JP2006324519A - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
JP2006324519A
JP2006324519A JP2005147138A JP2005147138A JP2006324519A JP 2006324519 A JP2006324519 A JP 2006324519A JP 2005147138 A JP2005147138 A JP 2005147138A JP 2005147138 A JP2005147138 A JP 2005147138A JP 2006324519 A JP2006324519 A JP 2006324519A
Authority
JP
Japan
Prior art keywords
acid
solar cell
semiconductor substrate
hydrophilic solvent
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005147138A
Other languages
Japanese (ja)
Other versions
JP4808994B2 (en
Inventor
Satoyuki Ikushima
聡之 生島
Naoki Ishikawa
直揮 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005147138A priority Critical patent/JP4808994B2/en
Publication of JP2006324519A publication Critical patent/JP2006324519A/en
Application granted granted Critical
Publication of JP4808994B2 publication Critical patent/JP4808994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solar cell, with which the highly efficient solar cell where contact resistance between an electrode and a substrate is largely reduced and the electrode is not peeled, can inexpensively and stably be obtained with high productivity. <P>SOLUTION: In the manufacturing method of the solar cell, the electrode is formed by printing and burning conductive paste after PN-junction is formed on the semiconductor substrate and immersing the semiconductor substrate in acid for once or more. The semiconductor substrate where conductive paste is printed and burnt is wetted by hydrophilic solvent and it is immersed in acid without drying it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、少なくとも、半導体基板上にPN接合を形成した後、導電性ペーストを印刷して焼成し、該半導体基板を1回以上酸に浸漬させることによって電極を形成することで、電極と基板との間の接触抵抗が低減された高効率の太陽電池を製造する方法に関する。   In the present invention, at least after forming a PN junction on a semiconductor substrate, a conductive paste is printed and baked, and the electrode is formed by immersing the semiconductor substrate in an acid at least once. The present invention relates to a method for manufacturing a high-efficiency solar cell with reduced contact resistance between the two.

太陽電池は、少なくとも、太陽光の光エネルギを電気エネルギに変換するPN接合が形成された基板部分と、該基板部分に取り付けられ電気エネルギを外部に取り出すための電極部分とからなる。この両者の界面付近では、材料の不連続性のために大きな接触抵抗が生じる。
この電極と基板との間の接触抵抗は、取り出せる電気エネルギを減少させるので、太陽電池の効率に大きな影響を与える。このため、この接触抵抗の低減を目的とした、太陽電池構造の最適化や、電極形成方法、電極材料、基板材料の改良が、多くなされてきた。
A solar cell includes at least a substrate portion on which a PN junction that converts sunlight light energy into electric energy is formed, and an electrode portion that is attached to the substrate portion and takes out electric energy to the outside. In the vicinity of the interface between the two, a large contact resistance occurs due to the discontinuity of the material.
Since the contact resistance between the electrode and the substrate decreases the electric energy that can be extracted, it greatly affects the efficiency of the solar cell. For this reason, many attempts have been made to optimize the solar cell structure and improve the electrode formation method, electrode material, and substrate material for the purpose of reducing the contact resistance.

現在、使用されている電極材料の1つに、導電性ペーストがある。導電性ペーストは、電極形成方法にスクリーン印刷を適用できることなどの理由から、広く普及している。
しかし、導電性ペーストを電極材料に用いた太陽電池における接触抵抗は、真空蒸着やスパッタなどのPVD法によって電極を作製した太陽電池における接触抵抗よりも高いという問題がある。
One of the electrode materials currently in use is a conductive paste. Conductive pastes are widely used because screen printing can be applied to electrode forming methods.
However, there is a problem that the contact resistance in a solar cell using a conductive paste as an electrode material is higher than the contact resistance in a solar cell in which an electrode is produced by a PVD method such as vacuum deposition or sputtering.

この導電性ペーストの接触抵抗の低減方法の1つに、図2に示したような導電性ペーストを基板上に印刷して焼成した後に、酸に浸漬する方法がある(特許文献1参照)。
この方法における接触抵抗低減の原理は、明らかではないが次のような仮説が考えられている。
As one method for reducing the contact resistance of the conductive paste, there is a method in which a conductive paste as shown in FIG. 2 is printed on a substrate and baked, and then immersed in an acid (see Patent Document 1).
The principle of contact resistance reduction in this method is not clear, but the following hypothesis is considered.

焼成後の導電性ペーストは、主に金属粒子とガラスフリットから構成され、内部に空孔を持つ多孔質の状態となっている。このガラスフリットは、金属粒子間や金属と基板間の接触を保つ接着剤としての役割を持つ。
しかし、一方でこのガラスフリットは不導体のために接触部分において接触抵抗の増大を引き起こしてもいる。
そこで、酸によってこの基板と電極界面付近におけるガラスフリットを溶解し除去することで、基板と電極内の金属粒子との接触点が増加するために、接触抵抗が低減すると言われている。
The conductive paste after firing is mainly composed of metal particles and glass frit, and is in a porous state having pores therein. This glass frit has a role as an adhesive for maintaining contact between metal particles or between a metal and a substrate.
However, on the other hand, this glass frit also causes an increase in contact resistance at the contact portion due to non-conductivity.
Therefore, it is said that by dissolving and removing the glass frit in the vicinity of the interface between the substrate and the electrode with an acid, the contact point between the substrate and the metal particles in the electrode is increased, so that the contact resistance is reduced.

しかし、この酸浸漬による接触抵抗の低減方法には、接触抵抗の低減幅のばらつきが大きく、また電極が剥離しやすいという問題点がある。
接触抵抗の低減幅は、酸の濃度や浸漬時間によってばらつきを生じる。例えば、酸の濃度を低くして酸浸漬の時間を短くした場合、酸浸漬の効果が低く、十分に低い接触抵抗を得ることができない。その一方で、酸浸漬の効果を高めるために、酸の濃度を高くして酸浸漬時間を長くした場合、電極の剥離が発生してしまう。
However, this method for reducing contact resistance by acid immersion has problems that the variation in the contact resistance reduction range is large and that the electrodes are easily peeled off.
The reduction width of the contact resistance varies depending on the acid concentration and the immersion time. For example, when the acid concentration is lowered to shorten the acid dipping time, the acid dipping effect is low, and a sufficiently low contact resistance cannot be obtained. On the other hand, if the acid concentration is increased to increase the acid immersion time in order to enhance the effect of acid immersion, peeling of the electrode occurs.

これは、前記の仮説からもわかる通り、ガラスフリットと酸の反応が強く生じると、ガラスフリットの接着剤としての力が低下し、電極の剥離が生じてしまうためである。特にこの剥離は、フィンガ電極の先端部で強く生じる。これは、電極先端部での加工分担体積が他の部分に比べて大きいためである。   This is because, as can be seen from the above hypothesis, when a strong reaction between the glass frit and the acid occurs, the force of the glass frit as an adhesive decreases, and the electrode peels off. In particular, this peeling strongly occurs at the tip of the finger electrode. This is because the processed carrier volume at the electrode tip is larger than in other parts.

さらに、接触抵抗の低減幅は、酸の濃度や浸漬時間によってばらつくだけでなく、製造した太陽電池毎の個体差でも大きくばらつく。
これは、導電性ペーストを印刷して焼成した半導体基板を、同じ浸漬時間で同じ濃度の同じ酸に浸漬させても、酸が浸透して到達する部分が均一になるように制御することは困難であり、ガラスフリットを溶融して除去できる部分の不均一性が大きいためと考えられる。そこで、酸を十分に浸透させるために浸漬時間を長時間化することも考えられたが、電極の剥離を助長することになる上、工程時間が増大してしまうこととなった。
Furthermore, the range of reduction in contact resistance varies not only depending on the acid concentration and immersion time, but also greatly varies depending on individual differences among the manufactured solar cells.
This means that even if a semiconductor substrate printed and baked with conductive paste is immersed in the same acid at the same concentration for the same immersion time, it is difficult to control so that the portion where the acid penetrates and reaches is uniform. This is probably because the non-uniformity of the portion where the glass frit can be melted and removed is large. In order to sufficiently permeate the acid, it has been considered to increase the immersion time, but this facilitates peeling of the electrode and increases the process time.

特開平9−213979号公報JP-A-9-213979

そこで、本発明は、上記問題点に鑑みてなされたものであって、本発明の目的は、電極と基板との間の接触抵抗が大きく低減されるとともに、電極の剥離も生じない高効率の太陽電池を高い生産性でかつ低コストで安定的に得ることができる太陽電池の製造方法を提供することである。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to reduce the contact resistance between the electrode and the substrate, and to prevent the electrode from peeling off. It is an object of the present invention to provide a solar cell manufacturing method capable of stably obtaining a solar cell with high productivity and low cost.

上記目的を達成するために、本発明によれば、少なくとも、半導体基板上にPN接合を形成した後、導電性ペーストを印刷して焼成し、該半導体基板を1回以上酸に浸漬させることによって電極を形成する太陽電池の製造方法において、前記導電性ペーストを印刷して焼成した半導体基板を親水性溶媒で濡らした後、乾燥させることなく酸に浸漬させることを特徴とする太陽電池の製造方法が提供される(請求項1)。   In order to achieve the above object, according to the present invention, at least after forming a PN junction on a semiconductor substrate, the conductive paste is printed and baked, and the semiconductor substrate is immersed in an acid at least once. In the manufacturing method of the solar cell which forms an electrode, after wetting the semiconductor substrate which printed and baked the said conductive paste with a hydrophilic solvent, it is immersed in an acid without drying, The manufacturing method of the solar cell characterized by the above-mentioned Is provided (claim 1).

このように、前記導電性ペーストを印刷して焼成した半導体基板を親水性溶媒で濡らした後、乾燥させることなく酸に浸漬させることによって、電極を形成する焼成した導電性ペーストの外周部と中心部において、ガラスフリットが酸に触れる時間を均一化することができるため、ガラスフリットの溶解と除去を均一に行うことができて接触抵抗の面内分布を均一化できる結果、十分に低い接触抵抗を安定的に得ることができる。また、局所的に酸に長時間曝される箇所が減少するために電極の剥がれも防止できる。
これは、基板を乾燥させることなく酸に浸漬させることによって、焼成した導電性ペースト内の空孔に既に存在する親水性溶媒中を酸が拡散し浸透するため、導電性ペースト内に隈なく酸が行き渡って酸とガラスフリットとの反応の均一性が高まり、また、反応領域周辺に存在する親水性溶媒が酸を希釈するため、反応が緩やかに進行して反応の安定性も高まるためである。
Thus, after the semiconductor substrate printed and baked by wetting the conductive paste is wetted with a hydrophilic solvent, it is immersed in an acid without drying, whereby the outer periphery and the center of the baked conductive paste forming the electrode are formed. The glass frit can be uniformly exposed to the acid at the part, so that the glass frit can be uniformly dissolved and removed, and the in-plane distribution of the contact resistance can be made uniform, resulting in sufficiently low contact resistance. Can be obtained stably. In addition, since the number of locations that are locally exposed to acid for a long time decreases, peeling of the electrodes can be prevented.
This is because by immersing the substrate in the acid without drying, the acid diffuses and penetrates into the hydrophilic solvent already present in the pores in the fired conductive paste. This is because the uniformity of the reaction between the acid and the glass frit increases, and the hydrophilic solvent present in the vicinity of the reaction region dilutes the acid, so that the reaction proceeds slowly and the stability of the reaction also increases. .

この場合、前記親水性溶媒を、水または水溶液とすることが好ましい(請求項2)。
このように親水性溶媒を水または水溶液とすることにより、電極を形成する焼成した導電性ペースト内の空孔に、低コストで容易に浸漬する酸の溶媒となる親水性溶媒を提供することができる。
In this case, it is preferable that the hydrophilic solvent is water or an aqueous solution.
Thus, by using a hydrophilic solvent as water or an aqueous solution, it is possible to provide a hydrophilic solvent that is an acid solvent that can be easily immersed in the pores in the baked conductive paste forming the electrode at low cost. it can.

また、前記親水性溶媒を、純水とすることが好ましい(請求項3)。
このように親水性溶媒を純水とすることによって、汚染物質が基板および電極に付着して品質が低下するのを防ぐことができる。
The hydrophilic solvent is preferably pure water (Claim 3).
By using pure water as the hydrophilic solvent in this manner, it is possible to prevent contaminants from adhering to the substrate and the electrode and deteriorating the quality.

さらに、前記親水性溶媒で濡らす方法が、親水性溶媒を充填した液槽への浸漬であることが好ましい(請求項4)。
このように親水性溶媒を充填した液槽へ浸漬することによって、基板に焼成した導電性ペースト全体を十分に親水性溶媒で濡らすことができる。
Furthermore, it is preferable that the method of wetting with the hydrophilic solvent is immersion in a liquid tank filled with the hydrophilic solvent.
Thus, by immersing in the liquid tank filled with the hydrophilic solvent, the entire conductive paste fired on the substrate can be sufficiently wetted with the hydrophilic solvent.

また、前記親水性溶媒で濡らす方法が、親水性溶媒の散布であることとすることができる(請求項5)。
このように溶媒の散布によって濡らしてもよく、この場合は、液槽が不要となるので工程を簡略化することができる。
Further, the method of wetting with the hydrophilic solvent may be a spraying of the hydrophilic solvent (Claim 5).
Thus, it may be wetted by spraying the solvent. In this case, the liquid tank is not necessary, and therefore the process can be simplified.

さらに、前記半導体基板を親水性溶媒で濡らす際に、超音波を印加することが好ましい(請求項6)。
このように基板を溶媒で濡らす際に超音波を印加することで、基板に焼成した導電性ペースト内部に速やかでかつ確実に溶媒をより均一に浸透させることができ、工程時間を短縮することができる。
Furthermore, it is preferable to apply ultrasonic waves when the semiconductor substrate is wetted with a hydrophilic solvent.
By applying ultrasonic waves when the substrate is wetted with the solvent in this way, the solvent can be quickly and surely penetrated into the conductive paste baked into the substrate, and the process time can be shortened. it can.

また、前記親水性溶媒で濡らす時間を、1秒以上10分以下とすることが好ましい(請求項7)。
このように溶媒で濡らす時間を1秒以上10分以下とすることにより、焼成した導電性ペースト全体を確実に濡らすことが可能である。
Moreover, it is preferable that the time of wetting with the hydrophilic solvent be 1 second or more and 10 minutes or less (claim 7).
Thus, by setting the time of wetting with the solvent to 1 second or more and 10 minutes or less, it is possible to surely wet the baked conductive paste.

さらに、前記半導体基板を浸漬させる酸として、フッ化水素酸または臭化水素酸を用いることが好ましい(請求項8)。
このように基板を浸漬させる酸として、フッ化水素酸または臭化水素酸を用いることにより、優れた電気的特性を得ることができる上に、電極腐食を生じることもない。
Furthermore, it is preferable to use hydrofluoric acid or hydrobromic acid as the acid for immersing the semiconductor substrate (claim 8).
By using hydrofluoric acid or hydrobromic acid as the acid for immersing the substrate in this way, excellent electrical characteristics can be obtained and electrode corrosion does not occur.

また、前記半導体基板の酸浸漬を、0.1〜10体積%の酸を含む水溶液に浸漬させることにより行うことが好ましい(請求項9)。
このように基板の酸浸漬を0.1〜10体積%の酸を含む水溶液に浸漬させることにより行うことで、電極と基板界面のガラスフリットを十分に溶解・除去することができる。
Moreover, it is preferable to perform the acid immersion of the semiconductor substrate by immersing the semiconductor substrate in an aqueous solution containing 0.1 to 10% by volume of acid (claim 9).
Thus, the glass frit at the interface between the electrode and the substrate can be sufficiently dissolved and removed by immersing the substrate in an aqueous solution containing 0.1 to 10% by volume of acid.

さらに、前記半導体基板として、ガリウムをドープしたp型単結晶シリコン基板を用いることが好ましい(請求項10)。
このように半導体基板として、ガリウムをドープしたp型単結晶シリコン基板を用いることにより、製造する太陽電池が、光劣化を生じることのない光電変換効率が非常に高い実用的なものとなる。
Furthermore, it is preferable to use a p-type single crystal silicon substrate doped with gallium as the semiconductor substrate.
Thus, by using a p-type single crystal silicon substrate doped with gallium as the semiconductor substrate, the solar cell to be manufactured becomes practical with a very high photoelectric conversion efficiency without causing photodegradation.

このように、本発明の太陽電池の製造方法により、一回の酸浸漬で十分に低い接触抵抗を安定的に得ることができるため酸浸漬を必ずしも複数回行う必要もなく、さらに、電極の剥離も防止できるので、高効率の太陽電池を高い生産性でかつ低コストに製造することができる。   As described above, according to the method for manufacturing a solar cell of the present invention, a sufficiently low contact resistance can be stably obtained by one acid immersion, so that it is not always necessary to perform acid immersion multiple times, and further, electrode peeling. Therefore, a highly efficient solar cell can be manufactured with high productivity and low cost.

従来、太陽電池の製造工程において、導電性ペーストを半導体基板上に印刷して焼成した後に、接触抵抗を低減するために酸への浸漬がなされていた。しかし、かかる酸浸漬によって得られる接触抵抗の低減幅は、同じ浸漬時間で同じ濃度の同じ酸に浸漬させてもばらつきが大きく、また、酸を十分に浸透させるために浸漬時間を長時間化すると、電極の剥離を助長することになる上、工程時間が増大してしまうこととなっていた。   Conventionally, in a solar cell manufacturing process, after a conductive paste is printed on a semiconductor substrate and baked, it is immersed in an acid in order to reduce contact resistance. However, the contact resistance reduction width obtained by such acid immersion varies greatly even when immersed in the same acid at the same concentration for the same immersion time, and if the immersion time is increased to sufficiently penetrate the acid. In addition to promoting the peeling of the electrodes, the process time is increased.

そこで、本発明者等は、鋭意研究を重ね、少なくとも、半導体基板上にPN接合を形成した後、導電性ペーストを印刷して焼成し、該半導体基板を1回以上酸に浸漬させることによって電極を形成する太陽電池の製造方法において、前記導電性ペーストを印刷して焼成した半導体基板を親水性溶媒で濡らした後、乾燥させることなく酸に浸漬させることにより、電極を形成する焼成した導電性ペーストの外周部と中心部において、ガラスフリットが酸に触れる時間を均一化することができるため、ガラスフリットの溶解と除去を均一に行うことができて接触抵抗の面内分布を均一化できる結果、十分に低い接触抵抗を安定的に得ることができ、また、浸漬時間を長時間化する必要もないことから、局所的に酸に長時間曝される箇所が減少するために電極の剥がれも防止できることを見出した。   Therefore, the present inventors have conducted extensive research, and at least after forming a PN junction on a semiconductor substrate, the conductive paste is printed and fired, and the semiconductor substrate is immersed in an acid one or more times to form an electrode. In the method of manufacturing a solar cell, the electrode is formed by dipping the semiconductor substrate printed and fired with the conductive paste with a hydrophilic solvent and then immersing it in an acid without drying. The time at which the glass frit is in contact with the acid can be made uniform at the periphery and center of the paste, so that the glass frit can be uniformly dissolved and removed, and the in-plane distribution of contact resistance can be made uniform. , Sufficiently low contact resistance can be stably obtained, and it is not necessary to lengthen the immersion time, so the number of places exposed to acid locally for a long time decreases. Found that peeling of the electrode can be prevented in order.

以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではない。図1は、本発明の太陽電池の製造方法の実施形態を示すフロー図である。   Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto. FIG. 1 is a flowchart showing an embodiment of a method for manufacturing a solar cell of the present invention.

まず、半導体基板上にPN接合を形成した後、導電性ペーストを印刷して焼成する。
ここで用いる半導体基板は、ガリウムをドープしたp型単結晶シリコン基板であることが好ましく、これにより、製造する太陽電池が光劣化を生じない光電変換効率の非常に高い実用的なものとなる。まず、半導体基板からエッチングによりダメージ層を除去した後、反射防止のためのテクスチャ構造を形成した半導体基板にPN接合を形成することが好ましい。
PN接合の形成は、受光面側にリンなどのn型不純物を熱拡散によって行うのが好ましいが、塗布拡散もしくはイオン注入法によって行ってもよい。ここで、太陽光反射防止と表面保護のために、プラズマCVD法またはPVD法等によって、窒化膜を受光面上に形成することが好ましい。
First, after forming a PN junction on a semiconductor substrate, a conductive paste is printed and baked.
The semiconductor substrate used here is preferably a p-type single crystal silicon substrate doped with gallium, which makes the solar cell to be manufactured practical with a very high photoelectric conversion efficiency that does not cause photodegradation. First, after removing the damaged layer from the semiconductor substrate by etching, it is preferable to form a PN junction on the semiconductor substrate on which the texture structure for preventing reflection is formed.
The PN junction is preferably formed by thermal diffusion of n-type impurities such as phosphorus on the light receiving surface side, but may be formed by coating diffusion or ion implantation. Here, in order to prevent sunlight reflection and protect the surface, it is preferable to form a nitride film on the light receiving surface by a plasma CVD method or a PVD method.

導電性ペーストの印刷は、受光面側に銀粒子を含む導電性ペーストで、基板から電力を取り出す櫛歯状のフィンガ電極と、そのフィンガ電極から電力を取り出すバスバ電極を印刷し、裏面(受光面と反対側の面)にアルミニウム粒子を含む導電性ペーストを全面に印刷するのが好ましい。
基板上に印刷した導電性ペーストの焼成は、500℃から800℃で1〜5分間加熱することによって行うことができる。
The conductive paste is printed with a conductive paste containing silver particles on the light-receiving surface side, and comb-like finger electrodes that extract power from the substrate and bus bar electrodes that extract power from the finger electrodes are printed on the back surface (light-receiving surface). It is preferable to print a conductive paste containing aluminum particles on the entire surface on the opposite side).
Firing of the conductive paste printed on the substrate can be performed by heating at 500 to 800 ° C. for 1 to 5 minutes.

次に、導電性ペーストを焼成した基板を親水性溶媒で濡らす。基板を親水性溶媒で濡らせば、その後の水溶液であるフッ化水素酸や臭化水素酸等の酸に浸漬する際に、基板表面がすばやく均一に濡れて、反応をむらなく進行させることができる。また、酸に浸漬する際に基板表面に気泡が付着するようなことも防止できる。
親水性溶媒としては、浸漬する酸の溶媒として十分に機能し、汚染を防止することができるものであれば、特に限定しないが、特に、純水を用いることが好ましい。また、浸漬する酸の溶媒となるものであれば、水溶液やアルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノールなど)の親水性溶媒であってもよい。
Next, the substrate on which the conductive paste has been baked is wetted with a hydrophilic solvent. If the substrate is wetted with a hydrophilic solvent, the surface of the substrate can be quickly and uniformly wet when immersed in an aqueous solution such as hydrofluoric acid or hydrobromic acid, allowing the reaction to proceed evenly. . In addition, bubbles can be prevented from adhering to the substrate surface when immersed in an acid.
The hydrophilic solvent is not particularly limited as long as it functions sufficiently as a solvent for the acid to be immersed and can prevent contamination, but it is particularly preferable to use pure water. Moreover, as long as it becomes a solvent of the acid to immerse, the hydrophilic solvent of aqueous solution and alcohol (for example, methanol, ethanol, propanol, isopropanol etc.) may be sufficient.

基板を親水性溶媒で濡らす方法は、親水性溶媒を充填した液槽へ基板を浸漬するのが、基板に焼成した導電性ペースト全体を十分に親水性溶媒で濡らすことができるので好ましいが、溶媒の散布によって濡らしてもよく、この場合は、液槽が不要となって工程を簡略化することができる。例えば、基板を酸の液槽へ搬送中に親水性溶媒を散布することで、工程時間の増大を伴わず、容易に基板を濡らすことができる。   In the method of wetting the substrate with the hydrophilic solvent, it is preferable to immerse the substrate in a liquid tank filled with the hydrophilic solvent because the entire conductive paste fired on the substrate can be sufficiently wetted with the hydrophilic solvent. In this case, a liquid tank is not necessary, and the process can be simplified. For example, by spraying the hydrophilic solvent while the substrate is being transported to the acid bath, the substrate can be easily wetted without increasing the process time.

また、基板を溶媒で濡らす際に超音波を印加することが好ましく、これにより、電極内部に速やかに水が浸透するため、工程時間を短縮できる上、電極内部の空孔への水の浸透を均一かつ確実に行うことができる。超音波の印加は、基板を浸漬した溶媒を通じて間接的に行うのが好ましいが、基板に対して直接行ってもよい。   In addition, it is preferable to apply ultrasonic waves when the substrate is wetted with a solvent. This allows water to quickly penetrate into the electrode, so that the process time can be shortened and water can penetrate into the pores inside the electrode. Uniform and reliable. The application of ultrasonic waves is preferably performed indirectly through a solvent in which the substrate is immersed, but may be performed directly on the substrate.

溶媒で濡らす時間は、1秒以上10分以下とするのが好ましく、これにより基板に焼成した導電性ペースト全体を確実に濡らすことが可能である。   The time of wetting with the solvent is preferably 1 second or more and 10 minutes or less, so that the entire conductive paste fired on the substrate can be reliably wetted.

次に、親水性溶媒で濡らした半導体基板を、乾燥させることなく酸に浸漬する。
従来は、乾燥した状態の半導体基板を直接酸に浸漬したため、表面に気泡が付着していたりして浸漬時間内に酸が浸透して到達する部分とそうでない部分とが生じてしまい、ガラスフリットを溶融して除去できる部分とできない部分の不均一性が大きく、接触抵抗のばらつきや電極の剥離が生じていた。
Next, the semiconductor substrate wetted with the hydrophilic solvent is immersed in an acid without drying.
Conventionally, since a dry semiconductor substrate is directly immersed in an acid, bubbles are attached to the surface, and a part where the acid penetrates and reaches within the immersion time and a part where it does not occur are generated. The non-uniformity of the portion that can be removed by melting and the portion that cannot be removed is large, resulting in variations in contact resistance and peeling of the electrodes.

しかし、基板を溶媒で濡らした後、乾燥させることなく酸に浸漬させることによって、電極を形成する焼成した導電性ペーストの外周部と中心部において、ガラスフリットが酸に触れる時間を均一化することができるため、ガラスフリットの溶解と除去を均一に行うことができる。従って、接触抵抗の面内分布を均一化できる結果、十分に低い接触抵抗を安定的に得ることができ、また、局所的に酸に長時間曝される箇所が減少するために電極の剥がれも防止できる。   However, by dipping the substrate in a solvent and then immersing it in an acid without drying it, the time for the glass frit to come into contact with the acid at the outer periphery and the center of the baked conductive paste forming the electrode is made uniform. Therefore, it is possible to uniformly dissolve and remove the glass frit. Therefore, as a result of uniforming the in-plane distribution of contact resistance, a sufficiently low contact resistance can be obtained stably, and the number of places exposed to acid locally for a long time is reduced, so that the electrode is peeled off. Can be prevented.

これは、基板を乾燥させることなく酸に浸漬させることによって、焼成した導電性ペースト内の空孔に既に存在する親水性溶媒中を酸が拡散し浸透するため、導電性ペースト内に隈なく酸が行き渡って酸とガラスフリットとの反応の均一性が高まり、また、反応領域周辺に存在する親水性溶媒が酸を希釈するため、反応が緩やかに進行して反応の安定性も高まるためである。   This is because by immersing the substrate in the acid without drying, the acid diffuses and penetrates into the hydrophilic solvent already present in the pores in the fired conductive paste. This is because the uniformity of the reaction between the acid and the glass frit increases, and the hydrophilic solvent present in the vicinity of the reaction region dilutes the acid, so that the reaction proceeds slowly and the stability of the reaction also increases. .

基板を浸漬させる酸としては、フッ化水素酸、臭化水素酸、DL−リンゴ酸、ステアリン酸、アジピン酸、サリチル酸、クエン酸、および乳酸などが電極腐食の問題を生じることなく優れた電気的特性を得ることができるので好ましく、特に、フッ化水素酸であれば、非常に優れた電気的特性を得ることができるのでさらに好ましく、また、臭化水素酸やDL−リンゴ酸であれば、高い電極強度を得ることができるので好ましい。   As the acid for immersing the substrate, hydrofluoric acid, hydrobromic acid, DL-malic acid, stearic acid, adipic acid, salicylic acid, citric acid, and lactic acid are excellent electrical materials without causing electrode corrosion problems. Since it is possible to obtain characteristics, hydrofluoric acid is particularly preferable, because very excellent electrical characteristics can be obtained. In addition, hydrobromic acid and DL-malic acid are preferable. It is preferable because high electrode strength can be obtained.

基板の酸浸漬は、0.1〜10体積%の酸を含む水溶液に浸漬させることによって行うのが、導電性ペースト内に十分な量の酸を確実に浸漬させることができるため好ましいが、十分に酸を浸漬することができれば、アルコール等の他の親水性溶媒に酸を溶解して浸漬してもよい。浸漬時間としては、1秒から5分間程度が好ましい。   It is preferable to immerse the substrate in an aqueous solution containing 0.1 to 10% by volume of an acid because a sufficient amount of acid can be surely immersed in the conductive paste. If the acid can be immersed in the solution, the acid may be dissolved in another hydrophilic solvent such as alcohol. The immersion time is preferably about 1 second to 5 minutes.

次に、半導体基板に付着した酸を水で洗い流す。ここでは、洗浄効果を高めるために揺動し、若しくは、超音波を印加しながら水洗するのが好ましい。
そして、最後に半導体基板を乾燥させることにより、高効率の太陽電池が完成する。乾燥方法には、放置や温風、IPA乾燥などを用いてもよい。
Next, the acid adhering to the semiconductor substrate is washed away with water. Here, it is preferable to perform washing with water to increase the cleaning effect or while applying ultrasonic waves.
Finally, the semiconductor substrate is dried to complete a highly efficient solar cell. As the drying method, standing, warm air, IPA drying, or the like may be used.

以上のような本発明の太陽電池の製造方法により、一回の酸浸漬で十分に低い接触抵抗を安定的に得ることができるため酸浸漬を複数回行う必要もなく、さらに、電極の剥離も防止できるので、高効率の太陽電池を高い生産性でかつ低コストに製造することができる。但し、目的に応じて酸浸漬を複数回行うようにしてもよい。   According to the method for manufacturing a solar cell of the present invention as described above, a sufficiently low contact resistance can be stably obtained by one acid immersion, so there is no need to perform acid immersion multiple times, and electrode peeling is also possible. Therefore, a highly efficient solar cell can be manufactured with high productivity and low cost. However, acid dipping may be performed a plurality of times depending on the purpose.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1、2)
図1に示した手順に従って太陽電池を製造した後、出力特性の測定結果と電極の接着強度の評価を行った。
まず、III族元素のガリウムを不純物元素とするp型単結晶太陽電池用シリコン基板(100mm角、面方位{100}、基板厚300μm、抵抗率0.5Ωcm)を、水酸化カリウム水溶液によりエッチングしてダメージ層を取り除いた。さらにIPAを混入した水酸化カリウム水溶液により、反射防止構造であるテクスチャ構造を形成した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Examples 1 and 2)
After the solar cell was manufactured according to the procedure shown in FIG. 1, the measurement result of the output characteristics and the evaluation of the adhesive strength of the electrode were performed.
First, a p-type single crystal solar cell silicon substrate (100 mm square, surface orientation {100}, substrate thickness 300 μm, resistivity 0.5 Ωcm) having a group III element gallium as an impurity element is etched with an aqueous potassium hydroxide solution. The damage layer was removed. Further, a texture structure as an antireflection structure was formed with an aqueous potassium hydroxide solution mixed with IPA.

そして、受光面側にPOCl液体ソースを利用した熱拡散によってV族元素のリンを不純物としたn領域を受光面に作製してPN接合を形成した。ここで、太陽光反射防止と表面保護をかねてプラズマCVD法によって膜厚70nmの窒化膜を受光面上に形成した。 Then, an n region having phosphorus as a group V element as an impurity was formed on the light receiving surface by thermal diffusion using a POCl 3 liquid source on the light receiving surface side to form a PN junction. Here, a 70 nm-thick nitride film was formed on the light-receiving surface by plasma CVD to prevent sunlight reflection and protect the surface.

さらに、裏面(受光面と反対側の面)に対して、アルミニウム粒子を含む導電性ペーストを全面に印刷して焼成し、受光面に対して、銀粒子を含む導電性ペーストをフィンガ電極とバスバ電極の形状に印刷して焼成した。焼成は、700℃で3分間、基板を保持することにより行った。   Further, a conductive paste containing aluminum particles is printed on the entire surface of the back surface (the surface opposite to the light receiving surface) and baked, and the conductive paste containing silver particles is applied to the finger electrode and the bus bar on the light receiving surface. It printed on the shape of the electrode and baked. Firing was performed by holding the substrate at 700 ° C. for 3 minutes.

次に 純水を充填した水槽に基板を60秒間浸漬することによって濡らした。浸漬中、純水に超音波を印加した。
そして、純水で濡らした基板を乾燥させることなく、1体積%のフッ化水素酸(フッ酸)に45秒間(実施例1)、または、60秒間(実施例2)浸漬した。
次に、純水を充填した水槽内に基板を5分間浸漬して洗浄した後、温風で基板を乾燥させ、太陽電池を製造した。
Next, the substrate was wetted by immersing it in a water tank filled with pure water for 60 seconds. During immersion, ultrasonic waves were applied to pure water.
Then, the substrate wetted with pure water was immersed in 1 vol% hydrofluoric acid (hydrofluoric acid) for 45 seconds (Example 1) or 60 seconds (Example 2) without drying.
Next, the substrate was immersed for 5 minutes in a water tank filled with pure water and washed, and then the substrate was dried with warm air to manufacture a solar cell.

次に、ソーラシミュレータ(光強度:1kW/m、スペクトル:AM1.5グローバル)を用いて、作製した太陽電池の出力特性を測定した。
また、電極の接着強度の評価を(1)フィンガ電極の剥がれ発生の目視確認による、電極剥がれ発生確率の測定、(2)フィンガ電極に粘着テープを貼り付け、剥がした後に電極が基板に残っているかどうかを目視確認することによる、テープ剥離試験による剥がれ発生確率の測定、(3)バスバ上にリボンを半田付けし、リボンを基板の垂直方向に2Nの力で引っ張った際に基板とバスバが剥がれるどうかを目視確認することによる、バスバ剥離試験による剥がれ発生確率の測定の3種類の方法で行った。
Next, the output characteristic of the produced solar cell was measured using a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM1.5 global).
In addition, the evaluation of the adhesive strength of the electrode is (1) the measurement of the probability of electrode peeling by visual confirmation of the occurrence of peeling of the finger electrode, and (2) the adhesive tape is applied to the finger electrode and the electrode remains on the substrate after peeling. (3) When the ribbon is soldered on the bus bar and the ribbon is pulled with a force of 2N in the vertical direction of the board, the board and the bus bar are It was performed by three kinds of methods of measuring the occurrence probability of peeling by a bus bar peeling test by visually confirming whether or not the peeling occurs.

(比較例1、2)
図2に示した従来の手順に従って太陽電池を製造した後、出力特性の測定と電極の接着強度の評価を行った。具体的には、酸浸漬の前に基板を純水で濡らす工程を行わないこと以外は、全て実施例1、2と同様の手順で行った。比較例1、2では、それぞれ、実施例1、2と同様に1体積%のフッ化水素酸(フッ酸)に、45秒間(比較例1)、60秒間(比較例2)浸漬した。
(Comparative Examples 1 and 2)
After manufacturing the solar cell according to the conventional procedure shown in FIG. 2, the output characteristics were measured and the adhesion strength of the electrodes was evaluated. Specifically, all procedures were performed in the same manner as in Examples 1 and 2 except that the step of wetting the substrate with pure water was not performed before the acid immersion. In Comparative Examples 1 and 2, as in Examples 1 and 2, they were immersed in 1% by volume of hydrofluoric acid (hydrofluoric acid) for 45 seconds (Comparative Example 1) and 60 seconds (Comparative Example 2).

以上のフッ酸浸漬を行って製造した太陽電池の出力特性の測定結果と電極の接着強度の評価結果を、表1に示す。   Table 1 shows the measurement results of the output characteristics and the evaluation results of the adhesion strength of the electrodes of the solar cells manufactured by performing the above hydrofluoric acid immersion.

Figure 2006324519
Figure 2006324519

(実施例3,4)
また、他の酸で酸浸漬を行う場合について、本発明の効果を確認するために、1体積%の臭化水素酸で酸浸漬を行い、太陽電池を製造した後、出力特性の測定と電極の接着強度の評価を行った。具体的には、1体積%のフッ酸に浸漬する代わりに1体積%の臭化水素酸に浸漬する以外は、全て実施例1、2と同様の手順で行った。実施例3、4では、それぞれ、実施例1、2と同様に1体積%の臭化水素酸に、45秒間(実施例3)、60秒間(実施例4)浸漬した。
(Examples 3 and 4)
Moreover, in order to confirm the effect of this invention about the case where acid immersion is performed with other acids, after performing acid immersion with 1 volume% hydrobromic acid and manufacturing a solar cell, measurement of output characteristics and electrodes Evaluation of the adhesive strength was performed. Specifically, all procedures were performed in the same manner as in Examples 1 and 2 except that the sample was immersed in 1% by volume of hydrobromic acid instead of being immersed in 1% by volume of hydrofluoric acid. In Examples 3 and 4, as in Examples 1 and 2, they were immersed in 1% by volume of hydrobromic acid for 45 seconds (Example 3) and 60 seconds (Example 4).

(比較例3、4)
さらに、1体積%の臭化水素酸で酸浸漬を行う場合の比較のために、図2に示した従来の手順に従って太陽電池を製造した後、出力特性の測定と電極の接着強度の評価を行った。具体的には、酸浸漬の前に基板を純水で濡らす工程を行わないこと以外は、全て実施例3、4と同様の手順で行った。比較例3、4では、それぞれ、実施例3、4と同様に1体積%の臭化水素酸に、45秒間(比較例3)、60秒間(比較例4)浸漬した。
(Comparative Examples 3 and 4)
Further, for comparison in the case of acid immersion with 1% by volume of hydrobromic acid, after the solar cell was manufactured according to the conventional procedure shown in FIG. 2, the output characteristics were measured and the adhesion strength of the electrode was evaluated. went. Specifically, all steps were performed in the same manner as in Examples 3 and 4 except that the step of wetting the substrate with pure water was not performed before the acid immersion. In Comparative Examples 3 and 4, as in Examples 3 and 4, they were immersed in 1% by volume hydrobromic acid for 45 seconds (Comparative Example 3) and 60 seconds (Comparative Example 4).

以上の臭化水素酸浸漬を行って製造した太陽電池の出力特性の測定結果と電極の接着強度の評価結果を、表2に示す。   Table 2 shows the measurement results of the output characteristics of the solar cells manufactured by performing the above hydrobromic acid immersion and the evaluation results of the adhesive strength of the electrodes.

Figure 2006324519
Figure 2006324519

表1および表2にまとめた評価結果から、まず、フッ酸で浸漬した場合は、本発明の太陽電池の製造方法により、浸漬時間45秒では、太陽電池の直列抵抗が0.49Ωcm低下し、フィルファクタは2.7%、変換効率は0.7%向上した(実施例1、比較例1参照)。浸漬時間60秒では、直列抵抗が1.23Ωcm低下し、フィルファクタは6.2%、変換効率は1.7%向上した(実施例2、比較例2参照)。 From the evaluation results summarized in Tables 1 and 2, first, when immersed in hydrofluoric acid, the solar cell series resistance decreased by 0.49 Ωcm 2 in the immersion time of 45 seconds according to the solar cell manufacturing method of the present invention. The fill factor was improved by 2.7% and the conversion efficiency by 0.7% (see Example 1 and Comparative Example 1). When the immersion time was 60 seconds, the series resistance was reduced by 1.23 Ωcm 2 , the fill factor was improved by 6.2%, and the conversion efficiency was improved by 1.7% (see Example 2 and Comparative Example 2).

臭化水素酸で浸漬した場合は、浸漬時間45秒の場合では、太陽電池の直列抵抗が0.34Ωcm低下し、フィルファクタは1.6%、変換効率は0.4%向上した(実施例3、比較例3参照)。臭化水素酸浸漬時間60秒の場合でも、直列抵抗が1.19Ωcm低下し、フィルファクタは5.8%、変換効率は1.5%向上した(実施例4、比較例4参照)。 When immersed in hydrobromic acid, when the immersion time was 45 seconds, the series resistance of the solar cell was reduced by 0.34 Ωcm 2 , the fill factor was improved by 1.6%, and the conversion efficiency was improved by 0.4% (implementation) See Example 3 and Comparative Example 3). Even when the hydrobromic acid immersion time was 60 seconds, the series resistance was reduced by 1.19 Ωcm 2 , the fill factor was improved by 5.8%, and the conversion efficiency was improved by 1.5% (see Example 4 and Comparative Example 4).

また、電極の接着強度の評価結果から、電極の剥がれ発生確率は、各試験方法において、フッ酸と臭化水素酸双方で、浸漬時間45秒、60秒とも純水で濡らした本発明の実施例の方が、濡らさない比較例に比べて大幅に低い値となった。特に酸浸漬時間45秒の実施例1、3の場合では、電極の剥がれは、全く発生しなかった。
なお、フッ酸浸漬の場合と臭化水素酸浸漬の場合を比較すると、臭化水素酸の方がフッ酸に比べて電極の剥がれを起こし難く、フッ酸の方が臭化水素酸よりも優れた電気的特性が得られる傾向があることが分かる。
In addition, from the results of evaluation of the adhesive strength of the electrodes, the probability of electrode peeling was determined in each test method when both the hydrofluoric acid and hydrobromic acid were immersed in pure water for 45 seconds and 60 seconds. The value of the example was significantly lower than that of the comparative example which was not wetted. In particular, in Examples 1 and 3 where the acid immersion time was 45 seconds, no electrode peeling occurred.
Compared with hydrofluoric acid immersion and hydrobromic acid immersion, hydrobromic acid is less susceptible to electrode peeling than hydrofluoric acid, and hydrofluoric acid is superior to hydrobromic acid. It can be seen that the electrical characteristics tend to be obtained.

以上のように、直列抵抗の低下や変換効率の向上、電極の剥がれ発生確率の低減により示されるように、本発明の太陽電池の製造方法によって、電極と基板との間の接触抵抗が大きく低減された高効率の太陽電池を高い生産性でかつ低コストで安定的に得ることができる。   As described above, the contact resistance between the electrode and the substrate is greatly reduced by the solar cell manufacturing method of the present invention, as shown by the decrease in series resistance, improvement in conversion efficiency, and reduction in the probability of electrode peeling. The obtained high-efficiency solar cell can be stably obtained with high productivity and low cost.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

本発明の太陽電池の製造方法の実施形態を示すフロー図である。It is a flowchart which shows embodiment of the manufacturing method of the solar cell of this invention. 従来の太陽電池の製造方法の実施形態を示すフロー図である。It is a flowchart which shows embodiment of the manufacturing method of the conventional solar cell.

Claims (10)

少なくとも、半導体基板上にPN接合を形成した後、導電性ペーストを印刷して焼成し、該半導体基板を1回以上酸に浸漬させることによって電極を形成する太陽電池の製造方法において、前記導電性ペーストを印刷して焼成した半導体基板を親水性溶媒で濡らした後、乾燥させることなく酸に浸漬させることを特徴とする太陽電池の製造方法。   In the method for manufacturing a solar cell, in which at least a PN junction is formed on a semiconductor substrate, and then an electroconductive paste is printed and fired, and the electrode is formed by immersing the semiconductor substrate in an acid at least once. A method for producing a solar cell, wherein a semiconductor substrate obtained by printing and baking a paste is wetted with a hydrophilic solvent and then immersed in an acid without drying. 前記親水性溶媒を、水または水溶液とすることを特徴とする請求項1に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the hydrophilic solvent is water or an aqueous solution. 前記親水性溶媒を、純水とすることを特徴とする請求項1または請求項2に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the hydrophilic solvent is pure water. 前記親水性溶媒で濡らす方法が、親水性溶媒を充填した液槽への浸漬であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 3, wherein the method of wetting with the hydrophilic solvent is immersion in a liquid tank filled with the hydrophilic solvent. 前記親水性溶媒で濡らす方法が、親水性溶媒の散布であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 3, wherein the method of wetting with the hydrophilic solvent is spraying of the hydrophilic solvent. 前記半導体基板を親水性溶媒で濡らす際に、超音波を印加することを特徴とする請求項1乃至請求項5のいずれか一項に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein ultrasonic waves are applied when the semiconductor substrate is wetted with a hydrophilic solvent. 前記親水性溶媒で濡らす時間を、1秒以上10分以下とすることを特徴とする請求項1乃至請求項6のいずれか一項に記載の太陽電池の製造方法。   The method for producing a solar cell according to any one of claims 1 to 6, wherein a time of wetting with the hydrophilic solvent is 1 second or more and 10 minutes or less. 前記半導体基板を浸漬させる酸として、フッ化水素酸または臭化水素酸を用いることを特徴とする請求項1乃至請求項7のいずれか一項に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 7, wherein hydrofluoric acid or hydrobromic acid is used as an acid for immersing the semiconductor substrate. 前記半導体基板の酸浸漬を、0.1〜10体積%の酸を含む水溶液に浸漬させることにより行うことを特徴とする請求項1乃至請求項8のいずれか一項に記載の太陽電池の製造方法。   The solar cell production according to any one of claims 1 to 8, wherein the acid immersion of the semiconductor substrate is performed by immersing the semiconductor substrate in an aqueous solution containing 0.1 to 10% by volume of an acid. Method. 前記半導体基板として、ガリウムをドープしたp型単結晶シリコン基板を用いることを特徴とする請求項1乃至請求項9のいずれか一項に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein a p-type single crystal silicon substrate doped with gallium is used as the semiconductor substrate.
JP2005147138A 2005-05-19 2005-05-19 Manufacturing method of solar cell Active JP4808994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147138A JP4808994B2 (en) 2005-05-19 2005-05-19 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147138A JP4808994B2 (en) 2005-05-19 2005-05-19 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2006324519A true JP2006324519A (en) 2006-11-30
JP4808994B2 JP4808994B2 (en) 2011-11-02

Family

ID=37499667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147138A Active JP4808994B2 (en) 2005-05-19 2005-05-19 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP4808994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130405A (en) * 2014-01-07 2015-07-16 三菱電機株式会社 Photovoltaic device manufacturing method
JP2016066800A (en) * 2007-07-20 2016-04-28 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. Device with conductor disposed on substrate, and method of forming conductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213979A (en) * 1996-02-07 1997-08-15 Sharp Corp Solar cell and manufacture thereof
JPH10233518A (en) * 1996-12-20 1998-09-02 Mitsubishi Electric Corp Solar cell and its manufacturing method, and manufacturing method of semiconductor device
JP2005159174A (en) * 2003-11-27 2005-06-16 Kyocera Corp Method of manufacturing solar cell element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213979A (en) * 1996-02-07 1997-08-15 Sharp Corp Solar cell and manufacture thereof
JPH10233518A (en) * 1996-12-20 1998-09-02 Mitsubishi Electric Corp Solar cell and its manufacturing method, and manufacturing method of semiconductor device
JP2005159174A (en) * 2003-11-27 2005-06-16 Kyocera Corp Method of manufacturing solar cell element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066800A (en) * 2007-07-20 2016-04-28 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. Device with conductor disposed on substrate, and method of forming conductor
JP2015130405A (en) * 2014-01-07 2015-07-16 三菱電機株式会社 Photovoltaic device manufacturing method

Also Published As

Publication number Publication date
JP4808994B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5301758B2 (en) Solar cell
TWI492390B (en) Silicon solar cell
TWI611589B (en) Solar battery and solar battery module
US9691918B2 (en) Solar battery cell and manufacturing method for the solar battery cell
JP2010098232A (en) Solar battery and method of manufacturing solar battery
JP5677469B2 (en) Method for manufacturing solar cell element, solar cell element, and solar cell module
WO2011014281A1 (en) Surface treatment of silicon
JP6644884B2 (en) Solar cell, solar cell manufacturing system, and solar cell manufacturing method
TWM517422U (en) Heterojunction solar cell with local passivation
JP4808994B2 (en) Manufacturing method of solar cell
KR102102823B1 (en) Method of forming selective emitter using surface structure and solar cell comprising selective emitter using surface structure
JP2004235272A (en) Solar cell element and its fabricating process
JP6139466B2 (en) Manufacturing method of solar cell
CN113380922A (en) Preparation method and selective emitter solar cell
JP2007266649A (en) Method of manufacturing solar cell element
JP2011243726A (en) Solar cell manufacturing method
JP5316491B2 (en) Manufacturing method of solar cell
EP3702048B1 (en) Method for drying polyimide paste and method for producing solar cells capable of highly-efficient photoelectric conversion
JP2009283558A (en) Solar cell, its method for manufacturing, and solar cell system equipped with it
KR101976421B1 (en) Manufacturing method of solar cell
JP5345214B2 (en) Manufacturing method of solar cell
JP2006032680A (en) Manufacturing method of solar cell
JP2002314103A (en) Method of manufacturing solar cell
JP2015130405A (en) Photovoltaic device manufacturing method
TW201236185A (en) Method of fabricating crystalline silicon solar cell with surface passivation structure using wet chemical process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4808994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150