowered due to the shape change during suction of the vacuum chamber 7-4, which is essential, and in the elastic body 7-3 of the suction traveling belt 7-1. The protective leg prevents excessive force such as tearing force generated by the hill-climbing force applied to the outer periphery and the gravity applied to the inner periphery, and the pressing force to the wall surface, thereby preventing the deterioration of the elastic body and extending the life of the adsorption belt. And stabilization during adsorption running.

また図1は、前記乗越え機能を有する壁面吸着走行ロボットの移動方向前後に走行障害物乗越え支援のために補助吸着機構6U、6Dを備え、壁面に垂直旋回が可能に掴持する機構を付加したものであり、請求項3に関するものである。
図1において、前記壁面吸着走行ユニット2の複数台を連架した壁面吸着走行ロボットの移動方向前後に、真空吸引装置により真空引きされる補助吸着機構6U、6Dを、壁面に垂直旋回が可能な回転アーム5U、5Dを介して装設する。補助吸着機構6U、6Dは、該補助吸着機構の図示されない吸引部と接面間が微少距離で保たれ、前記補助吸着機構6U、6D接面側下部の四隅には図示されない車輪が軸着され走行自在に設けられる。前記補助吸着機構6U、6Dの前記吸引部の接面下部には図示されない弾性体及び摺動シートを固設し、吸引力と走行持摺動性が確保される。
前記補助吸着機構6U、6Dの壁面垂直旋回は、個別に前記回転アーム5U、5Dにより制御される。
前記補助吸着機構6U、6Dの壁面吸引及び前記回転アーム5U、5Dの制御により、前記壁面吸着走行ロボットを壁面側に押付付勢できる為、請求項3に係る該壁面吸着走行ロボットの障害物乗越え時の壁面への吸着力及び付勢力の強化ができた。
In addition, FIG. 1 includes auxiliary suction mechanisms 6U and 6D for supporting overcoming obstacles on the front and back of the movement direction of the wall-adsorbing traveling robot having the above-mentioned climbing function, and a mechanism for holding the wall so as to be able to turn vertically is added. And relates to claim 3.
In FIG. 1, auxiliary suction mechanisms 6U and 6D that are evacuated by a vacuum suction device before and after the movement direction of a wall-surface adsorption traveling robot in which a plurality of wall-surface adsorption traveling units 2 are connected can be swung vertically on the wall surface. It is installed via the rotating arms 5U, 5D. The auxiliary suction mechanisms 6U and 6D are maintained at a slight distance between the suction portion (not shown) and the contact surface of the auxiliary suction mechanism, and wheels (not shown) are pivotally attached to the lower corners of the auxiliary suction mechanisms 6U and 6D. It is provided to run freely. An elastic body (not shown) and a sliding sheet (not shown) are fixed below the contact surface of the suction portion of the auxiliary suction mechanisms 6U and 6D, and suction force and traveling slidability are ensured.
Wall surface vertical turning of the auxiliary suction mechanisms 6U, 6D is individually controlled by the rotating arms 5U, 5D.
The wall surface adsorbing traveling robot according to claim 3 can get over the obstacle because the wall surface adsorbing traveling robot can be pressed and urged to the wall surface side by the wall surface suction of the auxiliary adsorption mechanism 6U, 6D and the control of the rotating arms 5U, 5D. The adsorption power and biasing force to the wall surface at the time could be strengthened.

図8は前記無端吸着走行ベルト機構部7及び前記真空連通切換機構部8に替え、無端吸着走行ベルト17及び真空連通切換機構18により吸着走行ベルトの乗越え障害物形状に沿った走行ベルトの屈曲変形を吸収する収納空間を形成する変形例である。
本実施例では、前記無端吸着走行ベルト機構部7を簡略化し障害物乗越えの収納空間を吸着走行ベルト17と真空切替バー18−10との間に確保したため、簡素化によるコスト削減を行ったことを特徴とする。
FIG. 8 shows the endless suction traveling belt mechanism 7 and the vacuum communication switching mechanism 8 in place of the endless suction traveling belt 17 and the vacuum communication switching mechanism 18. It is a modification which forms the storage space which absorbs water.
In the present embodiment, the endless suction traveling belt mechanism 7 is simplified and a storage space for overcoming obstacles is secured between the suction traveling belt 17 and the vacuum switching bar 18-10. It is characterized by.

図8では、ゴム等の屈曲可能な素材からなるベルト基板17−1と、図示しない真空室を欠成した弾性体17−2を周回外周部に接合し無端の吸着走行ベルト17を形成し、周回内接面の所定位置には前記ベルト固定ステー17−6を、図示しない真空室に埋設されるステーとで前記ベルト基板17−1を挟着し螺設する。前記無端吸着走行ベルト17の周回方向内面での平滑性を保つため、前記ベルト固定ステー7−6は前記ベルト基板17−1に切欠きを形成し埋設し、その上に摺動性を高めるために摺動シート17−4を接合し、前記吸着走行ベルト17の周回方向の左右両端に摺動性素材で形成した土手部を貼設し摺動ガイド17−3とした。また、前記吸着走行ベルト17の摺動面17−4には、前記ベルト固定ステー17−6及び前記ベルト基板17−1を穿通した真空引き孔17−5を設け、前記吸着走行ベルト17の外周部に接合された弾性体17−2に欠成された図示されない所定の真空室に連通させた。   In FIG. 8, an endless adsorption traveling belt 17 is formed by joining a belt substrate 17-1 made of a bendable material such as rubber and an elastic body 17-2 lacking a vacuum chamber (not shown) to the circumferential outer periphery, The belt fixing stay 17-6 is sandwiched between the belt substrate 17-1 and a stay embedded in a vacuum chamber (not shown) at a predetermined position on the circumferential inscribed surface. In order to maintain the smoothness of the endless suction traveling belt 17 on the inner surface in the circumferential direction, the belt fixing stay 7-6 is notched in the belt substrate 17-1, and is slid on the belt substrate 17-1. The sliding sheet 17-4 was joined to the belt, and bank portions formed of a slidable material were attached to the left and right ends of the suction traveling belt 17 in the circumferential direction to form a sliding guide 17-3. In addition, the sliding surface 17-4 of the suction traveling belt 17 is provided with a vacuum pulling hole 17-5 that penetrates the belt fixing stay 17-6 and the belt substrate 17-1, and the outer periphery of the suction traveling belt 17 is provided. It was made to communicate with the predetermined | prescribed vacuum chamber not shown lacking in the elastic body 17-2 joined to the part.

図8に図示する真空切替連通機構18では、図示されない前記共通真空室10−8に連通する真空継手18−11を螺設する真空切替バー18−10と該真空切替バーには前記真空自動弁10を設け、前記真空切替バー18−10上には摺動シート17−4と摺動し前記吸着走行ベルト17の真空室のみを真空引きするためにスプリング等の弾性体18−7により付勢された摺動真空ブロック18−3を所定位置に列設し、前記真空切替バーは前記吸着走行ベルト17の周回軌道内側の所定位置に離設した。尚、前記摺動真空ブロック18−3には真空引き孔18−2が設けられ、真空切替バー18−10に螺設された真空継手18−9とは真空チューブ18−8により連通している。   In the vacuum switching communication mechanism 18 shown in FIG. 8, a vacuum switching bar 18-10 in which a vacuum joint 18-11 communicating with the common vacuum chamber 10-8 (not shown) is screwed and the vacuum automatic valve is provided in the vacuum switching bar. 10 is urged by an elastic body 18-7 such as a spring to slide on the vacuum switching bar 18-10 with the sliding sheet 17-4 and evacuate only the vacuum chamber of the adsorption traveling belt 17. The slidable vacuum blocks 18-3 thus arranged were arranged in a predetermined position, and the vacuum switching bar was separated from the predetermined position inside the circulation track of the suction traveling belt 17. The sliding vacuum block 18-3 is provided with a vacuum pulling hole 18-2 and communicates with a vacuum joint 18-9 screwed to the vacuum switching bar 18-10 by a vacuum tube 18-8. .

前記吸着走行ベルトの回動により、前記吸着走行ベルト17の真空引き孔17−5は、該吸着走行ベルト17内側面の摺動面17−4と密着摺接する前記摺動真空ブロック18−3に設けられた真空引き孔18−2に合致した孔のみが真空引きされる。スプリング等の弾性体18−7により付勢され首振り機構18−4を有する前記摺動真空ブロック18−3は、前記吸着走行ベルト17周回時に摺動面17−4と密接摺動を行い前記真空引き孔17−5に合致した孔のみを真空引きすることができるため、前記吸着走行ベルト17の乗越え障害物形状に沿った自在な屈曲撓みの変形を吸収する収納空間を形成することが可能となった。




Due to the rotation of the suction traveling belt, the vacuum pulling hole 17-5 of the suction traveling belt 17 is brought into contact with the sliding vacuum block 18-3 in close contact sliding contact with the sliding surface 17-4 on the inner surface of the suction traveling belt 17. Only the holes that match the provided vacuum pulling holes 18-2 are vacuumed. The sliding vacuum block 18-3 urged by an elastic body 18-7 such as a spring and having a swing mechanism 18-4 slides in close contact with the sliding surface 17-4 when the adsorption traveling belt 17 circulates. Since only the hole that matches the evacuation hole 17-5 can be evacuated, it is possible to form a storage space that absorbs the deformation of the flexible bending and bending along the shape of the obstacle over the adsorption traveling belt 17. It became.




乗越え機構を有する無限軌道方式壁面吸着走行ロボットの斜視図Perspective view of endless track-type wall-adsorption traveling robot with climbing mechanism 姿勢制御機構の一部斜視図Partial perspective view of attitude control mechanism 真空切替連通機構部の一部斜視図Partial perspective view of vacuum switching communication mechanism 真空切替連通機構部図4のa−a断面図Vacuum switching communication mechanism section aa sectional view of FIG. 真空切替連通機構部図4のb−b断面図Vacuum switching communication mechanism section bb cross-sectional view of FIG. 吸着走行ベルトの一部斜視図Partial perspective view of adsorption running belt 吸着走行ベルト図7のa−a断面図Adsorption traveling belt aa sectional view of FIG. 吸着機構の変形例の一部斜視図Partial perspective view of a modification of the suction mechanism

符号の説明Explanation of symbols

1 乗越え機能を有する無限軌道方式壁面吸着走行ロボット
2 乗越え機能を有する壁面吸着走行ロボットの走行ユニット
3 駆動モータ
4 真空吸引部
5 回転アーム
6 補助吸着機構
7 無端吸着走行ベルト機構部
7-1 無端吸着走行ベルト
7-2 吸着走行ベルト基板
7-3 弾性体
7-4 真空室
7-5 ベルト固定ステー
7-6 真空継手
7-7 真空チューブ
7-8 無端チェーン
7-9 内部ステー
7-10 真空引き孔
7-11 保護脚
7-12 チェーンリンク支持孔
8 真空連通切替機構部(無端真空切替ベルト部)
8-1 無端真空切替ベルト
8-2 真空駒
8-3 真空継手
8-4 摺動シート
8-5 真空引き孔
9 真空連通切替機構部(真空切替バー部)
9-1 真空切替バー
9-2 真空継手
9-3 真空チューブ
9-4 摺動シート
9-5 弾性体
9-6 真空室蓋
9-7 真空引き孔
9-8 真空蓋シール材
10 真空自動弁
10-1 弁真空室
10-2 真空切替弁
10-3 真空流量調整孔
10-4 調整螺子
10-5 弁室連通孔
10-6 スプリング
10-7 弁座底
10-8 共通真空室
11 姿勢制御機構
11-1 カム機構
11-2 カム溝
11-3 姿勢制御軸
11-4 固定金具
11-5、11-6 姿勢制御アイドラー
12-1、12-2 回転駆動軸
13a、13b、13c、13d 吸着走行ベルト駆動歯車
14a、14b、14c、14d 真空切替ベルト駆動歯車
15 外枠
16 連結機構
17 無端吸着走行ベルト
17-1 走行ベルト基板
17-2 弾性体
17-4、18-1 摺動シート
17-3 摺動ガイド
17-5、18-2 真空引き孔
17-6 ベルト固定ステー
18 真空連通切換機構
18-3 摺動真空ブロック
18-4 首振り機構
18-5 押ブロック
18-6 支持軸
18-7 弾性体(スプリング等)
18-8 真空チューブ
18-9、18-11 真空継手
18-10 真空切替バー
1 Endless track type wall-adsorbing traveling robot with overpass function
2 Traveling unit of a wall-adsorbing traveling robot with a climbing function
3 Drive motor
4 Vacuum suction part
5 Rotating arm
6 Auxiliary adsorption mechanism
7 Endless suction traveling belt mechanism
7-1 Endless adsorption traveling belt
7-2 Adsorption traveling belt board
7-3 Elastic body
7-4 Vacuum chamber
7-5 Belt fixing stay
7-6 Vacuum fitting
7-7 Vacuum tube
7-8 Endless chain
7-9 Internal stay
7-10 Vacuum hole
7-11 Protective legs
7-12 Chain link support hole
8 Vacuum communication switching mechanism (endless vacuum switching belt)
8-1 Endless vacuum switching belt
8-2 Vacuum piece
8-3 Vacuum fitting
8-4 Sliding sheet
8-5 Vacuum hole
9 Vacuum communication switching mechanism (vacuum switching bar)
9-1 Vacuum switching bar
9-2 Vacuum fitting
9-3 Vacuum tube
9-4 Sliding sheet
9-5 Elastic body
9-6 Vacuum chamber lid
9-7 Vacuum hole
9-8 Vacuum lid sealant
10 Vacuum automatic valve
10-1 Valve vacuum chamber
10-2 Vacuum switching valve
10-3 Vacuum flow adjustment hole
10-4 Adjusting screw
10-5 Valve chamber communication hole
10-6 Spring
10-7 Valve seat bottom
10-8 Common vacuum chamber
11 Attitude control mechanism
11-1 Cam mechanism
11-2 Cam groove
11-3 Attitude control axis
11-4 Fixing bracket
11-5, 11-6 Attitude control idler
12-1, 12-2 Rotary drive shaft
13a, 13b, 13c, 13d Adsorption traveling belt drive gear
14a, 14b, 14c, 14d Vacuum switching belt drive gear
15 Outer frame
16 Coupling mechanism
17 Endless adsorption traveling belt
17-1 Running belt board
17-2 Elastic body
17-4, 18-1 Sliding sheet
17-3 Sliding guide
17-5, 18-2 Vacuum hole
17-6 Belt fixing stay
18 Vacuum communication switching mechanism
18-3 Sliding vacuum block
18-4 Head swing mechanism
18-5 Push block
18-6 Support shaft
18-7 Elastic body (spring, etc.)
18-8 vacuum tube
18-9, 18-11 Vacuum fitting
18-10 Vacuum switch bar

Claims (3)

建造物の垂直外壁面に真空吸着し走行する無限軌道方式の壁面吸着走行ロボットにおいて、走行接面側に乗越え障害物形状に沿った自在な吸着走行ベルトの屈曲変形を吸収する収納空間を備え、走行接面側の前記吸着走行ベルトを該ベルトの周回方向垂直に揺動制御する姿勢制御機構を備えてなり、障害物乗越え走行を可能としたことを特徴とする乗越え機構を有する無限軌道方式壁面走行ロボット。   In the endless track type wall-adsorption traveling robot that vacuum-adsorbs and travels to the vertical outer wall surface of the building, it has a storage space that absorbs the bending deformation of the flexible adsorption traveling belt along the obstacle shape on the traveling contact surface side, An endless track system wall surface having a climbing mechanism, characterized in that it has a posture control mechanism that swings and controls the suction running belt on the running contact surface side in the direction of rotation of the belt vertically. A traveling robot. 前記吸着走行ベルトの周回外周部に所定個数が欠成された真空室を真空引きする真空切換機構部に、真空漏れを自動感知し作動する真空連通開閉弁を備えてなり、真空漏れによる吸着力低下を防止したことを特徴とする請求項1記載の乗越え機構を有する無限軌道方式壁面走行ロボット。   The vacuum switching mechanism that evacuates a vacuum chamber in which a predetermined number is formed in the outer periphery of the suction running belt is equipped with a vacuum communication on-off valve that automatically detects and operates a vacuum leak, and the suction force due to the vacuum leak 2. An endless track-type wall traveling robot having a climbing mechanism according to claim 1, wherein a drop is prevented. 前記壁面吸着走行ロボットの移動方向前後に、走行壁面に対し垂直方向に旋回可能な回転アームにより掴持された補助吸着機構を備えてなり、障害物乗越えにおける吸着力及び付勢力を強化したことを特徴とする請求項1記載の乗越え機構を有する無限軌道方式壁面走行ロボット。

It is equipped with an auxiliary suction mechanism that is gripped by a rotating arm that can pivot in a direction perpendicular to the traveling wall surface before and after the movement direction of the wall surface adsorption traveling robot, and strengthens the adsorption force and urging force when overcoming obstacles An endless track type wall traveling robot having the climbing mechanism according to claim 1.

JP2005150553A 2005-05-24 2005-05-24 Endless track system wall traveling robot having crossing-over mechanism Pending JP2006326712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150553A JP2006326712A (en) 2005-05-24 2005-05-24 Endless track system wall traveling robot having crossing-over mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150553A JP2006326712A (en) 2005-05-24 2005-05-24 Endless track system wall traveling robot having crossing-over mechanism

Publications (1)

Publication Number Publication Date
JP2006326712A true JP2006326712A (en) 2006-12-07

Family

ID=37548964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150553A Pending JP2006326712A (en) 2005-05-24 2005-05-24 Endless track system wall traveling robot having crossing-over mechanism

Country Status (1)

Country Link
JP (1) JP2006326712A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160118525A (en) * 2015-04-02 2016-10-12 황종하 Apparatus for blocking spill of harmful substance for vessel and flooding
CN106737814A (en) * 2017-03-16 2017-05-31 郭朝连 Exterior wall climbs building intelligent spider people
JP2017100222A (en) * 2015-11-30 2017-06-08 林 健治 Unit type wall surface traveling robot
CN108674512A (en) * 2018-06-04 2018-10-19 北京航空航天大学 A kind of climbing robot for climbing wall end equipment and wall end equipment is climbed including this
WO2019024739A1 (en) * 2017-07-31 2019-02-07 Guangdong Institute Of Intelligent Manufacturing Tracked wall climbing robot
CN110051262A (en) * 2019-05-13 2019-07-26 内蒙古农业大学 A kind of the obstacle detouring system and its robot of active obstacle formula glass-cleaning robot
CN114104131A (en) * 2021-12-30 2022-03-01 苏州瑞得恩光能科技有限公司 Crawler and crawler travel device
CN114789760A (en) * 2022-03-25 2022-07-26 安徽芯核防务装备技术股份有限公司 From rail laying wall climbing robot

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160118525A (en) * 2015-04-02 2016-10-12 황종하 Apparatus for blocking spill of harmful substance for vessel and flooding
KR101691291B1 (en) 2015-04-02 2016-12-29 황종하 Apparatus for blocking spill of harmful substance for vessel and flooding
JP2017100222A (en) * 2015-11-30 2017-06-08 林 健治 Unit type wall surface traveling robot
CN106737814A (en) * 2017-03-16 2017-05-31 郭朝连 Exterior wall climbs building intelligent spider people
WO2019024739A1 (en) * 2017-07-31 2019-02-07 Guangdong Institute Of Intelligent Manufacturing Tracked wall climbing robot
CN108674512A (en) * 2018-06-04 2018-10-19 北京航空航天大学 A kind of climbing robot for climbing wall end equipment and wall end equipment is climbed including this
CN110051262A (en) * 2019-05-13 2019-07-26 内蒙古农业大学 A kind of the obstacle detouring system and its robot of active obstacle formula glass-cleaning robot
CN110051262B (en) * 2019-05-13 2020-10-02 内蒙古农业大学 Obstacle crossing system of autonomous obstacle crossing type glass cleaning robot and robot thereof
CN114104131A (en) * 2021-12-30 2022-03-01 苏州瑞得恩光能科技有限公司 Crawler and crawler travel device
CN114104131B (en) * 2021-12-30 2022-12-27 苏州瑞得恩光能科技有限公司 Crawler and crawler travel device
CN114789760A (en) * 2022-03-25 2022-07-26 安徽芯核防务装备技术股份有限公司 From rail laying wall climbing robot
CN114789760B (en) * 2022-03-25 2023-09-29 安徽芯核防务装备技术股份有限公司 Self-track-laying wall-climbing robot

Similar Documents

Publication Publication Date Title
JP2006326712A (en) Endless track system wall traveling robot having crossing-over mechanism
CN105263791B (en) Vacuum wall crawl device
ES2691243T3 (en) Autonomous surface treatment device
WO2005032920A3 (en) Surface traversing apparatus
KR100804308B1 (en) Automatic climbing mechanism for facades, especially glass facades
JP7100862B2 (en) Adsorption traveling device
CN112936324B (en) Adsorption type robot
KR101807434B1 (en) Powerless adsorption apparatus for moving on surface
JP2578262B2 (en) Crawler type wall suction robot
JP4644861B2 (en) A moving cart that is attracted to the surface by suction means such as negative pressure
CN212149071U (en) Crawler-type mobile robot
JP2520351B2 (en) Robot for wall traveling
JP2007253890A (en) Wall surface suction type traveling device
JP2559329B2 (en) Anti-slip mechanism for wall-climbing robot
CN112716348B (en) Sucking disc and walking subassembly and curtain cleaning robot
JP2020524027A (en) Autonomous traveling vacuum cleaner
JP4554580B2 (en) Crawler-type wall-adsorption traveling robot
JPH0818577B2 (en) Mobile suction cups for wall-mounting robots
CN112849290A (en) Inchworm motion form-imitating combined wall-climbing robot
CN105147184B (en) A kind of running gear of window wiping robot
JPH0512378U (en) Crawler type wall adsorption self-propelled device
CN217778805U (en) Traveling device and robot
CN109823423B (en) Accessible magnetism is inhaled formula running gear
CN214560950U (en) Wind resistance frame, negative pressure device and adsorption type robot
CN215037509U (en) Wind resistance frame, negative pressure device and adsorption type robot