JP2006320369A - Ultrasonic diagnostic apparatus and tooth filling forming apparatus - Google Patents

Ultrasonic diagnostic apparatus and tooth filling forming apparatus Download PDF

Info

Publication number
JP2006320369A
JP2006320369A JP2005143692A JP2005143692A JP2006320369A JP 2006320369 A JP2006320369 A JP 2006320369A JP 2005143692 A JP2005143692 A JP 2005143692A JP 2005143692 A JP2005143692 A JP 2005143692A JP 2006320369 A JP2006320369 A JP 2006320369A
Authority
JP
Japan
Prior art keywords
ultrasonic
dentition
data
ultrasonic transducer
data acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005143692A
Other languages
Japanese (ja)
Inventor
Michiaki Nagai
道彰 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005143692A priority Critical patent/JP2006320369A/en
Publication of JP2006320369A publication Critical patent/JP2006320369A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic diagnostic apparatus for obtaining a three-dimensional image of the surface of dentition or a three-dimensional image of the inside of the dentition using ultrasonic waves. <P>SOLUTION: A dentition mounting frame 10, in which ultrasonic vibrator array is arranged to face the front and rear surfaces of the dentition and the occlusion surface of the dentition to be read, is used in the ultrasonic diagnostic apparatus, and the dentition mounting frame 10 is attached to the dentition. Ultrasonic waves are transmitted to the outer surface of the dentition from the ultrasonic vibrators 11 under the control of an ultrasonic data obtaining means 40 and the reflection waves reflected on the outer surface are received by the ultrasonic vibrators 11 to obtain ultrasonic data. Three-dimensional data on the shape of the outer surface of the dentition are computed and obtained by a dentition three-dimensional data obtaining means 50 based on the ultrasonic data obtained by the ultrasonic data obtaining means 40 and known positional relation data among the ultrasonic vibrators 11 for transmission/receiving. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は超音波診断装置および歯の詰め物造形装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus and a tooth filling molding apparatus.

歯科では虫歯を治療する手順は概ね以下のように行なわれていた。
歯科では、虫歯の診断にあたり、小型のレントゲン装置によりあごを中心とするX線写真を撮影し、歯の健常部分と虫歯部分のX線吸収率の違いから、X線写真画像において黒くなっている部分を虫歯部分として診断することが広く行なわれている。患者に対して当該X線写真画像を見せて虫歯の存在などを告知すること(インフォームドコンセント)も広く行われている。
歯科では、虫歯を削った後に詰め物を入れる場合や、抜歯して両横の歯からブリッジを設ける場合など、歯型を造ることが広く行なわれている。この歯型は通常、マウスピース型の歯型枠に硬化性を持つプラスチック製などの練り物剤を流し込んでおき、マウスピース型の歯型枠を歯列に装着して歯列を押し込み、暫くプラスチック製の練り物が硬化するのを待ち、所定時間(3分〜5分の間)の経過後、マウスピース型の歯型枠ごと外して歯型を取る。つまり、石膏を流し込んで像を造るのと同じ原理で歯型を製作していた。
当該歯型の採取後、患者には詰め物ができるまでの一週間程度の間は歯の詰め物がないので、簡単な仮の詰め物を施していた。
歯科医院(病院、医院、診療所など歯科治療を行なう場所)から当該歯型を専門の技工士に渡し、一週間程度の間に技工士が歯の詰め物を完成して歯科医院に渡し、再び歯科医院を訪れた患者に対してようやく歯の詰め物を埋設して歯科治療が終わる。
In dentistry, procedures for treating caries were generally performed as follows.
In dentistry, X-ray photographs centered on the chin are taken with a small X-ray machine in the diagnosis of dental caries, and the X-ray image is black due to the difference in the X-ray absorption rate between the healthy and carious portions of the teeth. Diagnosing a part as a caries part is widely performed. It is also widely performed to inform patients of the presence of caries (informed consent) by showing the X-ray image.
In dentistry, it is widely practiced to create a tooth pattern, for example, when a filling is inserted after caries are removed, or when a bridge is formed from both teeth by extraction. This tooth type is usually poured into the mouthpiece type dental mold frame with a hardened plastic paste, etc., the mouthpiece type dental mold frame is attached to the dentition and the dentition is pushed in for a while. Wait for the kneaded product to harden, and after the elapse of a predetermined time (between 3 and 5 minutes), remove the mouthpiece-type tooth mold frame and take the tooth mold. In other words, the tooth mold was produced on the same principle as that of creating an image by pouring plaster.
Since the patient had no tooth filling for about a week after the tooth pattern was collected, a simple temporary filling was applied.
From the dental clinic (hospital, clinic, clinic, etc. where the dental treatment is performed), the tooth type is handed over to a specialized technician, and the technician completes the tooth filling in about a week and passes it to the dental clinic. The dental treatment is finally completed after filling the tooth pad for the patient who visited the dental clinic.

一方、人体の消化管の診療の場では内視鏡やカテーテルが良く用いられている。人体の胃、食道、大腸、小腸などの消化管の内壁を観察し、内壁面に対する治療や薬の注入などを行なう内視鏡が知られている。概ね、先端部、挿入管部、操作部を備えている。先端部にはレンズが仕込まれ、挿入管部にはレンズから取り込んだ像を送る光学系を備えている。これら光学系を介して得た画像はモニタなどに映し出される。
ここで、内視鏡で得られる画像は、レンズが設けられている先端部を視点として見た画像となる。つまり、先端部が進入するにつれ、その先端部を視点して進行方向の様子を目視するような画像が得られる。挿入管部を由に変形させつつ先端部の進入方向を制御し、その進入中の内壁の様子を目視するには適したものとなっている。
特開2003−144432号公報
On the other hand, endoscopes and catheters are often used in medical treatment of the human digestive tract. Endoscopes are known that observe the inner walls of the digestive tract, such as the stomach, esophagus, large intestine, and small intestine of the human body, and perform treatment and injection of drugs on the inner wall. In general, it includes a distal end portion, an insertion tube portion, and an operation portion. A lens is charged at the distal end, and an optical system that sends an image captured from the lens is provided in the insertion tube. Images obtained via these optical systems are displayed on a monitor or the like.
Here, the image obtained by the endoscope is an image viewed from the tip portion where the lens is provided as a viewpoint. That is, as the tip portion enters, an image is obtained in which the tip portion is viewed and the state of the traveling direction is visually observed. It is suitable for controlling the approach direction of the tip part while deforming it through the insertion tube part and visually checking the state of the inner wall during the approach.
JP 2003-144432 A

上記従来技術における歯科診療では、歯科医がX線写真画像を見て虫歯の存在を発見することができる。さらに、硬化性のあるプラスチック製などの練り物剤を流し込んで型を取ることにより歯型をとる事ができる。
しかし、上記従来技術における歯科診療には以下の問題点がある。
In the above-described conventional dental practice, a dentist can find the presence of a caries by looking at an X-ray image. Furthermore, a tooth mold can be obtained by pouring a kneading agent such as a curable plastic into a mold.
However, there are the following problems in the dental practice in the above prior art.

第1には、X線被曝の問題である。歯科診療におけるX線写真時に患者が浴びるX線は少量ではあるが、X線被曝の問題はある。さらに、X線写真を撮る歯科医、歯科衛生士には線被曝量が蓄積してゆくのでX線被曝の問題がある。
第2には、レントゲン装置が高価で装置筐体が大きいという問題がある。レントゲン装置は高精度で高価な機器であり、歯科医院の負担は大きい。さらに、装置筐体は大きく設置場所をとるので歯科医院の負担は大きい。
第3には、歯型を取るときの患者の負担が大きいという問題がある。マウスピース型の歯型枠を嵌めた後、プラスチック製の練り物が硬化するまでの間、その姿勢で待つ必要があり、患者の負担が大きい。
第4には、歯型を採った後、詰め物が実際に入って治療が終了するまで、一定期間が必要となり、患者の負担が大きいという問題がある。歯型を取った後、専門の技工士の元に届け、技工士が詰め物を成型・調整し、さらに歯科医院に届けるには一定の期間、例えば一週間程度かかり、その間患者は仮の詰め物で過ごさざるを得ず、患者の負担が大きい。
The first is the problem of X-ray exposure. Although the amount of X-rays that a patient takes during X-ray photography in dental practice is small, there is a problem of X-ray exposure. Furthermore, dentists and dental hygienists who take X-ray photographs have a problem of X-ray exposure because the amount of radiation exposure accumulates.
Secondly, there is a problem that the X-ray apparatus is expensive and the apparatus housing is large. The X-ray apparatus is a high-precision and expensive device, and the burden on the dental clinic is great. Furthermore, the burden on the dental clinic is large because the apparatus housing takes up a large installation location.
Thirdly, there is a problem that the burden on the patient when taking the dental mold is large. It is necessary to wait in this posture until the plastic paste is cured after the mouthpiece-type tooth mold is fitted, which places a heavy burden on the patient.
Fourth, there is a problem in that a certain period of time is required until the treatment is finished after the filling is actually entered after taking the tooth shape, and the burden on the patient is large. After taking the tooth pattern, it takes a certain period of time, for example, a week, for the technician to form and adjust the filling, and deliver it to the dental clinic. There is no choice but to spend a lot of time on the patient.

上記問題点に鑑み、本発明は、超音波を用いて歯列の表面の3次元画像または歯列内部の3次元画像を得ることにより、虫歯の診断、歯型データの採取を行い、歯科医、歯科衛生士、患者の負担を小さくする超音波診断装置を提供することを目的とする。
また、上記問題点に鑑み、本発明は、上記超音波診断装置を用いて得た歯列外表面形状の3次元画像データを基に、歯の詰め物(差し歯、歯の被せ物、歯のブリッジ物など)を製作する材料を用いた自動3次元立体物造形装置を用いて歯の詰め物を自動的に製作する歯の詰め物造形装置を提供することを目的とする。
In view of the above problems, the present invention obtains a dental dentition and collects dental mold data by obtaining a three-dimensional image of the surface of the dentition or a three-dimensional image of the dentition by using ultrasonic waves. An object of the present invention is to provide an ultrasonic diagnostic apparatus that reduces the burden on dental hygienists and patients.
Further, in view of the above problems, the present invention is based on the three-dimensional image data of the outer surface of the dentition obtained by using the ultrasonic diagnostic apparatus, and has a tooth filling (an insertion tooth, a tooth covering, a tooth bridge). It is an object of the present invention to provide a tooth filling molding apparatus that automatically manufactures a tooth filling using an automatic three-dimensional three-dimensional object shaping apparatus using a material for producing an object.

上記目的を達成するため、本発明の第1の超音波診断装置は、読み取り対象となる歯列前面と歯列裏面と歯列噛み合わせ面の各面に対向するように超音波振動子アレイを並べた歯列装着型枠と、前記歯列装着型枠を歯列に装着し、前記超音波振動子により前記歯列の外表面に超音波を発信して前記超音波振動子により前記外表面において反射する反射波を受信して超音波データを得る超音波データ取得手段と、前記超音波データ取得手段で得た超音波データと、前記発信と前記受信にかかるそれぞれの超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する歯列3次元データ取得手段とを備えたものである。
上記構成により、超音波エコーを用いて歯列の外形表面を3次元データとして短時間に得ることができ、従来のようにプラスチック練り物の硬化を待つ必要はなく短時間に歯型の3次元データを得ることができる。さらに、3次元データをネットワークを介して送信すれば、従来のように採取した歯型を持ち運ぶ必要はなくなる。
In order to achieve the above object, a first ultrasonic diagnostic apparatus of the present invention uses an ultrasonic transducer array so as to face each surface of a dentition front surface, a dentition back surface, and a dentition meshing surface to be read. The arranged dentition mounting molds and the dentition mounting molds are mounted on a dentition, and ultrasonic waves are transmitted to the outer surface of the dentition by the ultrasonic vibrator and the outer surface by the ultrasonic vibrator. Between the ultrasonic data acquisition means for obtaining the ultrasonic data by receiving the reflected wave reflected at the ultrasonic wave, the ultrasonic data obtained by the ultrasonic data acquisition means, and the respective ultrasonic transducers related to the transmission and reception And a dentition three-dimensional data acquisition means for calculating and acquiring the three-dimensional data of the outer surface shape of the dentition based on the known positional relationship data.
With the above configuration, the external surface of the dentition can be obtained as a three-dimensional data in a short time using ultrasonic echoes, and it is not necessary to wait for the plastic paste to harden as in the prior art. Can be obtained. Furthermore, if the three-dimensional data is transmitted via the network, it is not necessary to carry the collected tooth shape as in the conventional case.

本発明の第2の超音波診断装置は、読み取り対象となる歯列前面と歯列裏面と歯列噛み合わせ面の各面に対向するように超音波振動子アレイを並べた歯列装着型枠と、前記歯列装着型枠を歯列に装着し、前記超音波振動子により前記歯列の外表面から内部に超音波を発信・打ち込んで前記超音波振動子により前記歯列の内部から反射する反射波を受信して超音波データを得る超音波データ取得手段と、前記超音波データ取得手段で得た超音波データと、前記発信と前記受信にかかるそれぞれの超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する歯列3次元データ取得手段とを備えたものである。
上記構成により、超音波エコーを用いて歯列の内部の様子を示す画像を短時間に得ることができる。従来のようにX線を用いたX線写真を撮ることなく歯の内部画像を得ることができ、X線被曝量を減らし、高価なレントゲン装置を用いなくても歯の内部画像を得ることができる。超音波の反射率は歯の健常部分と歯の虫歯部分では異なるので、採取した超音波画像において両者の判別を行なうことが可能であり歯科医の虫歯診断に資することができる。
A second ultrasonic diagnostic apparatus according to the present invention is a dental row mounting mold in which ultrasonic transducer arrays are arranged so as to face each surface of a front surface, a rear surface, and a tooth meshing surface to be read. And mounting the dentition mounting mold on the dentition, transmitting and driving ultrasonic waves from the outer surface of the dentition by the ultrasonic transducer, and reflecting from the inside of the dentition by the ultrasonic transducer Ultrasonic data acquisition means for receiving reflected waves to obtain ultrasonic data, ultrasonic data obtained by the ultrasonic data acquisition means, and known between each of the ultrasonic transducers for transmission and reception And a dentition three-dimensional data acquisition means for calculating and acquiring the three-dimensional data of the outer surface shape of the dentition based on the positional relationship data.
With the above configuration, an image showing the inside of the dentition can be obtained in a short time using ultrasonic echoes. It is possible to obtain an internal image of a tooth without taking an X-ray photograph using an X-ray as in the prior art, reduce the X-ray exposure, and obtain an internal image of the tooth without using an expensive X-ray apparatus. it can. Since the reflectance of the ultrasonic wave is different between the healthy part of the tooth and the carious part of the tooth, it is possible to discriminate both in the collected ultrasonic image, which can contribute to a dentist's dental caries diagnosis.

本発明の第3の超音波診断装置は、読み取り対象となる歯列前面と歯列裏面と歯列噛み合わせ面の各面に対向するように超音波振動子アレイを並べた歯列装着型枠と、前記歯列装着型枠を歯列に装着し、前記超音波振動子により前記歯列の外表面から内部に超音波を発信・打ち込んで前記超音波振動子により前記歯列の内部を通過した通過波を受信して超音波データを得る超音波データ取得手段と、前記超音波データ取得手段で得た超音波データと、前記発信と前記受信にかかるそれぞれの超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する歯列3次元データ取得手段とを備えたものである。
上記構成により、超音波エコーを用いて歯列の内部の様子を示す画像を短時間に得ることができる。従来のようにX線を用いたX線写真を撮ることなく歯の内部画像を得ることができ、X線被曝量を減らし、高価なレントゲン装置を用いなくても歯の内部画像を得ることができる。超音波の吸収率は歯の健常部分と歯の虫歯部分では異なるので、採取した超音波画像において両者の判別を行なうことが可能であり歯科医の虫歯診断に資することができる。
A third ultrasonic diagnostic apparatus according to the present invention is a dental-row-mounting mold in which ultrasonic transducer arrays are arranged so as to face each surface of a front surface, a back surface, and a tooth meshing surface to be read. And mounting the dentition mounting formwork on the dentition, transmitting and driving ultrasonic waves from the outer surface of the dentition by the ultrasonic transducer, and passing through the dentition by the ultrasonic transducer Ultrasonic data acquisition means for receiving the transmitted wave and obtaining ultrasonic data, ultrasonic data obtained by the ultrasonic data acquisition means, and known between each of the ultrasonic transducers for transmission and reception And a dentition three-dimensional data acquisition means for calculating and acquiring the three-dimensional data of the outer surface shape of the dentition based on the positional relationship data.
With the above configuration, an image showing the inside of the dentition can be obtained in a short time using ultrasonic echoes. It is possible to obtain an internal image of a tooth without taking an X-ray photograph using an X-ray as in the prior art, reduce the X-ray exposure, and obtain an internal image of the tooth without using an expensive X-ray apparatus. it can. Since the absorption rate of ultrasonic waves differs between a healthy tooth portion and a dental caries portion, it is possible to discriminate both of them in the collected ultrasonic image, which can contribute to dental caries diagnosis.

なお、前記歯列3次元データ取得手段は、前記超音波データ取得手段から得た超音波データを基に、前記超音波データの前記発信と前記受信にかかる超音波振動子を特定する情報と、前記超音波データの前記発信と前記受信の遅延時間情報を抽出し、それらと前記超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得することができる。   In addition, the dentition three-dimensional data acquisition means, based on the ultrasonic data obtained from the ultrasonic data acquisition means, information for specifying the ultrasonic transducer for the transmission and reception of the ultrasonic data, The transmission and reception delay time information of the ultrasonic data is extracted, and the three-dimensional data of the outer surface shape of the dentition is calculated and acquired based on the known positional relationship data between the ultrasonic data and the ultrasonic transducer can do.

次に、発信にかかる超音波振動子を特定するために以下の工夫を行うことができる。
第1の工夫は、前記超音波データ取得手段において、前記超音波振動子アレイのそれぞれの前記超音波振動子が相互に異なる周波数の超音波を発信し、
前記歯列3次元データ取得手段が周波数分解手段を備え、それぞれの前記超音波振動子で受信した超音波データを周波数分解して周波数別の超音波データに分解し、前記歯列3次元データ取得手段において、前記周波数分解されたそれぞれの超音波データの発信にかかる超音波振動子の特定を前記周波数に基づいて行うことを特徴とするものである。
上記構成により、各超音波振動子が相互に異なる周波数の超音波を発信するので周波数別に分解することで簡単にデータの分離・整理を行うことができる。
Next, in order to specify the ultrasonic transducer for transmission, the following device can be devised.
The first device is that in the ultrasonic data acquisition means, the ultrasonic transducers of the ultrasonic transducer array transmit ultrasonic waves having different frequencies,
The dentition three-dimensional data acquisition means includes frequency decomposition means, and the ultrasonic data received by each of the ultrasonic transducers is frequency-decomposed and decomposed into frequency-specific ultrasonic data, and the dentition three-dimensional data acquisition The means is characterized in that the ultrasonic transducer for transmitting the frequency-resolved ultrasonic data is specified based on the frequency.
With the above configuration, since each ultrasonic transducer transmits ultrasonic waves having different frequencies, data can be easily separated and organized by decomposing by frequency.

第2の工夫は、前記超音波データ取得手段において、前記超音波振動子アレイの超音波発信をそれぞれの前記超音波振動子ごとに一つずつシーケンシャルに行い、前記超音波振動子アレイの超音波受信を前記発信にかかる超音波振動子およびその近隣の超音波振動子から選ばれた2つ以上の超音波振動子によりパラレルに行うものである。
上記構成によれば各超音波振動子がシーケンシャルに超音波を発信するのでデータの混在はなくなる。
なお、すべて超音波振動子からシーケンシャルに発信しなくても、データの混在がない条件ならば複数個の超音波振動子を用いてパラレルに発信しても良い。例えば、また、第2の工夫の応用形として、前記超音波振動子アレイの超音波振動子を、前記歯列前面に対応する群と前記歯列裏面に対応する群と前記歯列噛みあわせ面に対応する群に分け、前記超音波データ取得手段において、各群ごと独立に、前記超音波振動子アレイの前記超音波発信のシーケンシャル処理と前記超音波受信のパラレル処理を行うものとすることができる。
The second idea is that in the ultrasonic data acquisition means, ultrasonic transmission of the ultrasonic transducer array is sequentially performed for each of the ultrasonic transducers, and ultrasonic waves of the ultrasonic transducer array are obtained. The reception is performed in parallel by two or more ultrasonic transducers selected from the ultrasonic transducer for transmitting and the neighboring ultrasonic transducers.
According to the above configuration, since each ultrasonic transducer transmits ultrasonic waves sequentially, there is no mixing of data.
It should be noted that all of the ultrasonic transducers may not be transmitted sequentially but may be transmitted in parallel using a plurality of ultrasonic transducers as long as there is no mixing of data. For example, as an applied form of the second device, the ultrasonic transducer of the ultrasonic transducer array includes a group corresponding to the front surface of the dentition, a group corresponding to the back surface of the dentition, and the dentition meshing surface. In the ultrasonic data acquisition unit, the ultrasonic transmission sequential processing of the ultrasonic transducer array and the parallel processing of ultrasonic reception are performed independently for each group. it can.

上記本発明の第1から第3の超音波診断装置を用いれば、虫歯の検知・診断を行うことも可能となる。
例えば、前記歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波反射率の違いから前記虫歯部分の存在を検知する虫歯検知機能を備えたものとする。健常部分と虫歯部分は超音波の反射率が異なるので超音波データを解析すれば反射率の違いを目安に虫歯の検知を行うことができる。
また例えば、前記歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波吸収率の違いから前記虫歯部分の存在を検知する虫歯検知機能を備えたものとする。健常部分と虫歯部分は超音波の吸収率が異なるので超音波データを解析すれば吸収率の違いを目安に虫歯の検知を行うことができる。
By using the first to third ultrasonic diagnostic apparatuses of the present invention, it becomes possible to detect and diagnose caries.
For example, it is assumed that the three-dimensional data inside the dentition is provided with a caries detection function for detecting the presence of the caries part from the difference in ultrasonic reflectance between the healthy part and the caries part. The healthy part and the caries part have different ultrasonic reflectivities, so if the ultrasonic data is analyzed, caries can be detected based on the difference in reflectivity.
Further, for example, in the three-dimensional data inside the dentition, it is assumed that a caries detection function for detecting the presence of the caries part from the difference in the ultrasonic absorption rate between the healthy part and the caries part is provided. The healthy part and the caries part have different absorption rates of ultrasonic waves. Therefore, if the ultrasonic data is analyzed, the caries can be detected based on the difference in absorption rate.

次に、本発明の詰め物造形装置は、歯の詰め物(差し歯、歯の被せ物、歯のブリッジ物など)を製作する材料を用いた自動3次元立体物造形装置を備え、上記本発明の歯列超音波診断装置により採取した歯列の外表面形状の3次元データを入力し、前記歯列の外表面形状の3次元データを基に、前記自動3次元立体物造形装置により歯の詰め物を自動的に製作するものである。
上記構成により、本発明の歯列超音波診断装置により読み取った歯列の外表面形状の3次元データを基にシリコン素材やプラスチック素材などを用いた3次元立体物生成装置を用いて自動的に差し歯、歯の被せ物、歯のブリッジ物などの歯の詰め物を製作することができる。
Next, the stuffing modeling apparatus of the present invention includes an automatic three-dimensional three-dimensional object modeling apparatus using a material for manufacturing a tooth stuffing (such as an insertion tooth, a tooth covering, and a tooth bridge). Input three-dimensional data of the outer surface shape of the dentition collected by the row ultrasonic diagnostic apparatus, and based on the three-dimensional data of the outer surface shape of the dentition, the tooth filling by the automatic three-dimensional three-dimensional object shaping device It is automatically created.
With the above configuration, a three-dimensional three-dimensional object generation device using a silicon material or a plastic material is automatically used based on the three-dimensional data of the outer surface shape of the dentition read by the dentition ultrasonic diagnostic apparatus of the present invention. Teeth fillings such as tooth inserts, tooth coverings and tooth bridges can be made.

本発明の超音波診断装置によれば、歯列の外形表面を3次元データとして短時間に得ることができる。3次元立体物生成装置を用いて3次元画像データから歯型を自動的に成型することも可能となる。超音波エコーを用いて歯列の内部の様子を示す画像を短時間に得ることができる。採取した超音波画像において超音波の反射率や吸収率の違いから歯の健常部分と歯の虫歯部分の判別を行なうことが可能となる。   According to the ultrasonic diagnostic apparatus of the present invention, the outer surface of the dentition can be obtained as three-dimensional data in a short time. It is also possible to automatically mold the tooth mold from the three-dimensional image data using the three-dimensional solid object generating device. An image showing the inside of the dentition can be obtained in a short time using ultrasonic echoes. In the collected ultrasonic image, it is possible to discriminate between a healthy tooth portion and a dental caries portion from the difference in the reflectance and absorption rate of the ultrasonic waves.

以下、図面を参照しつつ、本発明の歯列超音波診断装置の実施例を説明する。ただし、本発明の範囲は以下の実施例に示した具体的な形状、個数、角度などには限定されないことは言うまでもない。   Hereinafter, an embodiment of a dental ultrasound diagnostic apparatus of the present invention will be described with reference to the drawings. However, it goes without saying that the scope of the present invention is not limited to the specific shapes, numbers, angles, etc. shown in the following examples.

実施例1にかかる本発明の第1の歯列超音波診断装置の例を示す。
実施例1にかかる歯列超音波診断装置は、読み取り対象となる歯列前面と歯列裏面と歯列噛み合わせ面の各面に対向するように超音波振動子アレイを並べた歯列装着型枠と、前記歯列装着型枠を歯列に装着し、前記超音波振動子により前記歯列の外表面に超音波を発信して前記超音波振動子により前記外表面において反射する反射波を受信して超音波データを得る超音波データ取得手段と、前記超音波データ取得手段で得た超音波データと、前記発信と前記受信にかかるそれぞれの超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する歯列3次元データ取得手段とを備えたものである。
The example of the 1st dentition ultrasonic diagnostic apparatus of the present invention concerning Example 1 is shown.
The dentition ultrasonic diagnostic apparatus according to the first embodiment is a dentition mounting type in which ultrasonic transducer arrays are arranged so as to face each surface of a dentition front surface, a dentition back surface, and a dentition meshing surface to be read. A frame and the dentition mounting mold are mounted on a dentition, and an ultrasonic wave is transmitted to the outer surface of the dentition by the ultrasonic vibrator, and a reflected wave reflected on the outer surface by the ultrasonic vibrator is reflected. Ultrasonic data acquisition means for receiving and acquiring ultrasonic data, ultrasonic data obtained by the ultrasonic data acquisition means, and known positional relationship data between the respective ultrasonic transducers related to the transmission and reception And a dentition three-dimensional data acquisition means for calculating and acquiring the three-dimensional data of the outer surface shape of the dentition.

図1は、本発明の実施例1の歯列超音波診断装置100の基本構成を模式的に示した図である。歯列に取り付ける歯列装着型枠10と制御部20(コンピュータ装置など)と歯列装着型枠10と制御部20をつなぐインタフェース30を備えている。なお、図1の歯列装着型枠10は上あごの歯列に取り付けるものを上面から見た状態の図が示されている。下あごの歯列に取り付ける場合はその天地を反転させた状態となる。   FIG. 1 is a diagram schematically illustrating a basic configuration of a dental diagnosing apparatus 100 according to a first embodiment of the present invention. A dentition mounting mold 10 attached to the dentition and a control unit 20 (computer device or the like), and an interface 30 that connects the dentition mounting mold 10 and the control unit 20 are provided. In addition, the figure of the state which looked at the dentition mounting formwork 10 of FIG. 1 from the upper surface of what is attached to the dentition of the upper jaw is shown. When attached to the lower jaw teeth row, the top and bottom are reversed.

歯列装着型枠10は、概ね図2に示す形状を備えている。図2は歯列装着型枠10の6面図と、A−A線に沿った歯列装着型枠10の断面図である。実施例1の歯列超音波診断装置100の歯列装着型枠10の外形は概ね、いわゆるマウスピースなど歯列に装着する馬蹄型で縦断面がコの字断面の内壁面を持つ型枠形状となっている。この図では簡単に縦断面がいわゆる「コの字型」形状としているが、歯の断面形状に合わせてカーブを持たせても良い。つまり、前歯(門歯)の断面形状は前面側には少し膨らみを持ち裏面側にはスコップ状に反っており、噛み合わせ面は鋭く尖っている。一方、奥歯(臼歯)の断面形状は前面側も裏面側も少し膨らみを持ち、噛み合わせ面は略平らとなっている。このように、コの字型の縦断面形状を歯の縦断面形状に合わせたものに調整することができる。
なお、図2の歯列装着型枠10の状態は上あご歯列に嵌める天地方向で示しているが、天地を逆にすれば下あご歯列に嵌めることができる。
The dentition mounting mold 10 generally has the shape shown in FIG. FIG. 2 is a six-side view of the dentition mounting mold 10 and a cross-sectional view of the dentition mounting mold 10 taken along the line AA. The outer shape of the dentition mounting mold 10 of the dentition ultrasonic diagnostic apparatus 100 of the first embodiment is generally a form of a horseshoe that is mounted on a dentition such as a so-called mouthpiece and has an inner wall surface with a U-shaped vertical section. It has become. In this figure, the longitudinal section is simply a so-called “U-shaped” shape, but a curve may be provided in accordance with the sectional shape of the tooth. That is, the cross-sectional shape of the anterior teeth (portal teeth) is slightly swollen on the front surface side and warped in a scoop shape on the back surface side, and the meshing surface is sharp and sharp. On the other hand, the cross-sectional shape of the back teeth (molars) is slightly swollen on the front side and the back side, and the meshing surface is substantially flat. In this way, the U-shaped vertical cross-sectional shape can be adjusted to match the tooth vertical cross-sectional shape.
In addition, although the state of the dentition mounting formwork 10 of FIG. 2 is shown by the top and bottom direction fitted to the upper jaw tooth row, it can be fitted to the lower jaw tooth row if the top and bottom are reversed.

歯列装着型枠10の凹部の内壁面には超音波振動子アレイ11が設けられている。図3は歯列装着型枠10の凹部の内壁面に超音波振動子が設けられている様子をA1−A1断面において模式的に示している。超音波振動子11は歯列装着型枠10の歯列の並び方向(湾曲している横並びの方向)に多数並べられたアレイとなっている。便宜上、凹部の各面として、歯列装着時に歯列の表面側に対向する面を前面、歯列装着時に歯列の裏面に対向する面を後面、歯列装着時に歯列の噛み合わせ面に対向する面を底面とする。このように、超音波振動子アレイが凹部の内壁面の各面(3面)に設けられ、歯列装着型枠10を読み取り対象となる歯列に装着した状態において歯列前面と歯列裏面と噛み合わせ面(3面)に対向するように超音波振動子が並べられたものとなっている。
なお、超音波振動子アレイにおける超音波振動子の個数や配置間隔は限定されないが、例えば、前面、後面、底面のそれぞれに、歯の個数(16個)の超音波振動子を各歯に概ね正対する位置に並べて設けておくことができる。また、例えば、各歯の境および親不知の両端に概ね正対するように、前面、後面、底面のそれぞれに17個(歯の境15個+両端2個)の超音波振動子を設けておくことができる。
An ultrasonic transducer array 11 is provided on the inner wall surface of the recess of the dentition mounting mold 10. FIG. 3 schematically shows a state in which an ultrasonic transducer is provided on the inner wall surface of the concave portion of the dentition mounting mold 10 in the A1-A1 cross section. The ultrasonic transducer 11 is an array in which a large number of the ultrasonic transducers 11 are arranged in the arrangement direction (curved side-by-side direction) of the dentition mounting mold 10. For convenience, the surface facing the front side of the dentition when the dentition is mounted is the front surface, the surface facing the back side of the dentition when the dentition is mounted, and the mating surface of the dentition when the dentition is mounted. The opposite surface is the bottom surface. In this way, the ultrasonic transducer array is provided on each surface (three surfaces) of the inner wall surface of the recess, and the dentition front surface and the dentition back surface in a state where the dentition mounting mold 10 is mounted on the dentition to be read. Are arranged so as to face the meshing surfaces (3 surfaces).
The number and arrangement interval of the ultrasonic transducers in the ultrasonic transducer array are not limited. For example, the number of the ultrasonic transducers (16 pieces) on each of the front surface, the rear surface, and the bottom surface is roughly set on each tooth. They can be arranged side by side at the directly facing positions. In addition, for example, 17 ultrasonic transducers (15 tooth boundaries + 2 both ends) are provided on each of the front surface, the rear surface, and the bottom surface so as to face each tooth boundary and both ends of wisdom. Can do.

次に、制御部20は超音波データ取得手段40と歯列3次元データ取得手段50を備えている。   Next, the control unit 20 includes an ultrasonic data acquisition unit 40 and a dentition three-dimensional data acquisition unit 50.

超音波データ取得手段40は、歯列装着型枠10の超音波振動子11を操作し、超音波振動子11により歯列の外表面に超音波を発信して外表面において反射する反射波を受信した超音波振動子11により超音波データを得るものである。
超音波振動子11は、超音波データ取得手段40からインタフェース30を介して与えられた電気信号に基づいて振動子を振動させ、その振動により超音波を発生させて発射する。また、超音波振動子11は、歯列外表面で反射して返って来る反射波としての超音波の振動を受信してその振動を電気信号に変換する。この各電気信号が超音波データである。ここでは各電気信号はAD変換器(図示せず)によりAD変換され、デジタル信号として出力されるものとする。超音波データ取得手段40は超音波振動子アレイ11で受信して得た各電気信号をインタフェース30を介して取得する。
The ultrasonic data acquisition means 40 operates the ultrasonic transducer 11 of the dentition mounting mold 10, transmits ultrasonic waves to the outer surface of the dentition by the ultrasonic transducer 11, and reflects reflected waves reflected on the outer surface. The ultrasonic data is obtained by the received ultrasonic transducer 11.
The ultrasonic vibrator 11 vibrates the vibrator based on the electric signal given from the ultrasonic data acquisition means 40 via the interface 30, and generates and emits an ultrasonic wave by the vibration. The ultrasonic transducer 11 receives ultrasonic vibrations as reflected waves that are reflected back from the outer surface of the dentition and converts the vibrations into electrical signals. Each electric signal is ultrasonic data. Here, each electric signal is AD-converted by an AD converter (not shown) and is output as a digital signal. The ultrasonic data acquisition means 40 acquires each electrical signal received by the ultrasonic transducer array 11 via the interface 30.

次に、歯列3次元データ取得手段50は、超音波データ取得手段40が取得した超音波データと、発信と受信にかかるそれぞれの超音波振動子間の既知の位置関係データとに基づいて歯列の外表面形状の3次元データを計算・取得するものである。
歯列3次元データ取得手段50が歯列の外表面形状の3次元データを計算・取得する基本原理は、超音波を用いたステレオ計測である。一般に超音波を用いたステレオ計測は、超音波を発信する1つの超音波振動子と反射波である超音波を受信する2つの超音波振動子で行うのが基本形であり、2種類の情報が必要である。第1の情報は発信にかかる超音波振動子11と受信にかかる超音波振動子11の相互の位置関係の情報である。第2の情報は実際に超音波の発信された時刻から、各々の超音波振動子11で受信された時刻の差分、つまり、超音波が発信されてから各々の超音波振動子で受信されるまでの時間の情報である。
発信にかかる超音波振動子が1つで、受信にかかる超音波振動子が2つというシンプルな構成では上記の2種類の情報が得られればステレオ計測を行うことができる。
Next, the dentition three-dimensional data acquisition means 50 is based on the ultrasonic data acquired by the ultrasonic data acquisition means 40 and the known positional relationship data between the respective ultrasonic transducers for transmission and reception. 3D data of the outer surface shape of the row is calculated and acquired.
The basic principle by which the dentition three-dimensional data acquisition means 50 calculates and acquires the three-dimensional data of the outer surface shape of the dentition is stereo measurement using ultrasonic waves. In general, stereo measurement using ultrasonic waves is basically performed by one ultrasonic transducer that transmits ultrasonic waves and two ultrasonic transducers that receive ultrasonic waves that are reflected waves, and there are two types of information. is necessary. The first information is information on the positional relationship between the ultrasonic transducer 11 for transmission and the ultrasonic transducer 11 for reception. The second information is the difference between the time when the ultrasonic wave is actually transmitted and the time when the ultrasonic wave is received by each ultrasonic vibrator 11, that is, the second information is received by each ultrasonic vibrator after the ultrasonic wave is transmitted. It is information of time until.
In a simple configuration with one ultrasonic transducer for transmission and two ultrasonic transducers for reception, stereo measurement can be performed if the above two types of information are obtained.

しかし、本発明の超音波診断装置では、発信にかかる超音波振動子が1つで受信にかかる超音波振動子が2つというシンプルな構成ではなく、ステレオ計測の原理を適用するためには工夫が必要となる。
まず、本発明の超音波診断装置は上記のようなシンプルな構成ではないという理由は以下の理由による。本発明は読み取り対象となる歯列は全体が概ね馬蹄形状に湾曲しており、一箇所(1個)の超音波振動子で発信した超音波が届かない部分(影になる部分)が生じてしまう上、さらに、歯列装着型枠10を歯列に装着する関係上、超音波振動子と歯列との間の距離が比較的近いため、一箇所(1個)の超音波振動子がカバーできる範囲が狭いため、適当な複数個所(複数個)の超音波振動子を用いて超音波を発信しなければならない。つまり、発信にかかる超音波振動子は1つではないのである。
また、読み取り対象の歯は一つ一つが複雑な曲面をなしており、多様な方向に反射することが想定される。そのため、受信にかかる超音波振動子には多様な方向からの反射波が受信されることとなる。そのため、発信される超音波が複数個あり、受信される超音波の反射波が多様な方向から届くため、超音波振動子に受信されたデータは複数のものが混在(合成・干渉)しており、そのままでは有為なデータとして整理できない。
However, the ultrasonic diagnostic apparatus of the present invention is not a simple configuration with one ultrasonic transducer for transmission and two ultrasonic transducers for reception, and is devised for applying the principle of stereo measurement. Is required.
First, the reason why the ultrasonic diagnostic apparatus of the present invention is not a simple configuration as described above is as follows. In the present invention, the entire dentition to be read is generally curved in a horseshoe shape, and there is a part (a part that becomes a shadow) where the ultrasonic wave transmitted by one (one) ultrasonic transducer does not reach. In addition, since the distance between the ultrasonic transducer and the dentition is relatively close due to the mounting of the dentition mounting formwork 10 on the dentition, one (one) ultrasonic transducer is provided. Since the range that can be covered is narrow, it is necessary to transmit ultrasonic waves by using ultrasonic transducers at a plurality of appropriate locations (plurality). That is, there is no single ultrasonic transducer for transmission.
In addition, each tooth to be read has a complicated curved surface, and it is assumed that it reflects in various directions. Therefore, the reflected wave from various directions is received by the ultrasonic transducer for reception. For this reason, there are multiple ultrasonic waves to be transmitted, and the reflected waves of the received ultrasonic waves arrive from various directions, so multiple data received by the ultrasonic transducers are mixed (combined and interfered). As it is, it cannot be organized as useful data.

そこで、本発明では、超音波データ取得手段40による歯列装着型枠10の超音波振動子11の駆動方法において下記の第1の工夫か第2の工夫のいずれかを施すことにより後工程における歯列3次元画像取得手段50における処理を簡単にする。
第1の工夫は、発信にかかる超音波振動子をすべて同時に駆動するものの、各超音波振動子ごとに発信する周波数を異なるものとして整理する工夫である。
第2の工夫は、発信にかかる超音波振動子をすべて同時には駆動せず、超音波を発信する超音波振動子を時系列に、全体で1つずつ、または群ごとに1つずつ選択して行くことにより整理する工夫である。
Therefore, in the present invention, in the driving method of the ultrasonic transducer 11 of the dentition mounting mold 10 by the ultrasonic data acquisition means 40, either the first device or the second device described below is applied to the subsequent process. The processing in the dentition three-dimensional image acquisition means 50 is simplified.
The first device is a device that drives all the ultrasonic transducers for transmission at the same time, and arranges the frequency to be transmitted for each ultrasonic transducer to be different.
The second idea is not to drive all the ultrasonic transducers for transmission at the same time, but to select ultrasonic transducers that transmit ultrasonics in time series, one at a time, or one for each group. It is a device to organize by going.

まず、第1の工夫を適用した例を説明する。
図4および図5は第1の工夫を用いて超音波データ取得手段40において超音波データを取得する原理を模式的に示す図である。説明を分かりやすくするために、超音波振動子を3つのみ(11a,11b,11c)を示している。
First, an example in which the first device is applied will be described.
4 and 5 are diagrams schematically showing the principle of acquiring ultrasonic data in the ultrasonic data acquiring means 40 using the first device. For ease of explanation, only three ultrasonic transducers (11a, 11b, 11c) are shown.

図4は超音波振動子の発信時の様子を示す図である。超音波は超音波振動子から様々な方向に打ち出されるが、ここでは説明を分かりやすくするため、超音波振動子に正対する方向に発信される超音波のみを示している。
タイミングt1で持続期間αにて、超音波振動子11aから周波数faの超音波S(t1)が図示の方向(歯Taへの方向)に打ち出され、超音波振動子11bから周波数fbの超音波S(t1)が図示の方向(歯Tbへの方向)に打ち出され、超音波振動子11cから周波数fcの超音波S(t1)が図示の方向(歯Tcへの方向)に打ち出される。このように同時に3つの超音波が発信されるが、それぞれの周波数は異なるものとなっている。
FIG. 4 is a diagram showing a state when the ultrasonic transducer is transmitted. Ultrasonic waves are emitted from the ultrasonic transducers in various directions, but only the ultrasonic waves transmitted in the direction opposite to the ultrasonic transducers are shown here for easy understanding.
At the timing t1, the ultrasonic wave S (t1) having the frequency fa is emitted from the ultrasonic transducer 11a in the illustrated direction (the direction toward the tooth Ta), and the ultrasonic wave having the frequency fb is output from the ultrasonic transducer 11b. S (t1) is ejected in the direction shown (direction toward the tooth Tb), and the ultrasonic wave S (t1) having the frequency fc is ejected from the ultrasonic transducer 11c in the direction illustrated (direction toward the tooth Tc). In this way, three ultrasonic waves are transmitted simultaneously, but the respective frequencies are different.

図5は超音波振動子の受信時の様子を示す図である。実際には超音波反射波は多様な部位からの反射波が到達するが、ここでは説明を分かりやすくするため、単純化して示している。
ここでは、超音波振動子11aにおいてタイミングt2にて周波数faの歯Taからの超音波反射波S(t2)が受信され、タイミングt3にて周波数fbの歯Tbからの超音波反射波S(t3)が受信され、タイミングt4にて周波数fcの歯Tcからの超音波反射波S(t4)が受信される。ここで、超音波振動子11aには超音波反射波S(t2)、超音波反射波S(t3)、超音波反射波S(t4)の3つが混在した形で受信される。また、超音波振動子11bにおいてタイミングt5にて周波数faの歯Taからの超音波反射波S(t5)が受信され、タイミングt6にて周波数fbの歯Tbからの超音波反射波S(t6)が受信され、タイミングt7にて周波数fcの歯Tcからの超音波反射波S(t7)が受信される。ここで、超音波振動子11bには超音波反射波S(t5)、超音波反射波S(t6)、超音波反射波S(t7)の3つが混在した形で受信される。また、超音波振動子11cにおいてタイミングt8にて周波数faの歯Taからの超音波反射波S(t8)が受信され、タイミングt9にて周波数fbの歯Tbからの超音波反射波S(t9)が受信され、タイミングt10にて周波数fcの歯Tcからの超音波反射波S(t10)が受信される。ここで、超音波振動子11cには超音波反射波S(t8)、超音波反射波S(t9)、超音波反射波S(t10)の3つが混在した形で受信される。なお、図示しないカウンタによって、各超音波反射波のタイミングtn(n:1〜10)が決定される。
FIG. 5 is a diagram illustrating a state when the ultrasonic transducer is received. Actually, the reflected waves from various parts arrive at the ultrasonic reflected waves, but are shown here in a simplified manner for easy understanding.
Here, the ultrasonic transducer 11a receives the ultrasonic reflected wave S (t2) from the tooth Ta having the frequency fa at the timing t2, and the ultrasonic reflected wave S (t3) from the tooth Tb having the frequency fb at the timing t3. ) And the ultrasonic reflected wave S (t4) from the tooth Tc having the frequency fc is received at timing t4. Here, the ultrasonic transducer 11a receives the ultrasonic reflected wave S (t2), the ultrasonic reflected wave S (t3), and the ultrasonic reflected wave S (t4) in a mixed form. The ultrasonic transducer 11b receives the ultrasonic reflected wave S (t5) from the tooth Ta having the frequency fa at the timing t5, and receives the ultrasonic reflected wave S (t6) from the tooth Tb having the frequency fb at the timing t6. Is received, and the ultrasonic reflected wave S (t7) from the tooth Tc having the frequency fc is received at the timing t7. Here, the ultrasonic transducer 11b receives the ultrasonic reflected wave S (t5), the ultrasonic reflected wave S (t6), and the ultrasonic reflected wave S (t7) in a mixed form. Further, the ultrasonic transducer 11c receives the ultrasonic reflected wave S (t8) from the tooth Ta at the frequency fa at the timing t8, and the ultrasonic reflected wave S (t9) from the tooth Tb at the frequency fb at the timing t9. And the ultrasonic reflected wave S (t10) from the tooth Tc having the frequency fc is received at the timing t10. Here, the ultrasonic transducer 11c receives the ultrasonic reflected wave S (t8), the ultrasonic reflected wave S (t9), and the ultrasonic reflected wave S (t10) in a mixed form. Note that the timing tn (n: 1 to 10) of each ultrasonic reflected wave is determined by a counter (not shown).

これら超音波データがAD変換されてインタフェース30を介して超音波データ取得手段40により取得されることとなる。超音波データ取得手段40は取得したこれらの超音波データS(t2)からS(t10)を歯列3次元データ取得手段50に対して渡す。その際、超音波振動子11aからのデータとして超音波反射波S(t2)とS(t3)とS(t4)が合成された形の生データとして渡され、また、超音波振動子11bからのデータとして超音波反射波S(t5)とS(t6)とS(t7)が合成された形の生データとして渡され、また、超音波振動子11cからのデータとして超音波反射波S(t8)とS(t9)とS(t10)が合成された形の生データとして渡される。   These ultrasonic data are AD converted and acquired by the ultrasonic data acquisition means 40 via the interface 30. The ultrasonic data acquisition unit 40 passes the acquired ultrasonic data S (t2) to S (t10) to the dentition three-dimensional data acquisition unit 50. At that time, the ultrasonic reflected wave S (t2), S (t3), and S (t4) are combined as raw data as data from the ultrasonic transducer 11a, and from the ultrasonic transducer 11b. The ultrasonic reflected wave S (t5), S (t6), and S (t7) are combined as raw data, and the ultrasonic reflected wave S ( t8), S (t9), and S (t10) are passed as synthesized data.

この第1の工夫を用いる例では、歯列3次元データ取得手段50は、周波数分解手段51と歯列データ取得手段52と重畳手段53を備えている。
周波数分解手段51は、超音波データ取得手段40で得られた、それぞれの超音波振動子11で受信した超音波データを周波数分解して周波数別の超音波データに分解するものである。上記の例では各超音波振動子11a〜11cにはそれぞれ3つの超音波反射波が混在した形で受信され、もし仮に工夫がなく超音波の周波数が同じならば分解が難しいところであるが、ここでは第1の工夫として各超音波振動子が発信する超音波の周波数は相互に異なっているので、周波数を手がかりに分解することができる。超音波データ分解手段51は、周波数分解した超音波データを、受信タイミングt(n)と、発信にかかる超音波振動子と受信にかかる超音波振動子の属性情報を付けた形で歯列データ取得手段52に対して出力する。
In the example using the first device, the dentition three-dimensional data acquisition unit 50 includes a frequency resolution unit 51, a dentition data acquisition unit 52, and a superimposition unit 53.
The frequency resolving unit 51 performs frequency decomposition on the ultrasonic data received by the respective ultrasonic transducers 11 obtained by the ultrasonic data acquiring unit 40 and decomposes it into ultrasonic data for each frequency. In the above example, each of the ultrasonic transducers 11a to 11c is received in the form of a mixture of three ultrasonic reflected waves. If there is no ingenuity and the frequency of the ultrasonic waves is the same, decomposition is difficult. Then, as a first contrivance, since the frequencies of the ultrasonic waves transmitted from the respective ultrasonic transducers are different from each other, the frequency can be decomposed with a clue. The ultrasonic data decomposing means 51 converts the frequency-resolved ultrasonic data into the dentition data in the form of receiving timing t (n) and the attribute information of the ultrasonic transducer for transmission and the ultrasonic transducer for reception. Output to the acquisition means 52.

図6は各超音波振動子11a〜11cで受信された、3つの超音波反射波が混在している超音波データを超音波データ分解手段51によって周波数別に分解する様子を模式的に示した図である。周波数分解によりそれぞれの超音波振動子11a〜11cの受信データがそれぞれ3つの超音波データ(S(t2)〜S(t10))に分解される。図6では代表的に、超音波振動子11aにおいて受信された超音波データS(t2)からS(t4)が周波数分解される様子のみを示した。   FIG. 6 is a diagram schematically illustrating a state in which ultrasonic data including three ultrasonic reflected waves received by the ultrasonic transducers 11a to 11c is decomposed by frequency by the ultrasonic data decomposing means 51. It is. The received data of the ultrasonic transducers 11a to 11c is decomposed into three ultrasonic data (S (t2) to S (t10)) by frequency decomposition. FIG. 6 representatively shows only how the ultrasonic data S (t2) to S (t4) received by the ultrasonic transducer 11a are frequency-resolved.

次に、歯列データ取得手段52は、周波数分解された各超音波データに基づいて反射面の形状データを計算・取得するものである。歯列データ取得手段52は、超音波データ分解手段51により得られた各周波数ごとの超音波データと、発信と受信にかかる超音波振動子11a〜11cの既知の位置関係データに基づいて反射面データを計算・取得する。   Next, the dentition data acquisition means 52 calculates and acquires the shape data of the reflecting surface based on each frequency-resolved ultrasonic data. The dentition data acquisition means 52 is based on the ultrasonic data for each frequency obtained by the ultrasonic data decomposition means 51 and the known positional relationship data of the ultrasonic transducers 11a to 11c for transmission and reception. Calculate and obtain data.

歯列データ取得手段52は2つのテーブルデータを管理する。図7の例を用いつつ説明する。
歯列データ取得手段52は、超音波データ分解手段51から図6に示したように周波数分解された超音波データを、受信にかかる超音波振動子ごとに整理された形で得る。歯列データ取得手段52は、それぞれの超音波データについて、どの超音波振動子で発信され、どの超音波振動子で受信され、どれだけの遅延時間が発生したかの属性データを整理して超音波データ管理テーブルの形で管理する。例えば、歯列データ取得手段52は、受信にかかる超音波振動子が超音波振動子11aである3つの超音波データS(t2)、S(t3)、S(t4)を受け取る。超音波データ管理テーブル中の超音波データS(t2)、S(t3)、S(t4)の受信超音波振動子の欄を11aとして埋めることができる。次に、それぞれの周波数を調べ、対応する発信超音波振動子の欄を埋める。例えば、S(t2)は周波数がfaであるので発信超音波振動子の欄を11aとして埋めることができる。遅れ時間に関しては、例えば、超音波データS(t2)の受信時刻はt2であるが、発信時刻はt1であったのでt2−t1として遅れ時間の欄を埋めることができる。
以上の手順により歯列データ取得手段52は図7に示す超音波データ管理テーブルデータを作成する。
The dentition data acquisition means 52 manages two table data. This will be described using the example of FIG.
The dentition data acquisition means 52 obtains ultrasonic data frequency-resolved as shown in FIG. 6 from the ultrasonic data decomposition means 51 in a form arranged for each ultrasonic transducer related to reception. The dentition data acquisition means 52 organizes attribute data indicating which ultrasonic transducer transmits, receives which ultrasonic transducer, and how much delay time has occurred for each ultrasonic data. It is managed in the form of a sound wave data management table. For example, the dentition data acquisition unit 52 receives three ultrasonic data S (t2), S (t3), and S (t4) in which the ultrasonic transducer for reception is the ultrasonic transducer 11a. The column of the received ultrasonic transducer of ultrasonic data S (t2), S (t3), and S (t4) in the ultrasonic data management table can be filled as 11a. Next, each frequency is examined, and the corresponding transmission ultrasonic transducer column is filled. For example, since the frequency of S (t2) is fa, the field of the transmitting ultrasonic transducer can be filled with 11a. Regarding the delay time, for example, the reception time of the ultrasonic data S (t2) is t2, but since the transmission time is t1, the column of delay time can be filled as t2-t1.
Through the above procedure, the dentition data acquisition means 52 creates ultrasonic data management table data shown in FIG.

一方、超音波振動子間の位置情報は、歯列装着型枠10内に設けた各超音波振動子の位置(相対位置)は不変であり設計値としてあらかじめ既知である。つまり、超音波振動子間の位置情報管理テーブルの各欄のデータはあらかじめ歯列データ取得手段52に与えられ格納されているものとする。   On the other hand, the position information between the ultrasonic transducers is known in advance as a design value because the position (relative position) of each ultrasonic transducer provided in the dentition mounting mold 10 is unchanged. That is, it is assumed that the data in each column of the position information management table between the ultrasonic transducers is given to the dentition data acquisition unit 52 in advance and stored.

歯列データ取得手段52は、ステレオ計測の原理を用いて反射面データを計算・取得する。
まず、歯列データ取得手段52は、超音波データ管理テーブルを参照し、各超音波データごとにその遅れ時間と超音波の伝播速度より超音波が走った距離を計算する。次に、歯列データ取得手段52は、超音波振動子間の位置情報管理テーブルを参照し、各超音波データの発信および受信にかかる超音波振動子間の距離を抽出する。
The dentition data acquisition means 52 calculates and acquires reflection surface data using the principle of stereo measurement.
First, the dentition data acquisition means 52 refers to the ultrasonic data management table and calculates the distance traveled by the ultrasonic wave from the delay time and the ultrasonic wave propagation speed for each ultrasonic data. Next, the dentition data acquisition means 52 refers to the position information management table between the ultrasonic transducers, and extracts the distance between the ultrasonic transducers related to transmission and reception of each ultrasonic data.

次に、歯列データ取得手段52は、発信および受信にかかる超音波振動子間の距離と、実際に超音波が走った距離を比較すると、発信および受信にかかる超音波振動子と反射面との相対距離が求まる。ステレオ計測は2つ以上の超音波振動子からの相対距離を求めることで反射面の相対位置を特定する手法である。例えば、図5の例において、超音波データS(t2)、超音波データS(t5)、超音波データS(t8)の3つそれぞれを用い、超音波振動子11a、超音波振動子11b、超音波振動子11cそれぞれと歯Taの反射面との相対距離を求めることにより歯Taの反射面の正確な位置を決めることができる。同様に、歯Tbの反射面の正確な位置、歯Tcの反射面の正確な位置を決めることができる。
実際には上記のステレオ計測による反射面の位置決めを細かく精密に行い、所望の解像度の反射面の外表面形状データを取得する。
Next, the dentition data acquisition unit 52 compares the distance between the ultrasonic transducers for transmission and reception with the distance that the ultrasonic waves actually traveled. The relative distance of is obtained. Stereo measurement is a technique for specifying the relative position of the reflecting surface by obtaining the relative distance from two or more ultrasonic transducers. For example, in the example of FIG. 5, the ultrasonic transducer 11a, the ultrasonic transducer 11b, the ultrasonic data S (t2), the ultrasonic data S (t5), and the ultrasonic data S (t8) are used. By obtaining the relative distance between each ultrasonic transducer 11c and the reflecting surface of the tooth Ta, the exact position of the reflecting surface of the tooth Ta can be determined. Similarly, the exact position of the reflection surface of the tooth Tb and the accurate position of the reflection surface of the tooth Tc can be determined.
Actually, positioning of the reflecting surface by the above stereo measurement is performed finely and precisely, and the outer surface shape data of the reflecting surface having a desired resolution is acquired.

重畳部53は、歯列データ取得手段52で取得した反射面データを受け取り、各反射面データを重畳して行くことにより、歯列全体の外表面の3次元データを取得する部分である。歯列は馬蹄状に湾曲しているため一つの超音波振動子から発信された超音波でカバーされる範囲は狭く、一つの超音波振動子の発信にかかる超音波反射波で取得される一つ一つの反射面データは歯列の一部分の外表面の3次元データに過ぎない。そこで重畳部53によりすべての反射面データを重畳し、歯列全体の外表面の3次元データを作成する。   The superimposing unit 53 is a part that receives the reflecting surface data acquired by the dentition data acquiring unit 52 and acquires the three-dimensional data of the outer surface of the entire dentition by superimposing the reflecting surface data. Since the dentition is curved in a horseshoe shape, the range covered by the ultrasonic wave transmitted from one ultrasonic transducer is narrow, and one acquired by the ultrasonic reflected wave applied to the transmission of one ultrasonic transducer. Each reflection surface data is only three-dimensional data of the outer surface of a part of the dentition. Therefore, all the reflecting surface data is superimposed by the superimposing unit 53, and three-dimensional data of the outer surface of the entire dentition is created.

実施例1にかかる歯列3次元データ取得手段50は、上記手順により歯列3次元データを計算・取得する。なお、制御部20は、歯列3次元データ取得手段50が生成した歯列3次元データを出力することができる。ここでは出力後の歯列3次元データの利用方法については限定しないが、歯の詰め物の造形など歯科治療に利用する。例えば、歯の詰め物を造形する拠点が遠隔地にある場合、取得した歯列3次元データをCD−RやDVDなどの記録媒体に記録して持ち運んでも良く、ネットワークを介して当該拠点のコンピュータに送信しても良い。
本発明の歯列超音波診断装置100によれば、超音波を用いて歯列の外形表面を3次元データとして短時間に得ることができる。従来のように歯型を採取するためにプラスチック練り物を型枠に埋め、歯列を挿入してプラスチック練り物の硬化を待つという必要はなくなる。
The dentition three-dimensional data acquisition means 50 according to the first embodiment calculates and acquires dentition three-dimensional data according to the above procedure. The control unit 20 can output the dentition three-dimensional data generated by the dentition three-dimensional data acquisition unit 50. Here, the method of using the three-dimensional data of the dentition after output is not limited, but it is used for dental treatment such as modeling of a tooth filling. For example, when the base for modeling the tooth filling is located in a remote place, the acquired three-dimensional dentition data may be recorded on a recording medium such as a CD-R or DVD and carried to the computer at the base via the network. You may send it.
According to the dentition ultrasonic diagnostic apparatus 100 of the present invention, the external surface of the dentition can be obtained as three-dimensional data in a short time using ultrasonic waves. There is no need to wait for the plastic paste to harden by filling the mold with a plastic paste and then inserting a dentition to collect the tooth mold as in the prior art.

なお、本発明の実施例1の歯列超音波診断装置100は、読み取り対象物体である歯列の3次元外形データを取得するものであるが、さらにモニタを備え、歯列の3次元外形データを基に歯列の外表面形状の3次元画像を映し出す機能を備えた構成とすることも可能である。
このように採取した歯列の3次元外形データを基に歯列外表面形状の3次元画像を映し出す機能を備えておけば、歯列の3次元外形データが正確に採取できたのか否かを歯科医、歯科衛生士、患者がその場で目視することができる。また、患者に対して当該画像を用いてインフォームドコンセントを行なうことも可能となる。
In addition, although the dentition ultrasonic diagnostic apparatus 100 of Example 1 of this invention acquires the three-dimensional external shape data of the dentition which is a reading object, it is further provided with a monitor and the three-dimensional external data of the dentition It is also possible to adopt a configuration having a function of projecting a three-dimensional image of the outer surface shape of the dentition based on the above.
If a function for projecting a three-dimensional image of the outer surface of the dentition is provided based on the three-dimensional outline data of the dentition thus collected, it is determined whether or not the three-dimensional outline data of the dentition has been accurately collected. Dentists, dental hygienists and patients can see on the spot. It is also possible to give informed consent to the patient using the image.

実施例2の歯列超音波診断装置は、基本的構成は実施例1にかかる歯列超音波診断装置と同様であるが、超音波データ取得手段40における駆動方法と、歯列3次元データ取得手段50におけるステレオ計測の手法が少し異なるものとなっている。
上記実施例1において触れたが、歯列3次元データ取得手段50においてステレオ計測法により歯列3次元データを取得するには、発信にかかる超音波振動子11と受信にかかる超音波振動子11の相互の位置関係の情報と、超音波が発信されてから各々の超音波振動子で受信されるまでの時間の情報が必要であり、歯列3次元データ取得手段50における処理を簡素化するために第1の工夫と第2の工夫を挙げ、実施例1では第1の工夫を適用した例を示したが、実施例2では第2の工夫を適用した例を示す。第1の工夫は発信にかかる超音波振動子間で発信周波数を異なるものとし、周波数を手掛かりに発信にかかる超音波振動子を特定する工夫であったが、第2の工夫は発信にかかる超音波振動子間で発信タイミングを異なるものとし、受信タイミングにより発信にかかる超音波振動子を特定する工夫である。
The basic configuration of the dentition ultrasound diagnostic apparatus of the second embodiment is the same as that of the dentition ultrasound diagnostic apparatus according to the first embodiment. However, the driving method in the ultrasound data acquisition unit 40 and the dentition three-dimensional data acquisition are the same. The method of stereo measurement in means 50 is slightly different.
As mentioned in the first embodiment, in order to acquire the dentition three-dimensional data by the stereo measurement method in the dentition three-dimensional data acquisition means 50, the ultrasonic transducer 11 for transmission and the ultrasonic transducer 11 for reception. Information on the positional relationship between them and information on the time from when the ultrasonic waves are transmitted until they are received by the respective ultrasonic transducers are required, and the processing in the dentition three-dimensional data acquisition means 50 is simplified. For this purpose, the first device and the second device are used. In the first embodiment, the first device is applied. In the second embodiment, the second device is applied. The first contrivance was to devise a different transmission frequency between the ultrasonic vibrators for transmission and to identify the ultrasonic vibrator for transmission using the frequency as a clue. This is a device for specifying the ultrasonic transducer for transmission according to the reception timing, with different transmission timings between the ultrasonic transducers.

実施例2の歯列超音波診断装置の基本的構成は図1に示した構成と同様で良く、歯列装着型枠10の形状は図2のものと同様で良く、歯列装着型枠の凹部の内壁面には図3の縦断面図に示すように超音波振動子11が設けられている。
制御部20は実施例1と同様、超音波データ取得手段40と歯列3次元データ取得手段50が設けられている。
実施例2の超音波データ取得手段40は、超音波振動子アレイの超音波発信をそれぞれの超音波振動子11ごとに一つずつシーケンシャルに行う。超音波反射波の受信は発信にかかる超音波振動子およびその近隣の超音波振動子から選ばれた2つ以上の超音波振動子によりパラレルに行う。
The basic configuration of the dentition ultrasonic diagnostic apparatus of the second embodiment may be the same as the configuration shown in FIG. 1, and the shape of the dentition mounting mold 10 may be the same as that of FIG. As shown in the longitudinal sectional view of FIG. 3, an ultrasonic transducer 11 is provided on the inner wall surface of the recess.
As in the first embodiment, the control unit 20 includes an ultrasonic data acquisition unit 40 and a dentition three-dimensional data acquisition unit 50.
The ultrasonic data acquisition unit 40 according to the second embodiment sequentially performs ultrasonic transmission of the ultrasonic transducer array one by one for each ultrasonic transducer 11. The reception of the ultrasonic reflected wave is performed in parallel by two or more ultrasonic transducers selected from the ultrasonic transducer for transmission and the neighboring ultrasonic transducers.

図8は、超音波振動子11ごと一つずつシーケンシャルに超音波発信を行う様子を模式的に説明した図であり、図9は図8の発信を受け、隣接する超音波振動子において超音波反射波を受信する様子を模式的に説明した図である。
図8の例では超音波振動子11aがタイミングt10にて超音波S(t10)を周波数faで発信している様子を示している。
FIG. 8 is a diagram schematically illustrating a state in which ultrasonic transmission is sequentially performed for each ultrasonic transducer 11 one by one, and FIG. It is the figure which demonstrated a mode that the reflected wave was received.
The example of FIG. 8 shows a state in which the ultrasonic transducer 11a transmits the ultrasonic wave S (t10) at the frequency fa at the timing t10.

この超音波振動子11aの発信タイミングt10から、超音波振動子11aおよびその隣接する超音波振動子は一定期間の受信モードに入る。当該期間は歯列表面で反射して帰ってくるまでの期間が適切にカバーされていれば良い。ステレオ計測を行うので受信にかかる超音波振動子として2つ以上選択する。図9の例では、受信モードに入っている各超音波振動子11a〜11cにおいて超音波反射波が受信される。超音波振動子11aにおいて時刻t11で超音波反射波S(t11)が受信され、超音波振動子11bにおいて時刻t12で超音波反射波S(t12)が受信され、超音波振動子11cにおいて時刻t13で超音波反射波S(t13)が受信される。   From the transmission timing t10 of the ultrasonic transducer 11a, the ultrasonic transducer 11a and its adjacent ultrasonic transducer enter the reception mode for a certain period. It is only necessary that the period until the period of reflection after returning from the dentition surface is appropriately covered. Since stereo measurement is performed, two or more ultrasonic transducers for reception are selected. In the example of FIG. 9, ultrasonic reflected waves are received by the ultrasonic transducers 11a to 11c in the reception mode. The ultrasonic transducer 11a receives the ultrasonic reflected wave S (t11) at time t11, the ultrasonic transducer 11b receives the ultrasonic reflected wave S (t12) at time t12, and the ultrasonic transducer 11c receives the time t13. The ultrasonic reflected wave S (t13) is received.

時刻t10の発信にかかる超音波に対する受信モードが経過した後、次に、図10に示すように、超音波振動子11bがタイミングt20にて超音波S(t20)を周波数faで発信する。この超音波振動子11bの発信タイミングt20から各超音波振動子は一定期間の受信モードに入る。図11に示すように、受信モードに入っている各超音波振動子11a〜11cにおいて超音波反射波が受信される。超音波振動子11aにおいて時刻t21で超音波反射波S(t21)が受信され、超音波振動子11bにおいて時刻t22で超音波反射波S(t22)が受信され、超音波振動子11cにおいて時刻t23で超音波反射波S(t23)が受信される。
図8から図11に示す手順を次々と繰り返し、受発信処理をシーケンシャルに実行して行く。
After the reception mode for the ultrasonic wave for transmission at time t10 has elapsed, as shown in FIG. 10, the ultrasonic transducer 11b transmits the ultrasonic wave S (t20) at the frequency fa at timing t20. From the transmission timing t20 of the ultrasonic transducer 11b, each ultrasonic transducer enters a reception mode for a certain period. As shown in FIG. 11, ultrasonic reflected waves are received by the ultrasonic transducers 11a to 11c that are in the reception mode. The ultrasonic transducer 11a receives the ultrasonic reflected wave S (t21) at time t21, the ultrasonic transducer 11b receives the ultrasonic reflected wave S (t22) at time t22, and the ultrasonic transducer 11c receives the time t23. The ultrasonic reflected wave S (t23) is received.
The procedure shown in FIGS. 8 to 11 is repeated one after another, and the transmission / reception processing is executed sequentially.

この第2の工夫を用いる例では、超音波振動子による発信は1つずつであるので、受信にかかる超音波振動子には他の超音波振動子から発信された超音波の混在はなく、発信にかかる超音波振動子を一意に定めることができる。
この第2の工夫を用いる例では、歯列3次元データ取得手段50は、図12に示すように、歯列データ取得手段52と重畳手段53を備えており、周波数分解手段51に相当するものが設けられていない。第2の工夫では受信された超音波データの発信にかかる超音波振動子の特定を周波数ではなく、タイミングで特定するため、周波数分解の機能は設けておく必要がないためである。
In the example using the second device, since the transmission by the ultrasonic transducer is one by one, the ultrasonic transducer for reception does not include a mixture of ultrasonic waves transmitted from other ultrasonic transducers. An ultrasonic transducer for transmission can be uniquely determined.
In the example using the second device, the dentition three-dimensional data acquisition unit 50 includes a dentition data acquisition unit 52 and a superimposition unit 53 as shown in FIG. Is not provided. This is because, in the second device, since the identification of the ultrasonic transducer related to the transmission of the received ultrasonic data is specified not by the frequency but by the timing, it is not necessary to provide a frequency decomposition function.

歯列データ取得手段52は、超音波データ管理テーブルと超音波振動子間の位置情報管理テーブルの2つのテーブルデータを管理する。図13の例を用いつつ説明する。
歯列データ取得手段52は、超音波データ分解手段51から各受信モードで受信された超音波データを得る。歯列データ取得手段52は、それぞれの超音波データについて、どの超音波振動子で発信され、どの超音波振動子で受信され、どれだけの遅延時間が発生したかの属性データを整理して超音波データ管理テーブルの形で管理する。例えば、発信タイミングt10(発信にかかる超音波振動子は11a)に対応する受信モードにかかる3つの超音波データS(t11)、S(t12)、S(t13)を受け取る。超音波データ管理テーブル中の超音波データS(t11)、S(t12)、S(t13)の発信超音波振動子の欄を11aとして埋めることができる。受信超音波振動子の欄はそれぞれ11a,11b,11cとして埋めることができる。遅れ時間に関しては、例えば、超音波データS(t11)の受信時刻はt11であるが、発信時刻はt10であったのでt11−t10として遅れ時間の欄を埋めることができる。
以上の手順により歯列データ取得手段52は図13に示す超音波データ管理テーブルデータを作成する。
The dentition data acquisition means 52 manages two table data, that is, an ultrasonic data management table and a position information management table between the ultrasonic transducers. This will be described using the example of FIG.
The dentition data obtaining unit 52 obtains ultrasonic data received in each reception mode from the ultrasonic data decomposing unit 51. The dentition data acquisition means 52 organizes attribute data indicating which ultrasonic transducer transmits, receives which ultrasonic transducer, and how much delay time has occurred for each ultrasonic data. It is managed in the form of a sound wave data management table. For example, three ultrasonic data S (t11), S (t12), and S (t13) related to the reception mode corresponding to the transmission timing t10 (the ultrasonic transducer for transmission is 11a) are received. The field of the transmitting ultrasonic transducer of the ultrasonic data S (t11), S (t12), S (t13) in the ultrasonic data management table can be filled as 11a. The fields of the reception ultrasonic transducer can be filled as 11a, 11b, and 11c, respectively. Regarding the delay time, for example, the reception time of the ultrasound data S (t11) is t11, but since the transmission time is t10, the delay time column can be filled as t11-t10.
Through the above procedure, the dentition data acquisition means 52 creates ultrasonic data management table data shown in FIG.

一方、超音波振動子間の位置情報は、歯列装着型枠10内に設けた各超音波振動子の位置(相対位置)は不変であり設計値としてあらかじめ既知である。つまり、超音波振動子間の位置情報管理テーブルの各欄のデータはあらかじめ歯列データ取得手段52に与えられ格納されているものとする。
歯列データ取得手段52は、実施例1と同様、超音波データ管理テーブルと超音波振動子間の位置情報管理テーブルの2つのテーブルデータが得られれば、ステレオ計測の原理を用いて反射面データを計算・取得することができる。
実際には上記のステレオ計測による反射面の位置決めを細かく精密に行い、所望の解像度の反射面の外表面形状データを取得する。
On the other hand, the position information between the ultrasonic transducers is known in advance as a design value because the position (relative position) of each ultrasonic transducer provided in the dentition mounting mold 10 is unchanged. That is, it is assumed that the data in each column of the position information management table between the ultrasonic transducers is given to the dentition data acquisition unit 52 in advance and stored.
As in the first embodiment, the dentition data acquisition means 52 can obtain reflection surface data using the principle of stereo measurement if two table data of an ultrasonic data management table and a position information management table between ultrasonic transducers are obtained. Can be calculated and obtained.
Actually, positioning of the reflecting surface by the above stereo measurement is performed finely and precisely, and the outer surface shape data of the reflecting surface having a desired resolution is acquired.

重畳部53は、歯列データ取得手段52で取得した反射面データを受け取り、各反射面データを重畳して行く。重畳部53によりすべての反射面データを重畳し、歯列全体の外表面の3次元データを作成する。
歯列3次元データ取得手段50は、上記手順により歯列3次元データを計算・取得する。
The superimposing unit 53 receives the reflecting surface data acquired by the dentition data acquiring means 52 and superimposes each reflecting surface data. All the reflecting surface data are superimposed by the superimposing unit 53, and three-dimensional data of the outer surface of the entire dentition is created.
The dentition three-dimensional data acquisition means 50 calculates and acquires the dentition three-dimensional data according to the above procedure.

次に、超音波発信のシーケンシャル処理と超音波受信のパラレル処理を各群ごとに行う工夫について述べる。
歯列超音波診断装置は歯列を読み取るが、歯列前面と歯列裏面と歯列噛み合わせ面の各面に対する超音波の発信と超音波反射波の受信は相互に混在・干渉することは少ないので、発信をすべての超音波振動子についてシーケンシャルに処理しなくても、歯列前面と歯列裏面と歯列噛み合わせ面のグループ分けをすれば各グループ単位で相互に独立して処理しても問題は少ない。
そこで、超音波振動子アレイの超音波振動子を、歯列前面に対応する群と、歯列裏面に対応する群と、歯列噛みあわせ面に対応する群に分け、超音波データ取得手段40において、各群ごと独立に超音波発信のシーケンシャル処理と超音波受信のパラレル処理を行うこととすることができる。
Next, a device for performing sequential processing of ultrasonic transmission and parallel processing of ultrasonic reception for each group will be described.
The dentition ultrasonic diagnostic device reads the dentition, but the transmission of ultrasonic waves and the reception of ultrasonic reflected waves to each surface of the front surface of the dentition, the back surface of the dentition, and the meshing surface of the dentition are mixed and interfere with each other Therefore, even if the transmission is not processed sequentially for all ultrasonic transducers, if the front of the dentition, the back of the dentition, and the dentition meshing surface are grouped, they can be processed independently for each group. But there are few problems.
Therefore, the ultrasonic transducers of the ultrasonic transducer array are divided into a group corresponding to the front surface of the dentition, a group corresponding to the back surface of the dentition, and a group corresponding to the dentition meshing surface. In the above, sequential transmission processing of ultrasonic transmission and parallel processing of ultrasonic reception can be performed independently for each group.

図14と図15は、発信にかかる超音波振動子の選択を各群ごと独立に行う様子を模式的に示した図である。なお、実際の歯列装着型枠10は馬蹄状に湾曲しており超音波振動子アレイは湾曲しているが、説明の便宜上、超音波振動子アレイの並びを模式的に直線的に示している。   FIG. 14 and FIG. 15 are diagrams schematically showing how the ultrasonic transducers for transmission are selected independently for each group. Although the actual dentition mounting form 10 is curved in a horseshoe shape and the ultrasonic transducer array is curved, for convenience of explanation, the arrangement of the ultrasonic transducer arrays is schematically shown linearly. Yes.

図14に示すパターン1は、歯列前面に対応する群と、歯列噛みあわせ面に対応する群と、歯列裏面に対応する群の各群とも、左端(左の奥歯側)から右側(右の奥歯側)までシーケンシャルに発信にかかる超音波振動子を選択していくものである。
図15に示すパターン2は、歯列前面に対応する群と、歯列噛みあわせ面に対応する群と、歯列裏面に対応する群において、選択する超音波振動子の場所を適宜ずらしたものである。この例では、歯列前面に対応する群は左端(左の奥歯側)から右側(右の奥歯側)までシーケンシャルに発信にかかる超音波振動子を選択していく。歯列噛みあわせ面に対応する群は歯列全体のうち左端から3分の1あたりを始点として右端に向かってシーケンシャルに発信にかかる超音波振動子を選択してゆき、右端に到達すれば左端に飛んで左端から始点までの残りを選択してゆく。歯列裏面に対応する群は歯列全体のうち左端から3分の2あたりを始点として右端に向かってシーケンシャルに発信にかかる超音波振動子を選択してゆき、右端に到達すれば左端に飛んで左端から始点までの残りを選択してゆく。
In the pattern 1 shown in FIG. 14, the group corresponding to the front surface of the dentition, the group corresponding to the dentition meshing surface, and the group corresponding to the back surface of the dentition are both on the right side (from the left back tooth side). The ultrasonic transducers for transmission are sequentially selected up to the right back tooth side).
Pattern 2 shown in FIG. 15 is obtained by appropriately shifting the location of the ultrasonic transducer to be selected in the group corresponding to the front surface of the dentition, the group corresponding to the dentition meshing surface, and the group corresponding to the back surface of the dentition. It is. In this example, the group corresponding to the front surface of the dentition sequentially selects ultrasonic transducers for transmission from the left end (left back tooth side) to the right side (right back tooth side). The group corresponding to the dentition meshing surface is the left end of the entire dentition, selecting the ultrasonic transducer for sequential transmission from the left end to the right end starting from the left end, and reaching the right end. Jump to and select the rest from the left end to the starting point. The group corresponding to the back surface of the dentition selects the ultrasonic transducer for transmission sequentially from the left end of the entire dentition to the right end, and jumps to the left end when reaching the right end. To select the rest from the left end to the start point.

実施例3にかかる超音波診断装置は、超音波振動子により歯列の外表面から内部に超音波を発信・打ち込んで超音波振動子により歯列の内部から反射する反射波を受信して超音波データを得るものである。
超音波診断により歯列内部の様子を調べることができれば、歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波反射率や超音波吸収率の違いから虫歯部分の存在を検知する虫歯検知機能を実現することができる。
The ultrasonic diagnostic apparatus according to the third embodiment transmits and drives ultrasonic waves from the outer surface of the dentition by the ultrasonic transducer and receives reflected waves reflected from the dentition by the ultrasonic transducer. Sound wave data is obtained.
If the state inside the dentition can be examined by ultrasonic diagnosis, in the three-dimensional data inside the dentition, caries that detects the presence of a dentition from the difference in ultrasonic reflectivity and absorption rate between the healthy part and the cavities A detection function can be realized.

一般に、歯などの硬い物体に対して一つの超音波振動子により単に超音波を照射すれば、図16(a)に示すように、その境界面(歯の外表面)での反射が大きく内部に打ち込まれる量は少ない。そこで、図16(b)に示すように、複数の超音波振動子を用いて歯の内部の所定位置で共振させることにより超音波を歯の内部に打ち込む。本発明の歯列装着型枠10の凹部の内壁面には超音波振動子アレイが設けられているので、当該超音波振動子アレイにより複数の超音波を発信して共振させ、当該位置を前後左右に移動させて行くことにより歯列の表面から裏面までの内部に超音波を打ち込んで行く。歯列内部の所望の位置において共振の結果、発生した超音波について当該場所において反射が起こり、超音波反射波が超音波振動子に帰ってくる。当該超音波反射波を基に、実施例1または2に示したステレオ計測を用いた歯列3次元データの取得方法により歯列内部のデータを得る。   In general, when an ultrasonic wave is simply applied to a hard object such as a tooth by a single ultrasonic vibrator, the reflection at the boundary surface (outer surface of the tooth) is large as shown in FIG. The amount that is driven into is small. Therefore, as shown in FIG. 16B, ultrasonic waves are driven into the teeth by resonating at predetermined positions inside the teeth using a plurality of ultrasonic transducers. Since the ultrasonic transducer array is provided on the inner wall surface of the concave portion of the dentition mounting mold 10 of the present invention, a plurality of ultrasonic waves are transmitted and resonated by the ultrasonic transducer array, and the position is moved back and forth. By moving left and right, ultrasonic waves are driven into the interior from the front surface to the back surface of the dentition. As a result of resonance at a desired position inside the dentition, the generated ultrasonic wave is reflected at the location, and the ultrasonic reflected wave returns to the ultrasonic transducer. Based on the reflected ultrasonic wave, data in the dentition is obtained by the method for acquiring dentition three-dimensional data using stereo measurement described in the first or second embodiment.

実施例3の超音波診断装置の基本構成ブロック図を図17に示す。
歯列装着型枠10は実施例1で説明したものと同様で良いが、ここではブロック図で示している。
FIG. 17 shows a basic configuration block diagram of an ultrasonic diagnostic apparatus according to the third embodiment.
The dentition mounting form 10 may be the same as that described in the first embodiment, but is shown here in a block diagram.

制御部20の超音波データ取得手段40は、共振制御手段41を備え、歯列装着型枠10の2つ以上の超音波振動子11を操作し、歯列の内部の所望位置で超音波が共振するように発信する機能を備えている。歯列内部での共振位置は共振制御手段41によって超音波振動子11の発信(発射角度、タイミングなど)を調整することにより自由に設定すること可能である。ここでは共振位置を走査して歯列内部のすべての部分についてデータを取得する。
歯列3次元データ取得手段50は実施例1または実施例2に示したものと同様で良いが、歯列データ取得手段52は、単に歯列の外表面データのみならず、歯列内部において反射するデータを基に歯列内部のデータを取得する。
The ultrasonic data acquisition unit 40 of the control unit 20 includes a resonance control unit 41, and operates two or more ultrasonic transducers 11 of the dentition mounting mold 10 to generate ultrasonic waves at a desired position inside the dentition. It has a function to transmit so as to resonate. The resonance position inside the dentition can be freely set by adjusting the transmission (launch angle, timing, etc.) of the ultrasonic transducer 11 by the resonance control means 41. Here, the resonance position is scanned, and data is acquired for all portions in the dentition.
The dentition three-dimensional data acquisition unit 50 may be the same as that shown in the first or second embodiment, but the dentition data acquisition unit 52 reflects not only the outer surface data of the dentition but also the inside of the dentition. Based on the data to be acquired, the data inside the dentition is acquired.

本実施例3の超音波診断装置は、虫歯検知機能60を備えた例となっている。虫歯検知機能60は、歯列3次元データ取得手段50から受け取った歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波反射率の違いから虫歯部分の存在を検知する。虫歯の状態にもよるが、虫歯部分の超音波反射率が健常部分の超音波反射率より小さい患部の場合(つまり吸収率が大きい患部の場合)、超音波反射率を比較してゆき、超音波反射率が小さい部分を虫歯として検知する。また、虫歯部分の超音波反射率が健常部分の超音波反射率より大きい患部の場合(つまり吸収率が小さい患部の場合)、超音波反射率を比較してゆき、超音波反射率が大きい部分を虫歯として検知する。   The ultrasonic diagnostic apparatus according to the third embodiment is an example provided with a caries detection function 60. The caries detection function 60 detects the presence of a caries part from the difference in ultrasonic reflectance between the healthy part and the caries part in the 3D data inside the tooth array received from the tooth array 3D data acquisition means 50. Depending on the condition of the caries, if the affected part has an ultrasonic reflectivity lower than that of the healthy part (ie, if the affected part has a higher absorption rate), the ultrasonic reflectivity is compared. A portion having a low acoustic reflectance is detected as a decayed tooth. Also, in the case of an affected part where the ultrasonic reflectivity of the caries part is larger than the ultrasonic reflectivity of the healthy part (that is, in the case of an affected part with a low absorption rate), the ultrasonic reflectivity is compared, and the part where the ultrasonic reflectivity is large Is detected as a decayed tooth.

画像表示機能70は、歯列内部の3次元データおよび虫歯検知の結果を表示する機能を備えている。歯列内部の3次元データを受けて画像化し、モニタ(図示せず)上に歯列内部の3次元画像を表示する。あたかも従来の歯列のレントゲン写真画像のように、反射率を濃淡に置き換えて画像化しても良い。また、虫歯検知機能により検知した虫歯の診断結果を受け、当該虫歯と判断した個所をハイライト表示することも可能である。
なお、上記において虫歯検知手段60は、健常部分と虫歯部分の超音波反射率の違いから虫歯部分の存在を検知する機能としたが、健常部分と虫歯部分の超音波吸収率の違いから虫歯部分の存在を検知する機能としても良い。
The image display function 70 has a function of displaying the three-dimensional data inside the dentition and the result of tooth decay detection. 3D data inside the dentition is received and imaged, and a 3D image inside the dentition is displayed on a monitor (not shown). As in a conventional X-ray image of a dentition, the reflectance may be replaced with light and shade to form an image. It is also possible to receive a diagnosis result of the caries detected by the caries detection function and to highlight the portion determined to be the caries.
In the above description, the caries detection means 60 has a function of detecting the presence of the caries part from the difference in the ultrasonic reflectance between the healthy part and the caries part, but the caries part from the difference in the ultrasonic absorption rate between the healthy part and the caries part. It is good also as a function which detects the existence of.

実施例4にかかる超音波診断装置は、超音波振動子により歯列の外表面から内部に超音波を発信・打ち込んで超音波振動子により歯列の内部を通過した通過波を受信して超音波データを得るものである。
歯列装着型枠は、図1から図3に示すように全体が馬蹄状の形状を持ち凹部の内壁面に超音波振動子アレイが設けられている構造をしているが、歯列前面に対応する超音波振動子アレイと歯列裏面に対応する超音波振動子アレイが歯列を挟んで対向し合うように並んでいる。そこで、一方(例えば歯列表面側)の超音波振動子アレイから実施例3に示したように共振により歯列内部に打ち込んだ超音波が歯列内部を通過し、対向する他方(例えば歯列裏面側)の超音波振動子アレイにおいて受信することが可能である。
超音波診断により歯列内部の様子を調べることができれば、歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波反射率や吸収率の違いから虫歯部分の存在を検知する虫歯検知機能を実現することができる。
In the ultrasonic diagnostic apparatus according to the fourth embodiment, an ultrasonic wave is transmitted and driven from the outer surface of the dentition to the inside by the ultrasonic vibrator, and a passing wave that has passed through the inside of the dentition is received by the ultrasonic vibrator. Sound wave data is obtained.
As shown in FIGS. 1 to 3, the dentition mounting mold has a horseshoe-like shape as a whole and is provided with an ultrasonic transducer array on the inner wall surface of the recess. The corresponding ultrasonic transducer array and the ultrasonic transducer array corresponding to the back surface of the dentition are arranged so as to face each other across the dentition. Therefore, as shown in the third embodiment, the ultrasonic wave driven into the dentition by resonance from one (for example, the dentition surface side) passes through the inside of the dentition and is opposed to the other (for example, the dentition). It can be received by the ultrasonic transducer array on the back side.
If the state inside the dentition can be examined by ultrasonic diagnosis, the caries detection function detects the presence of the cavities in the three-dimensional data inside the dentition from the difference in the ultrasonic reflectance and absorption rate between the healthy part and the caries part. Can be realized.

図18は歯列内を通過する超音波通過波によって歯列内部のデータを得る原理を簡単に説明したものである。一般には図18(a)に示すように、その境界面(歯の外表面)での反射が大きく内部に打ち込まれる量は少ないが。そこで、実施例3と同様、図18(b)に示すように、複数の超音波振動子を用いて歯の内部の位置で共振させることにより超音波を歯の内部に打ち込む。本発明の歯列装着型枠10の凹部の内壁面には超音波振動子アレイが設けられているので、当該超音波振動子アレイにより複数の超音波を発信して共振させ、当該位置を前後左右に移動させて行くことにより歯列の表面から裏面までの内部に超音波を打ち込んで行く。歯列内部の所望の位置において共振の結果、発生した超音波について当該場所において吸収が起こる。ここで、超音波通過波が対向する超音波振動子(11q、11rなど)に到達する。この超音波通過波を基に、実施例1または2に示したステレオ計測を用いた歯列3次元データの取得方法により歯列内部のデータを得る。   FIG. 18 briefly explains the principle of obtaining the data inside the dentition by the ultrasonic wave passing through the dentition. In general, as shown in FIG. 18 (a), the reflection at the boundary surface (outer surface of the tooth) is large and the amount driven into the inside is small. Thus, as in the third embodiment, as shown in FIG. 18B, ultrasonic waves are driven into the teeth by resonating at positions inside the teeth using a plurality of ultrasonic transducers. Since the ultrasonic transducer array is provided on the inner wall surface of the concave portion of the dentition mounting mold 10 of the present invention, a plurality of ultrasonic waves are transmitted and resonated by the ultrasonic transducer array, and the position is moved back and forth. By moving left and right, ultrasonic waves are driven into the interior from the front surface to the back surface of the dentition. As a result of resonance at the desired location within the dentition, absorption occurs at that location for the generated ultrasound. Here, the ultrasonic passing wave reaches the opposing ultrasonic transducer (11q, 11r, etc.). Based on this ultrasonic wave, data in the dentition is obtained by the method for acquiring dentition three-dimensional data using stereo measurement shown in the first or second embodiment.

実施例4の超音波診断装置の基本構成ブロック図を図19に示す。
歯列装着型枠10は実施例1で説明したものと同様で良いが、ここではブロック図で示している。
FIG. 19 shows a basic configuration block diagram of an ultrasonic diagnostic apparatus according to the fourth embodiment.
The dentition mounting form 10 may be the same as that described in the first embodiment, but is shown here in a block diagram.

制御部20の超音波データ取得手段40は、共振制御手段41と受信制御手段42を備えている。共振制御手段41は、実施例3と同様、歯列装着型枠10の2つ以上の超音波振動子11を操作し、歯列の内部の所望位置で超音波が共振するように発信する機能を備えている。歯列内部での共振位置は共振制御手段41によって超音波振動子11の発信(発射角度、タイミングなど)を調整することにより自由に設定すること可能である。ここでは共振位置を走査して歯列内部のすべての部分についてデータを取得する。   The ultrasonic data acquisition unit 40 of the control unit 20 includes a resonance control unit 41 and a reception control unit 42. Similar to the third embodiment, the resonance control unit 41 operates two or more ultrasonic transducers 11 of the dentition mounting mold 10 and transmits the ultrasonic waves so that they resonate at desired positions inside the dentition. It has. The resonance position inside the dentition can be freely set by adjusting the transmission (launch angle, timing, etc.) of the ultrasonic transducer 11 by the resonance control means 41. Here, the resonance position is scanned, and data is acquired for all portions inside the dentition.

受信制御手段42は、歯列の超音波通過波に限定して超音波を捉えるために受信にかかる超音波振動子を選択するものであり、発信にかかる超音波振動子とは対向する面に存在する超音波振動子を受信にかかるものとして選択する。例えば、歯列表面側の2つの超音波振動子11aと11bを選択して操作し、超音波を共振させて歯列内部に超音波を打ち込んだ場合において、受信にかかる超音波振動子を対向する歯列裏面側の2つ以上の超音波振動子11qと11rを選択する。歯列内部に打ち込まれた超音波は歯列の表面側に対して反射して戻ってくるものもあるが、ここでは歯列を通過して裏面側に突き抜けたものを受信すべく、超音波振動子を選択するのである。   The reception control means 42 selects an ultrasonic transducer for reception in order to capture the ultrasonic wave limited to the ultrasonic wave passing through the dentition, and is placed on a surface facing the ultrasonic transducer for transmission. An existing ultrasonic transducer is selected as the one related to reception. For example, when two ultrasonic transducers 11a and 11b on the dentition surface side are selected and operated, and ultrasonic waves are driven into the dentition by resonating ultrasonic waves, the ultrasonic transducers for reception are opposed to each other. Two or more ultrasonic transducers 11q and 11r on the back side of the dentition to be selected are selected. Some of the ultrasonic waves that are driven into the dentition are reflected back to the front side of the dentition, but here, in order to receive what has passed through the dentition and penetrated to the back side, The vibrator is selected.

歯列3次元データ取得手段50は実施例1または実施例2に示したものと同様で良いが、通過面データ取得手段52は、歯列内部を通過して得られたデータを基に歯列内部のデータを取得する。   The dentition three-dimensional data acquisition means 50 may be the same as that shown in the first or second embodiment, but the passage surface data acquisition means 52 is based on the data obtained by passing through the dentition. Get internal data.

本実施例4の超音波診断装置は、虫歯検知機能60を備えた構成となっているが、この虫歯検知機能60は、歯列3次元データ取得手段50から受け取った歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波吸収率の違いから虫歯部分の存在を検知する。虫歯の状態にもよるが、虫歯部分の超音波吸収率が健常部分の超音波吸収率より小さい患部の場合、超音波吸収率を比較してゆき、超音波吸収率が小さい部分を虫歯として検知する。また、虫歯部分の超音波吸収率が健常部分の超音波吸収率より大きい患部の場合、超音波吸収率を比較してゆき、超音波吸収率が大きい部分を虫歯として検知する。   The ultrasonic diagnostic apparatus according to the fourth embodiment has a configuration including a caries detection function 60, and the caries detection function 60 receives the three-dimensional data inside the dentition received from the dentition three-dimensional data acquisition means 50. , The presence of the caries part is detected from the difference in the ultrasonic absorption rate between the healthy part and the caries part. Depending on the condition of the caries, if the affected part has a lower ultrasonic absorption rate than the healthy part, the ultrasonic absorption rate is compared, and the part with a lower ultrasonic absorption rate is detected as a decayed tooth. To do. Further, in the case of an affected part where the ultrasonic absorption rate of the caries portion is larger than the ultrasonic absorption rate of the healthy portion, the ultrasonic absorption rates are compared, and a portion having a high ultrasonic absorption rate is detected as a caries.

なお、実施例3と実施例4を組み合わせた構成も可能である。つまり、発信にかかる2つ以上の超音波振動子を用いて超音波を共振させて歯列内部に打ち込み、歯列内部で反射して戻ってくる超音波反射波を発信と同じ側の超音波振動子により受信し、歯列内部を通過して突き抜ける超音波通過波を発信とは対向する側の超音波振動子により受信する構成も可能である。   In addition, the structure which combined Example 3 and Example 4 is also possible. That is, two or more ultrasonic transducers for transmission are used to resonate the ultrasonic wave and drive it into the dentition, and the reflected ultrasonic wave reflected back inside the dentition is returned on the same side as the transmission. A configuration is also possible in which the ultrasonic wave that is received by the vibrator and passes through the inside of the dentition is received by the ultrasonic vibrator on the side opposite to the transmission.

実施例5は、歯の詰め物造形装置の構成例を示している。
実施例5にかかる歯の詰め物造形装置は、歯列の3次元データの入力を受け付け、当該歯列の3次元データに基づき、生成すべき箇所の指定を受けると当該箇所の歯の詰め物を自動的に造形する装置である。
Example 5 has shown the structural example of the tooth stuffing shaping | molding apparatus.
The tooth filling modeling apparatus according to the fifth embodiment receives input of three-dimensional data of a dentition, and automatically receives the specification of a portion to be generated based on the three-dimensional data of the dentition. It is a device for modeling.

図20は、本発明の歯の詰め物造形装置の構成例を模式的に示す図である。上記本発明の超音波診断装置100と、自動3次元立体物造形装置200を備えている。
本発明の超音波診断装置100は上記実施例1や実施例2に示した構成のもので良い。
FIG. 20 is a diagram schematically illustrating a configuration example of the tooth filling modeling apparatus of the present invention. The ultrasonic diagnostic apparatus 100 according to the present invention and an automatic three-dimensional solid modeling apparatus 200 are provided.
The ultrasonic diagnostic apparatus 100 according to the present invention may have the configuration shown in the first and second embodiments.

自動3次元立体物造形装置200は、入力された3次元データに基づいて3次元立体物を造形するものであり、公知技術として存在する物で良い。ただし、本発明の歯の詰め物造形装置に適用されるものは、造形材料が歯の詰め物(差し歯、歯の被せ物、歯のブリッジ物など)を製作する材料を用いて3次元立体物を自動的に造形する。3次元立体物の造形に必要な3次元データは上記実施例1や実施例2に示した歯列超音波診断装置100から受ける。歯列超音波診断装置100により採取した歯列の外表面形状の3次元データを入力し、歯列の外表面形状の3次元データを基に、自動3次元立体物造形装置により歯の詰め物を自動的に製作する。
従来のように歯の詰め物を製作するために一週間や10日間の期間を要することなく、歯科医院の中でその場で即座に歯の詰め物を造形することが可能となる。
The automatic three-dimensional three-dimensional object formation apparatus 200 forms a three-dimensional three-dimensional object based on the input three-dimensional data, and may be an existing object. However, what is applied to the tooth filling molding apparatus of the present invention is that a three-dimensional solid object is automatically created using a material for forming a tooth filling (such as an insertion tooth, a tooth covering, or a tooth bridge). Modeling. The three-dimensional data necessary for modeling the three-dimensional solid object is received from the dentition ultrasonic diagnostic apparatus 100 shown in the first and second embodiments. The three-dimensional data of the outer surface shape of the dentition collected by the dentition ultrasonic diagnostic apparatus 100 is input, and the tooth padding is performed by the automatic three-dimensional three-dimensional object shaping apparatus based on the three-dimensional data of the outer surface shape of the dentition. Produced automatically.
It is possible to form a tooth filling immediately on the spot in a dental clinic without requiring a period of one week or 10 days to produce a tooth filling as in the prior art.

また、さらに、図20(b)に示した構成例のように、ネットワーク300を介して超音波診断装置100と自動3次元立体物造形装置200をつなぎ、超音波診断装置100で採取した歯列の外表面形状の3次元画像データをネットワークを介して自動3次元立体物造形装置200に送信することも可能である。このように歯列の外表面形状の3次元画像データをネットワーク300を介して遠隔地に居る技工士(歯の詰め物を成型する技工士)に送信することも可能である。   Furthermore, as in the configuration example shown in FIG. 20B, the dentition taken by the ultrasonic diagnostic apparatus 100 by connecting the ultrasonic diagnostic apparatus 100 and the automatic three-dimensional three-dimensional object forming apparatus 200 via the network 300. It is also possible to transmit the three-dimensional image data of the outer surface shape to the automatic three-dimensional three-dimensional object forming apparatus 200 via the network. As described above, it is also possible to transmit the three-dimensional image data of the outer surface shape of the dentition to a technician (technical engineer who forms a tooth filling) located in a remote place via the network 300.

以上、本発明の好ましい実施形態を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。従って本発明の技術的範囲は添付された特許請求の範囲の記載によってのみ限定されるものである。   While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made without departing from the scope of the invention. Therefore, the technical scope of the present invention is limited only by the description of the appended claims.

本発明の超音波診断装置は、歯科治療用の医療機器であり、医療機器分野において利用することができる。
また、本発明の歯の詰め物造形装置も歯科治療用の医療機器であり、医療機器分野において利用することができる。
The ultrasonic diagnostic apparatus of the present invention is a medical device for dental treatment, and can be used in the medical device field.
In addition, the tooth filling molding apparatus of the present invention is also a medical device for dental treatment, and can be used in the medical device field.

本発明の実施例1の歯列超音波診断装置100の基本構成を模式的に示した図The figure which showed typically the basic composition of the dentition ultrasonic diagnostic apparatus 100 of Example 1 of this invention. 歯列装着型枠10の6面図と、A−A線に沿った歯列装着型枠10の断面図6 side view of the dentition mounting mold 10 and a cross-sectional view of the dentition mounting mold 10 along the line AA 歯列装着型枠10の凹部の内壁面に超音波振動子が設けられている様子をA1−A1断面において模式的に示した図The figure which showed typically a mode that the ultrasonic transducer | vibrator was provided in the inner wall surface of the recessed part of the dentition mounting mold 10 in the A1-A1 cross section. 第1の工夫を用いて超音波データを取得する場合の超音波振動子の発信時の様子を示す図The figure which shows the mode at the time of the transmission of an ultrasonic transducer | vibrator in the case of acquiring ultrasonic data using a 1st device. 第1の工夫を用いて超音波データを取得する場合の超音波振動子の受信時の様子を示す図The figure which shows the mode at the time of reception of an ultrasonic transducer | vibrator in the case of acquiring ultrasonic data using a 1st device. 混在している超音波データを超音波データ分解手段51によって周波数別に分解する様子を模式的に示した図The figure which showed typically a mode that the ultrasonic data which were mixed were decomposed | disassembled according to frequency by the ultrasonic data decomposition means 51 実施例1にかかる歯列データ取得手段52が管理する2つのテーブルデータを示す図The figure which shows two table data which the dentition data acquisition means 52 concerning Example 1 manages. 実施例2にかかる超音波データ取得部40による超音波振動子のシーケンシャルな超音波発信を模式的に説明した図(11a発信)FIG. 11 is a diagram schematically illustrating sequential ultrasonic transmission of an ultrasonic transducer by the ultrasonic data acquisition unit 40 according to the second embodiment (11a transmission). 超音波振動子11a発信に対して超音波反射波を受信する様子を模式的に説明した図The figure which demonstrated typically a mode that an ultrasonic reflected wave was received with respect to ultrasonic transducer | vibrator 11a transmission. 実施例2にかかる超音波データ取得部40による超音波振動子のシーケンシャルな超音波発信を模式的に説明した図(11b発信)FIG. 11 is a diagram schematically illustrating sequential ultrasonic transmission of an ultrasonic transducer by the ultrasonic data acquisition unit 40 according to the second embodiment (11b transmission). 超音波振動子11b発信に対して超音波反射波を受信する様子を模式的に説明した図The figure which demonstrated typically a mode that an ultrasonic reflected wave was received with respect to ultrasonic transducer | vibrator 11b transmission. 第2の工夫を用いる例における歯列3次元データ取得手段50の構成要素を示す図The figure which shows the component of the dentition three-dimensional data acquisition means 50 in the example using a 2nd device. 実施例1にかかる歯列データ取得手段52が管理する2つのテーブルデータを示す図The figure which shows two table data which the dentition data acquisition means 52 concerning Example 1 manages. 発信にかかる超音波振動子の選択を各群ごと独立に行う様子を模式的に示した図(パターン1)Diagram (pattern 1) schematically showing how to select an ultrasonic transducer for transmission independently for each group 発信にかかる超音波振動子の選択を各群ごと独立に行う様子を模式的に示した図(パターン2)The figure which showed a mode that selection of an ultrasonic transducer concerning transmission was performed independently for each group (pattern 2) 共振させることにより超音波を歯の内部に打ち込む様子を模式的に示す図A diagram schematically showing how ultrasonic waves are driven into the teeth by resonating 実施例3の超音波診断装置の基本構成ブロック図Basic configuration block diagram of ultrasonic diagnostic apparatus of embodiment 3 歯列内を通過する超音波通過波によって歯列内部のデータを得る原理を簡単に説明した図A diagram that briefly explains the principle of obtaining data in the dentition by means of ultrasonic waves passing through the dentition 実施例4の超音波診断装置の基本構成ブロック図Basic configuration block diagram of ultrasonic diagnostic apparatus of embodiment 4 本発明の歯の詰め物造形装置の構成例を模式的に示す図The figure which shows typically the structural example of the tooth stuffing shaping | molding apparatus of this invention.

符号の説明Explanation of symbols

10 歯列装着型枠
11 超音波振動子
20 制御部
30 インタフェース
40 超音波データ取得手段
41 共振制御手段
42 受信選択手段
50 歯列3次元データ取得手段
51 周波数分解手段
52 歯列データ取得手段
53 重畳手段
60 虫歯検知手段
70 画像表示機能
100 歯列超音波診断装置
200 自動3次元立体物造形装置
300 ネットワーク
DESCRIPTION OF SYMBOLS 10 Dental row mounting form 11 Ultrasonic vibrator 20 Control part 30 Interface 40 Ultrasonic data acquisition means 41 Resonance control means 42 Reception selection means 50 Dental row three-dimensional data acquisition means 51 Frequency decomposition means 52 Dental row data acquisition means 53 Superposition Means 60 Caries detection means 70 Image display function 100 Dental dentition ultrasonic diagnostic apparatus 200 Automatic three-dimensional solid modeling apparatus 300 Network

Claims (10)

読み取り対象となる歯列前面と歯列裏面と歯列噛み合わせ面の各面に対向するように超音波振動子アレイを並べた歯列装着型枠と、
前記歯列装着型枠を歯列に装着し、前記超音波振動子により前記歯列の外表面に超音波を発信して前記超音波振動子により前記外表面において反射する反射波を受信して超音波データを得る超音波データ取得手段と、
前記超音波データ取得手段で得た超音波データと、前記発信と前記受信にかかるそれぞれの超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する歯列3次元データ取得手段とを備えた超音波診断装置。
A dentition mounting mold in which ultrasonic transducer arrays are arranged so as to face each surface of the dentition front surface, dentition back surface and dentition meshing surface to be read;
The dentition mounting mold is mounted on a dentition, ultrasonic waves are transmitted to the outer surface of the dentition by the ultrasonic transducer, and reflected waves reflected on the outer surface by the ultrasonic transducer are received. Ultrasound data acquisition means for obtaining ultrasound data;
Calculate three-dimensional data of the outer surface shape of the dentition based on the ultrasonic data obtained by the ultrasonic data acquisition means and the known positional relationship data between the ultrasonic transducers for transmission and reception An ultrasonic diagnostic apparatus including a dentition three-dimensional data acquisition unit to be acquired.
読み取り対象となる歯列前面と歯列裏面と歯列噛み合わせ面の各面に対向するように超音波振動子アレイを並べた歯列装着型枠と、
前記歯列装着型枠を歯列に装着し、前記超音波振動子により前記歯列の外表面から内部に超音波を発信・打ち込んで前記超音波振動子により前記歯列の内部から反射する反射波を受信して超音波データを得る超音波データ取得手段と、
前記超音波データ取得手段で得た超音波データと、前記発信と前記受信にかかるそれぞれの超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する歯列3次元データ取得手段とを備えた超音波診断装置。
A dentition mounting mold in which ultrasonic transducer arrays are arranged so as to face each surface of the dentition front surface, dentition back surface and dentition meshing surface to be read;
Reflection of attaching the dentition mounting formwork to a dentition, transmitting and driving ultrasonic waves from the outer surface of the dentition by the ultrasonic transducer, and reflecting from the inside of the dentition by the ultrasonic transducer Ultrasonic data acquisition means for receiving waves and obtaining ultrasonic data;
Calculate three-dimensional data of the outer surface shape of the dentition based on the ultrasonic data obtained by the ultrasonic data acquisition means and the known positional relationship data between the ultrasonic transducers for transmission and reception An ultrasonic diagnostic apparatus including a dentition three-dimensional data acquisition unit to be acquired.
読み取り対象となる歯列前面と歯列裏面と歯列噛み合わせ面の各面に対向するように超音波振動子アレイを並べた歯列装着型枠と、
前記歯列装着型枠を歯列に装着し、前記超音波振動子により前記歯列の外表面から内部に超音波を発信・打ち込んで前記超音波振動子により前記歯列の内部を通過した通過波を受信して超音波データを得る超音波データ取得手段と、
前記超音波データ取得手段で得た超音波データと、前記発信と前記受信にかかるそれぞれの超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する歯列3次元データ取得手段とを備えた超音波診断装置。
A dentition mounting mold in which ultrasonic transducer arrays are arranged so as to face each surface of the dentition front surface, dentition back surface and dentition meshing surface to be read;
The dentition mounting formwork is mounted on a dentition, and the ultrasonic transducer transmits and drives ultrasonic waves from the outer surface of the dentition to the inside, and passes through the dentition by the ultrasonic transducer. Ultrasonic data acquisition means for receiving waves and obtaining ultrasonic data;
Calculate three-dimensional data of the outer surface shape of the dentition based on the ultrasonic data obtained by the ultrasonic data acquisition means and the known positional relationship data between the ultrasonic transducers for transmission and reception An ultrasonic diagnostic apparatus including a dentition three-dimensional data acquisition unit to be acquired.
前記歯列3次元データ取得手段は、前記超音波データ取得手段から得た超音波データを基に、前記超音波データの前記発信と前記受信にかかる超音波振動子を特定する情報と、前記超音波データの前記発信と前記受信の遅延時間情報を抽出し、それらと前記超音波振動子間の既知の位置関係データに基づいて前記歯列の外表面形状の3次元データを計算・取得する請求項1から3のいずれかに記載の超音波診断装置。 The dentition three-dimensional data acquisition means, based on the ultrasonic data obtained from the ultrasonic data acquisition means, information for specifying the ultrasonic transducer for the transmission and reception of the ultrasonic data, and the ultrasonic The delay time information of the transmission and reception of the sound wave data is extracted, and the three-dimensional data of the outer surface shape of the dentition is calculated / acquired based on the known positional relationship data between them and the ultrasonic transducer. Item 4. The ultrasonic diagnostic apparatus according to any one of Items 1 to 3. 前記超音波データ取得手段において、前記超音波振動子アレイのそれぞれの前記超音波振動子が相互に異なる周波数の超音波を発信し、
前記歯列3次元データ取得手段が周波数分解手段を備え、それぞれの前記超音波振動子で受信した超音波データを周波数分解して周波数別の超音波データに分解し、前記歯列3次元データ取得手段において、前記周波数分解されたそれぞれの超音波データの発信にかかる超音波振動子の特定を前記周波数に基づいて行うことを特徴とする請求項4に記載の超音波診断装置。
In the ultrasonic data acquisition means, the ultrasonic transducers of the ultrasonic transducer array emit ultrasonic waves having different frequencies,
The dentition three-dimensional data acquisition means includes frequency decomposition means, and the ultrasonic data received by each of the ultrasonic transducers is frequency-decomposed and decomposed into frequency-specific ultrasonic data, and the dentition three-dimensional data acquisition 5. The ultrasonic diagnostic apparatus according to claim 4, wherein the means identifies the ultrasonic transducer for transmitting the frequency-resolved ultrasonic data based on the frequency.
前記超音波データ取得手段において、
前記超音波振動子アレイの超音波発信をそれぞれの前記超音波振動子ごとに一つずつシーケンシャルに行い、
前記超音波振動子アレイの超音波受信を前記発信にかかる超音波振動子およびその近隣の超音波振動子から選ばれた2つ以上の超音波振動子によりパラレルに行う請求項1から3のいずれかに記載の超音波診断装置。
In the ultrasonic data acquisition means,
Performing ultrasonic transmission of the ultrasonic transducer array sequentially for each of the ultrasonic transducers,
The ultrasonic reception of the ultrasonic transducer array is performed in parallel by two or more ultrasonic transducers selected from the ultrasonic transducer for the transmission and the neighboring ultrasonic transducers. An ultrasonic diagnostic apparatus according to claim 1.
前記超音波振動子アレイの超音波振動子を、前記歯列前面に対応する群と前記歯列裏面に対応する群と前記歯列噛みあわせ面に対応する群に分け、前記超音波データ取得手段において、各群ごと独立に、前記超音波振動子アレイの前記超音波発信のシーケンシャル処理と前記超音波受信のパラレル処理を行う請求項6に記載の超音波診断装置。 The ultrasonic transducer of the ultrasonic transducer array is divided into a group corresponding to the front surface of the dentition, a group corresponding to the back surface of the dentition, and a group corresponding to the dentition meshing surface, and the ultrasonic data acquisition means The ultrasonic diagnostic apparatus according to claim 6, wherein the ultrasonic transmission sequential processing and the ultrasonic reception parallel processing of the ultrasonic transducer array are performed independently for each group. 前記歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波反射率の違いから前記虫歯部分の存在を検知する虫歯検知機能を備えた請求項2または3に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 2 or 3, further comprising a caries detection function that detects the presence of the caries part from a difference in ultrasonic reflectance between a healthy part and a caries part in the three-dimensional data inside the dentition. 前記歯列内部の3次元データにおいて、健常部分と虫歯部分の超音波吸収率の違いから前記虫歯部分の存在を検知する虫歯検知機能を備えた請求項3に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, further comprising a caries detection function that detects the presence of the caries part from a difference in ultrasonic absorption rate between a healthy part and a caries part in the three-dimensional data inside the dentition. 歯の詰め物(差し歯、歯の被せ物、歯のブリッジ物など)を製作する材料を用いた自動3次元立体物造形装置を備え、請求項1から9のいずれかに記載の歯列超音波診断装置により採取した歯列の外表面形状の3次元データを入力し、前記歯列の外表面形状の3次元データを基に、前記自動3次元立体物造形装置により歯の詰め物を自動的に製作する歯の詰め物造形装置。
The dentition ultrasonic diagnosis according to any one of claims 1 to 9, comprising an automatic three-dimensional three-dimensional object shaping apparatus using a material for producing a tooth filling (insert, tooth covering, tooth bridge, etc.). 3D data of the external surface shape of the dentition collected by the device is input, and based on the 3D data of the external surface shape of the dentition, the tooth filling is automatically produced by the automatic 3D three-dimensional object shaping device. Tooth filling molding equipment.
JP2005143692A 2005-05-17 2005-05-17 Ultrasonic diagnostic apparatus and tooth filling forming apparatus Pending JP2006320369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143692A JP2006320369A (en) 2005-05-17 2005-05-17 Ultrasonic diagnostic apparatus and tooth filling forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143692A JP2006320369A (en) 2005-05-17 2005-05-17 Ultrasonic diagnostic apparatus and tooth filling forming apparatus

Publications (1)

Publication Number Publication Date
JP2006320369A true JP2006320369A (en) 2006-11-30

Family

ID=37540479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143692A Pending JP2006320369A (en) 2005-05-17 2005-05-17 Ultrasonic diagnostic apparatus and tooth filling forming apparatus

Country Status (1)

Country Link
JP (1) JP2006320369A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486735B2 (en) 2008-07-30 2013-07-16 Raytheon Company Method and device for incremental wavelength variation to analyze tissue
US8614768B2 (en) 2002-03-18 2013-12-24 Raytheon Company Miniaturized imaging device including GRIN lens optically coupled to SSID
US8690762B2 (en) 2008-06-18 2014-04-08 Raytheon Company Transparent endoscope head defining a focal length
US8717428B2 (en) 2009-10-01 2014-05-06 Raytheon Company Light diffusion apparatus
US9060704B2 (en) 2008-11-04 2015-06-23 Sarcos Lc Method and device for wavelength shifted imaging
US9144664B2 (en) 2009-10-01 2015-09-29 Sarcos Lc Method and apparatus for manipulating movement of a micro-catheter
JP2016522709A (en) * 2013-12-26 2016-08-04 ノースン・カンパニー・リミテッドNohsn Co., Ltd. Ultrasonic or photoacoustic probe and ultrasonic diagnostic system, ultrasonic therapeutic system, ultrasonic diagnostic and therapeutic system using the same, and ultrasonic or photoacoustic system
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614768B2 (en) 2002-03-18 2013-12-24 Raytheon Company Miniaturized imaging device including GRIN lens optically coupled to SSID
US8690762B2 (en) 2008-06-18 2014-04-08 Raytheon Company Transparent endoscope head defining a focal length
US9521946B2 (en) 2008-06-18 2016-12-20 Sarcos Lc Transparent endoscope head defining a focal length
US8486735B2 (en) 2008-07-30 2013-07-16 Raytheon Company Method and device for incremental wavelength variation to analyze tissue
US9259142B2 (en) 2008-07-30 2016-02-16 Sarcos Lc Method and device for incremental wavelength variation to analyze tissue
US9060704B2 (en) 2008-11-04 2015-06-23 Sarcos Lc Method and device for wavelength shifted imaging
US9717418B2 (en) 2008-11-04 2017-08-01 Sarcos Lc Method and device for wavelength shifted imaging
US8717428B2 (en) 2009-10-01 2014-05-06 Raytheon Company Light diffusion apparatus
US9144664B2 (en) 2009-10-01 2015-09-29 Sarcos Lc Method and apparatus for manipulating movement of a micro-catheter
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device
JP2016522709A (en) * 2013-12-26 2016-08-04 ノースン・カンパニー・リミテッドNohsn Co., Ltd. Ultrasonic or photoacoustic probe and ultrasonic diagnostic system, ultrasonic therapeutic system, ultrasonic diagnostic and therapeutic system using the same, and ultrasonic or photoacoustic system

Similar Documents

Publication Publication Date Title
JP2006320369A (en) Ultrasonic diagnostic apparatus and tooth filling forming apparatus
US11045166B2 (en) Ultrasound probe and device for 3D imaging of the jaw
US6206693B1 (en) Buccal impression registration apparatus, and method of use
JP2009538648A (en) Data recording method in patient&#39;s oral cavity, data recording device, dental chair and facility including the device, and usage of the device
Nguyen et al. High-resolution ultrasonic imaging of dento-periodontal tissues using a multi-element phased array system
EP1416873A1 (en) Bone measurement device and method
KR20150089030A (en) Dental scanning device
CN104994792B (en) Ultrasonic diagnostic device and medical image processing device
KR101538658B1 (en) Medical image display method and apparatus
US20190125297A1 (en) Device for imaging assisted minimally invasive implant and jawbone reconstruction surgery
JP7234119B2 (en) Ultrasound probe for intraoral soft tissue imaging
US8657751B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP2023014321A (en) Ultrasonic diagnostic apparatus and control program
JP2010246767A (en) Three-dimensional image construction device and image processing method
EP2862519A1 (en) Dental ultrasonic diagnostic apparatus
US20190142555A1 (en) System for acquisition of oral cavity ultrasound images
JP2004243120A (en) Creation method of 3-dimensional ultrasonic image
US12070353B2 (en) Ultrasonic periodontal probe
JP2002034986A (en) Ultrasonograph
JP4095332B2 (en) Ultrasonic diagnostic equipment
JP2006296464A (en) Ultrasonic diagnostic apparatus
Vollborn et al. A voice-coil actuated ultrasound micro-scanner for intraoral high resolution impression taking
JP2008264314A (en) Ultrasonic diagnostic apparatus and ultrasonic image data generation program
Kakadiya et al. Recent advancements in diagnostic aids in orthodontics–A review
JP2009061076A (en) Ultrasonic diagnostic apparatus