JP2006321673A - Method for producing hydrogen peroxide - Google Patents

Method for producing hydrogen peroxide Download PDF

Info

Publication number
JP2006321673A
JP2006321673A JP2005145048A JP2005145048A JP2006321673A JP 2006321673 A JP2006321673 A JP 2006321673A JP 2005145048 A JP2005145048 A JP 2005145048A JP 2005145048 A JP2005145048 A JP 2005145048A JP 2006321673 A JP2006321673 A JP 2006321673A
Authority
JP
Japan
Prior art keywords
precursor
hydrogen peroxide
catalyst
palladium
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005145048A
Other languages
Japanese (ja)
Other versions
JP4655755B2 (en
Inventor
Stephan Grasser
ステファン グラッサー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005145048A priority Critical patent/JP4655755B2/en
Publication of JP2006321673A publication Critical patent/JP2006321673A/en
Application granted granted Critical
Publication of JP4655755B2 publication Critical patent/JP4655755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing hydrogen peroxide using a catalyst provided with higher activity compared with a catalyst based on the production method known in the prior art, which is used for producing hydrogen peroxide from molecular hydrogen and molecular oxygen using a catalyst. <P>SOLUTION: This method for producing hydrogen peroxide uses a catalyst produced by the production method at least comprising the following four steps: a first step of obtaining a precursor (A) by carrying on a carrior compounds of elements in groups 8, 9, 10 or 11 in the periodic table; a second step of obtaining a precursor (B) by treating the precursor (A) obtained in the first step with a reducing agent; a third step of obtaining a precursor (C) by treating the precursor (B) obtained in the second step with an oxidizing agent; and a fourth step of treating the precursor (C) obtained in the third step with a reducing agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、過酸化水素の製造方法に関するものである。さらに詳しくは、本発明は、分子状水素と分子状酸素から過酸化水素を製造する方法であって、従来知られている触媒に、より優れた過酸化水素生成活性を与えた触媒を用いる過酸化水素の製造方法に関するものである。
The present invention relates to a method for producing hydrogen peroxide. More specifically, the present invention relates to a method for producing hydrogen peroxide from molecular hydrogen and molecular oxygen, which is a process using a catalyst that has been given a superior hydrogen peroxide generation activity over a conventionally known catalyst. The present invention relates to a method for producing hydrogen oxide.

過酸化水素は、繊維工業やパルプ工業における漂白、化学工業における酸化反応等に利用されている工業的に重要な化合物である。
過酸化水素は、現在、アルキルアントラキノンを用いた自動酸化により工業的に製造されているが、工程が多く製造コストが高いという問題がある。
そのため、触媒を用いて水素及び分子状酸素から過酸化水素を製造する研究が行われており、第8,9,10族の白金族触媒(たとえば、特許文献1参照。)あるいは第11族の金触媒(たとえば、特許文献2参照。)を用いる方法が知られている。また、白金族触媒の中では、特にパラジウム触媒(たとえば、特許文献1参照。)が優れた触媒であることが知られている。さらにパラジウム触媒を改良する為にジルコニア担体を用いる方法(たとえば、特許文献3参照。)や酸化剤で活性化する方法(たとえば、特許文献4参照。)が知られている。しかしながら、従来の触媒では、触媒の活性が充分であるとはいい難く、より優れた活性を有する触媒の開発が望まれていた。

特開昭52-71000号公報 特開平7-241473号公報 特開平5-213607号公報 米国特許第6534440号
Hydrogen peroxide is an industrially important compound used for bleaching in the textile industry and pulp industry, oxidation reaction in the chemical industry, and the like.
Currently, hydrogen peroxide is industrially produced by auto-oxidation using alkylanthraquinone, but there is a problem that the number of processes is high and the production cost is high.
Therefore, research for producing hydrogen peroxide from hydrogen and molecular oxygen using a catalyst has been conducted, and platinum group catalysts of Groups 8, 9, and 10 (for example, refer to Patent Document 1) or Group 11 are studied. A method using a gold catalyst (see, for example, Patent Document 2) is known. Among platinum group catalysts, it is known that a palladium catalyst (see, for example, Patent Document 1) is an excellent catalyst. Further, a method using a zirconia support for improving the palladium catalyst (for example, see Patent Document 3) and a method for activating with an oxidizing agent (for example, see Patent Document 4) are known. However, it is difficult to say that conventional catalysts have sufficient catalyst activity, and there has been a demand for development of a catalyst having superior activity.

JP-A-52-71000 Japanese Unexamined Patent Publication No. 7-241473 Japanese Patent Laid-Open No. 5-213607 U.S. Patent No. 6534440

かかる状況において、本発明が解決しようとする課題は、分子状水素及び分子状酸素から過酸化水素を製造する際に用いる触媒であって、従来知られている製造方法による触媒に、さらに優れた活性を付与した触媒を用いる過酸化水素の製造方法を提供することにある。   In such a situation, the problem to be solved by the present invention is a catalyst used for producing hydrogen peroxide from molecular hydrogen and molecular oxygen, which is more excellent than a catalyst by a conventionally known production method. An object of the present invention is to provide a method for producing hydrogen peroxide using a catalyst imparted with activity.

すなわち、本発明は、以下の第1工程〜第4工程を含む製造方法によって製造された触媒を用いることを特徴とする過酸化水素の製造方法に係るものである。
第1工程: 周期律表の第8族,9族,10族又は11族元素化合物を担体に担持し、前駆体(A)を得る工程、
第2工程: 第1工程で得た前駆体(A)を還元剤で処理し、前駆体(B)を得る工程、
第3工程: 第2工程で得た前駆体(B)を酸化剤で処理し、前駆体(C)を得る工程、
第4工程: 第3工程で得た前駆体(C)を還元剤で処理し、第8族,9族,10族又は11族元素担持触媒を得る工程。
That is, this invention relates to the manufacturing method of hydrogen peroxide characterized by using the catalyst manufactured by the manufacturing method containing the following 1st processes-4th processes.
First step: A step of obtaining a precursor (A) by supporting a group 8, 9, 10, or 11 element compound of the periodic table on a carrier,
Second step: A step of treating the precursor (A) obtained in the first step with a reducing agent to obtain a precursor (B),
Third step: A step of obtaining the precursor (C) by treating the precursor (B) obtained in the second step with an oxidizing agent,
Fourth step: A step of treating the precursor (C) obtained in the third step with a reducing agent to obtain a Group 8, 9, 10 or 11 element-supported catalyst.

本発明は、従来の触媒より優れた過酸化水素生成活性を付与した触媒を用いることによって、分子状水素と分子状酸素から過酸化水素をより効率的に製造することができるという優れた特徴を有する過酸化水素の製造方法を提供することができる。   The present invention has an excellent feature that hydrogen peroxide can be more efficiently produced from molecular hydrogen and molecular oxygen by using a catalyst imparted with hydrogen peroxide generation activity superior to conventional catalysts. The manufacturing method of the hydrogen peroxide which has can be provided.

本発明で用いられる触媒は、以下の第1工程〜第4工程を含む製造方法によって製造される。
第1工程 周期律表の第8族,9族,10族又は11族元素化合物を担体に担持し、前駆体(A)を得る工程
第2工程: 第1工程で得た前駆体(A)を還元剤で処理し、前駆体(B)を得る工程
第3工程: 第2工程で得た前駆体(B)を酸化剤で処理し、前駆体(C)を得る工程
第4工程: 第3工程で得た前駆体(C)を還元剤で処理する工程
The catalyst used in the present invention is produced by a production method including the following first to fourth steps.
1st process The process of obtaining a precursor (A) by carrying | supporting a group 8, 9, 10 or 11 element compound of a periodic table on a support | carrier 2nd process: The precursor (A) obtained at the 1st process A step of obtaining a precursor (B) by treating with a reducing agent Third step: A step of treating the precursor (B) obtained in the second step with an oxidizing agent to obtain a precursor (C) Fourth step: First The process of processing the precursor (C) obtained by 3 processes with a reducing agent

上記第1工程及び第2工程を含む製造方法によって製造される触媒は、例えば、塩化パラジウムをシリカゲル担体に担持し還元させる方法が特開昭52-71000号公報(特許文献1)に記載されているように、一般に知られている。また、上記第1工程、第2工程及び第3工程を含む製造方法によって製造される触媒も、例えば、活性炭に担持されたパラジウム触媒を酸化剤で処理する方法や、塩化パラジウムをセリアに担持し、還元剤で処理した後、酸化剤で処理する方法が米国特許第6534440号明細書(特許文献4)に記載されているように、一般に知られている。
本発明で用いられる触媒は、このような公知の方法で製造した触媒に、第4工程あるいは、第3工程及び第4工程の両方、を加えた製造方法で製造するものである。即ち、本発明による触媒は、上記第1工程〜第4工程全てを含むことにより、従来の製造方法によって製造された触媒よりもよりよい活性を得ることができるという優れた特長を有する。
As for the catalyst produced by the production method including the first step and the second step, for example, a method for reducing palladium by supporting palladium chloride on a silica gel carrier is described in JP-A-52-71000 (Patent Document 1). As is generally known. The catalyst manufactured by the manufacturing method including the first step, the second step, and the third step may be, for example, a method of treating a palladium catalyst supported on activated carbon with an oxidizing agent, or supporting palladium chloride on ceria. A method of treating with a reducing agent and then treating with an oxidizing agent is generally known as described in US Pat. No. 6,534,440 (Patent Document 4).
The catalyst used in the present invention is produced by a production method in which the fourth step or both the third step and the fourth step are added to the catalyst produced by such a known method. That is, the catalyst according to the present invention has an excellent feature that, by including all of the first to fourth steps, it is possible to obtain better activity than the catalyst produced by the conventional production method.

以下に本発明による触媒の製造方法について説明する。
第1工程で用いる周期律表の第8族,9族,10族元素は、鉄,コバルト,ニッケル,パラジウム,ルテニウム,ロジウム,オスミウム,イリジウム、白金等であり、第11族元素は、銅,銀,金等である。好ましい元素は、第8族,9族,10族元素の中でも特に過酸化水素合成触媒として有効であることが知られている白金族元素即ち、パラジウム,ルテニウム,ロジウム,オスミウム,イリジウム,白金あるいは、第11族元素の中でも特に過酸化水素合成触媒として有効であることが知られている金が挙げられる。特に好ましい元素としはパラジウムが挙げられる。また、これらの元素は2成分以上で好ましく用いることができる為、パラジウムとパラジウム以外の合金、あるいは混合物も好ましい触媒として挙げられる。特にパラジウム−白金触媒は、活性の高い触媒として知られており、特に好ましい触媒として挙げられる。
一般的にこれらの元素は、塩化物,臭化物,硝酸塩,酢酸塩,水酸化物,アンミン錯体,アセチルアセトナト錯体,カルボニル錯体,ホスフィン錯体,等の化合物の形、あるいはクロロ金属酸塩等の形で溶液に溶解させて担体に担持される。
好ましいパラジウム化合物としては、塩化パラジウム(II),臭化パラジウム(II),硝酸パラジウム(II) ,酢酸パラジウム(II),水酸化パラジウム(II),テトラアンミンパラジウム(II)塩化物,テトラアンミンパラジウム(II)硝酸塩,テトラアンミンパラジウム(II)臭化物,ビス[(アセチルアセトナト)パラジウム(II) ,ジニトロジアンミンパラジウム(II),テトラキス(トリフェニルホスフィン)パラジウム(0),テトラクロロパラジウム(II)酸ナトリウム、ジクロロビス[(アセトニトリル)パラジウム(II)等が挙げられる。
The method for producing the catalyst according to the present invention will be described below.
The Group 8, 9, and 10 elements of the periodic table used in the first step are iron, cobalt, nickel, palladium, ruthenium, rhodium, osmium, iridium, platinum, etc., and the Group 11 elements are copper, Silver, gold, etc. Preferable elements are platinum group elements known to be particularly effective as a hydrogen peroxide synthesis catalyst among Group 8, 9 and 10 elements, that is, palladium, ruthenium, rhodium, osmium, iridium, platinum, or Among group 11 elements, gold that is known to be particularly effective as a hydrogen peroxide synthesis catalyst can be given. A particularly preferred element is palladium. Moreover, since these elements can be preferably used in two or more components, palladium and alloys other than palladium, or a mixture thereof can also be mentioned as a preferred catalyst. In particular, a palladium-platinum catalyst is known as a highly active catalyst, and can be mentioned as a particularly preferable catalyst.
In general, these elements are in the form of compounds such as chlorides, bromides, nitrates, acetates, hydroxides, ammine complexes, acetylacetonate complexes, carbonyl complexes, phosphine complexes, or chlorometalates. And dissolved in a solution and supported on a carrier.
Preferred palladium compounds include palladium chloride (II), palladium bromide (II), palladium nitrate (II), palladium acetate (II), palladium hydroxide (II), tetraammine palladium (II) chloride, tetraammine palladium (II ) Nitrate, tetraamminepalladium (II) bromide, bis [(acetylacetonato) palladium (II), dinitrodiamminepalladium (II), tetrakis (triphenylphosphine) palladium (0), sodium tetrachloropalladium (II), dichlorobis [(Acetonitrile) palladium (II) and the like.

第1工程では、これらの元素の化合物を担体に担持することにより、前駆体(A)を得ることができる。担持方法としては、上記元素の化合物を溶液に溶解させた後担体に含浸する方法、上記元素の化合物を担体上に蒸着させる方法、上記元素の化合物の溶液をpH等を調整しながら、沈殿担持する方法等が挙げられる。
担体としては、シリカ,アルミナ,シリカアルミナ,ジルコニア,チタニア,セリア,酸化ニオブ,酸化ランタン等の酸化物及び複合酸化物、ゼオライト,メソポーラスシリケート等の細孔規則性をもつ多孔質ケイ酸塩、カーボンブラック,活性炭等のカーボン、及びこれらを硫酸やフッ化物で処理した担体、ヘテロポリ酸、樹脂やコポリマー等の有機物、有機基含有ゼオライト等の有機無機ハイブリッド化合物が挙げられる。一般的に、担体は、入手が容易で高表面積である担体が有利であるが、シリカ,アルミナ,ゼオライト,ジルコニア、チタニア,あるいは、カーボンブラック,活性炭等のカーボンが高表面積担体の入手が容易であり、好ましい。
なお、ゼオライトとして、結晶性アルミノシリケート、結晶性チタノシリケート等が知られているが、Ti−MWW、TS−1、ZSM−5といった過酸化水素を酸化剤とする酸化反応用のゼオライト触媒を担体に用いることもできる。メソポーラスシリケートとしては、MCM−41,MCM−48,SBA−15,FSM−16等が知られている。
また、担体は、粉末、押出し成型品、球状品、スプレードライ成型品等の中から、使用する反応器に合った形状のものを選んで使用する方法が一般的である。
通常、第8族,9族,10族又は11族元素の担体に対する重量比は、0.001〜0.1である。
In the first step, the precursor (A) can be obtained by supporting a compound of these elements on a carrier. As the loading method, a method in which the compound of the above element is dissolved in a solution and then impregnated on the carrier, a method in which the compound of the above element is vapor-deposited on the carrier, a solution of the above compound of the element is precipitated while adjusting pH, etc. And the like.
Supports include oxides and composite oxides such as silica, alumina, silica alumina, zirconia, titania, ceria, niobium oxide and lanthanum oxide, porous silicates having pore regularity such as zeolite and mesoporous silicate, carbon Examples thereof include carbons such as black and activated carbon, and carriers obtained by treating these with sulfuric acid and fluoride, heteropoly acids, organic substances such as resins and copolymers, and organic-inorganic hybrid compounds such as organic group-containing zeolites. In general, the carrier is advantageous because it is easily available and has a high surface area, but carbon such as silica, alumina, zeolite, zirconia, titania, or carbon black, activated carbon is easily available. Yes, it is preferable.
As zeolite, crystalline aluminosilicate, crystalline titanosilicate, etc. are known, but zeolite catalysts for oxidation reaction using hydrogen peroxide as an oxidizing agent such as Ti-MWW, TS-1, and ZSM-5 are used. It can also be used as a carrier. As mesoporous silicates, MCM-41, MCM-48, SBA-15, FSM-16 and the like are known.
The carrier is generally selected from powders, extruded products, spherical products, spray-dried products, etc., with a shape suitable for the reactor used.
Usually, the weight ratio of the Group 8, 9, 10, or 11 element to the carrier is 0.001 to 0.1.

第2工程では、第1工程で得た前駆体(A)を還元剤で処理することにより、前駆体(B)を得ることができる。還元剤としては、水素、飽和炭化水素、不飽和炭化水素、ヒドラジン及びヒドラジン化合物、ホルムアルデヒド、蟻酸等の有機酸及びその塩、クエン酸及びその塩、亜鉛、水素化ホウ素ナトリウム等の水素化ホウ素化合物等が挙げられる。還元温度は、液相では液の融点以上沸点以下、気相では0℃〜500℃が一般的である。
第2工程で得た前駆体(B)を用いた過酸化水素の製造方法は一般的に知られているが、本発明では、第3及び第4工程でさらに触媒の処理を行うことにより、より高い活性を持つ触媒を得ることができる。
In the second step, the precursor (B) can be obtained by treating the precursor (A) obtained in the first step with a reducing agent. Examples of reducing agents include hydrogen, saturated hydrocarbons, unsaturated hydrocarbons, hydrazine and hydrazine compounds, organic acids such as formaldehyde and formic acid and salts thereof, citric acid and salts thereof, borohydride compounds such as zinc and sodium borohydride. Etc. The reduction temperature is generally from the melting point to the boiling point of the liquid in the liquid phase and 0 ° C. to 500 ° C. in the gas phase.
A method for producing hydrogen peroxide using the precursor (B) obtained in the second step is generally known, but in the present invention, by further treating the catalyst in the third and fourth steps, A catalyst with higher activity can be obtained.

第3工程では、第2工程で得た前駆体(B)を酸化剤で処理することにより、前駆体(C)を得ることができる。酸化剤としては、純酸素,空気等の分子状酸素を含有するガス、オゾン,窒素酸化物,過酸化水素等が知られている。純酸素,空気等の分子状酸素を含有するガスが、安価で入手が容易な点で優れる。酸化温度は、液相では液の融点以上沸点以下が一般的である。気相では0℃〜500℃が一般的であり、50℃〜350℃が好ましく、100℃〜250℃がより好ましい。   In the third step, the precursor (C) can be obtained by treating the precursor (B) obtained in the second step with an oxidizing agent. As the oxidizing agent, pure oxygen, gas containing molecular oxygen such as air, ozone, nitrogen oxide, hydrogen peroxide and the like are known. A gas containing molecular oxygen such as pure oxygen or air is excellent in that it is inexpensive and easily available. In the liquid phase, the oxidation temperature is generally from the melting point to the boiling point of the liquid. In the gas phase, 0 ° C to 500 ° C is common, 50 ° C to 350 ° C is preferable, and 100 ° C to 250 ° C is more preferable.

第4工程では、第3工程で得た前駆体(C)を還元剤で処理することにより、第8族,9族,10族又は11族元素担持触媒を得ることができる。
還元方法は、前駆体(A)を還元剤で処理する方法と同様であるが、第4工程で用いる還元剤は、後処理が容易な点で、分子状水素が好ましい。また、第2工程と第4工程が異なる還元方法であっても構わない。例えば、第2工程は触媒製造装置で製造し、第4工程は過酸化水素合成用反応器の中に触媒前駆体を充填して系内で還元した後、そのまま過酸化水素合成反応に使用することもできる。金属状態の触媒は、空気中で大きな発熱を起こしたり有機物と接触して発火したりする等の危険があるが、この方法では酸化した状態で触媒を反応器に充填し反応器内で還元することができるため、より安全である。
また、第4工程では、還元温度が低いか還元時間が短い、といった第2工程よりも温和な条件で還元する方法が触媒活性の点から好ましい。
In the fourth step, a Group 8, 9, 10 or 11 element-supported catalyst can be obtained by treating the precursor (C) obtained in the third step with a reducing agent.
The reduction method is the same as the method of treating the precursor (A) with a reducing agent, but the reducing agent used in the fourth step is preferably molecular hydrogen in terms of easy post-treatment. The reduction method may be different between the second step and the fourth step. For example, the second step is produced by a catalyst production apparatus, and the fourth step is used in a hydrogen peroxide synthesis reaction as it is after being charged with a catalyst precursor in a hydrogen peroxide synthesis reactor and reduced in the system. You can also. The catalyst in the metal state may cause a large heat generation in the air or may ignite by contact with organic matter. However, in this method, the catalyst is charged in the oxidized state and reduced in the reactor. Can be safer.
Further, in the fourth step, a method of reducing under a milder condition than the second step in which the reduction temperature is low or the reduction time is short is preferable from the viewpoint of catalytic activity.

本発明においては、さらにパラジウム触媒を改良する為に第8族,9族,10族又は11族以外の元素化合物を添加剤として添加することも可能である。添加剤としては、鉛、ビスマス、錫、ガリウム、レニウム、インジウム等の金属あるいはこれらの化合物等が挙げられる。これらの添加剤は、通常、触媒金属成分に対して0.001〜1の重量比で添加される。   In the present invention, in order to further improve the palladium catalyst, an elemental compound other than Group 8, 9, 10, or 11 can be added as an additive. Examples of the additive include metals such as lead, bismuth, tin, gallium, rhenium, and indium, and compounds thereof. These additives are usually added in a weight ratio of 0.001 to 1 with respect to the catalyst metal component.

次に、本発明の触媒の存在下、分子状水素と分子状酸素から過酸化水素を製造する方法について説明する。   Next, a method for producing hydrogen peroxide from molecular hydrogen and molecular oxygen in the presence of the catalyst of the present invention will be described.

本発明の過酸化水素を製造する方法は、溶媒の存在下に反応を行うことが一般的である。使用される溶媒としては水溶媒、有機溶媒、超臨界流体等が挙げられる。有機溶媒としては、メタノール,t−ブタノール等のアルコール、アセトン等のケトン化合物、メチル−t−ブチルエーテル等のエーテル化合物、酢酸エチル等のエステル化合物、アセトニトリル,プロピオニトリル等のニトリル化合物、n−ヘプタン等の脂肪族炭化水素、トルエン,クメン等の芳香族炭化水素、1,2−ジクロロエタン等のハロゲン化炭化水素等、種々の有機化合物が挙げられる。これらの溶媒は、安全の為、水と混合して使用することができる。
超臨界流体としては、二酸化炭素が挙げられる。好ましい溶媒は、過酸化水素溶液の用途により異なり、過酸化水素水を製造する目的では水が好ましく用いられる。化学品製造に使用される場合にはそれぞれ適した溶媒を好ましく用いることができるが、安全面からは、メタノール、t−ブタノール、アセトン、アセトニトリル等の水溶性の溶媒が望ましい。
In the method for producing hydrogen peroxide according to the present invention, the reaction is generally performed in the presence of a solvent. Examples of the solvent used include water solvents, organic solvents, and supercritical fluids. Examples of organic solvents include alcohols such as methanol and t-butanol, ketone compounds such as acetone, ether compounds such as methyl-t-butyl ether, ester compounds such as ethyl acetate, nitrile compounds such as acetonitrile and propionitrile, and n-heptane. Various organic compounds such as aliphatic hydrocarbons such as toluene, aromatic hydrocarbons such as toluene and cumene, and halogenated hydrocarbons such as 1,2-dichloroethane. These solvents can be used by mixing with water for safety.
Carbon dioxide is an example of the supercritical fluid. The preferred solvent varies depending on the use of the hydrogen peroxide solution, and water is preferably used for the purpose of producing hydrogen peroxide solution. When used for the production of chemical products, a suitable solvent can be preferably used, but from the viewpoint of safety, a water-soluble solvent such as methanol, t-butanol, acetone, acetonitrile or the like is desirable.

本発明には、過酸化水素合成反応において従来知られている助触媒を添加して反応を行うことが可能である。助触媒としては酸助触媒やハロゲン化助触媒等が挙げられる。酸助触媒は、液体反応媒体中で水素イオン(H)を発生することができるすべての物質が挙げられ、一般的に無機酸、例えば硫酸、リン酸及び硝酸、又は有機酸、例えばスルホン酸、から選択することができる。なかでも硫酸又はリン酸が好ましい。酸の濃度は一般的に溶液1Lあたり0.00001〜1molである。ハロゲン化助触媒は、液体反応媒体中でハロゲンイオンを発生し得るすべての物質が挙げられる。なかでもブロマイドイオンを発生し得る物質が好ましい。これらの物質は、一般的に臭化水素酸及びその、反応媒体に可溶な塩、例えばアルカリ金属臭化物、から選択され、臭化水素酸が好ましい。ハロゲン化助触媒の濃度は一般的に液体媒体1Lあたり0.000001〜0.1molである。 In the present invention, it is possible to carry out the reaction by adding a conventionally known promoter in the hydrogen peroxide synthesis reaction. Examples of the promoter include acid promoters and halogenated promoters. Acid promoters include all substances capable of generating hydrogen ions (H + ) in a liquid reaction medium, generally inorganic acids such as sulfuric acid, phosphoric acid and nitric acid, or organic acids such as sulfonic acid. , You can choose from. Of these, sulfuric acid or phosphoric acid is preferable. The concentration of the acid is generally 0.00001-1 mol per liter of solution. Halogenation promoters include all substances that can generate halogen ions in a liquid reaction medium. Among these, a substance capable of generating bromide ions is preferable. These materials are generally selected from hydrobromic acid and its salts soluble in the reaction medium, such as alkali metal bromides, with hydrobromic acid being preferred. The concentration of the halogenation promoter is generally 0.000001 to 0.1 mol per liter of liquid medium.

反応器に供給する酸素と水素の分圧比は、通常、1対50から50対1の範囲で実施することができる。イナートガス等で希釈して反応を行うことも、酸素原料として空気を用いて反応を行うことも可能であるが、安全上、爆発範囲外で反応を行うことが好ましい。希釈用のガスとしては、窒素,アルゴン,二酸化炭素、メタン,エタン,プロパンが挙げられる。反応温度は0℃〜80℃の範囲で一般に実施される。また反応圧力は特に制限はないが、装置上の問題から一般的に大気圧〜10MPa・Gの範囲で実施される。   The partial pressure ratio of oxygen and hydrogen fed to the reactor can usually be in the range of 1:50 to 50: 1. The reaction can be carried out by diluting with an inert gas or the like, or the reaction can be carried out using air as an oxygen raw material. However, for safety reasons, the reaction is preferably carried out outside the explosion range. Examples of the gas for dilution include nitrogen, argon, carbon dioxide, methane, ethane, and propane. The reaction temperature is generally in the range of 0 ° C to 80 ° C. The reaction pressure is not particularly limited, but is generally carried out in the range of atmospheric pressure to 10 MPa · G due to problems on the apparatus.

また、本発明は、例えば過酸化水素を用いるプロピレンオキサイド合成反応のような過酸化水素を用いる合成反応と組み合わせて使用することができる。Ti−MWWあるいはTS−1に代表される結晶性チタノシリケート等のプロピレンエポキシ化触媒及びプロピレン存在下、分子状水素及び分子状酸素から過酸化水素を製造し、製造した過酸化水素をそのまま反応系内でプロピレンと反応させプロピレンオキサイドを製造することも可能である。   In addition, the present invention can be used in combination with a synthesis reaction using hydrogen peroxide such as a propylene oxide synthesis reaction using hydrogen peroxide. Produces hydrogen peroxide from molecular hydrogen and molecular oxygen in the presence of propylene epoxidation catalyst such as crystalline titanosilicate such as Ti-MWW or TS-1 and propylene, and reacts the produced hydrogen peroxide as it is Propylene oxide can also be produced by reacting with propylene in the system.

実施例1
塩化パラジウム(II)ナトリウム(関東化学製)0.21gを90gのイオン交換水に溶解させた。次に酸化ジルコニウム担体(第一希元素化学工業製)15gを225gのイオン交換水に懸濁させた。得られた懸濁液に、塩化パラジウム(II)ナトリウム水溶液を、撹拌しながらゆっくり加えた後、室温で風乾し、乾燥粉末を得た。担体に対する加えたパラジウム金属の計算値は0.5質量%であった。得られた粉末1.5gを石英ガラス管に充填し、還元剤として10%の水素を含む窒素ガスを0.0060m/hで流通させながら、環状炉を用いて300 ℃で2時間処理した。次に流通ガスを10%の水素を含む窒素ガスから純窒素ガス0.0054m/hに切替えて1時間放冷した後、流通ガスを純窒素ガスから酸化剤である空気0.0060m/hに切替えた。切替時の炉温は235℃であった。空気を70分流通させた時点で、炉温は150℃になった。炉温を150℃に保持し、更に50分空気を流通させることで2時間処理を行った。次に流通ガスを空気から純窒素ガスへ切替え、室温まで冷却し、粉末を得た。
得られた粉末238 mgをコンデンサー付500mlガラス反応器に充填し、390gのイオン交換水に、臭化ナトリウムと硫酸を用いて調製した0.4mol/lのHBr水溶液10gを加え調製した、0.01mol/Lの臭化物イオンと0.005mol/Lの硫酸イオンを含む水溶液400gを加え、30℃で撹拌翼を用いて500rpmで撹拌した。続いて、45分間0.0072m/hの純窒素ガスで反応器内を窒素で置換し、次に還元剤として0.030m/hの5%の水素を含む窒素ガスを用いて60分間処理を行い、反応器内で反応に使用する触媒を得た。反応前に15分間0.0072m/hの純窒素ガスで反応器内を置換した後、3.5容積%の水素、6.6容積%の酸素、89.9容積%の窒素からなる混合ガスを0.0107m/h(標準状態:0℃,大気圧)で流通させることで反応を開始した。所定時間後フィルターを用いて触媒を分離することでサンプリングを行った。過酸化水素生成量の定量分析は、得られたサンプルに硫酸チタンを加え、410nmのチタンパーオキソコンプレックスのUV吸収を測定することによって行った。反応開始150分後の単位パラジウム当りの過酸化水素生成量は、68mol−H/mol−Pdであった。
Example 1
0.21 g of sodium palladium (II) chloride (manufactured by Kanto Chemical) was dissolved in 90 g of ion-exchanged water. Next, 15 g of zirconium oxide support (manufactured by Daiichi Kagaku Kagaku Kogyo) was suspended in 225 g of ion-exchanged water. An aqueous palladium (II) chloride solution was slowly added to the resulting suspension while stirring, and then air-dried at room temperature to obtain a dry powder. The calculated value of palladium metal added to the support was 0.5% by weight. The obtained powder (1.5 g) was filled in a quartz glass tube and treated at 300 ° C. for 2 hours using an annular furnace while flowing nitrogen gas containing 10% hydrogen as a reducing agent at 0.0060 m 3 / h. . After then the flowing gas was allowed to cool for 1 hour switched to pure nitrogen gas 0.0054m 3 / h of nitrogen gas containing 10% hydrogen, air as an oxidizing agent flowing gas from the pure nitrogen gas 0.0060m 3 / switched to h. The furnace temperature at the time of switching was 235 ° C. When the air was passed for 70 minutes, the furnace temperature reached 150 ° C. The furnace temperature was maintained at 150 ° C., and the air was further circulated for 50 minutes for 2 hours. Next, the flow gas was switched from air to pure nitrogen gas and cooled to room temperature to obtain a powder.
238 mg of the obtained powder was charged into a 500 ml glass reactor with a condenser, and prepared by adding 10 g of a 0.4 mol / l HBr aqueous solution prepared using sodium bromide and sulfuric acid to 390 g of ion-exchanged water. 400 g of an aqueous solution containing 01 mol / L bromide ions and 0.005 mol / L sulfate ions was added, and the mixture was stirred at 30 ° C. using a stirring blade at 500 rpm. Subsequently, the inside of the reactor was replaced with nitrogen by 0.0072 m 3 / h pure nitrogen gas for 45 minutes, and then 60 minutes using 0.030 m 3 / h nitrogen gas containing 5% hydrogen as a reducing agent. The catalyst was used for the reaction in the reactor. Before the reaction, the inside of the reactor was replaced with pure nitrogen gas at 0.0072 m 3 / h for 15 minutes, and then mixed with 3.5% hydrogen, 6.6% oxygen, and 89.9% nitrogen by volume. The reaction was started by flowing gas at 0.0107 m 3 / h (standard state: 0 ° C., atmospheric pressure). Sampling was performed by separating the catalyst using a filter after a predetermined time. Quantitative analysis of the amount of hydrogen peroxide produced was performed by adding titanium sulfate to the obtained sample and measuring the UV absorption of a 410 nm titanium peroxo complex. The amount of hydrogen peroxide produced per unit palladium 150 minutes after the start of the reaction was 68 mol-H 2 O 2 / mol-Pd.

比較例1
235℃から150℃で空気を用いた処理を実施しないこと及び反応器内で5%の水素を含む窒素ガスを用いた処理を実施しないことを除き、実施例1と同様に行った。反応開始150分後の単位パラジウム当りの過酸化水素生成量は、57mol−H/mol−Pdであった。
Comparative Example 1
It was carried out in the same manner as in Example 1 except that treatment with air at 235 ° C. to 150 ° C. was not carried out and treatment with nitrogen gas containing 5% hydrogen was not carried out in the reactor. The amount of hydrogen peroxide produced per unit palladium 150 minutes after the start of the reaction was 57 mol-H 2 O 2 / mol-Pd.

比較例2
反応器内で5%の水素を含む窒素ガスを用いた処理を実施しないことを除き、実施例1と同様に行った。反応開始150分後の単位パラジウム当りの過酸化水素生成量は、44mol−H/mol−Pdであった。


















Comparative Example 2
The same procedure as in Example 1 was performed except that the treatment using nitrogen gas containing 5% hydrogen was not performed in the reactor. The amount of hydrogen peroxide produced per unit palladium 150 minutes after the start of the reaction was 44 mol-H 2 O 2 / mol-Pd.


















Claims (10)

分子状水素と分子状酸素を用いて過酸化水素を製造する方法であって、以下の第1工程〜第4工程を含む製造方法によって製造される触媒を用いることを特徴とする過酸化水素の製造方法。
第1工程: 周期律表の第8族,9族,10族又は11族元素化合物のうち少なくとも1種類以上の元素化合物を担体に担持し、前駆体(A)を得る工程、
第2工程: 第1工程で得た前駆体(A)を還元剤で処理し、前駆体(B)を得る工程、
第3工程: 第2工程で得た前駆体(B)を酸化剤で処理し、前駆体(C)を得る工程、
第4工程: 第3工程で得た前駆体(C)を還元剤で処理する工程。
A method for producing hydrogen peroxide using molecular hydrogen and molecular oxygen, comprising using a catalyst produced by a production method comprising the following first to fourth steps: Production method.
1st process: The process of carrying | supporting at least 1 or more types of element compound on a support | carrier among 8th group, 9th group, 10th group, or 11th group element compound of a periodic table, and obtaining a precursor (A),
Second step: A step of treating the precursor (A) obtained in the first step with a reducing agent to obtain a precursor (B),
Third step: A step of obtaining the precursor (C) by treating the precursor (B) obtained in the second step with an oxidizing agent,
Fourth step: A step of treating the precursor (C) obtained in the third step with a reducing agent.
第1工程で用いる第8族,9族,10族又は11族元素化合物がパラジウム,ルテニウム,ロジウム,オスミウム,イリジウム,白金化合物あるいは金化合物である請求項1記載の製造方法。   The production method according to claim 1, wherein the Group 8, 9, 10, or 11 element compound used in the first step is palladium, ruthenium, rhodium, osmium, iridium, a platinum compound, or a gold compound. 第1工程で用いる第8族,9族,10族又は11族元素化合物がパラジウム化合物である請求項1記載の製造方法。   The production method according to claim 1, wherein the Group 8, 9, 10, or 11 element compound used in the first step is a palladium compound. 触媒が第8族,9族,10族又は11族元素のうち、パラジウムを少なくとも1種類含む2種類以上の金属元素を含む請求項1記載の製造方法。   The production method according to claim 1, wherein the catalyst contains two or more kinds of metal elements including at least one kind of palladium among elements of Group 8, 9, 10, or 11. 触媒が少なくともパラジウムおよび白金を含む請求項1記載の製造方法。   The process according to claim 1, wherein the catalyst contains at least palladium and platinum. 第3工程で用いる酸化剤が、分子状酸素を含有するガスである請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the oxidizing agent used in the third step is a gas containing molecular oxygen. 第4工程で用いる還元剤が、分子状水素である請求項1記載の製造方法。   The production method according to claim 1, wherein the reducing agent used in the fourth step is molecular hydrogen. 第4工程で行う、還元剤での処理を、過酸化水素の製造用反応器中で行う請求項1記載の製造方法。   The production method according to claim 1, wherein the treatment with the reducing agent in the fourth step is carried out in a reactor for producing hydrogen peroxide. 水を含む溶媒中で過酸化水素を製造する請求項1記載の製造方法。   The manufacturing method of Claim 1 which manufactures hydrogen peroxide in the solvent containing water. プロピレンエポキシ化反応器内で過酸化水素を製造する請求項1記載の製造方法。















The production method according to claim 1, wherein hydrogen peroxide is produced in a propylene epoxidation reactor.















JP2005145048A 2005-05-18 2005-05-18 Method for producing hydrogen peroxide Expired - Fee Related JP4655755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145048A JP4655755B2 (en) 2005-05-18 2005-05-18 Method for producing hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145048A JP4655755B2 (en) 2005-05-18 2005-05-18 Method for producing hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2006321673A true JP2006321673A (en) 2006-11-30
JP4655755B2 JP4655755B2 (en) 2011-03-23

Family

ID=37541611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145048A Expired - Fee Related JP4655755B2 (en) 2005-05-18 2005-05-18 Method for producing hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP4655755B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515693A (en) * 2005-11-14 2009-04-16 アンスティテュ フランセ デュ ペトロール Process for producing a catalyst based on anisotropic metal nanoparticles in the presence of a reducing agent
JP2010243200A (en) * 2009-04-01 2010-10-28 Adeka Corp Measuring method of hydrogen peroxide concentration in hydrogen peroxide-containing aqueous solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517106A (en) * 1991-07-11 1993-01-26 Mitsui Toatsu Chem Inc Production of hydrogen peroxide
JPH05124803A (en) * 1991-10-31 1993-05-21 Mitsubishi Gas Chem Co Inc Production of hydrogen peroxide
JPH07241473A (en) * 1994-03-02 1995-09-19 Mitsui Toatsu Chem Inc Production of hydrogen peroxide
JP2003520662A (en) * 1999-07-16 2003-07-08 アトフイナ Supported metal catalyst, method for its production and its application in direct production of hydrogen peroxide
JP2003527283A (en) * 2000-03-17 2003-09-16 アトフイナ How to get hydrogen peroxide directly
JP2006506217A (en) * 2001-12-11 2006-02-23 ヘッドウォーターズ ナノキネティクス インコーポレイテッド Oxidation of organic chemicals during hydrogen peroxide production
JP2006513987A (en) * 2002-09-20 2006-04-27 アルコ ケミカル テクノロジィ, エル.ピー. Direct oxidation method of propylene to propylene oxide, and large particle size titanium silicalite catalyst used in the method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517106A (en) * 1991-07-11 1993-01-26 Mitsui Toatsu Chem Inc Production of hydrogen peroxide
JPH05124803A (en) * 1991-10-31 1993-05-21 Mitsubishi Gas Chem Co Inc Production of hydrogen peroxide
JPH07241473A (en) * 1994-03-02 1995-09-19 Mitsui Toatsu Chem Inc Production of hydrogen peroxide
JP2003520662A (en) * 1999-07-16 2003-07-08 アトフイナ Supported metal catalyst, method for its production and its application in direct production of hydrogen peroxide
JP2003527283A (en) * 2000-03-17 2003-09-16 アトフイナ How to get hydrogen peroxide directly
JP2006506217A (en) * 2001-12-11 2006-02-23 ヘッドウォーターズ ナノキネティクス インコーポレイテッド Oxidation of organic chemicals during hydrogen peroxide production
JP2006513987A (en) * 2002-09-20 2006-04-27 アルコ ケミカル テクノロジィ, エル.ピー. Direct oxidation method of propylene to propylene oxide, and large particle size titanium silicalite catalyst used in the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515693A (en) * 2005-11-14 2009-04-16 アンスティテュ フランセ デュ ペトロール Process for producing a catalyst based on anisotropic metal nanoparticles in the presence of a reducing agent
JP2010243200A (en) * 2009-04-01 2010-10-28 Adeka Corp Measuring method of hydrogen peroxide concentration in hydrogen peroxide-containing aqueous solution

Also Published As

Publication number Publication date
JP4655755B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
TWI229052B (en) Process for the continuous production of hydrogen peroxide
JP5588107B2 (en) Improvement of catalyst
JP5073133B2 (en) Catalyst and method for direct synthesis of hydrogen peroxide
BRPI0213339B1 (en) Process to produce an epoxide
BRPI0507989B1 (en) method for the regeneration of a used titanium zeolite catalyst containing noble metal
JP2004520364A (en) Epoxidation catalyst and epoxidation method
US7994349B2 (en) Process for producing of epoxy compound
JP2009256301A (en) Process for preparing propylene oxide
JP2007314521A (en) Method for producing epoxy compound
TWI238857B (en) Direct synthesis of hydrogen peroxide in a multicomponent solvent system
JP5182849B2 (en) Direct production of alkylene oxides from alkanes
CN101589031B (en) Method for producing propylene oxide
EP2000205A1 (en) Process to obtain hydrogen peroxide
JP2009035543A (en) Method for producing mixed gas, apparatus for the same, apparatus for producing epoxy compound and method for producing the same
JP4655755B2 (en) Method for producing hydrogen peroxide
JP4291147B2 (en) Direct epoxidation process using pretreated titanium zeolite
US20100022786A1 (en) Method for producing epoxy compound
JP2010143810A (en) Method for directly producing hydrogen peroxide by using ionic liquid
JP2008106030A (en) Method for producing epoxy compound
JP2010207688A (en) Method for preparing catalyst for manufacturing phenol, catalyst prepared by the preparing method and method for manufacturing phenol
JP2010168358A (en) Method for producing propylene oxide
JP5530074B2 (en) Composite and production method thereof
EP2017270A1 (en) Method for producing epoxy compound
EP3181543A1 (en) Process of preparing 4-methyl-3-decen-5-one
JP2007534666A (en) Epoxidation process using mixed catalyst system

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees