JP2006322321A - Fence preventing stone from falling - Google Patents

Fence preventing stone from falling Download PDF

Info

Publication number
JP2006322321A
JP2006322321A JP2006246008A JP2006246008A JP2006322321A JP 2006322321 A JP2006322321 A JP 2006322321A JP 2006246008 A JP2006246008 A JP 2006246008A JP 2006246008 A JP2006246008 A JP 2006246008A JP 2006322321 A JP2006322321 A JP 2006322321A
Authority
JP
Japan
Prior art keywords
rope
energy
wire rope
length
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006246008A
Other languages
Japanese (ja)
Other versions
JP4087880B2 (en
Inventor
Motoji Tashiro
元司 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seiko Co Ltd
Original Assignee
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seiko Co Ltd filed Critical Tokyo Seiko Co Ltd
Priority to JP2006246008A priority Critical patent/JP4087880B2/en
Publication of JP2006322321A publication Critical patent/JP2006322321A/en
Application granted granted Critical
Publication of JP4087880B2 publication Critical patent/JP4087880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fence for preventing a stone from falling in which an energy absorption property of a rope can be utilized to a maximum extent, the diameter of the rope is reduced, and the generated tensile force is reduced. <P>SOLUTION: The fence for preventing the stone from falling is provided with sets of wire ropes arranged in plurality of tiers. In the fence, each of the sets of wire ropes comprises a wire rope with a predetermined length, and a wire rope with the length of the first wire rope plus the length larger than that of its elongation. When the stone falls, the shorter rope absorbs the falling energy in the plastic range in which the shorter rope is elongated to reach a yield point and is plastically deformed to continue its elongation until it is broken. After that, the longer rope absorbs the falling energy which was not absorbed by the shorter rope, and the secondary falling energy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は落石防止柵に関する。   The present invention relates to a rockfall prevention fence.

落石防止対策として、支柱と、それら支柱の間に配された1本以上の中間部材を備え、両端が支柱に連結され中間が中間部材を導通したワイヤロープを備えた落石防止柵が用いられており、山側から落石が落下し、当該フェンスに衝突した場合の衝撃的な荷重のエネルギーをワイヤロープで吸収させるようにしている。   As a rockfall prevention measure, there is used a rockfall prevention fence that includes a strut and one or more intermediate members arranged between the struts, a wire rope that is connected to the struts at both ends and the middle is connected to the intermediate member. And, the falling rock falls from the mountain side and the energy of the shocking load when it collides with the fence is absorbed by the wire rope.

その場合、従来では、安全率を2以上に設計し、各ワイヤロープについて、図1(a)のようにロープの弾性域内(丸付き数字の1)で落下エネルギーを吸収するようにしていた。   In that case, conventionally, the safety factor is designed to be 2 or more, and for each wire rope, the fall energy is absorbed within the elastic region of the rope (number 1 with a circle) as shown in FIG.

しかし、このようにロープ弾性域内でエネルギーを吸収する方式では、エネルギー吸収効率の点から、ロープ径が大きくなり、かつ発生張力も増加する。
その結果、施工性が悪くなり、ロープ端部の発生張力の増加に対応すべく定着部としてのアンカーの強度を大きく、大型化しなければならなかった。このため、施工費用が増し、道路や橋梁などの本体に悪影響が生じていた。
However, in this method of absorbing energy within the rope elastic region, the rope diameter increases and the generated tension increases from the viewpoint of energy absorption efficiency.
As a result, the workability deteriorated, and the anchor strength as the fixing portion had to be increased and increased in size in order to cope with the increase in the generated tension at the rope end. For this reason, construction costs increased, and the main bodies such as roads and bridges were adversely affected.

本発明は前記問題点を解消するためになされたもので、その目的とするところは、ロープのエネルギー吸収性能を最大限利用でき、ロープ径を小さくできるとともに発生張力を小さくできる落石防止柵を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to provide a rockfall prevention fence that can make maximum use of the energy absorption performance of the rope, reduce the rope diameter, and reduce the generated tension. There is to do.

上記目的を達成するため本発明の落石防止柵は、支柱と、それら支柱の間に配された1本以上の中間部材を備え、両端が支柱に連結され中間が中間部材を導通したワイヤロープを多段状に備えた落石防止柵において、前記ワイヤロープが、所定の長さのワイヤロープと、このワイヤロープの長さプラス伸び量以上の長さのワイヤロープを1組としてなり、落石時に、短いロープが伸びて降伏点に達しさらに伸びが持続するように塑性変形して破断するまでの塑性域内で落下エネルギーを吸収させ、その後長いロープで短いロープが吸収した残りの落下エネルギーと2次落下エネルギーを吸収するように構成したことを特徴としている。   In order to achieve the above object, a rockfall prevention fence according to the present invention comprises a strut and one or more intermediate members arranged between the struts, a wire rope having both ends connected to the strut and the middle conducting the intermediate member. In the rockfall prevention fence provided in a multi-stage shape, the wire rope is a set of a wire rope having a predetermined length and a wire rope having a length equal to or longer than the length of the wire rope plus an extension amount, and is short when the rock falls. The fall energy is absorbed in the plastic region until the rope stretches, reaches the yield point, and continues to stretch until it breaks, and then the remaining fall energy and secondary fall energy absorbed by the short rope with the long rope It is characterized by being configured to absorb water.

以上説明した本発明の請求項1によるときには、支柱と、それら支柱の間に配された1本以上の中間部材を備え、両端が支柱に連結され中間が中間部材を導通したワイヤロープを多段状に備えた落石防止柵において、前記ワイヤロープが、所定の長さのワイヤロープと、このワイヤロープの長さプラス伸び量以上の長さのワイヤロープを1組としてなり、落石時に、短いロープが伸びて降伏点に達しさらに伸びが持続するように塑性変形して破断するまでの塑性域内で落下エネルギーを吸収させ、その後長いロープで短いロープが吸収した残りの落下エネルギーと2次落下エネルギーを吸収するように構成にしたので、ロープのエネルギー吸収性能を最大限利用でき、ロープ径を小さくできるとともに発生張力を小さくでき、落石防止柵の転倒や落下防止が高く、施工が容易で安価に実施できる装置を提供できるというすぐれた効果が得られる。   According to claim 1 of the present invention described above, a wire rope having a support column and one or more intermediate members arranged between the support columns and having both ends connected to the support column and the intermediate portion conducting the intermediate member is formed in a multistage shape. In the rockfall prevention fence provided in the above, the wire rope is a set of a wire rope having a predetermined length and a wire rope having a length equal to or longer than the length of the wire rope plus an extension amount. It absorbs the fall energy within the plastic region until it reaches the yield point and continues to stretch and breaks until it breaks, and then absorbs the remaining fall energy and secondary fall energy absorbed by the short rope with the long rope. As a result, the energy absorption performance of the rope can be utilized to the maximum, the rope diameter can be reduced and the generated tension can be reduced. And fall prevention is high, construction is excellent effect that it is possible to provide easy and inexpensive to implement an apparatus capable obtained.

長さ大きなワイヤロープが、短いロープの周りを巡るように位置している形態を含む。
これによれば、外観上1本のロープのような形態を呈するので体裁がよく、余長部分の揺れやそれによる騒音、他物との衝突による損傷を防止できるというすぐれた効果が得られる。
It includes a form in which a long wire rope is positioned around a short rope.
According to this, since it looks like a single rope in appearance, the appearance is good, and it is possible to obtain an excellent effect that it is possible to prevent the extra length portion from shaking, the resulting noise, and damage due to collision with other objects.

以下添付図面を参照して本発明の実施例を説明する。
図2と図3は、本発明を道路と山側との境界に設置される落石防止フェンスに適用した例を示している。
6は所定の間隔ごとにアンカーをもって立設した大型H形鋼などからなる支柱、7は支柱6,6巻に配された中間支柱であり、道路側には、通常の緊張状態としたワイヤロープ8が上下方向で一定間隔をおいて張設されるとともに、金網9が張設されている。中間支柱7は浮いているかまたは下端が軽く基盤に埋め込まれている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
2 and 3 show an example in which the present invention is applied to a rock fall prevention fence installed at the boundary between a road and a mountain side.
6 is a support made of large H-shaped steel standing upright with anchors at predetermined intervals, 7 is an intermediate support placed on the support 6 and 6, and a wire rope in a normal tension state on the road side. 8 is stretched at regular intervals in the vertical direction, and a wire mesh 9 is stretched. The intermediate column 7 is floating or the lower end is lightly embedded in the base.

山側には、相対的に異なる長さL1,L2の複数本(図では2本)のワイヤロープ3a、3bが1組となって、多段状に張設されている。
前記ワイヤロープ3a、3bは上下また前後に近接して位置し、長手方向両端がそれぞれ調節ロッド12aやソケット12bなどを含む索端金具12で支柱6,6に連結されている。
前記ワイヤロープ3a、3bの中間は、浮き支柱7に固定されたガイド金具13に導通されている。
On the mountain side, a plurality of (two in the figure) wire ropes 3a and 3b having relatively different lengths L1 and L2 are stretched in a multistage manner.
The wire ropes 3a, 3b are positioned close to each other in the vertical and front-rear directions, and both ends in the longitudinal direction are connected to the support posts 6, 6 by rope end fittings 12 including an adjustment rod 12a, a socket 12b, and the like.
The middle of the wire ropes 3 a and 3 b is electrically connected to a guide fitting 13 fixed to the floating column 7.

ワイヤロープ3a、3bは同じ長さではなく、片方のワイヤロープ3bは、他方のワイヤロープ3bの長さL1よりも相対的に大きな長さL2を有している。ワイヤロープ3bの長さL2は、ワイヤロープ3aの長さL1にワイヤロープ3aの破断までの伸び量を加算した長さが必要であり、それに適度な長さを加えている。
前記ワイヤロープ3a、3bのうち相対的に短いワイヤロープ3aは、略直線状に張設されるが、相対的に長いロープ3bは浮き支柱7、7間で弓状を呈するようにたるませて張設されている。
The wire ropes 3a and 3b are not the same length, and one wire rope 3b has a length L2 that is relatively larger than the length L1 of the other wire rope 3b. The length L2 of the wire rope 3b needs to be a length obtained by adding the amount of elongation until the breakage of the wire rope 3a to the length L1 of the wire rope 3a, and an appropriate length is added thereto.
Of the wire ropes 3a and 3b, the relatively short wire rope 3a is stretched substantially linearly, but the relatively long rope 3b is slacked so as to form an arc between the floating columns 7 and 7. It is stretched.

図4は第2例を示しており、相対的に長いワイヤロープ3bは短いワイヤロープ3aの外周を取り巻くようにコイル状に導かれている。 この態様は、固定金具が片側で足り、また外観上もあたかも1本の索を呈するので、体裁がよくなる。また長いロープの余長部分の揺れやそれによる騒音、他物との衝突による損傷も防止できる。   FIG. 4 shows a second example, in which the relatively long wire rope 3b is guided in a coil shape so as to surround the outer periphery of the short wire rope 3a. In this aspect, the fixing metal fitting is sufficient on one side, and the appearance is improved because it looks like one cord. It can also prevent the extra length of the long rope from shaking, the resulting noise, and damage from collision with other objects.

図示するものはあくまでも数例であり、これに限定されるものではない。
1)ワイヤロープ3a、3bの構成は任意である。ロープ太さは通常同一とするが、相違していてもよい。
2)ワイヤロープ3a、3bの数は、外観上では1本の状態を呈していてもよいが、実質的には少なくとも2本は必要である。しかし、吸収すべきエネルギーの大きさなどに応じて増加してもよい。すなわち、2本目のロープ張力が所定の安全率(通常2倍以上)を満足しない場合には、2本目のロープを破断域まで利用し、2本目のロープの長さ+伸び以上の長さを持った3本目のロープを併設するのである。以下4本以上の場合も同じである。
What is shown is only a few examples and is not limited thereto.
1) The configuration of the wire ropes 3a and 3b is arbitrary. The rope thickness is usually the same, but may be different.
2) Although the number of the wire ropes 3a and 3b may be one in appearance, at least two are required substantially. However, it may be increased according to the magnitude of energy to be absorbed. In other words, if the tension of the second rope does not satisfy the predetermined safety factor (usually more than twice), use the second rope up to the breaking zone and set the length of the second rope plus the length equal to or greater than the elongation. A third rope with it will be added. The same applies to the case of four or more.

本発明は、強固に植えたてられた支柱6,6と、それら支柱の間に配された1本以上の中間部材7,7を備え、両端が支柱に連結され中間が中間部材を導通したワイヤロープ3a、3bを備え、前記ワイヤロープが、少なくとも、所定の長さのワイヤロープ3aと、このワイヤロープ3aの長さ+伸び量以上の長さのロープ3bを1組として、多段状に配されている。
前記ワイヤロープにより落下エネルギー吸収がなされる過程のロープの荷重・伸び曲線を描くと図5のごとくであり、弾性域内は比例直線的に伸びが増加し,降伏点を過ぎるとカーブは寝てくる。従来では、直線部の途中までの部分をエネルギー吸収範囲として捉えていたが、本発明は、長いワイヤロープ3bが短いワイヤロープ3aの伸び以上の長さを有しているので、短いワイヤロープ3aが1次吸収作用を発揮し、伸びて降伏点に達しさらに伸びが持続するように塑性変形して破断するまでの塑性域(丸付き数字2)内で落下エネルギーを吸収する。短いロープ3aは補助ロープとして機能し、長いロープ3bは最終的に落下を防止するメインロープとして機能するということができる。
The present invention includes struts 6 and 6 that are firmly planted, and one or more intermediate members 7 and 7 disposed between the struts, both ends being connected to the struts and the middle conducting the intermediate member. Wire ropes 3a and 3b are provided, and the wire rope is multi-staged, with at least a predetermined length of the wire rope 3a and a length of the wire rope 3a plus a length of the rope 3b equal to or greater than the extension amount. It is arranged.
When drawing the load / elongation curve of the rope in the process of absorbing the fall energy by the wire rope, it is as shown in FIG. 5, and the elongation increases linearly in the elastic region, and the curve goes to sleep after the yield point. . Conventionally, the portion up to the middle of the straight line portion is regarded as the energy absorption range. However, in the present invention, since the long wire rope 3b has a length longer than the elongation of the short wire rope 3a, the short wire rope 3a. Exerts the primary absorption action, and absorbs the falling energy within the plastic region (circled number 2) until it reaches the yield point and plastically deforms and breaks so that the elongation continues. It can be said that the short rope 3a functions as an auxiliary rope, and the long rope 3b finally functions as a main rope for preventing the fall.

長いワイヤロープ3bは設置状態で短いワイヤロープ3aの伸び以上の長さを有しているため、前記短いワイヤロープ3aの破断まで伸びた直後あるいは破断直前から張力が発生し、短いワイヤロープ3aが吸収した残りのエネルギーを自らの破断までのあいだ吸収する。すなわち、対象物(ここでは中間部材)の残落下エネルギーと2次落下エネルギーを吸収するのである。言い換えると、落下エネルギー=弾性域内でのエネルギー吸収+塑性域内でのエネルギー吸収の関係とするのであり、図5における丸付き数字1,2及び3によって、エネルギーを吸収するのである。
このようにロープの塑性域をエネルギー吸収に利用することから各ロープの可能吸収エネルギーを最大限利用することができ、エネルギー吸収量は弾性域の3〜4倍となる。したがって、従来と同等の荷重吸収エネルギーを得る場合には、細い径のロープで足りることになる。
Since the long wire rope 3b has a length longer than the elongation of the short wire rope 3a in the installed state, a tension is generated immediately after the short wire rope 3a is extended to the break or immediately before the break, and the short wire rope 3a is The remaining energy absorbed is absorbed until it breaks. That is, the residual fall energy and secondary fall energy of the object (here, the intermediate member) are absorbed. In other words, falling energy = energy absorption in the elastic region + energy absorption in the plastic region, and energy is absorbed by the circled numbers 1, 2 and 3 in FIG.
Since the plastic area of the rope is used for energy absorption in this way, the maximum possible absorption energy of each rope can be used, and the energy absorption amount is 3 to 4 times the elastic area. Therefore, in order to obtain load absorption energy equivalent to the conventional one, a thin diameter rope is sufficient.

詳述すると、本発明は、最後のロープ(n+1)は弾性域で落下重量を支持できることが必須条件であり、次式を満足するロープ長さとエネルギー吸収を実現するものである。
式(1) W・S<Es1+Es2+...+Esn+Es(n+1)
式(2) Esn=1/2・σ・P・△Ln+α・P・LRn・γ
式(3) △Ln=(1+ε0)・LRn・σ・P/(E・A)
式(4) Es(n+1)=1/2・P/△L(n+1)/SF
式(5) △L(n+1)=(1+ε0)・LR(n+1)・P/SF/(E・A)
More specifically, in the present invention, it is an essential condition that the last rope (n + 1) can support the fall weight in the elastic region, and the rope length and energy absorption satisfying the following formula are realized.
Formula (1) W * S <Es1 + Es2 +. . . + Esn + Es (n + 1)
Formula (2) Esn = 1/2 · σ · P · ΔLn + α · P · LRn · γ
Formula (3) ΔLn = (1 + ε0) · LRn · σ · P / (E · A)
Formula (4) Es (n + 1) = 1/2 · P / ΔL (n + 1) / SF
Expression (5) ΔL (n + 1) = (1 + ε0) · LR (n + 1) · P / SF / (E · A)

ここで、Wは落下重量(N)、Sは落下高さ(mm)で、s1は1本目のロープでの落下高さ、s2は2本目のロープでの落下高さ、snは最終の1本前のロープでの落下高さ、s(n+1)は最終ロープでの落下高さ、Eはロープの弾性係数(N/mm)、σは弾性限での係数であり、通常、0.3≦α≦1.0である。Pはロープ規格破断荷重(N)、αは塑性域での効率つまりロープ破断までの塑性変形安全率であり、通常、0.3≦α≦1.0である。△Lはロープの弾性伸び(mm)、LRはロープ長(mm)、γは塑性域でのロープの伸び率(%)、ε0はロープの初期歪(%)、SFはロープの安全率、Aはロープの断面積である。 Here, W is the fall weight (N), S is the fall height (mm), s1 is the fall height of the first rope, s2 is the fall height of the second rope, and sn is the final 1 The fall height of the previous rope, s (n + 1) is the fall height of the final rope, E is the elastic modulus (N / mm 2 ) of the rope, and σ is the coefficient at the elastic limit. 3 ≦ α ≦ 1.0. P is the rope standard breaking load (N), α is the efficiency in the plastic region, that is, the plastic deformation safety factor up to the rope breaking, and is usually 0.3 ≦ α ≦ 1.0. ΔL is the elastic elongation of the rope (mm), LR is the rope length (mm), γ is the elongation percentage of the rope in the plastic region (%), ε0 is the initial strain of the rope (%), SF is the safety factor of the rope, A is the cross-sectional area of the rope.

いま、長短の2本のロープを使用して落下エネルギーを吸収したとする。すなわち短(補助)ロープを破断させて落下エネルギーを吸収させ、その後、長(メイン)ロープで柱の残落下エネルギーを吸収させるとする。   Now, let's say that the fall energy is absorbed using two long and short ropes. That is, it is assumed that the short (auxiliary) rope is broken to absorb the fall energy, and then the remaining fall energy of the column is absorbed by the long (main) rope.

落下エネルギーとロープの吸収エネルギー(塑性域を含む)が等価であるとすると、落下エネルギーは、Es1=W・S1,Es2=W・s2、ΣEs=Es1+Es2となる。
短ロープの吸収エネルギーは塑性域なので、次式で求められる。
Er1=1/2・σ・P・△L1+α・P・LR1・r
△L1=(1+ε)・LR1・σ・P/(E・A)
長ロープの吸収エネルギーは、弾性域内なので、次式で求められる。
Er2=1/2・P・△L2/SF
△L2=(1+ε)・LR2・P/SF/(E・A)、
LR1は短ロープのロープ長(mm)、LR2は長ロープのロープ長(mm)である。
Assuming that the fall energy and the absorption energy of the rope (including the plastic region) are equivalent, the fall energy is Es1 = W · S1, Es2 = W · s2, and ΣEs = Es1 + Es2.
Since the absorption energy of the short rope is a plastic region, it can be calculated by the following equation.
Er1 = 1/2 · σ · P · ΔL1 + α · P · LR1 · r
ΔL1 = (1 + ε 0 ) · LR1 · σ · P / (E · A)
Since the absorption energy of the long rope is within the elastic range, it can be obtained by the following equation.
Er2 = 1/2 · P · ΔL2 / SF
ΔL2 = (1 + ε 0 ) · LR2 · P / SF / (E · A),
LR1 is the rope length (mm) of the short rope, and LR2 is the rope length (mm) of the long rope.

いま、落下重量Wを2300N、落下高さs1(一次落下距離)を2985mm、落下高さs2(二次落下距離)を626mmとし、構成が6×19、ロープ径:16mm、規格破断荷重:117000N、有効断面積:89mm 短ロープとしてロープ長(LR1)が2500mmのもの、長ロープとしてロープ長(LR2)が3000mmのものを使用し、塑性域でのロープの伸び率rを1.5%、弾性限での係数σを0.7とし、塑性域での効率αを0.9とし、ロープの初期歪εを0.5%、安全率SFを2とすると、落下エネルギーは、Es1=W・S1=686.6kN・cmとなり、Es2=W・S2=144kN・cmとなり、ΣEs=Es1+Es2=830.5kN・cmとなる。 Now, the drop weight W is 2300N, the drop height s1 (primary drop distance) is 2985mm, the drop height s2 (secondary drop distance) is 626mm, the configuration is 6 × 19, the rope diameter is 16mm, and the standard breaking load is 117000N. , Effective cross-sectional area: 89 mm 2 , a rope having a rope length (LR1) of 2500 mm as a short rope, a rope having a rope length (LR2) of 3000 mm as a long rope, and an elongation ratio r of the rope in the plastic region of 1.5 mm %, The coefficient σ at the elastic limit is 0.7, the efficiency α in the plastic region is 0.9, the initial strain ε 0 of the rope is 0.5%, and the safety factor SF is 2, the drop energy is Es1 = W · S1 = 686.6 kN · cm, Es2 = W · S2 = 144 kN · cm, and ΣEs = Es1 + Es2 = 830.5 kN · cm.

ロープの吸収エネルギーは、短ロープにおいて、△L1=68mmであり、Er1=673.3kN・cmとなる。長ロープにおいて、△L2=58.3mmとなり、Er2=170.5kN・cmとなる。したがって、総合吸収エネルギーΣErは843.9kN・cmとなる。これは、落下エネルギーΣEsの830.5kN・cmよりも大きいので、安全に落下防止を図ることができることがわかる。   The absorption energy of the rope is ΔL1 = 68 mm in the short rope, and Er1 = 673.3 kN · cm. In the long rope, ΔL2 = 58.3 mm and Er2 = 170.5 kN · cm. Therefore, the total absorbed energy ΣEr is 843.9 kN · cm. Since this is larger than the drop energy ΣEs of 830.5 kN · cm, it can be seen that the fall can be safely prevented.

これに対して、汎用の方式では、ロープの吸収エネルギーは、落下エネルギーとロープの吸収エネルギー(塑性域を含む)が等価であるとすると、下記の基本式(1)(2)が成り立つ。
式(1)W・S=1/2・P・△L・SF
式(2)(1+ε)・LR・P/(E・A)
On the other hand, in the general-purpose system, the following basic formulas (1) and (2) are established when the absorbed energy of the rope is equivalent to the dropped energy and the absorbed energy (including the plastic region) of the rope.
Formula (1) W * S = 1/2 * P * △ L * SF
Formula (2) (1 + ε 0 ) · LR · P / (E · A)

前記本発明と同じ仕様で、長さがそれぞれ2500mmの2本のワイヤロープ3a、3aを用いた場合(比較例)、吸収エネルギーは次のごとくである。
落下エネルギーW・Sは686.6kN・cmとなり、ロープの吸収エネルギーErは、△L=97.1mmであるから、284kN・cmとなる。
これは落下エネルギーW・S:686.6kN・cmよりも著しく低いため、不適格であり、太さを増して強度を高めなければ対応できない。
When two wire ropes 3a and 3a having the same specifications as the present invention and having a length of 2500 mm are used (comparative example), the absorbed energy is as follows.
The drop energy W · S is 686.6 kN · cm, and the absorption energy Er of the rope is ΔL = 97.1 mm, so it is 284 kN · cm.
This is significantly lower than the drop energy W · S: 686.6 kN · cm, so it is unqualified and cannot be dealt with unless the thickness is increased to increase the strength.

従来のロープによるエネルギー吸収メカニズムを示す荷重―伸び曲線図である。It is a load-elongation curve figure which shows the energy absorption mechanism by the conventional rope. 本発明を適用した落石防止設備の一例を示す正面図である。It is a front view which shows an example of the rock fall prevention equipment to which this invention is applied. (a)は図2の一部拡大平面図、(b)は一部拡大背面図、(c)は斜視図である。(A) is a partially enlarged plan view of FIG. 2, (b) is a partially enlarged rear view, and (c) is a perspective view. 落石防止設備の他例を示す斜視図である。It is a perspective view which shows the other example of the falling rock prevention equipment. 本発明のエネルギー吸収原理を示す荷重―伸び曲線図である。It is a load-elongation curve diagram which shows the energy absorption principle of this invention.

符号の説明Explanation of symbols

3a 短ロープ
3b 長ロープ
6 支柱
7 中間部材
3a Short rope 3b Long rope 6 Post 7 Intermediate member

Claims (2)

支柱と、それら支柱の間に配された1本以上の中間部材を備え、両端が支柱に連結され中間が中間部材を導通したワイヤロープを多段状に備えた落石防止柵において、前記ワイヤロープが、所定の長さのワイヤロープと、このワイヤロープの長さプラス伸び量以上の長さのワイヤロープを1組としてなり、落石時に、短いロープが伸びて降伏点に達しさらに伸びが持続するように塑性変形して破断するまでの塑性域内で落下エネルギーを吸収させ、その後長いロープで短いロープが吸収した残りの落下エネルギーと2次落下エネルギーを吸収するように構成したことを特徴とする落石防止柵。 A rockfall prevention fence comprising a strut and one or more intermediate members arranged between the struts, a wire rope having both ends connected to the strut and the middle connecting the intermediate member in a multistage shape, wherein the wire rope is A wire rope of a predetermined length and a wire rope with a length equal to or greater than the length of the wire rope plus the elongation amount are combined into one set so that when a rock falls, the short rope stretches to reach the yield point and continues to stretch further. Falling rock prevention, characterized in that the fall energy is absorbed within the plastic region until it is plastically deformed and fractured, and then the remaining fall energy absorbed by the short rope and the secondary fall energy are absorbed by the long rope. fence. 長さ大きなワイヤロープが、短いロープの周りを巡るように位置している形態を含む請求項1に記載の落石防止柵。 The rock fall prevention fence according to claim 1 including a form in which a long wire rope is positioned so as to go around a short rope.
JP2006246008A 2006-09-11 2006-09-11 Rockfall prevention method with rockfall prevention fence Expired - Fee Related JP4087880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246008A JP4087880B2 (en) 2006-09-11 2006-09-11 Rockfall prevention method with rockfall prevention fence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246008A JP4087880B2 (en) 2006-09-11 2006-09-11 Rockfall prevention method with rockfall prevention fence

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003075118A Division JP3973583B2 (en) 2003-03-19 2003-03-19 Accidental equipment fall prevention methods on highways, bridges, high-speed railways, etc.

Publications (2)

Publication Number Publication Date
JP2006322321A true JP2006322321A (en) 2006-11-30
JP4087880B2 JP4087880B2 (en) 2008-05-21

Family

ID=37542197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246008A Expired - Fee Related JP4087880B2 (en) 2006-09-11 2006-09-11 Rockfall prevention method with rockfall prevention fence

Country Status (1)

Country Link
JP (1) JP4087880B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150867A (en) * 2006-12-18 2008-07-03 Tokyo Seiko Co Ltd High energy absorbing rock fall guard fence
JP2010071034A (en) * 2008-09-22 2010-04-02 Nkc Kk Guardrail for road
JP2010168833A (en) * 2009-01-23 2010-08-05 Tokyo Seiko Co Ltd Protective fence against rockfall or the like
JP2013217020A (en) * 2012-04-04 2013-10-24 Tokyo Seiko Co Ltd Falling body protection device and reinforcing method therefor
JP2019027024A (en) * 2017-07-25 2019-02-21 Jfe建材株式会社 Guard fence
JP6906263B1 (en) * 2020-12-24 2021-07-21 株式会社プロテックエンジニアリング Transmissive capture structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150867A (en) * 2006-12-18 2008-07-03 Tokyo Seiko Co Ltd High energy absorbing rock fall guard fence
JP2010071034A (en) * 2008-09-22 2010-04-02 Nkc Kk Guardrail for road
JP2010168833A (en) * 2009-01-23 2010-08-05 Tokyo Seiko Co Ltd Protective fence against rockfall or the like
JP2013217020A (en) * 2012-04-04 2013-10-24 Tokyo Seiko Co Ltd Falling body protection device and reinforcing method therefor
JP2019027024A (en) * 2017-07-25 2019-02-21 Jfe建材株式会社 Guard fence
JP6906263B1 (en) * 2020-12-24 2021-07-21 株式会社プロテックエンジニアリング Transmissive capture structure
JP2022100823A (en) * 2020-12-24 2022-07-06 株式会社プロテックエンジニアリング Transmission-type capturing structure

Also Published As

Publication number Publication date
JP4087880B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP5054742B2 (en) Rock fall protection fence
JP4087880B2 (en) Rockfall prevention method with rockfall prevention fence
JP4188998B2 (en) Shock absorbing fence
JP6109487B2 (en) Falling object protection device and method for reinforcing the same
JP6038592B2 (en) Shock absorbing mechanism and falling object protection device having shock absorbing mechanism
JP5328597B2 (en) Rockfall protection net
WO2009125774A1 (en) Load bearing material
JP2020117930A (en) Guard fence
JP2907214B1 (en) Shock absorbing fence
JP4410736B2 (en) Protective fence
JP5960023B2 (en) Falling object protection fence support structure and falling object protection fence
JP7027124B2 (en) Protective facilities, energy absorbing surface materials and energy absorbing devices
JP3973583B2 (en) Accidental equipment fall prevention methods on highways, bridges, high-speed railways, etc.
JP5144551B2 (en) Protective fence such as rockfall
JP7202586B1 (en) protective fence
JP2011153491A (en) Safety barrier
JP4213839B2 (en) Shock absorber and protective fence provided with this shock absorber
KR101036910B1 (en) Fence for preventing falling stone using bolt type high carbon steel wire rod with high tension
JP2002348817A (en) Impact absorbing protective fence
JP2016069932A (en) Protective net against falling object and reinforcement method of the same
JP6550185B1 (en) Strut, upper row horizontal rope and suspension rope in pocket type rock fall protection network
JP7450996B1 (en) protective fence
JP6140974B2 (en) Falling object protection device
JP2000273828A (en) Shock absorbing protective fence
JP2002322616A (en) Protection net and protection fence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees