JP2006323059A - Structural birefringent wavelength plate and wavelength plate combined structure - Google Patents
Structural birefringent wavelength plate and wavelength plate combined structure Download PDFInfo
- Publication number
- JP2006323059A JP2006323059A JP2005145203A JP2005145203A JP2006323059A JP 2006323059 A JP2006323059 A JP 2006323059A JP 2005145203 A JP2005145203 A JP 2005145203A JP 2005145203 A JP2005145203 A JP 2005145203A JP 2006323059 A JP2006323059 A JP 2006323059A
- Authority
- JP
- Japan
- Prior art keywords
- structural
- wave plate
- light transmittance
- order light
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Polarising Elements (AREA)
Abstract
Description
本発明は、凹凸周期構造を有する構造性複屈折波長板及び波長板組合せ構造に関するものである。 The present invention relates to a structural birefringent wave plate having a concavo-convex periodic structure and a wave plate combination structure.
従来、構造性複屈折波長板は、矩形形状の格子が周期的に並んだ構造を有するものが一般的であった。しかし、このような矩形格子形状によれば、構造周期が波長に対して十分小さくない場合には、1次もしくは高次の回折光が発生してしまうため、高い0次光透過率を得ることは難しかった。また、このときの0次光透過率は構造高さの変化に伴って周期的に変動するため、加工時に発生する構造高さ誤差によって透過率が大幅に減少してしまうことが問題となっていた。 Conventionally, the structural birefringent wave plate generally has a structure in which rectangular gratings are periodically arranged. However, according to such a rectangular lattice shape, when the structural period is not sufficiently small with respect to the wavelength, first-order or higher-order diffracted light is generated, so that a high zero-order light transmittance is obtained. Was difficult. Further, since the 0th-order light transmittance at this time periodically varies with the change in the structure height, it is a problem that the transmittance is greatly reduced due to a structure height error generated during processing. It was.
下記特許文献1は、構造周期が波長の1/2以下であり、かつ格子の溝幅が溝の上部で表面方向に向かって広がっているものを提案し(請求項6)、また、波長板が形成されている面とは反対の面に断面が鋸歯状の溝を波長の1/2以下の周期で形成することで光の反射を防止し透過率を向上させている(請求項7)。しかし、下記特許文献1には、透過率の構造高さの変化に伴う周期的変動に関する記載はない。
本発明は、上述のような従来技術の問題に鑑み、高い0次光透過率を有しかつ加工による構造高さ誤差に対して0次光透過率の安定性が向上した構造性複屈折波長板及び波長板組合せ構造を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention has a structural birefringence wavelength that has a high zero-order light transmittance and has improved stability of the zero-order light transmittance with respect to a structural height error caused by processing. An object is to provide a plate and wave plate combination structure.
上記目的を達成するために、本発明による構造性複屈折波長板は、柱状部と溝部とが周期的に繰り返して構成される凹凸周期構造を有し、前記柱状部の先端及び溝部の底部の少なくとも一方が平坦部を有する台形形状に構成されていることを特徴とする。 In order to achieve the above object, a structural birefringent wave plate according to the present invention has an uneven periodic structure in which a columnar portion and a groove portion are periodically repeated, and is formed at the tip of the columnar portion and the bottom of the groove portion. At least one is configured in a trapezoidal shape having a flat portion.
この構造性複屈折波長板によれば、0次光透過率が高く、しかも、0次光透過率の構造高さの変化に伴う周期的変動が少ないので、波長板の加工のときに構造高さ誤差が発生しても、かかる構造高さ誤差に対し0次光透過率が変動せずに安定する。 According to this structural birefringent wave plate, the 0th-order light transmittance is high, and the periodic fluctuation accompanying the change in the structural height of the 0th-order light transmittance is small. Even if an error occurs, the 0th-order light transmittance does not vary with respect to the structural height error, and is stabilized.
上記構造性複屈折波長板において前記柱状部の先端が平坦部を有し、前記溝部が前記平坦部から前記底部に向けて徐々に狭くなるようにほぼ三角形状であるように構成できる。 In the structural birefringent wavelength plate, a tip of the columnar part has a flat part, and the groove part has a substantially triangular shape so as to gradually narrow from the flat part toward the bottom part.
また、前記溝部の底部が平坦部を有し、前記柱状部が前記平坦部から前記先端に向けて徐々に狭くなるようにほぼ三角形状であるように構成できる。 Further, the bottom portion of the groove portion has a flat portion, and the columnar portion can be configured to have a substantially triangular shape so as to gradually narrow from the flat portion toward the tip.
また、前記柱状部の先端及び前記溝部の底部がそれぞれ平坦部を有するように構成できる。 Moreover, it can comprise so that the front-end | tip of the said columnar part and the bottom part of the said groove part may have a flat part, respectively.
また、前記凹凸周期構造の構造周期をP、構造高さをH、前記柱状部の平坦部の幅をL1としたとき、次式(1)、(2)を満足することで、平均0次光透過率が98%以上となる。
P≦λ/nのとき、0.16≦H/λ かつ 0<L1/P≦0.55 (1)
P>λ/nのとき、0.85≦H/λ かつ 0<L1/P≦0.55 (2)
但し、P<λ
λ:使用波長
n:使用波長λにおける波長板の材料の屈折率
Further, when the structure period of the concave-convex periodic structure is P, the structure height is H, and the width of the flat part of the columnar part is L1, the following expressions (1) and (2) are satisfied. The light transmittance is 98% or more.
When P ≦ λ / n, 0.16 ≦ H / λ and 0 <L1 / P ≦ 0.55 (1)
When P> λ / n, 0.85 ≦ H / λ and 0 <L1 / P ≦ 0.55 (2)
However, P <λ
λ: wavelength used n: refractive index of wave plate material at wavelength λ used
更に、次式(3)、(4)を満足することで、平均0次光透過率が99%以上となる。
P≦λ/nのとき、0.22≦H/λ≦3.7 かつ 0<L1/P≦0.35 (3)
P>λ/nのとき、1.15≦H/λ≦3.7 かつ 0<L1/P≦0.35 (4)
但し、P<λ
Furthermore, when the following expressions (3) and (4) are satisfied, the average 0th-order light transmittance is 99% or more.
When P ≦ λ / n, 0.22 ≦ H / λ ≦ 3.7 and 0 <L1 / P ≦ 0.35 (3)
When P> λ / n, 1.15 ≦ H / λ ≦ 3.7 and 0 <L1 / P ≦ 0.35 (4)
However, P <λ
また、前記凹凸周期構造の構造周期をP、構造高さをH、前記溝部の平坦部の幅をL2としたとき、次式(5)、(6)を満足することで、平均0次光透過率が98%以上となる。
P≦λ/nのとき、0.17≦H/λ かつ 0<L2/P≦0.2 (5)
P>λ/nのとき、1.00≦H/λ かつ 0<L2/P≦0.2 (6)
但し、P<λ
L1+L2<P
λ:使用波長
n:使用波長λにおける波長板の材料の屈折率
Further, when the structure period of the concavo-convex periodic structure is P, the structure height is H, and the width of the flat portion of the groove is L2, the following expressions (5) and (6) are satisfied. The transmittance is 98% or more.
When P ≦ λ / n, 0.17 ≦ H / λ and 0 <L2 / P ≦ 0.2 (5)
When P> λ / n, 1.00 ≦ H / λ and 0 <L2 / P ≦ 0.2 (6)
However, P <λ
L1 + L2 <P
λ: wavelength used n: refractive index of wave plate material at wavelength λ used
更に、次式(7)、(8)を満足することで、平均0次光透過率が99%以上となる。
P≦λ/nのとき、0.23≦H/λ≦3.7 かつ 0<L2/P≦0.1 (7)
P>λ/nのとき、1.28≦H/λ≦3.7 かつ 0<L2/P≦0.1 (8)
但し、P<λ
L1+L2<P
λ:使用波長
n:使用波長λにおける波長板の材料の屈折率
Furthermore, when the following expressions (7) and (8) are satisfied, the average 0th-order light transmittance is 99% or more.
When P ≦ λ / n, 0.23 ≦ H / λ ≦ 3.7 and 0 <L2 / P ≦ 0.1 (7)
When P> λ / n, 1.28 ≦ H / λ ≦ 3.7 and 0 <L2 / P ≦ 0.1 (8)
However, P <λ
L1 + L2 <P
λ: wavelength used n: refractive index of wave plate material at wavelength λ used
また、前記凹凸周期構造は成形金型を用いて樹脂へインプリントすることで形成されることが好ましい。 Moreover, it is preferable that the said uneven | corrugated periodic structure is formed by imprinting to resin using a shaping die.
本発明による組み合わせ波長板組合せ構造は、上述の構造性複屈折波長板を複数組み合わせたことを特徴とする。 The combined wave plate combination structure according to the present invention is characterized in that a plurality of the above-described structural birefringent wave plates are combined.
この波長板組合せ構造によれば、複数の構造性複屈折波長板を組み合わせて所望の位相差を得る場合、各構造性複屈折波長板はどの構造高さでもほぼ一定で高い0次光透過率を得ることができるので、位相差の組み合わせのみで各構造性複屈折波長板の構造寸法を決めることができ、設計の自由度が向上する。特に、所望の位相差の半分の位相差が得られる構造性複屈折波長板を2枚組み合わせれば、2枚とも同じ構造寸法のものを使用でき、製造コスト的に有利である。 According to this wave plate combination structure, when a desired phase difference is obtained by combining a plurality of structural birefringent wave plates, each structural birefringent wave plate is substantially constant at any structural height and has a high zero-order light transmittance. Therefore, the structural dimension of each structural birefringent wave plate can be determined only by a combination of phase differences, and the degree of freedom in design is improved. In particular, if two structural birefringent wave plates that can obtain a phase difference that is half the desired phase difference are combined, the two structural plates having the same structural dimensions can be used, which is advantageous in terms of manufacturing cost.
なお、上記構造性複屈折波長板においてほぼ三角形状であるとは、柱状部・溝部が三角形状となっていること以外に、三角形状の柱状部の先端・三角形状の溝部の底部が丸みを帯びていてもよいことを意味する。 In the structural birefringent wave plate, the shape of the triangular birefringence plate is substantially triangular. In addition to the fact that the columnar portion and groove portion are triangular, the tip of the triangular columnar portion and the bottom portion of the triangular groove portion are rounded. It means you may be tinged.
本発明の構造性複屈折波長板によれば、高い0次光透過率を有しかつ加工による構造高さ誤差に対して0次光透過率の安定性が向上できる。 According to the structural birefringent wave plate of the present invention, it has a high 0th-order light transmittance and can improve the stability of the 0th-order light transmittance against a structural height error due to processing.
以下、本発明を実施するための最良の形態について図面を用いて説明する。
図1乃至図3は、本実施の形態による構造性複屈折波長板1乃至3の要部側断面図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
1 to 3 are side cross-sectional views of the main parts of the structural
図1の構造性複屈折波長板1は、先端に平坦部13を有する台形形状の柱状部6と、底部14を有する三角形状に凹んだ溝部6’とからなる凹凸形状が周期的に形成された構造周期P及び構造高さHの凹凸周期構造を備えている。台形形状の柱状部6は、その幅が先端の平坦部13に向かって徐々に狭くなっており、長さがほぼ等しい側面部11,12を有する。溝部6’の底部14は尖った形状となっている。
The structural
図2の構造性複屈折波長板2は、先端15を有する三角形状の柱状部7と、底に平坦部16を有する台形形状に凹んだ溝部7’とからなる凹凸形状が周期的に形成された構造周期P及び構造高さHの凹凸周期構造を備えている。三角形状の柱状部7は、その幅が先端15に向かって徐々に狭くなっており、長さがほぼ等しい側面部11,12を有し、先端15が尖った形状となっている。
The structural
図3の構造性複屈折波長板3は、先端に平坦部13を有する台形形状の柱状部8と、底に平坦部16を有する台形形状に凹んだ溝部8’とからなる凹凸形状が周期的に形成された構造周期P及び構造高さHの凹凸周期構造を備えている。台形形状の柱状部8は、その幅が平坦部13に向かって徐々に狭くなっており、長さがほぼ等しい側面部11,12を有する。
The structural
従来の構造性複屈折波長板の格子構造は図4のような矩形形状であり、ここで構造周期P、柱幅L、構造高さHであるが、図4の格子構造を図1〜図3のように台形形状にすることで、光の反射を低減でき、従来の矩形形状のものよりも高い透過率を得ることができる。 The lattice structure of the conventional structural birefringent wave plate has a rectangular shape as shown in FIG. 4, where the structure period P, the column width L, and the structure height H are shown in FIG. By making the trapezoidal shape as shown in FIG. 3, light reflection can be reduced, and a higher transmittance than that of the conventional rectangular shape can be obtained.
また、図1の構造周期P(μm)、構造高さH(μm)、柱状部の平坦部13の幅L1(μm)である構造性複屈折波長板1において、使用波長をλ(μm)とし、使用波長λにおける各構造性複屈折波長板1の材料の屈折率をnとしたとき、上記式(1)、(2)を満足することで、98%以上の平均0次光透過率を実現でき、更に、上記式(3)、(4)を満足することで、99%以上の平均0次光透過率を実現できる。
Further, in the structural
また、図2の構造周期P(μm)、構造高さH(μm)、溝部の平坦部16の幅L2(μm)である構造性複屈折波長板2において、使用波長をλ(μm)とし、使用波長λにおける構造性複屈折波長板2の材料の屈折率をnとしたとき、上記式(5)、(6)を満足することで、98%以上の平均0次光透過率を実現でき、更に、上記式(7)、(8)を満足することで、99%以上の平均0次光透過率を実現できる。
Further, in the structural
更に、図3の構造周期P(μm)、構造高さH(μm)、柱状部の平坦部13の幅L1(μm)、溝部の平坦部16の幅L2(μm)である構造性複屈折波長板3において、使用波長をλ(μm)とし、使用波長λにおける構造性複屈折波長板3の材料の屈折率をnとしたとき、上記式(1)、(2)、(5)、(6)を満足することで、98%以上の平均0次光透過率を実現でき、更に、上記式(3)、(4)、(7)、(8)を満足することで、99%以上の平均0次光透過率を実現できる。
Furthermore, the structural birefringence shown in FIG. 3 is the structural period P (μm), the structural height H (μm), the width L1 (μm) of the
図5に、図1の構造性複屈折波長板においてλ/Pを変えた場合の、H/λと平均0次光透過率との関係を示す。また、図21に、図2の構造性複屈折波長板においてλ/Pを変えた場合の、H/λと平均0次光透過率との関係を示す。図5,図21のグラフからわかるように、λ/Pの屈折率nに対する大小で、特にH/λが小さい値のときの平均0次光透過率の挙動が異なる。図5及び後述の図6〜図8から上記式(1)〜(4)が成立することが分かり、また図21及び後述の図10〜図12から上記式(5)〜(8)が成立することが分かる。なお、屈折率nは、1.502662(λ:435.8nm)、1.489400(λ:650nm)、1.486174(λ:780nm)とした。 FIG. 5 shows the relationship between H / λ and average zero-order light transmittance when λ / P is changed in the structural birefringent wave plate of FIG. FIG. 21 shows the relationship between H / λ and the average zero-order light transmittance when λ / P is changed in the structural birefringent wave plate of FIG. As can be seen from the graphs of FIGS. 5 and 21, the behavior of the average 0th-order light transmittance differs depending on the refractive index n of λ / P, particularly when H / λ is small. From FIG. 5 and FIGS. 6 to 8 to be described later, it is understood that the above formulas (1) to (4) are established, and from FIGS. 21 and 10 to 12 to be described later, the above formulas (5) to (8) are established. I understand that The refractive index n was set to 1.5062662 (λ: 435.8 nm), 1.489400 (λ: 650 nm), and 1.486174 (λ: 780 nm).
図1〜図3の各構造性複屈折波長板1〜3は、435.8nm,650nm,780nmのいずれの波長に対しても透過率向上の効果があるので、広帯域波長板としても有効である。
Each of the structural
また、凹凸周期構造を台形形状にすることで、この構造性複屈折波長板を例えばドライエッチングにより作製した成形金型を用いてインプリント成形等で製造する場合、柱幅が徐々に狭くなるので、インプリント成形のときの離型性がよくなり、好ましい。 Also, by making the concave-convex periodic structure into a trapezoidal shape, when manufacturing this structural birefringent wave plate by imprint molding using a molding die produced by dry etching, for example, the column width is gradually reduced. The releasability during imprint molding is improved, which is preferable.
次に、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例の構造性複屈折波長板の材料にはPMMA樹脂を用い、その屈折率は以下の通りである。
n=1.502662(λ:435.8nm)
n=1.489400(λ:650nm)
n=1.486174(λ:780nm)
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples. PMMA resin is used as the material of the structural birefringent wave plate of the present embodiment, and the refractive index is as follows.
n = 1.502662 (λ: 435.8 nm)
n = 1.490400 (λ: 650 nm)
n = 1.486174 (λ: 780 nm)
〈実施例1,2,3(図1)〉 <Examples 1, 2, and 3 (FIG. 1)>
実施例1は図1と同様の台形形状の格子構造であり、構造周期Pを300nm、柱状部の平坦部の幅(「柱先端幅」ともいう。以下、同じ。)L1を105nm(L1/P=0.35)、波長λを435.8nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図6に示す。 Example 1 has a trapezoidal lattice structure similar to that of FIG. 1, the structural period P is 300 nm, and the width of the flat portion of the columnar portion (also referred to as “column tip width”, hereinafter the same) L1 is 105 nm (L1 / FIG. 6 shows the relationship between the structural height H (μm), the TE 0th order light transmittance, the TM0th order light transmittance, and the phase difference when the wavelength λ is 435.8 nm.
実施例2は、柱状部の平坦部の幅L1を165nm(L1/P=0.55)とした以外は実施例1と同様の条件であり、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図7に示す。 Example 2 is the same conditions as Example 1 except that the width L1 of the flat part of the columnar part is 165 nm (L1 / P = 0.55). The structure height H (μm) and the TE0 order light FIG. 7 shows the relationship between the transmittance, the TM0-order light transmittance, and the phase difference.
実施例3は、柱状部の平坦部の幅L1を250nm(L1/P=0.833)とした以外は実施例1と同様の条件であり、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図8に示す。 Example 3 is the same conditions as Example 1 except that the width L1 of the flat part of the columnar part is 250 nm (L1 / P = 0.833). The structure height H (μm) and the TE0 order light FIG. 8 shows the relationship between the transmittance, the TM0-order light transmittance, and the phase difference.
比較例1は、図4の従来の矩形形状の格子構造であり、構造周期Pを300nm、L/P(フィリングファクタ)を0.4、波長λを435.8nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図9に示す。 Comparative Example 1 is the conventional rectangular lattice structure of FIG. 4, where the structural height H is 300 nm, the structural period P is 300 nm, the L / P (filling factor) is 0.4, and the wavelength λ is 435.8 nm. FIG. 9 shows the relationship between (μm), TE0th order light transmittance, TM0th order light transmittance, and phase difference.
図6,図7,図8と図9から分かるように、実施例1,2,3では図1の台形形状にすることで、図4の従来の矩形形状よりも高い0次光透過率を得ることができる。また、図1のL1/Pで規定される台形度が0.55以下であれば、平均0次光透過率はほぼ98%以上となり、0.35以下であれば、平均0次光透過率はほぼ99%以上となることが分かる。 As can be seen from FIGS. 6, 7, 8, and 9, in the first, second, and third embodiments, the 0th-order light transmittance is higher than that of the conventional rectangular shape of FIG. 4 by adopting the trapezoidal shape of FIG. 1. Obtainable. Moreover, if the trapezoid degree prescribed | regulated by L1 / P of FIG. 1 is 0.55 or less, an average 0th-order light transmittance will be about 98% or more, and if it is 0.35 or less, an average 0th-order light transmittance will be. It can be seen that becomes 99% or more.
〈実施例4,5,6(図2)〉 <Examples 4, 5, and 6 (FIG. 2)>
実施例4は図2と同様の台形形状の格子構造であり、構造周期Pを300nm、溝部の平坦部の幅(「溝底幅」ともいう。以下、同じ。)L2を30nm(L2/P=0.1)、波長λを435.8nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図10に示す。 Example 4 has a trapezoidal lattice structure similar to that shown in FIG. 2. The structural period P is 300 nm, the width of the flat portion of the groove (also referred to as “groove bottom width”, the same applies hereinafter), and L2 is 30 nm (L2 / P). = 0.1) When the wavelength λ is 435.8 nm, FIG. 10 shows the relationship between the structural height H (μm), the TE 0th-order light transmittance, the TM0th-order light transmittance, and the phase difference.
実施例5は、溝部の平坦部の幅L2を60nm(L2/P=0.2)とした以外は実施例4と同様の条件であり、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図11に示す。 Example 5 is the same conditions as Example 4 except that the width L2 of the flat portion of the groove is 60 nm (L2 / P = 0.2). The structure height H (μm) and the TE0 order light transmission FIG. 11 shows the relationship between the transmittance, TM0th-order light transmittance, and phase difference.
実施例6は、溝部の平坦部の幅L2を90nm(L2/P=0.3)とした以外は実施例4と同様の条件であり、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図12に示す。 Example 6 is the same conditions as Example 4 except that the width L2 of the flat portion of the groove is 90 nm (L2 / P = 0.3). The structure height H (μm) and the TE0 order light transmission are the same. FIG. 12 shows the relationship between the transmittance, TM0th-order light transmittance, and phase difference.
図10,図11,図12と図9から分かるように、実施例4,5,6では図2の台形形状にすることで、図4の従来の矩形形状よりも高い0次光透過率を得ることができる。また、図2のL2/Pで規定される台形度が0.2以下であれば、平均0次光透過率はほぼ98%以上となり、0.1以下であれば、平均0次光透過率はほぼ99%以上となることが分かる。 As can be seen from FIG. 10, FIG. 11, FIG. 12, and FIG. 9, in the fourth, fifth, and sixth embodiments, the 0th-order light transmittance is higher than the conventional rectangular shape of FIG. Obtainable. Further, if the trapezoidal degree defined by L2 / P in FIG. 2 is 0.2 or less, the average 0th-order light transmittance is approximately 98% or more, and if it is 0.1 or less, the average 0th-order light transmittance is It can be seen that becomes 99% or more.
〈実施例7,8(λ:435.8nm)〉 <Examples 7 and 8 (λ: 435.8 nm)>
実施例7は図1と同様の台形形状の格子構造であり、構造周期Pを300nm、柱状部の平坦部の幅L1を60nm(L1/P=0.2)、波長λを435.8nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図13に示す。 Example 7 has a trapezoidal lattice structure similar to that of FIG. 1, the structural period P is 300 nm, the width L1 of the flat part of the columnar part is 60 nm (L1 / P = 0.2), and the wavelength λ is 435.8 nm. FIG. 13 shows the relationship between the structural height H (μm), the TE0th order light transmittance, the TM0th order light transmittance, and the phase difference.
実施例8は図3と同様の台形形状の格子構造であり、構造周期Pを300nm、柱状部の平坦部の幅L1を60nm(L1/P=0.2)、溝部の平坦部の幅L2を60nm(L2/P=0.2)、波長λを435.8nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図14に示す。 Example 8 has a trapezoidal lattice structure similar to that shown in FIG. 3, the structural period P is 300 nm, the flat part width L1 of the columnar part is 60 nm (L1 / P = 0.2), and the flat part width L2 of the groove part. Is the relationship between the structural height H (μm), TE0th order light transmittance, TM0th order light transmittance and phase difference when the wavelength is 60 nm (L2 / P = 0.2) and the wavelength λ is 435.8 nm. 14 shows.
〈実施例9,10(λ:650nm)〉 <Examples 9 and 10 (λ: 650 nm)>
実施例9は図1と同様の台形形状の格子構造であり、構造周期Pを300nm、柱状部の平坦部の幅L1を60nm(L1/P=0.2)、波長λを650nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図15に示す。 Example 9 has a trapezoidal lattice structure similar to that shown in FIG. 1. When the structural period P is 300 nm, the width L1 of the flat part of the columnar part is 60 nm (L1 / P = 0.2), and the wavelength λ is 650 nm. FIG. 15 shows the relationship between the structural height H (μm), the TE0th order light transmittance, the TM0th order light transmittance, and the phase difference.
実施例10は図3と同様の台形形状の格子構造であり、構造周期Pを300nm、柱状部の平坦部の幅L1を60nm(L1/P=0.2)、溝部の平坦部の幅L2を60nm(L2/P=0.2)、波長λを650nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図16に示す。 Example 10 has a trapezoidal lattice structure similar to that in FIG. 3, the structural period P is 300 nm, the flat part width L1 of the columnar part is 60 nm (L1 / P = 0.2), and the flat part width L2 of the groove part. 16 represents the relationship between the structural height H (μm), the TE0th order light transmittance, the TM0th order light transmittance, and the phase difference when the wavelength λ is set to 60 nm (L2 / P = 0.2) and the wavelength λ is 650 nm. Show.
比較例2は、図4の従来の矩形形状の格子構造であり、構造周期Pを300nm、L/P(フィリングファクタ)を0.4、波長λを650nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図17に示す。 Comparative Example 2 is the conventional rectangular lattice structure of FIG. 4, where the structural height H (μm) when the structural period P is 300 nm, L / P (filling factor) is 0.4, and the wavelength λ is 650 nm. ), The TE0th order light transmittance, the TM0th order light transmittance, and the phase difference are shown in FIG.
〈実施例11,12(λ:780nm)〉 <Examples 11 and 12 (λ: 780 nm)>
実施例11は図1と同様の台形形状の格子構造であり、構造周期Pを300nm、柱状部の平坦部の幅L1を60nm(L1/P=0.2)、波長λを780nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図18に示す。 Example 11 has a trapezoidal lattice structure similar to that shown in FIG. 1. When the structural period P is 300 nm, the width L1 of the flat part of the columnar part is 60 nm (L1 / P = 0.2), and the wavelength λ is 780 nm. FIG. 18 shows the relationship between the structural height H (μm), the TE0th order light transmittance, the TM0th order light transmittance, and the phase difference.
実施例12は図3と同様の台形形状の格子構造であり、構造周期Pを300nm、柱状部の平坦部の幅L1を60nm(L1/P=0.2)、溝部の平坦部の幅L2を60nm(L2/P=0.2)、波長λを780nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図19に示す。 Example 12 has a trapezoidal lattice structure similar to that shown in FIG. 3, the structural period P is 300 nm, the flat portion width L1 of the columnar portion is 60 nm (L1 / P = 0.2), and the flat portion width L2 of the groove portion. 19 represents the relationship between the structural height H (μm), the TE0th order light transmittance, the TM0th order light transmittance, and the phase difference when the wavelength λ is 60 nm (L2 / P = 0.2) and the wavelength λ is 780 nm. Show.
比較例3は、図4の従来の矩形形状の格子構造であり、構造周期Pを300nm、L/P(フィリングファクタ)を0.4、波長λを780nmとしたとき、構造高さH(μm)と、TE0次光透過率、TM0次光透過率及び位相差との関係を図20に示す。 Comparative Example 3 is the conventional rectangular lattice structure of FIG. 4, where the structural height H (μm) when the structural period P is 300 nm, L / P (filling factor) is 0.4, and the wavelength λ is 780 nm. ), The TE0th order light transmittance, the TM0th order light transmittance, and the phase difference are shown in FIG.
以上の実施例7,8と比較例1,実施例9,10と比較例2,実施例11,12と比較例3から分かるように、実施例7〜12では図1または図3のような台形形状にすることで、435.8nm、650nm、780nmの各波長において図4の従来の矩形形状よりも高い0次光透過率を得ることができる。 As can be seen from the above Examples 7 and 8, Comparative Example 1, Examples 9 and 10, Comparative Example 2, Examples 11 and 12, and Comparative Example 3, Examples 7 to 12 are as shown in FIG. By adopting the trapezoidal shape, it is possible to obtain higher zero-order light transmittance than the conventional rectangular shape of FIG. 4 at each wavelength of 435.8 nm, 650 nm, and 780 nm.
また、各比較例1〜3のように図4の従来の矩形形状の格子構造は0次光透過率が構造高さの変化に伴い周期的にかなり変動するのに対し、実施例1〜12の台形形状の格子構造は、0次光透過率の構造高さに伴う周期的な変動がかなり小さいため、加工による構造高さ誤差に強い波長板を実現できることが分かる。 In addition, as in Comparative Examples 1 to 3, the conventional rectangular lattice structure of FIG. 4 has a 0th-order light transmittance that periodically varies considerably with changes in the structure height, whereas Examples 1 to 12 In the trapezoidal grating structure of FIG. 5, it can be seen that a periodic plate with a high structural error of the 0th-order light transmittance is considerably small, so that it is possible to realize a wavelength plate that is resistant to structural height errors due to processing.
更に、構造性複屈折波長板を2枚構成で用いる場合、所望の位相差を得るために2枚合わせて所望の位相差となりかつ高い透過率を得られる構造寸法を選ばなくてはならなかったが、実施例1〜12の波長板の場合は、どの構造高さでもほぼ一定で高い透過率を得ることができるため、位相差の組み合わせのみで構造寸法を選ぶことができる。特に、所望の位相差の半分の位相差が得られる波長板を2枚組み合わせれば、2枚とも同じ構造寸法のものを使用できるため、製造コストにおいても有利となる。 Furthermore, when two structural birefringent wave plates are used in a configuration, in order to obtain a desired phase difference, it is necessary to select a structural dimension that can achieve the desired phase difference and obtain a high transmittance in order to obtain the desired phase difference. However, in the case of the wave plates of Examples 1 to 12, since a high transmittance can be obtained at almost any structural height, the structural dimensions can be selected only by a combination of phase differences. In particular, if two wave plates capable of obtaining a phase difference that is half of the desired phase difference are combined, both can be used with the same structural dimensions, which is advantageous in terms of manufacturing cost.
以上のように本発明を実施するための最良の形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図1〜図3において、一方の側面部11または12を他方の側面部12または11よりも長く構成してもよく、同様の効果を得ることができる。
As described above, the best mode for carrying out the present invention has been described. However, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, in FIGS. 1 to 3, one
1,2,3 構造性複屈折波長板
6 柱状部
6’ 溝部
7 柱状部
7’ 溝部
8 柱状部
8’ 溝部
11,12 側面部
13 柱状部の平坦部
14 底部
15 先端
16 溝部の平坦部
H 構造高さ
P 構造周期
L1 平坦部13の幅
L2 平坦部16の幅
1, 2, 3 Structural
Claims (10)
前記柱状部の先端及び溝部の底部の少なくとも一方が平坦部を有する台形形状に構成されていることを特徴とする構造性複屈折波長板。 It has a concavo-convex periodic structure in which the columnar part and the groove part are periodically repeated,
The structural birefringent wavelength plate, wherein at least one of the tip of the columnar part and the bottom of the groove part is formed in a trapezoidal shape having a flat part.
P≦λ/nのとき、0.16≦H/λ かつ 0<L1/P≦0.55 (1)
P>λ/nのとき、0.85≦H/λ かつ 0<L1/P≦0.55 (2)
但し、P<λ
λ:使用波長
n:使用波長λにおける波長板の材料の屈折率 5. Any one of claims 1 to 4 satisfying the following expressions (1) and (2), where P is a structural period of the uneven periodic structure, H is a structural height, and L <b> 1 is a width of a flat part of the columnar part. 2. The structural birefringent wave plate according to item 1.
When P ≦ λ / n, 0.16 ≦ H / λ and 0 <L1 / P ≦ 0.55 (1)
When P> λ / n, 0.85 ≦ H / λ and 0 <L1 / P ≦ 0.55 (2)
However, P <λ
λ: wavelength used n: refractive index of wave plate material at wavelength λ used
P≦λ/nのとき、0.22≦H/λ≦3.7 かつ 0<L1/P≦0.35 (3)
P>λ/nのとき、1.15≦H/λ≦3.7 かつ 0<L1/P≦0.35 (4)
但し、P<λ
λ:使用波長
n:使用波長λにおける波長板の材料の屈折率 The following formulas (3) and (4) are satisfied, where P is the structural period of the irregular periodic structure, H is the structural height, and L1 is the width of the flat portion of the columnar portion. 2. The structural birefringent wave plate according to item 1.
When P ≦ λ / n, 0.22 ≦ H / λ ≦ 3.7 and 0 <L1 / P ≦ 0.35 (3)
When P> λ / n, 1.15 ≦ H / λ ≦ 3.7 and 0 <L1 / P ≦ 0.35 (4)
However, P <λ
λ: wavelength used n: refractive index of wave plate material at wavelength λ used
P≦λ/nのとき、0.17≦H/λ かつ 0<L2/P≦0.2 (5)
P>λ/nのとき、1.00≦H/λ かつ 0<L2/P≦0.2 (6)
但し、P<λ
L1+L2<P
λ:使用波長
n:使用波長λにおける波長板の材料の屈折率 The structure according to any one of claims 1 to 6, wherein when the structure period of the concave-convex periodic structure is P, the structure height is H, and the width of the flat portion of the groove is L2, the following expressions (5) and (6) are satisfied. The structural birefringent wave plate according to Item.
When P ≦ λ / n, 0.17 ≦ H / λ and 0 <L2 / P ≦ 0.2 (5)
When P> λ / n, 1.00 ≦ H / λ and 0 <L2 / P ≦ 0.2 (6)
However, P <λ
L1 + L2 <P
λ: wavelength used n: refractive index of wave plate material at wavelength λ used
P≦λ/nのとき、0.23≦H/λ≦3.7 かつ 0<L2/P≦0.1 (7)
P>λ/nのとき、1.28≦H/λ≦3.7 かつ 0<L2/P≦0.1 (8)
但し、P<λ
L1+L2<P
λ:使用波長
n:使用波長λにおける波長板の材料の屈折率 The following formula (7) or (8) is satisfied, where P is the structural period of the irregular periodic structure, H is the structural height, and L2 is the width of the flat portion of the groove. The structural birefringent wave plate according to Item.
When P ≦ λ / n, 0.23 ≦ H / λ ≦ 3.7 and 0 <L2 / P ≦ 0.1 (7)
When P> λ / n, 1.28 ≦ H / λ ≦ 3.7 and 0 <L2 / P ≦ 0.1 (8)
However, P <λ
L1 + L2 <P
λ: wavelength used n: refractive index of wave plate material at wavelength λ used
A waveplate combination structure comprising a combination of a plurality of structural birefringent waveplates according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005145203A JP2006323059A (en) | 2005-05-18 | 2005-05-18 | Structural birefringent wavelength plate and wavelength plate combined structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005145203A JP2006323059A (en) | 2005-05-18 | 2005-05-18 | Structural birefringent wavelength plate and wavelength plate combined structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006323059A true JP2006323059A (en) | 2006-11-30 |
Family
ID=37542804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005145203A Pending JP2006323059A (en) | 2005-05-18 | 2005-05-18 | Structural birefringent wavelength plate and wavelength plate combined structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006323059A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101518122B1 (en) * | 2012-07-06 | 2015-05-06 | 미쓰비시덴키 가부시키가이샤 | Polarizing phase difference plate and laser processing machine |
WO2016056277A1 (en) * | 2014-10-10 | 2016-04-14 | Jx日鉱日石エネルギー株式会社 | Optical phase difference component, composite optical component incorporating optical phase difference component, and method for manufacturing optical phase difference component |
WO2017061170A1 (en) * | 2015-10-05 | 2017-04-13 | Jxエネルギー株式会社 | Optical retarder member and projector |
JP2017138464A (en) * | 2016-02-03 | 2017-08-10 | Jxtgエネルギー株式会社 | Optical retardation member, composite optical member including optical retardation member, and method for manufacturing optical retardation member |
JP2018025748A (en) * | 2016-05-12 | 2018-02-15 | Jxtgエネルギー株式会社 | Optical retardation member and projector |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107412A (en) * | 1991-10-15 | 1993-04-30 | Kyocera Corp | Birefringence structure |
JP2001343512A (en) * | 2000-05-31 | 2001-12-14 | Canon Inc | Diffraction optical device and optical system having the same |
JP2005044429A (en) * | 2003-07-28 | 2005-02-17 | Ricoh Co Ltd | Wavelength plate, optical pickup device, and optical disk device |
JP2005055921A (en) * | 2004-10-18 | 2005-03-03 | Ricoh Co Ltd | Magneto-optical element and optical apparatus |
JP2005097371A (en) * | 2003-09-22 | 2005-04-14 | Fuji Photo Film Co Ltd | Fluorine-containing resin composition and optical article and image display device using the same |
-
2005
- 2005-05-18 JP JP2005145203A patent/JP2006323059A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107412A (en) * | 1991-10-15 | 1993-04-30 | Kyocera Corp | Birefringence structure |
JP2001343512A (en) * | 2000-05-31 | 2001-12-14 | Canon Inc | Diffraction optical device and optical system having the same |
JP2005044429A (en) * | 2003-07-28 | 2005-02-17 | Ricoh Co Ltd | Wavelength plate, optical pickup device, and optical disk device |
JP2005097371A (en) * | 2003-09-22 | 2005-04-14 | Fuji Photo Film Co Ltd | Fluorine-containing resin composition and optical article and image display device using the same |
JP2005055921A (en) * | 2004-10-18 | 2005-03-03 | Ricoh Co Ltd | Magneto-optical element and optical apparatus |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101518122B1 (en) * | 2012-07-06 | 2015-05-06 | 미쓰비시덴키 가부시키가이샤 | Polarizing phase difference plate and laser processing machine |
WO2016056277A1 (en) * | 2014-10-10 | 2016-04-14 | Jx日鉱日石エネルギー株式会社 | Optical phase difference component, composite optical component incorporating optical phase difference component, and method for manufacturing optical phase difference component |
JPWO2016056277A1 (en) * | 2014-10-10 | 2017-07-20 | Jxtgエネルギー株式会社 | Optical retardation member, composite optical member including optical retardation member, and method of manufacturing optical retardation member |
US10408984B2 (en) | 2014-10-10 | 2019-09-10 | Jx Nippon Oil And Energy Corporation | Optical phase difference component, composite optical component, incorporating optical phase difference component, and method for manufacturing optical phase difference component |
WO2017061170A1 (en) * | 2015-10-05 | 2017-04-13 | Jxエネルギー株式会社 | Optical retarder member and projector |
CN108139525A (en) * | 2015-10-05 | 2018-06-08 | Jxtg能源株式会社 | optical phase difference component and projector |
TWI697702B (en) * | 2015-10-05 | 2020-07-01 | 日商捷客斯能源股份有限公司 | Optical phase difference component and projector |
JP2017138464A (en) * | 2016-02-03 | 2017-08-10 | Jxtgエネルギー株式会社 | Optical retardation member, composite optical member including optical retardation member, and method for manufacturing optical retardation member |
WO2017135220A1 (en) * | 2016-02-03 | 2017-08-10 | Jxエネルギー株式会社 | Optical phase difference member, composite optical member comprising optical phase difference member, and method for producing optical phase difference member |
JP2018025748A (en) * | 2016-05-12 | 2018-02-15 | Jxtgエネルギー株式会社 | Optical retardation member and projector |
TWI733793B (en) * | 2016-05-12 | 2021-07-21 | 日商Jxtg能源股份有限公司 | Optical phase difference component and projector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4310080B2 (en) | Diffractive optical element and optical system and optical apparatus provided with the same | |
JP6425875B2 (en) | Scale for photoelectric type measuring instrument, encoder and method of forming scale | |
JP2013092756A5 (en) | ||
JP2006323059A (en) | Structural birefringent wavelength plate and wavelength plate combined structure | |
JP2005258053A (en) | Transmission type diffraction grating | |
JP2013092754A (en) | Echelle diffraction grating and manufacturing method thereof, and excimer laser and manufacturing method thereof | |
US7230762B1 (en) | Polarization phase difference plate | |
JP2010102008A (en) | Photomask and method for making sawtooth pattern | |
JPH10268116A (en) | Diffraction optical element | |
JP2008298869A (en) | Optical element, compound optical element and method of manufacturing optical element | |
JP4491555B1 (en) | Optical element and manufacturing method thereof | |
JP2006323058A (en) | Structural birefringent wavelength plate and wavelength plate combined structure | |
JP6491646B2 (en) | Manufacturing method of grating element mounting structure | |
JP2012083382A5 (en) | ||
JP2005099099A (en) | Wavelength plate | |
JP2014052593A (en) | Mold for nanoimprinting, method for forming diffraction grating, and method for manufacturing optical element having diffraction grating | |
JP2005084485A (en) | Diffraction optical element | |
JP6629194B2 (en) | External cavity type light emitting device | |
KR102568788B1 (en) | Bragg grating and spectroscopy device including the bragg grating | |
JP6309257B2 (en) | Optical element forming method and optical element | |
JP2006330221A (en) | Polarizer | |
JP2006258914A (en) | Wavelength plate | |
US20080112670A1 (en) | Wavelength filter | |
JP2006139263A (en) | Wavelength plate | |
JP2014135323A (en) | Method of manufacturing semiconductor optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100705 |
|
A977 | Report on retrieval |
Effective date: 20100706 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A02 | Decision of refusal |
Effective date: 20101028 Free format text: JAPANESE INTERMEDIATE CODE: A02 |