JP2006323134A - Signal extractor - Google Patents

Signal extractor Download PDF

Info

Publication number
JP2006323134A
JP2006323134A JP2005146342A JP2005146342A JP2006323134A JP 2006323134 A JP2006323134 A JP 2006323134A JP 2005146342 A JP2005146342 A JP 2005146342A JP 2005146342 A JP2005146342 A JP 2005146342A JP 2006323134 A JP2006323134 A JP 2006323134A
Authority
JP
Japan
Prior art keywords
signal
value
weight value
received
feature amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005146342A
Other languages
Japanese (ja)
Other versions
JP4612468B2 (en
Inventor
Mariko Aoki
真理子 青木
Kenichi Furuya
賢一 古家
Akitoshi Kataoka
章俊 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005146342A priority Critical patent/JP4612468B2/en
Publication of JP2006323134A publication Critical patent/JP2006323134A/en
Application granted granted Critical
Publication of JP4612468B2 publication Critical patent/JP4612468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal extractor which reduces discrimination errors of an objective signal and miscellaneous signals and extracts the objective signal at high SN ratio. <P>SOLUTION: The signal extractor comprises: at least one or more signal input means which receive signals from an objective signal source and a miscellaneous signal source; a signal feature level calculation means for calculating a signal feature level of a signal received by the signal input means; a weight value determination means which determines a weight value α for multiplying thereby the received signal, based on the value of the signal feature level calculated by the signal feature level calculation means; and a weight value multiplying means which multiplies the received signal by the weight value determined by the weight value determination means. As the signal feature levels, a dispersion value about the time base of cepstrum, a dispersion value about the time base of an auto-correlation function, sharpness are used as necessary. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、近接した目的信号源と、遠方の雑信号源とから信号が発せられている環境において、雑信号を抑圧し、目的信号を高いSN比で抽出する信号抽出装置に関する。   The present invention relates to a signal extraction apparatus that suppresses a miscellaneous signal and extracts a target signal with a high S / N ratio in an environment in which signals are emitted from a target signal source in the vicinity and a distant signal source.

目的信号と雑信号が時間的に重ならずに発せられている環境(例えば、信号が音の場合、話者が順番に交代していく環境や、時々突発的に鳴る非定常な雑音などが存在する環境である。)において、遠方の雑信号を抑圧し、近接した目的信号を強調する方法としては、従来、パワーを用いて閾値処理を行うノイズゲートという方法が提案されてきた(例えば非特許文献1参照)。
インターネット<http://www.jiten.com/dicmi/docs/k25/20745s.htm>[平成17年5月16日検索]
The environment where the target signal and the miscellaneous signal are emitted without overlapping in time (for example, when the signal is a sound, the environment in which the speakers change in turn, or the unsteady noise that occasionally sounds suddenly) In the existing environment), a noise gate method that performs threshold processing using power has been proposed as a method for suppressing a distant signal in the distance and emphasizing a target signal in the vicinity (for example, non-existing). Patent Document 1).
Internet <http://www.jiten.com/dicmi/docs/k25/20745s.htm> [Search May 16, 2005]

しかし、パワーだけを情報に使う場合には、例えば遠方のパワーの大きな雑信号と、近接した位置から発せられたパワーの小さな目的信号の判別を誤り、不必要な雑信号が出力されたり、必要な目的信号が過剰に抑圧されるという問題があった。   However, when only power is used for information, for example, a miscellaneous signal with a large distant power and a target signal with a small power emitted from a nearby position are mistakenly output, and an unnecessary miscellaneous signal is output. There is a problem that a large target signal is excessively suppressed.

そこで本発明は、上記従来方法に比して目的信号と雑信号との判別誤りを低減し、目的信号を高いSN比で抽出する信号抽出装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a signal extraction apparatus that reduces the discrimination error between a target signal and a miscellaneous signal as compared with the conventional method and extracts a target signal with a high S / N ratio.

目的信号源が雑信号源に比べて信号入力手段(例えば信号が音の場合、マイクロホン)に近接しているという場合、遠方の雑信号には反射や残響が多く重畳され、近接した目的信号には雑信号があまり重畳されないという特徴がある。この特徴を検出可能な物理量(信号特徴量)を算出することで、信号が遠方位置から発せられているのか近接位置から発せられているのかを判定し、近接した目的信号だけを抽出する。   If the target signal source is closer to the signal input means than the miscellaneous signal source (for example, a microphone if the signal is sound), the distant miscellaneous signal has a large amount of reflection and reverberation superimposed on the nearby target signal. Has a feature that miscellaneous signals are not superposed. By calculating a physical quantity (signal feature quantity) that can detect this feature, it is determined whether the signal is emitted from a distant position or a close position, and only a target signal that is close is extracted.

信号の反射や残響などの度合いは、信号のケプストラムの高次成分(例えばケフレンシで50ms以上)の変動の大きさから観測できることが知られている。同様に、信号の自己相関関数の変動からも観測できることが知られている。
(参考文献1):Alan V. Oppenheim, Ronald W. Schafer著、伊達玄 訳、"デジタル信号処理(DIGITAL SIGNAL PROCESSING)"、初版、下巻、株式会社コロナ社、1986年6月20日
It is known that the degree of signal reflection and reverberation can be observed from the magnitude of the fluctuation of the higher-order component of the signal cepstrum (for example, 50 ms or more in quefrency). Similarly, it is known that it can be observed from fluctuations in the autocorrelation function of the signal.
(Reference 1): Alan V. Oppenheim, Ronald W. Schafer, Translated by Gen Date, "DIGITAL SIGNAL PROCESSING", First Edition, Volume 2, Corona, Inc., June 20, 1986

また、信号の反射や残響などの度合いは、信号の尖鋭度からも観測できることが知られている。
(参考文献2):Bradford W. Gillespie, Henrique S. Malvar and Dinei A.F. Florencio,"Speech Dereverberation Via Maximum-Kurtosis Subband Adaptive Filtering", International Conference on Acoustics, Speech and Signal Processing, 2001
It is also known that the degree of signal reflection and reverberation can be observed from the sharpness of the signal.
(Reference 2): Bradford W. Gillespie, Henrique S. Malvar and Dinei AF Florencio, “Speech Dereverberation Via Maximum-Kurtosis Subband Adaptive Filtering”, International Conference on Acoustics, Speech and Signal Processing, 2001

さらに、ケプストラム高次の時間軸に関する分散値は、近接信号では小さく、遠方信号では大きくなる。自己相関関数の時間軸に関する分散値も、近接信号では小さく、遠方信号では大きくなる。また、尖鋭度については、近接信号では値が大きく、遠方信号では値が小さくなる。   Further, the dispersion value on the time axis of higher cepstrum is small for the proximity signal and large for the far signal. The variance value of the autocorrelation function with respect to the time axis is also small for the near signal and large for the far signal. Further, the sharpness is large for the proximity signal and small for the far signal.

図1に、信号が音の場合に、マイクロホンから50cm程度離れた位置からの目的音信号とマイクロホンから3m程度離れた位置からの雑音信号とを30秒ほど観測した場合における、ケプストラム高次の分散値の一例を示す。横軸はケプストラムにおいて短時間フーリエ変換する際のフレーム時間のフレーム数を表し、縦軸はケプストラム高次の分散値を表す。実線が近傍(マイクロホンから50cm程度)の目的音信号(近い音)であり、点線が遠方(マイクロホンから3m程度)の雑音信号(遠い音)である。
図2に、上記(図1の場合)と同条件下における自己相関関数の分散値の一例を示す。横軸は自己相関関数を演算する際のフレーム時間のフレーム数を表し、縦軸は自己相関関数の分散値を表す。
図3に、上記(図1の場合)と同条件下における尖鋭度の一例を示す。横軸は尖鋭度を演算する際のフレーム時間のフレーム数を表し、縦軸は尖鋭度を表す。
FIG. 1 shows that when the signal is a sound, the cepstrum high-order dispersion when the target sound signal from a position about 50 cm away from the microphone and the noise signal from a position about 3 m away from the microphone are observed for about 30 seconds. An example of the value is shown. The horizontal axis represents the number of frames in the frame time when short-time Fourier transform is performed in the cepstrum, and the vertical axis represents the cepstrum higher-order dispersion value. The solid line is the target sound signal (near sound) in the vicinity (about 50 cm from the microphone), and the dotted line is the noise signal (far sound) in the distance (about 3 m from the microphone).
FIG. 2 shows an example of the variance value of the autocorrelation function under the same conditions as described above (in the case of FIG. 1). The horizontal axis represents the number of frames in the frame time when calculating the autocorrelation function, and the vertical axis represents the variance value of the autocorrelation function.
FIG. 3 shows an example of sharpness under the same conditions as above (in the case of FIG. 1). The horizontal axis represents the number of frames in the frame time when calculating the sharpness, and the vertical axis represents the sharpness.

従って本発明では、信号入力手段で受信した受信信号のケプストラム高次の分散値、または自己相関関数の分散値、または尖鋭度の値を算出し、その値に応じて信号を出力する際の重み値αを算出する。   Therefore, according to the present invention, the cepstrum high-order variance value of the received signal received by the signal input means, the variance value of the autocorrelation function, or the sharpness value is calculated, and the weight when outputting the signal according to the value The value α is calculated.

信号特徴量として受信信号のケプストラム高次の分散値を用いた場合、目的信号源からの信号のケプストラム分散値は雑信号源からの信号のケプストラム分散値よりも小さいことを利用して、ケプストラム分散値が予め定めた閾値より小さくなる区間は目的信号と判定し、受信信号に乗算する重み値αを所定の値に決定する。ケプストラム分散値が閾値より大きくなる区間は雑信号の区間と判定し、重み値αを所定の値に決定する。判定された各区間における重み値αの値は、目的信号源からの信号と雑信号源からの信号とを分離できるように適宜の値に設定される。例えばαを0≦α≦1.0とすれば、目的信号と判定された区間の受信信号に乗算する重み値αは、1.0あるいは1.0に近い値に決定し、雑信号と判定された区間の受信信号に乗算する重み値αは、0あるいは0に近い値に決定すればよい。
信号特徴量として受信信号の自己相関関数の分散値を用いる場合も同様の処理を行う。
When the cepstrum high-order variance value of the received signal is used as the signal feature quantity, the cepstrum variance is obtained by utilizing the fact that the cepstrum variance value of the signal from the target signal source is smaller than the cepstrum variance value of the signal from the miscellaneous signal source. A section in which the value is smaller than a predetermined threshold is determined as a target signal, and a weight value α to be multiplied with the received signal is determined to be a predetermined value. The section in which the cepstrum variance value is larger than the threshold is determined as a section of a miscellaneous signal, and the weight value α is determined to be a predetermined value. The value of the weight value α in each determined section is set to an appropriate value so that the signal from the target signal source and the signal from the miscellaneous signal source can be separated. For example, if α is 0 ≦ α ≦ 1.0, the weight value α multiplied by the received signal in the section determined as the target signal is determined to be 1.0 or a value close to 1.0, and determined as a miscellaneous signal. The weight value α to be multiplied with the received signal in the section may be determined to be 0 or a value close to 0.
Similar processing is performed when the variance value of the autocorrelation function of the received signal is used as the signal feature amount.

また、信号特徴量として受信信号の尖鋭度を用いる場合には、近接した目的信号源からの信号の尖鋭度は大きく、遠方の雑信号源からの信号の尖鋭度は小さくなる性質を利用して、尖鋭度がある閾値以上になる区間は目的信号と判定し、受信信号に乗算する重み値αを所定の値に決定する。尖鋭度が閾値以下の場合には雑信号成分と判定し、重み値αを所定の値に決定する。判定された各区間における重み値αの値は、目的信号源からの信号と雑信号源からの信号とを分離できるように適宜の値に設定される。例えばαを0≦α≦1.0とすれば、目的信号と判定された区間の受信信号に乗算する重み値αは、1.0あるいは1.0に近い値に決定し、雑信号と判定された区間の受信信号に乗算する重み値αは、0あるいは0に近い値に決定すればよい。   In addition, when using the sharpness of a received signal as a signal feature quantity, the sharpness of a signal from a nearby target signal source is large, and the sharpness of a signal from a distant signal source is small. A section where the sharpness is greater than or equal to a threshold value is determined as a target signal, and the weight value α to be multiplied with the received signal is determined to be a predetermined value. If the sharpness is less than or equal to the threshold value, it is determined as a miscellaneous signal component, and the weight value α is determined to be a predetermined value. The value of the weight value α in each determined section is set to an appropriate value so that the signal from the target signal source and the signal from the miscellaneous signal source can be separated. For example, if α is 0 ≦ α ≦ 1.0, the weight value α multiplied by the received signal in the section determined as the target signal is determined to be 1.0 or a value close to 1.0, and determined as a miscellaneous signal. The weight value α to be multiplied with the received signal in the section may be determined to be 0 or a value close to 0.

重み値乗算手段においては、決定した重み値αを受信信号x(t)(t:サンプリング時刻)の各帯域に乗算する。即ち、目的信号と判定された区間の受信信号には所定の重み値α(上記の例で云えば、1.0あるいは1.0に近い値)を乗じ、雑信号と判定された区間の受信信号には所定の重み値α(上記の例で云えば、0あるいは0に近い値)を乗じる。このように重み付けされた受信信号を出力信号として出力する。   The weight value multiplying means multiplies each band of the received signal x (t) (t: sampling time) by the determined weight value α. That is, the reception signal in the section determined as the target signal is multiplied by a predetermined weight value α (in the above example, 1.0 or a value close to 1.0), and the reception signal in the section determined as the miscellaneous signal is received. The signal is multiplied by a predetermined weight value α (in the above example, 0 or a value close to 0). The weighted reception signal is output as an output signal.

また、上記信号特徴量(ケプストラム高次の分散値、自己相関関数の分散値、尖鋭度)はそれぞれ単独で用いても良いし、複数を組み合わせてもよい。演算量に余裕がある場合には、複数組み合わることにより判別精度の向上が期待できる。なお、上記信号特徴量はパワーと組み合わせることも出来る。   In addition, the signal feature values (the cepstrum high-order variance, the autocorrelation function variance, and the sharpness) may be used alone or in combination. When there is a margin in the amount of calculation, an improvement in discrimination accuracy can be expected by combining a plurality of calculations. The signal feature amount can be combined with power.

さらに、予め既知の目的信号および雑信号から上記の複数の信号特徴量を算出し、これらの値から重回帰分析に基づく回帰式を得ておき、受信信号の信号特徴量を回帰式に当てはめて得た目的変量から重み値を決定することもできる。   Furthermore, the above-mentioned plurality of signal feature amounts are calculated from a known target signal and a miscellaneous signal, a regression equation based on multiple regression analysis is obtained from these values, and the signal feature amount of the received signal is applied to the regression equation. The weight value can also be determined from the obtained objective variable.

本発明の信号抽出装置によれば、パワーだけを使って判別していた従来方法に比して、目的信号と雑信号との判別誤りを低減し、目的信号を高いSN比で抽出することができる。   According to the signal extraction apparatus of the present invention, it is possible to reduce the discrimination error between the target signal and the miscellaneous signal and extract the target signal with a high S / N ratio as compared with the conventional method in which discrimination is performed using only power. it can.

図4に、第1の実施形態および第2の実施形態に係わる信号抽出装置(A)の機能ブロック図を示す。また図5に、第1の実施形態および第2の実施形態に係わる信号抽出装置(A)における信号抽出処理のフローチャートを示す。これらの実施形態においては、信号を音声や楽音などの音響信号として説明する。信号入力手段である音響信号入力部(1)は例えばマイクロホンとする。目的信号源である目的音源の音響信号(目的音信号)をs(t)、雑信号源である雑音源の音響信号(雑音信号)をn(t)とする。説明を簡略化するために、ここでは雑音源を一つとして説明するが、一般に雑音源の個数は複数でも良い。   FIG. 4 is a functional block diagram of the signal extraction device (A) according to the first embodiment and the second embodiment. FIG. 5 shows a flowchart of signal extraction processing in the signal extraction apparatus (A) according to the first embodiment and the second embodiment. In these embodiments, the signal is described as an acoustic signal such as voice or musical sound. The acoustic signal input unit (1) which is a signal input means is a microphone, for example. Let s (t) be the acoustic signal (target sound signal) of the target sound source that is the target signal source, and n (t) be the acoustic signal (noise signal) of the noise source that is the miscellaneous signal source. In order to simplify the description, a single noise source is described here, but in general, a plurality of noise sources may be used.

<第1の実施形態>
まず、本発明の信号抽出装置の第1の実施形態について説明する。
<First Embodiment>
First, a first embodiment of the signal extraction device of the present invention will be described.

信号特徴量算出手段である音響特徴量算出部(2)においては、音響信号入力部(1)で受信された受信信号x(t)の信号特徴量である音響特徴量τを算出する(S100)。この音響特徴量τとは例えば、受信信号のケプストラム高次の分散値τ、自己相関関数の分散値τ、そして尖鋭度τのいずれかである。 The acoustic feature quantity calculation unit (2), which is a signal feature quantity calculation means, calculates an acoustic feature quantity τ that is a signal feature quantity of the received signal x (t) received by the acoustic signal input unit (1) (S100). ). The acoustic feature amount τ is, for example, one of a cepstrum high-order dispersion value τ 1 , an autocorrelation function dispersion value τ 2 , and a sharpness τ 3 of the received signal.

第1の実施形態では、これらの音響特徴量のうちいずれかを単独で使うとするが、複数を組み合わせて使うことで精度向上が望める。この場合については、第2の実施形態において説明する。   In the first embodiment, any one of these acoustic feature quantities is used alone, but an improvement in accuracy can be expected by using a plurality of them in combination. This case will be described in the second embodiment.

以下に、ケプストラム、自己相関関数、尖鋭度の定義を説明する。   Below, the definition of cepstrum, autocorrelation function, and sharpness will be explained.

《ケプストラム》
受信信号x(t)のケプストラムは式(1)で定義される。

Figure 2006323134
《Cepstrum》
The cepstrum of the received signal x (t) is defined by equation (1).
Figure 2006323134

ここで、fft(・)は入力・のフーリエ変換、abs(・)は入力・の絶対値、log(・)は入力・の常用対数、ifft(・)は入力・の逆フーリエ変換、そしてreal(・)は入力・の実部を表す。音響特徴量算出部(2)で算出される音響特徴量τは、受信信号のケプストラム高次の分散値τの場合、式(1)で定義されたケプストラムの高次成分の分散値である。 Where fft (・) is the Fourier transform of the input ・ abs (・) is the absolute value of the input ・ log (・) is the common logarithm of the input ・ ifft (・) is the inverse Fourier transform of the input ・ and real (•) represents the real part of input. The acoustic feature quantity τ calculated by the acoustic feature quantity calculation unit (2) is the variance value of the high-order component of the cepstrum defined by the expression (1) in the case of the cepstrum high-order variance value τ 1 of the received signal. .

《自己相関関数》
受信信号x(t)の自己相関関数は式(2)で定義される。

Figure 2006323134
《Autocorrelation function》
The autocorrelation function of the received signal x (t) is defined by equation (2).
Figure 2006323134

ここで、Nは相関を計算する信号の長さ、mはmサンプルずらした相関を表す。音響特徴量算出部(2)で算出される音響特徴量τは、自己相関関数の分散値τの場合、式(2)で定義された自己相関関数の分散値である。 Here, N represents the length of the signal for calculating the correlation, and m represents the correlation shifted by m samples. The acoustic features tau calculated in acoustic feature amount calculation unit (2), if the variance value tau 2 of the autocorrelation function is a variance value of the autocorrelation function defined by equation (2).

《尖鋭度》
受信信号x(t)の線形予測残差信号をy(t)とする。信号y(t)の尖鋭度は下記式(3)で定義される。

Figure 2006323134
《Sharpness》
Let y (t) be the linear prediction residual signal of the received signal x (t). The sharpness of the signal y (t) is defined by the following formula (3).
Figure 2006323134

ここでEは信号の期待値である。音響特徴量算出部(2)で算出される音響特徴量τは、尖鋭度τの場合、式(3)で定義された尖鋭度である。 Here, E is the expected value of the signal. The acoustic features tau calculated in acoustic feature amount calculation unit (2), if the sharpness tau 3, a sharpness defined by equation (3).

重み値決定手段である重み値決定部(3)においては、音響特徴量算出部(2)で算出した音響特徴量τの値に基づき、受信信号x(t)の各帯域に乗算する重み値αを決定する(S101)。例えば、音響特徴量としてケプストラム高次の分散値を用いた場合、目的音源からの音響信号のケプストラム分散値は雑音源からの音響信号のケプストラム分散値よりも小さいことを利用して、ケプストラム分散値が予め定めた閾値より小さくなる区間は目的音信号と判定し、受信信号に乗算する重み値αをα=1.0(あるいは1.0に近い値)に決定する。ケプストラム分散値が閾値より大きくなる区間は雑音信号の区間と判定し、ゼロに近い重み値α(0≦α<1)を決定する。音響特徴量として受信信号の自己相関関数の分散値を用いる場合も同様の処理を行う。   In the weight value determining unit (3), which is a weight value determining means, a weight value for multiplying each band of the received signal x (t) based on the value of the acoustic feature amount τ calculated by the acoustic feature amount calculating unit (2). α is determined (S101). For example, when a cepstrum high-order variance value is used as the acoustic feature amount, the cepstrum variance value is obtained by utilizing the fact that the cepstrum variance value of the acoustic signal from the target sound source is smaller than the cepstrum variance value of the acoustic signal from the noise source. A section where is smaller than a predetermined threshold is determined as a target sound signal, and a weight value α to be multiplied with the received signal is determined to be α = 1.0 (or a value close to 1.0). A section in which the cepstrum variance value is larger than the threshold is determined as a section of a noise signal, and a weight value α (0 ≦ α <1) close to zero is determined. Similar processing is performed when the variance value of the autocorrelation function of the received signal is used as the acoustic feature quantity.

また、音響特徴量として受信信号の尖鋭度を用いる場合には、近接した目的音源からの音響信号の尖鋭度は大きく、遠方の雑音源からの音響信号の尖鋭度は小さくなる性質を利用して、尖鋭度がある閾値以上になる区間は目的音信号と判定して重み値αをα=1.0(あるいは1.0に近い値)に決定する。尖鋭度が閾値以下の場合には雑音信号成分と判定してゼロに近い重み値α(0≦α<1)を決定する。   In addition, when the sharpness of the received signal is used as the acoustic feature amount, the sharpness of the acoustic signal from the nearby target sound source is large, and the sharpness of the acoustic signal from the distant noise source is small. The section where the sharpness is greater than or equal to a certain threshold is determined as the target sound signal, and the weight value α is determined to be α = 1.0 (or a value close to 1.0). When the sharpness is less than or equal to the threshold value, it is determined as a noise signal component, and a weight value α (0 ≦ α <1) close to zero is determined.

重み値乗算手段である重み値乗算部(4)においては、重み値決定部(3)で決定した重み値αを受信信号x(t)に乗算する(S102)。つまり、目的音信号と判定された区間の受信信号には所定の重み値α(1.0あるいは1.0に近い値)を乗じ、雑音信号と判定された区間の受信信号には所定の重み値α(0あるいは0に近い値)を乗じ、このα×x(t)を出力信号として出力する。この出力信号が目的音信号として抽出されたものである。   In the weight value multiplication unit (4) which is a weight value multiplication means, the received signal x (t) is multiplied by the weight value α determined by the weight value determination unit (3) (S102). That is, the received signal in the section determined as the target sound signal is multiplied by the predetermined weight value α (1.0 or a value close to 1.0), and the received signal in the section determined as the noise signal is set to the predetermined weight. The value α (0 or a value close to 0) is multiplied, and this α × x (t) is output as an output signal. This output signal is extracted as the target sound signal.

<第2の実施形態>
次に、本発明の信号抽出装置の第2の実施形態について説明する。
第2の実施形態に係わる信号抽出装置は、第1の実施形態で述べた信号抽出装置(A)と同じ構成である。以下、第1の実施形態と異なる部分について説明する。
<Second Embodiment>
Next, a second embodiment of the signal extraction device of the present invention will be described.
The signal extraction device according to the second embodiment has the same configuration as the signal extraction device (A) described in the first embodiment. Hereinafter, a different part from 1st Embodiment is demonstrated.

第2の実施形態では、重み値の決定に複数の音響特徴量を用いる。即ち、重み値決定手段である重み値決定部(3)においては、音響特徴量算出部(2)で算出した複数の音響特徴量の値に基づき、受信信号x(t)の各帯域に乗算する重み値αを決定する(S101p)。   In the second embodiment, a plurality of acoustic feature quantities are used for determining the weight value. That is, the weight value determining unit (3), which is a weight value determining unit, multiplies each band of the received signal x (t) based on the values of the plurality of acoustic feature values calculated by the acoustic feature value calculating unit (2). The weight value α to be determined is determined (S101p).

先に述べた複数の音響特徴量を組み合わせた場合の処理の一例を下記プログラム形式〈a〉で示す。ここで、ケプストラム高次の分散値をτ、τの閾値をth1、自己相関関数の分散値をτ、τの閾値をth2、尖鋭度をτ、τの閾値をth3とする。また、プログラム形式〈a〉の記号∪は“または”を表す。

Figure 2006323134
An example of processing when combining a plurality of acoustic feature values described above is shown in the following program format <a>. Here, 1 a variance value of the cepstrum higher tau, th1 threshold of tau 1, 2 the variance of the autocorrelation function tau, the threshold tau 2 th2, sharpness and tau 3, and th3 the threshold of tau 3 To do. The symbol ∪ in the program format <a> represents “or”.
Figure 2006323134

プログラム形式〈a〉は、τがth1よりも小さいか、τがth2よりも小さいか、τがth3よりも大きいかの少なくともいずれかが成立するか否かを判断し〔プログラム形式〈a〉の1行目〕、それらの少なくともいずれかが成立する場合には、重み値αを1.0と決定し〔プログラム形式〈a〉の2行目〕、それ以外の場合は、重み値αを0.0と決定する〔プログラム形式〈a〉の3行目〕ことを表す。 The program format <a> determines whether or not at least one of τ 1 is smaller than th1, τ 2 is smaller than th2, and τ 3 is larger than th3 [program format <a> first line], and if at least one of them is satisfied, the weight value α is determined to be 1.0 (second line of the program format <a>); otherwise, the weight value is determined. It represents that α is determined to be 0.0 [the third line of the program format <a>].

勿論、プログラム形式〈a〉の1行目のif文において、∪(または)の代わりに∩(且つ)を用いて判断するものとしてもよいし、これらの組み合わせを用いて判断することも可能である。   Of course, in the if statement on the first line of the program format <a>, it may be determined using ∩ (and) instead of ∪ (or), or a combination of these may be used. is there.

また、上記τ、τ、τの全てを用いて判断することは必須ではない。例えば、τ<th1とτ<th2の組み合わせ、τ<th1とτ>th3の組み合わせ、τ<th2とτ>th3の組み合わせで判断することでもよい。さらに、上記τ、τ、τのみならず、受信信号x(t)のパワーの値をτ、このτの閾値をth4として、τ>th4を用いて判断することも可能である。つまり例えば、τ<th1とτ>th4の組み合わせで判断することも可能であるし、τ<th1とτ>th3とτ>th4の組み合わせで判断することなども可能である。より具体的な一例をプログラム形式〈b〉で示す。

Figure 2006323134
Moreover, it is not essential to make a determination using all of τ 1 , τ 2 , and τ 3 . For example, the determination may be made by a combination of τ 1 <th1 and τ 2 <th2, a combination of τ 1 <th1 and τ 3 > th3, or a combination of τ 2 <th2 and τ 3 > th3. Further, not only the above τ 1 , τ 2 , τ 3 but also the power value of the received signal x (t) is τ 4 , and the threshold value of this τ 4 is th4, and it is possible to make a determination using τ 4 > th4. It is. That is, for example, it is possible to make a determination based on a combination of τ 1 <th1 and τ 4 > th4, and it is also possible to make a determination based on a combination of τ 1 <th1, τ 3 > th3, and τ 4 > th4. A more specific example is shown in the program format <b>.
Figure 2006323134

プログラム形式〈b〉は、τがth1よりも小さいか、あるいは、τがth2よりも小さく、且つ、τがth4よりも大きいかの少なくともどちらかが成立するか否かを判断し〔プログラム形式〈b〉の1行目〕、少なくともどちらかが成立する場合には、重み値αを1.0と決定し〔プログラム形式〈b〉の2行目〕、それ以外の場合は、重み値αを0.0と決定する〔プログラム形式〈b〉の3行目〕ことを表す。 The program format <b> determines whether or not at least one of τ 1 is smaller than th1, or τ 2 is smaller than th2, and τ 4 is larger than th4 [ The first line of the program format <b>], if at least one of them is satisfied, the weight value α is determined to be 1.0 [the second line of the program format <b>], otherwise the weight The value α is determined to be 0.0 [the third line of the program format <b>].

なお、以上に例示したプログラム形式では、例えばτについては、τ<th1を判断するとしたが、逆にth1≦τを判断するように変更することもできる。このことを説明するために、プログラム形式〈c〉および〈d〉を例示する。

Figure 2006323134
Figure 2006323134
In the above-described program format, for example, for τ 1 , τ 1 <th1 is determined, but conversely, it may be changed to determine th1 ≦ τ 1 . In order to explain this, program formats <c> and <d> are illustrated.
Figure 2006323134
Figure 2006323134

プログラム形式〈c〉は、τがth1よりも小さく、且つ、τがth2よりも小さいことが成立するか否かを判断し〔プログラム形式〈c〉の1行目〕、これが成立する場合には、重み値αを1.0と決定し〔プログラム形式〈c〉の2行目〕、それ以外の場合は、重み値αを0.0と決定する〔プログラム形式〈c〉の3行目〕ことを表す。一方、プログラム形式〈d〉は、τがth1以上であるか、または、τがth2以上であるかの少なくともどちらかが成立するか否かを判断し〔プログラム形式〈d〉の1行目〕、少なくともどちらかが成立する場合には、重み値αを0.0と決定し〔プログラム形式〈d〉の2行目〕、それ以外の場合は、重み値αを1.0と決定する〔プログラム形式〈d〉の3行目〕ことを表す。結局、プログラム形式〈c〉〈d〉は同等の処理内容を表している。 In the program format <c>, it is determined whether τ 1 is smaller than th1 and τ 2 is smaller than th2 (the first line of the program format <c>). The weight value α is determined to be 1.0 (second line of the program format <c>). Otherwise, the weight value α is determined to be 0.0 (3 lines of the program format <c>). Eyes]. On the other hand, the program format <d> is either tau 1 is th1 or more or, it is determined whether or at least one is tau 2 is th2 or more is satisfied [1 line of source form <d> First, if at least one of them is satisfied, the weight value α is determined to be 0.0 (second line of the program format <d>). Otherwise, the weight value α is determined to be 1.0. This indicates that [the third line of the program format <d>]. Eventually, the program formats <c><d> represent equivalent processing contents.

このように、プログラム形式〈c〉〈d〉で例示したように、同等の処理内容でありながら、異なる判断に従って処理されることがあるが、本発明においては、ある特定の判断に従った処理に限定するものではない。その他、複数の音響特徴量(信号特徴量)を用いた重み値αの決定は、本発明の趣旨を逸脱しない限り適宜に変更可能である。   In this way, as exemplified in the program format <c> <d>, although the processing contents are equivalent, the processing may be performed according to different judgments. In the present invention, the processing according to a certain judgment is performed. It is not limited to. In addition, the determination of the weight value α using a plurality of acoustic feature quantities (signal feature quantities) can be changed as appropriate without departing from the spirit of the present invention.

<第3の実施形態>
次に、本発明の信号抽出装置の第3の実施形態について説明する。
図6に、第3の実施形態における信号抽出装置(B)の機能ブロック図を示す。また図7に、第3の実施形態に係わる信号抽出装置(B)における信号抽出処理のフローチャートを示す。
第3の実施形態に係わる信号抽出装置(B)は、第1の実施形態および第2の実施形態で述べた信号抽出装置(A)に、後述の統計分析部(5)を備えたものである。以下、第1の実施形態ないし第2の実施形態と異なる部分について説明する。
<Third Embodiment>
Next, a third embodiment of the signal extraction device of the present invention will be described.
FIG. 6 shows a functional block diagram of the signal extraction device (B) in the third embodiment. FIG. 7 shows a flowchart of signal extraction processing in the signal extraction apparatus (B) according to the third embodiment.
The signal extraction device (B) according to the third embodiment is provided with a statistical analysis unit (5) described later in addition to the signal extraction device (A) described in the first embodiment and the second embodiment. is there. Hereinafter, parts different from the first embodiment or the second embodiment will be described.

第3の実施形態に係わる信号抽出装置(B)の特徴は、音響特徴量の閾値を決定する際、重回帰分析と呼ばれる手法を使うことで、閾値を毎回設定する必要が無く、閾値が0.5以上ならば目的音信号、0.5より小さければ雑音信号と判定できるところにある(第3の実施形態では閾値を0.5とするが、閾値を0.5に限定するものではなく適宜変更可能である。)。重回帰分析とは、複数の音響特徴量と信号の特徴との相関を多次元で調べることの出来る手法である。   The feature of the signal extraction device (B) according to the third embodiment is that it is not necessary to set the threshold value every time by using a technique called multiple regression analysis when determining the threshold value of the acoustic feature value. .5 or more is the target sound signal, and if it is less than 0.5, it can be determined as a noise signal (though the threshold value is 0.5 in the third embodiment, the threshold value is not limited to 0.5). It can be changed as appropriate.) Multiple regression analysis is a technique that can examine the correlation between a plurality of acoustic feature quantities and signal features in a multidimensional manner.

重回帰分析では一般に、正解が既知であるデータを用いて、未知データの判別を行うことが出来る。例えば、予め収録された近接の目的音信号と、遠方の雑音信号に対して、近接の目的音信号には数値“1”を割り当て、遠方の雑音信号には数値“0”を正解として割り当てる。さらに、既知の目的音信号及び雑音信号の音響特徴量として複数の音響特徴量を算出する(これは先に述べたケプストラム高次の分散値、自己相関関数の分散値、そして尖鋭度、パワーなどである)。これらの音響特徴量に対して重回帰分析を施すことで、未知の信号に対して、それが近接音であるか、遠方音であるかを判別するための回帰式が導かれる。回帰式は、説明変量p〜p(k=1,2,・・・)に対して、回帰係数b〜bを用いて、下記式(4)で表される。

Figure 2006323134
In multiple regression analysis, unknown data can generally be discriminated using data whose correct answer is known. For example, for a nearby target sound signal and a distant noise signal recorded in advance, a numerical value “1” is assigned to the close target sound signal and a numerical value “0” is assigned to the far noise signal as a correct answer. Furthermore, a plurality of acoustic feature quantities are calculated as the acoustic feature quantities of the known target sound signal and noise signal (this is the above-described cepstrum high-order variance value, variance value of autocorrelation function, sharpness, power, etc. Is). By performing multiple regression analysis on these acoustic feature amounts, a regression equation for determining whether the unknown signal is a close sound or a far sound is derived. The regression equation is expressed by the following equation (4) using the regression coefficients b 1 to b k for the explanatory variables p 1 to p k (k = 1, 2,...).
Figure 2006323134

ここで、説明変量p〜pは音響特徴量τ〜τを表し、yは回帰式(4)から得られる目的変量である。また、aはy切片である(y切片aと回帰係数b〜bをうまく求める手法が重回帰分析である。)。 Here, the explanatory variables p 1 to p k represent the acoustic feature quantities τ 1 to τ k , and y is an objective variable obtained from the regression equation (4). Further, a 0 is a y-intercept (a technique for successfully obtaining the y-intercept a 0 and the regression coefficients b 1 to b k is a multiple regression analysis).

統計分析手段である統計分析部(5)においては、音響特徴量算出部(2)で算出した音響特徴量を、式(4)の説明変量に代入演算した結果、目的変量yを算出する(S200)。 In the statistical analysis unit (5), which is a statistical analysis means, the objective variable y 1 is calculated as a result of substituting the acoustic feature amount calculated by the acoustic feature amount calculation unit (2) into the explanatory variable of the equation (4). (S200).

このように算出された目的変量yを用いて、重み値算出部(3)は、重み値αをプログラム形式〈e〉のように決定する(S201)。

Figure 2006323134
Using the objective variable y 1 calculated in this way, the weight value calculation unit (3) determines the weight value α as in the program format <e> (S201).
Figure 2006323134

プログラム形式〈e〉は、yの値が0.5よりも大きいか否かを判断し、大きいと判断された場合には、重み値αを1.0に決定し、それ以外の場合には、重み値αを0.0に決定することを表している。 Program Format <e> is, determines whether or not the value of y 1 is greater than 0.5, when it is determined to be greater determines the weight value α to 1.0, otherwise Represents that the weight value α is determined to be 0.0.

このように定めることで、閾値の分布を予め目視で確認しなくても、重み値αを決定することが出来る。   By determining in this way, the weight value α can be determined without having to visually check the threshold distribution in advance.

なお、本発明の信号抽出装置は、上記の信号入力手段(例えばマイクロホン)、記憶装置(例えばRAM、ROMやハードディスク)、演算処理装置(例えばCPU)、入力・出力装置(例えばキーボード、ディスプレイ)、これらの装置間でデータのやり取りが可能に接続するバスなどを備えたコンピュータによって実現することができる(図8参照)。この場合、上述したケプストラムの高次成分の分散値、自己相関関数の分散値、尖鋭度、統計分析、重み値、出力信号などを算出するために必要なプログラム(音響特徴量算出プログラム、統計分析プログラム、重み値決定プログラム、重み値乗算プログラムその他これらのプログラムの処理を制御する制御プログラムなど。但し、第1の実施形態および第2の実施形態では、統計分析プログラムは不要である。)その他受信信号x(t)などのデータを記憶装置に記憶しておき、必要に応じて演算処理装置がプログラムを読み込んで解釈実行することで、上述した各部の機能を実現する(音響特徴量算出部、統計分析部、重み値決定部、重み値乗算部その他これら各部の処理を制御する制御部など)。重み値乗算部によって出力された出力信号は、記憶装置に保存すればよい。また各プログラムは、コンピュータ読み取り可能な記録媒体に記録することもできる。   The signal extraction device of the present invention includes the signal input means (for example, a microphone), a storage device (for example, a RAM, a ROM, and a hard disk), an arithmetic processing device (for example, a CPU), an input / output device (for example, a keyboard, a display), It can be realized by a computer provided with a bus or the like that allows data exchange between these devices (see FIG. 8). In this case, a program (acoustic feature amount calculation program, statistical analysis) required to calculate the variance value of the higher-order components of the cepstrum, the variance value of the autocorrelation function, the sharpness, the statistical analysis, the weight value, the output signal, etc. Program, weight value determination program, weight value multiplication program, control program for controlling the processing of these programs, etc. However, in the first embodiment and the second embodiment, a statistical analysis program is unnecessary.) Other reception Data such as the signal x (t) is stored in the storage device, and the processing unit reads the program and interprets and executes it as necessary, thereby realizing the functions of the above-described units (acoustic feature amount calculation unit, A statistical analysis unit, a weight value determination unit, a weight value multiplication unit, and a control unit for controlling the processing of these units). The output signal output by the weight value multiplication unit may be stored in the storage device. Each program can also be recorded on a computer-readable recording medium.

本発明の信号抽出装置は、例えば、目的信号が音声の場合の音声認識や雑音信号抑圧といった音響信号分析などに有用である。特に、目的信号源からの目的信号と雑信号源からの雑信号とが時間的に重なっていない環境において、目的信号源が雑信号源に比べて信号抽出装置に近接している場合に有用である。   The signal extraction device of the present invention is useful for acoustic signal analysis such as speech recognition and noise signal suppression when the target signal is speech, for example. This is particularly useful when the target signal source is closer to the signal extraction device than the miscellaneous signal source in an environment where the target signal from the target signal source and the miscellaneous signal from the miscellaneous signal source do not overlap in time. is there.

マイクロホンから50cm程度離れた位置からの目的音信号とマイクロホンから3m程度離れた位置からの雑音信号とを30秒ほど観測した場合における、ケプストラム高次の分散値の一例。An example of a higher cepstrum dispersion value when a target sound signal from a position about 50 cm away from a microphone and a noise signal from a position about 3 m away from the microphone are observed for about 30 seconds. 図1におけるのと同条件下での自己相関関数の分散値の一例。An example of the dispersion value of the autocorrelation function under the same conditions as in FIG. 図1におけるのと同条件下での尖鋭度の一例。An example of sharpness under the same conditions as in FIG. 第1の実施形態および第2の実施形態に係わる信号抽出装置(A)の機能ブロック図。The functional block diagram of the signal extraction apparatus (A) concerning 1st Embodiment and 2nd Embodiment. 第1の実施形態および第2の実施形態に係わる信号抽出装置(A)における信号抽出処理のフローチャート。The flowchart of the signal extraction process in the signal extraction apparatus (A) concerning 1st Embodiment and 2nd Embodiment. 第3の実施形態に係わる信号抽出装置(B)の機能ブロック図。The functional block diagram of the signal extraction apparatus (B) concerning 3rd Embodiment. 第3の実施形態に係わる信号抽出装置(B)における信号抽出処理のフローチャート。The flowchart of the signal extraction process in the signal extraction apparatus (B) concerning 3rd Embodiment. 信号抽出装置のハードウェア構成例。The hardware structural example of a signal extraction apparatus.

符号の説明Explanation of symbols

1 マイクロホン
2 音響特徴量算出部
3 重み値決定部
4 重み値乗算部
5 統計分析部
DESCRIPTION OF SYMBOLS 1 Microphone 2 Acoustic feature-value calculation part 3 Weight value determination part 4 Weight value multiplication part 5 Statistical analysis part

Claims (6)

目的信号源および雑信号源が存在する環境下で受信された受信信号から、雑信号を抑圧し目的信号を抽出する信号抽出装置であって、
目的信号源および雑信号源からの信号を受信する少なくとも1つ以上の信号入力手段と、
信号入力手段で受信された受信信号の信号特徴量を算出する信号特徴量算出手段と、
信号特徴量算出手段で算出された信号特徴量の値に基づき、信号入力手段で受信された受信信号に乗算する重み値αを決定する重み値決定手段と、
重み値決定手段で決定された重み値を、信号入力手段で受信された受信信号に乗算する重み値乗算手段と
を備えたことを特徴とする信号抽出装置。
A signal extraction apparatus that suppresses a miscellaneous signal and extracts a target signal from a received signal received in an environment where a target signal source and a miscellaneous signal source exist,
At least one signal input means for receiving signals from a target signal source and a miscellaneous signal source;
Signal feature amount calculating means for calculating the signal feature amount of the received signal received by the signal input means;
Weight value determining means for determining a weight value α for multiplying the received signal received by the signal input means based on the value of the signal feature value calculated by the signal feature value calculating means;
A signal extraction apparatus comprising weight value multiplying means for multiplying the received signal received by the signal input means by the weight value determined by the weight value determining means.
信号特徴量算出手段で算出される信号特徴量はケプストラムの時間軸に関する分散値である
ことを特徴とする請求項1に記載の信号抽出装置。
2. The signal extraction apparatus according to claim 1, wherein the signal feature amount calculated by the signal feature amount calculating means is a variance value with respect to a time axis of the cepstrum.
信号特徴量算出手段で算出される信号特徴量は自己相関関数の時間軸に関する分散値である
ことを特徴とする請求項1に記載の信号抽出装置。
2. The signal extraction device according to claim 1, wherein the signal feature amount calculated by the signal feature amount calculating means is a variance value with respect to a time axis of the autocorrelation function.
信号特徴量算出手段で算出される信号特徴量は尖鋭度である
ことを特徴とする請求項1に記載の信号抽出装置。
The signal extraction apparatus according to claim 1, wherein the signal feature amount calculated by the signal feature amount calculation unit is sharpness.
信号特徴量算出手段は、
信号特徴量としてパワー、ケプストラムの時間軸に関する分散値、自己相関関数の時間軸に関する分散値、尖鋭度のいずれか2つ以上を算出するものであり、
重み値決定手段は、
信号特徴量算出手段で算出された信号特徴量であるパワー、ケプストラムの時間軸に関する分散値、自己相関関数の時間軸に関する分散値、尖鋭度のうち複数の組み合わせに基づき、受信信号に乗算する重み値αを決定する
ことを特徴とする請求項1に記載の信号抽出装置。
The signal feature amount calculation means
Calculates any two or more of power, variance value with respect to time axis of cepstrum, variance value with respect to time axis of autocorrelation function, and sharpness as signal feature amount,
The weight value determining means is
Weight to multiply the received signal based on multiple combinations of power, signal cepstrum time axis variance, autocorrelation function time axis variance, and sharpness 2. The signal extraction device according to claim 1, wherein the value α is determined.
信号特徴量算出手段で算出された信号特徴量の値から重回帰分析による目的変量を算出する統計分析手段を備え、
重み値決定手段は、
統計分析手段で算出された目的変量に基づき、重み値αを決定するものである
ことを特徴とする請求項1から請求項5に記載の信号抽出装置。
Statistical analysis means for calculating a target variable by multiple regression analysis from the value of the signal feature quantity calculated by the signal feature quantity calculation means,
The weight value determining means is
6. The signal extraction apparatus according to claim 1, wherein the weight value α is determined based on the objective variable calculated by the statistical analysis means.
JP2005146342A 2005-05-19 2005-05-19 Signal extraction device Expired - Fee Related JP4612468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146342A JP4612468B2 (en) 2005-05-19 2005-05-19 Signal extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146342A JP4612468B2 (en) 2005-05-19 2005-05-19 Signal extraction device

Publications (2)

Publication Number Publication Date
JP2006323134A true JP2006323134A (en) 2006-11-30
JP4612468B2 JP4612468B2 (en) 2011-01-12

Family

ID=37542870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146342A Expired - Fee Related JP4612468B2 (en) 2005-05-19 2005-05-19 Signal extraction device

Country Status (1)

Country Link
JP (1) JP4612468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170936A (en) * 2012-02-21 2013-09-02 Nippon Telegr & Teleph Corp <Ntt> Sound source position determination device, sound source position determination method, and program
JP2017134153A (en) * 2016-01-26 2017-08-03 Kddi株式会社 Voice signal processing device, method, and program
WO2018173266A1 (en) * 2017-03-24 2018-09-27 ヤマハ株式会社 Sound pickup device and sound pickup method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888525A (en) * 1994-09-19 1996-04-02 Murata Mach Ltd Automatic gain controller by detection of silent tone
JPH1098346A (en) * 1996-09-24 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> Automatic gain adjuster
JP2000152394A (en) * 1998-11-13 2000-05-30 Matsushita Electric Ind Co Ltd Hearing aid for moderately hard of hearing, transmission system having provision for the moderately hard of hearing, recording and reproducing device for the moderately hard of hearing and reproducing device having provision for the moderately hard of hearing
JP2002261553A (en) * 2001-03-02 2002-09-13 Ricoh Co Ltd Voice automatic gain control device, voice automatic gain control method, storage medium housing computer program having algorithm for the voice automatic gain control and computer program having algorithm for the voice automatic control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888525A (en) * 1994-09-19 1996-04-02 Murata Mach Ltd Automatic gain controller by detection of silent tone
JPH1098346A (en) * 1996-09-24 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> Automatic gain adjuster
JP2000152394A (en) * 1998-11-13 2000-05-30 Matsushita Electric Ind Co Ltd Hearing aid for moderately hard of hearing, transmission system having provision for the moderately hard of hearing, recording and reproducing device for the moderately hard of hearing and reproducing device having provision for the moderately hard of hearing
JP2002261553A (en) * 2001-03-02 2002-09-13 Ricoh Co Ltd Voice automatic gain control device, voice automatic gain control method, storage medium housing computer program having algorithm for the voice automatic gain control and computer program having algorithm for the voice automatic control

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170936A (en) * 2012-02-21 2013-09-02 Nippon Telegr & Teleph Corp <Ntt> Sound source position determination device, sound source position determination method, and program
JP2017134153A (en) * 2016-01-26 2017-08-03 Kddi株式会社 Voice signal processing device, method, and program
WO2018173266A1 (en) * 2017-03-24 2018-09-27 ヤマハ株式会社 Sound pickup device and sound pickup method
JPWO2018173266A1 (en) * 2017-03-24 2020-01-23 ヤマハ株式会社 Sound pickup device and sound pickup method
US11197091B2 (en) 2017-03-24 2021-12-07 Yamaha Corporation Sound pickup device and sound pickup method
US11758322B2 (en) 2017-03-24 2023-09-12 Yamaha Corporation Sound pickup device and sound pickup method

Also Published As

Publication number Publication date
JP4612468B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4774100B2 (en) Reverberation removal apparatus, dereverberation removal method, dereverberation removal program, and recording medium
JP4532576B2 (en) Processing device, speech recognition device, speech recognition system, speech recognition method, and speech recognition program
JP5375400B2 (en) Audio processing apparatus, audio processing method and program
EP3411876B1 (en) Babble noise suppression
JPH09212196A (en) Noise suppressor
JP6077957B2 (en) Audio processing apparatus, audio processing method, and audio processing program
Sun et al. Two-stage monaural source separation in reverberant room environments using deep neural networks
US20140177853A1 (en) Sound processing device, sound processing method, and program
Sadjadi et al. Blind spectral weighting for robust speaker identification under reverberation mismatch
CN112053702B (en) Voice processing method and device and electronic equipment
JP4612468B2 (en) Signal extraction device
JP2009276365A (en) Processor, voice recognition device, voice recognition system and voice recognition method
JP6724290B2 (en) Sound processing device, sound processing method, and program
JP2007093635A (en) Known noise removing device
WO2020195924A1 (en) Signal processing device, method, and program
Liu et al. Speech enhancement of instantaneous amplitude and phase for applications in noisy reverberant environments
JP2006178333A (en) Proximity sound separation and collection method, proximity sound separation and collecting device, proximity sound separation and collection program, and recording medium
JP6891144B2 (en) Generation device, generation method and generation program
JP2015022357A (en) Information processing system, information processing method, and information processing device
JP2016080767A (en) Frequency component extraction device, frequency component extraction method and frequency component extraction program
Lu et al. Temporal contrast normalization and edge-preserved smoothing of temporal modulation structures of speech for robust speech recognition
JP7409407B2 (en) Channel selection device, channel selection method, and program
JP6969597B2 (en) Acoustic signal processing equipment, methods and programs
JP6125953B2 (en) Voice section detection apparatus, method and program
JP2019029861A (en) Acoustic signal processing device, method and program

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4612468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees