JP2006320075A - Digital protective relay system - Google Patents

Digital protective relay system Download PDF

Info

Publication number
JP2006320075A
JP2006320075A JP2005138526A JP2005138526A JP2006320075A JP 2006320075 A JP2006320075 A JP 2006320075A JP 2005138526 A JP2005138526 A JP 2005138526A JP 2005138526 A JP2005138526 A JP 2005138526A JP 2006320075 A JP2006320075 A JP 2006320075A
Authority
JP
Japan
Prior art keywords
relay
accident
phase
voltage
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005138526A
Other languages
Japanese (ja)
Inventor
Ken Kasuga
研 春日
Mamoru Kato
守 加藤
Minoru Saida
穣 斉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
TD System Technology Corp
Original Assignee
Toshiba Corp
TD System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, TD System Technology Corp filed Critical Toshiba Corp
Priority to JP2005138526A priority Critical patent/JP2006320075A/en
Publication of JP2006320075A publication Critical patent/JP2006320075A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To swiftly remove an accident in a section in a relevant line without waiting until an accident in the adjacent line (rear side) even when multiple accidents occur in both the two lines of a one-end non-power supply system constructed of two parallel lines. <P>SOLUTION: A digital protective relay system includes: a ground directional distance relay 11 provided in each phase of a power system; an undervoltage relay 12 provided in each phase of the power system; and a front accident detection relay 16 that determines the direction of an accident from the phase relation of current-voltage in each phase of the power system or the phase relation of current-voltage of a symmetrical component. When rear two-line ground fault accident occurs, the output of the ground directional distance relay 11 is locked by the operation of the undervoltage relay 12. When a front accident occurs, locking by the undervoltage relay 12 is released by the operation of the front accident detection relay 16 to enable the operation of the ground directional distance relay 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディジタル継電装置に係り、特に背後事故を含む多重事故時に自己区間内事故を速やかに除去することのできるディジタル保護継電装置に関する。   The present invention relates to a digital relay device, and more particularly to a digital protective relay device that can quickly eliminate an accident in its own section in a multiple accident including a rear accident.

我が国の超高圧、直接接地系統の送電線保護方式は従来、両端子とも正相分を供給できる電源があるものとした固定電源端子扱いとするのが一般である。しかし、地域によっては、発電所の設置場所の制約などより、一方の端子が電源端、他方の端子が非電源系統あるいは可変電源端扱いとなる系統構成にせざるを得ない場合がある。   Conventionally, the transmission line protection method of the ultra-high voltage, direct grounding system in Japan is generally treated as a fixed power terminal assuming that both terminals have a power supply capable of supplying the positive phase. However, depending on the region, there may be a system configuration in which one terminal serves as a power supply end and the other terminal serves as a non-power supply system or a variable power supply terminal due to restrictions on the installation location of the power plant.

この片端が非電源系統あるいは可変電源端扱いとなる系統構成の場合、保護方式にも影響を及ぼしている。例えば、地絡方向距離継電器の背後で2線地絡事故が発生した場合には、方向判別が働かないということが古くから知られている(例えば、非特許文献1,2参照)。この事象に対しては、非特許文献3に示すように不足電圧ロック方式という誤動作防止機能を付加した技術が現在でも一般的に適用されている。   In the case of a system configuration in which one end is treated as a non-power source system or a variable power source end, the protection system is also affected. For example, it has long been known that when a two-wire ground fault occurs behind a ground fault direction distance relay, direction discrimination does not work (for example, see Non-Patent Documents 1 and 2). For this phenomenon, as shown in Non-Patent Document 3, a technique to which a malfunction prevention function called an undervoltage lock method is added is generally applied even now.

図10は非特許文献3に記載の不足電圧ロック方式による誤動作防止機能を分かり易く描いたロジックシーケンス図である。図10において、11a,11b,11cはそれぞれ入力される電力系統各相の電圧及び電流から事故インピーダンスを算出して整定インピーダンスと比較し、その比較結果から送電線保護区間内部事故か否かを判定し動作する地絡方向距離継電器である。   FIG. 10 is a logic sequence diagram depicting the malfunction prevention function by the undervoltage lock method described in Non-Patent Document 3 in an easy-to-understand manner. In FIG. 10, 11a, 11b, and 11c calculate the fault impedance from the voltage and current of each phase of the input power system, compare with the settling impedance, and determine whether or not there is an internal fault in the transmission line protection section from the comparison result. This is a ground fault distance relay that operates.

12a,12b,12cは地絡方向距離継電器11a,11b,11c設置点背後の2線地絡事故時に、地絡方向距離継電器11a,11b,11cの動作出力によって遮断器が誤遮断することを防止するために備えた不足電圧継電器である。13a、13b、13cはそれぞれ各相の地絡方向距離継電器11a,11b,11cの動作出力を入力するアンド回路である。そして、このアンド回路13a、13b、13cのゲート端子には、各相の不足電圧継電器12a,12b,12cの出力を否定回路14a、14b、14cを通して反転させたのちに、それぞれ相順を一つ遅らせて入力する。すなわち、アンド回路13aのゲート端子には否定回路14bの出力を,アンド回路13bのゲート端子には否定回路14cの出力を、アンド回路13cのゲート端子には否定回路14aの出力をそれぞれ入力することにより、地絡方向距離継電器11a,11b,11cの動作出力で遮断器が誤遮断することを防止する。そして、これらアンド回路13a、13b、13cの出力はオア回路15を経て図示しない遮断器引き外し回路に3相遮断指令として与えられる。
小林 進 著「保護継電技術」第1版第1刷、電気書院、昭和47年10月15日発行、P.383〜385、 長谷 良秀、増井 三千雄 共著「保護継電技術」、昭和54年2月15日、第1版第1刷発行、東京電機大学出版局発行、P.287〜288 986「正相非電源系統における地絡方向継電器の応動」、昭和48年 電気学会全国大会、三上 一郎、北浦 孝一、古谷 昭雄、鈴木 健治、中村 勝己 著
12a, 12b, and 12c prevent the circuit breaker from being erroneously cut off by the operation output of the ground fault direction distance relays 11a, 11b, and 11c in the event of a two-wire ground fault behind the ground fault direction distance relays 11a, 11b, and 11c. This is an undervoltage relay provided for the purpose. Reference numerals 13a, 13b, and 13c denote AND circuits for inputting operation outputs of the ground fault direction distance relays 11a, 11b, and 11c of the respective phases. Then, after the outputs of the undervoltage relays 12a, 12b, and 12c of each phase are inverted through the negation circuits 14a, 14b, and 14c, one phase sequence is provided at the gate terminals of the AND circuits 13a, 13b, and 13c. Enter with a delay. That is, the output of the negative circuit 14b is input to the gate terminal of the AND circuit 13a, the output of the negative circuit 14c is input to the gate terminal of the AND circuit 13b, and the output of the negative circuit 14a is input to the gate terminal of the AND circuit 13c. This prevents the circuit breaker from being erroneously cut off by the operation outputs of the ground fault direction distance relays 11a, 11b, and 11c. The outputs of these AND circuits 13a, 13b, and 13c are given as a three-phase cutoff command to a circuit breaker tripping circuit (not shown) via an OR circuit 15.
Susumu Kobayashi "Protective Relay Technology" 1st edition, 1st edition, Denki Shoin, published on October 15, 1972, pages 383-385, Yoshihide Hase, Michio Masui “Protective Relay Technology”, February 15, 1979, 1st edition, 1st edition, Tokyo Denki University Press, P.287-288 986 “Response of ground fault direction relay in normal phase non-power supply system”, Electrical Engineering Society of Japan 1973, Ichiro Mikami, Koichi Kitaura, Akio Furuya, Kenji Suzuki, Katsumi Nakamura

しかしながら、上述した図10のように誤動作防止用不足電圧継電器を設けた地絡方向距離継電器であっても、事故様相によっては事故除去までに時間を要する場合があることが分かった。   However, it has been found that even in the case of a ground fault direction distance relay provided with an undervoltage relay for preventing malfunction as shown in FIG. 10 described above, it may take time to remove the accident depending on the aspect of the accident.

例えば、図11で示す一方の端子が正相電源端子、他方の端子が非電源となる平行2回線系統において、1L側に2線地絡事故(bc相)、2L側に1線地絡事故(b相)という両回線に跨る多重事故が発生した場合、1L側では地絡方向距離継電器11b、11cおよび不足電圧継電器12b、12cが動作し、アンド回路13cのゲートが開きオア回路15を経て直ちに3相遮断指令が出力され、2線地絡事故(b、c相)を高速度に除去することができる。   For example, in a parallel two-line system in which one terminal shown in FIG. 11 is a positive phase power supply terminal and the other terminal is a non-power supply, a two-wire ground fault (bc phase) on the 1L side and a one-wire ground fault on the 2L side When multiple accidents (phase b) occur across both lines, ground fault distance relays 11b and 11c and undervoltage relays 12b and 12c operate on the 1L side, and the gate of the AND circuit 13c opens and passes through the OR circuit 15. A three-phase cutoff command is immediately output, and a two-wire ground fault (b, c phase) can be removed at high speed.

しかしながら、2L側では地絡方向距離継電器11bおよび不足電圧継電器12b、12cが動作するので、アンド回路13a〜13cはいずれもゲートを開かず、三相遮断指令が出ず、1線地絡事故(b相)を高速度に除去することができない。この結果、2L側では隣回線の1L側2線地絡事故が除去されて、c相不足電圧継電器12cが復帰したのちに除去される。そのため、非特許文献3に記載の誤動作防止対策では、2L側の事故除去が遅れるという不具合があった。   However, since the ground fault direction distance relay 11b and the undervoltage relays 12b and 12c operate on the 2L side, the AND circuits 13a to 13c do not open the gate, the three-phase cutoff command is not issued, and the one-wire ground fault ( b phase) cannot be removed at high speed. As a result, on the 2L side, the 1L side 2 wire ground fault of the adjacent line is removed, and the c phase undervoltage relay 12c is removed and then removed. Therefore, the malfunction prevention measure described in Non-Patent Document 3 has a problem that the accident removal on the 2L side is delayed.

本発明は、上述した課題に鑑みなされたもので、平行2回線の片端非電源系統における両回線多重事故時でも、隣回線(背後側)の事故除去を待たずに、自己区間内事故を速やかに除去できる地絡方向距離継電器を提供することを目的とする。   The present invention has been made in view of the above-described problems. Even in the case of a double-line multiple power failure in a parallel two-line single-ended non-power supply system, an accident in its own section can be promptly performed without waiting for the removal of the adjacent line (rear side) accident. It is an object of the present invention to provide a ground fault direction distance relay that can be removed.

上記の目的を達成するため、本発明は、電力系統の各相の電圧及び電流をそれぞれ入力し、電圧及び電流から事故インピーダンスを算出して整定インピーダンスと比較し、その比較結果から送電線保護区間内部事故か否かを判定する地絡方向距離継電器と、電力系統各相の不足電圧を検出して動作する不足電圧継電器と、電力系統から得られた電圧及び電流の位相関係により事故方向判別を行う前方事故検出継電器とを備え、前記不足電圧継電器の動作により前記地絡方向距離継電器の出力をロックし、前記前方事故検出継電器の動作により不足電圧継電器によるロックを解除して地絡方向距離継電器の動作を有効とすることにより、事故除去指令を出力するように構成したことを特徴とする。   In order to achieve the above object, the present invention inputs the voltage and current of each phase of the power system, calculates the fault impedance from the voltage and current, compares it with the settling impedance, and from the comparison result, the transmission line protection section Determine the direction of the accident based on the ground fault direction distance relay that determines whether it is an internal accident, the undervoltage relay that operates by detecting the undervoltage of each phase of the power system, and the phase relationship between the voltage and current obtained from the power system A forward fault detection relay to perform, lock the output of the ground fault direction distance relay by the operation of the under voltage relay, release the lock by the under voltage relay by the operation of the front accident detection relay, It is characterized in that an accident removal command is output by making the operation of (1) effective.

本発明によれば、前方事故検出継電器を正相非電源対策用地絡方向距離継電器によるロック回路に追加することにより、後方事故では不足電圧継電器によるロック機能を有効とし、前方事故では不足電圧継電器の制約を受けずに事故除去が可能となり、各種の事故様相において高速に事故除去をすることができる。   According to the present invention, the forward accident detection relay is added to the lock circuit by the ground fault distance relay for the positive phase non-power supply countermeasure, thereby enabling the lock function by the undervoltage relay in the rear accident and the undervoltage relay of the forward accident. Accident removal is possible without restrictions, and accident removal can be performed at high speed in various aspects of accidents.

以下、図面を参照して本発明の実施の形態について説明する。なお、図10、図11と同一部分には同一符号を付けて説明する。
図1は本実施の形態に係るディジタル保護継電装置が設置される電力系統図である。この電力系統は一方の端子Sを正相電源端子、他方の端子Rを非電源端子とし、両端子S,R間を第1回線送電線1L、第2回線送電線2Lからなる平行2回線で接続している。本発明は、電源端子S側に設置された第1回線送電線1L、第2回線送電線2Lをそれぞれ保護するディジタル保護継電装置Ry1、Ry2の応動に係る発明なので、非電源端子Rのディジタル保護継電装置については敢えて図示していない。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same parts as those in FIGS. 10 and 11 are denoted by the same reference numerals.
FIG. 1 is a power system diagram in which the digital protection relay device according to the present embodiment is installed. In this power system, one terminal S is a positive-phase power supply terminal, the other terminal R is a non-power supply terminal, and the two terminals S and R are two parallel lines including a first line transmission line 1L and a second line transmission line 2L. Connected. Since the present invention relates to the response of the digital protection relay devices Ry1 and Ry2 that protect the first line transmission line 1L and the second line transmission line 2L installed on the power supply terminal S side, the digital of the non-power supply terminal R The protective relay device is not shown.

ディジタル保護継電装置Ry1およびRy2には、それぞれ変流器CT1およびCT2から取り込んだ端子電流Iおよび図示していない計器用変圧器より取り込んだ端子電圧Vとが入力される。これら電流I、電圧Vはフィルタ、サンプルホールド回路、A/D変換器を経てディジタルデータに変換されたのち、CPU等のディジタル演算処理部により本発明で必要とする保護継電器の演算プログラム例えば、方向距離継電器用、不足電圧継電器用および前方事故検出継電器用の演算プログラムに基づいて演算される。演算結果はインターフェース回路を経て、遮断器引き外し信号として出力される。   The digital protection relay devices Ry1 and Ry2 are supplied with a terminal current I taken from the current transformers CT1 and CT2 and a terminal voltage V taken from an instrument transformer (not shown). These current I and voltage V are converted into digital data through a filter, a sample hold circuit, and an A / D converter, and then a protective relay arithmetic program required by the present invention by a digital arithmetic processing unit such as a CPU, for example, direction It is calculated based on the calculation program for the distance relay, the undervoltage relay, and the forward accident detection relay. The calculation result is output as a circuit breaker trip signal through the interface circuit.

図2は、第1回線送電線1Lの電源端子S側に設置されたディジタル保護継電装置Ry1における地絡方向距離継電器に対する正相非電源対策用誤動作防止回路である。
図2において、11a,11b,11cは図10で説明したものと同様の地絡方向距離継電器であり、その出力をそれぞれアンド回路13a、13b、13cに入力する。12a,12b,12cも図10で説明したものと同様、背後2線地絡事故時に地絡方向距離継電器11a,11b,11cが誤動作することを防止するための不足電圧継電器である。そして、16は新たに設けた前方事故検出継電器であり、例えば正相量の電流と電圧とを導入して両者の位相判定により、事故方向を判別する機能を備えている。
FIG. 2 is a malfunction prevention circuit for positive-phase non-power supply countermeasures for the ground fault direction distance relay in the digital protective relay Ry1 installed on the power supply terminal S side of the first line transmission line 1L.
2, 11a, 11b, and 11c are ground fault direction distance relays similar to those described in FIG. 10, and their outputs are input to AND circuits 13a, 13b, and 13c, respectively. 12a, 12b, and 12c are undervoltage relays for preventing the ground fault direction distance relays 11a, 11b, and 11c from malfunctioning in the event of a rear two-wire ground fault, as described with reference to FIG. Reference numeral 16 denotes a newly provided forward accident detection relay having a function of determining the direction of the accident by introducing, for example, a positive phase amount of current and voltage and determining the phase of both.

不足電圧継電器12a,12b,12cの出力は否定回路14a、14b、14cによって反転された後、オア回路17a,17b,17cに入力される。前方事故検出継電器16の出力はオア回路17a,17b,17cに共通に入力される。前記アンド回路13a、13b、13cのゲートには遅れ相のオア回路出力が入力される。例えばa相のアンド回路13aのゲートにはb相のオア回路17bの出力が、b相のアンド回路13bのゲートにはc相のオア回路17c出力が、c相のアンド回路13cゲートにはa相のオア回路17a出力がそれぞれ入力される。   The outputs of the undervoltage relays 12a, 12b, and 12c are inverted by the negation circuits 14a, 14b, and 14c, and then input to the OR circuits 17a, 17b, and 17c. The output of the forward accident detection relay 16 is commonly input to the OR circuits 17a, 17b, and 17c. A delayed phase OR circuit output is input to the gates of the AND circuits 13a, 13b, and 13c. For example, the output of the b-phase OR circuit 17b is output to the gate of the a-phase AND circuit 13a, the output of the c-phase OR circuit 17c is output to the gate of the b-phase AND circuit 13b, and the output of the c-phase AND circuit 13c is a The output of the phase OR circuit 17a is input.

このようにして、前方事故検出継電器16と不足電圧継電器12a〜12cの出力を反転する否定回路14a〜14cとでオア回路を組むことにより、不足電圧継電器12a〜12cが動作して、不足電圧継電器によるロック機能が働いていたとしても、前方事故検出継電器16が前方事故であると判定したときは、不足電圧継電器によるロック機能を解除し、地絡方向距離継電器11a〜11cの出力を許可することができる。そして、アンド回路13a、13b、13cの出力はオア回路15を経て3相遮断指令が出力される。   In this way, the undervoltage relays 12a to 12c are operated by forming an OR circuit with the forward accident detection relay 16 and the negative circuits 14a to 14c for inverting the outputs of the undervoltage relays 12a to 12c, so that the undervoltage relays 12a to 12c operate. Even if the lock function by is activated, when it is determined that the forward accident detection relay 16 is a forward accident, the lock function by the undervoltage relay is released and the outputs of the ground fault distance relays 11a to 11c are permitted. Can do. The outputs of the AND circuits 13a, 13b, and 13c pass through the OR circuit 15 and a three-phase cutoff command is output.

図3は電力系統事故時の対称分回路を示す図である。この対称分回路は図4で示した事故様相(3φS、2φS、2φG、1φG)によって異なる。
図4はディジタル保護継電装置Ry1(Ry2)設置点の前方に生じた事故様相時の各相電気量の状態を示すベクトル図であり、(A)は三相短絡事故時(3φS)、(B)はBC相2線短絡事故時(2φS)、(C)はBC相2線地絡事故時(2φG)そして(D)はA相1線地絡事故時(1φG)の各相の電流、電圧ベクトルおよび正相分の電圧、電流ベクトル図である。
FIG. 3 is a diagram showing a symmetrical distribution circuit at the time of a power system failure. This symmetrical branch circuit differs depending on the accident aspect (3φS, 2φS, 2φG, 1φG) shown in FIG.
FIG. 4 is a vector diagram showing the state of each phase electric quantity at the time of the accident appearance that occurred in front of the installation point of the digital protective relay Ry1 (Ry2). (A) is a three-phase short circuit accident (3φS), ( B) is a BC phase 2-wire short-circuit accident (2φS), (C) is a BC-phase 2-wire ground fault (2φG), and (D) is an A-phase 1-wire ground fault (1φG) current of each phase. FIG. 5 is a voltage vector and positive phase voltage and current vector diagram.

図5は前方事故検出継電器16の特性図である。この特性図から分かるように、前方事故検出継電器16は正相量電圧V,正相量電流Iの位相関係により、継電器設置点よりも前方の事故を確実に検出することができる。 FIG. 5 is a characteristic diagram of the forward accident detection relay 16. As can be seen from this characteristic diagram, the forward accident detection relay 16 can reliably detect an accident ahead of the relay installation point due to the phase relationship between the positive phase amount voltage V 1 and the positive phase amount current I 1 .

次に、本実施の形態の作用について説明する。
図6は事故時に一端が正相電源端、他端が非電源端となるような2回線送電系統において、第1回線送電線L1の継電器設置点よりも前方に三相短絡事故(3φS)、BC相2線短絡事故(2φS)、BC相2線地絡事故(2φG)、およびA相一線地絡事故(1φG)等の単一事故が発生した場合状況を示す図である。
Next, the operation of the present embodiment will be described.
FIG. 6 shows a three-phase short circuit accident (3φS) ahead of the relay installation point of the first line transmission line L1 in a two-line transmission system in which one end is a positive phase power supply end and the other end is a non-power supply end in the event of an accident. It is a figure which shows a situation when single accidents, such as a BC phase 2 wire short circuit accident (2 (phi) S), a BC phase 2 wire ground fault accident (2 (phi) G), and an A phase 1 line ground fault accident (1 (phi) G), have occurred.

図2で示したディジタル保護継電装置Ry1では、このような保護方向前方の単一事故の場合、どの事故様相においても、地絡方向距離継電器11a〜11cおよび前方事故検出継電器16a〜16cが動作するので、不足電圧継電器12a〜12cが動作しても、地絡方向距離継電器の出力を阻止することはない。このため、第1回線送電線1Lに設置したディジタル保護継電装置Ry1は、3相遮断指令を出力し事故を除去することができる。   In the digital protection relay device Ry1 shown in FIG. 2, in the case of such a single accident ahead in the protection direction, the ground fault direction distance relays 11a to 11c and the front accident detection relays 16a to 16c operate in any accident aspect. Therefore, even if the undervoltage relays 12a to 12c operate, the output of the ground fault direction distance relay is not blocked. For this reason, the digital protection relay device Ry1 installed in the first line transmission line 1L can output the three-phase cutoff command and eliminate the accident.

図7はディジタル保護継電装置Ry1の設置点の背後に三相短絡事故(3φS)、BC相2線短絡事故(2φS)、BC相2線地絡事故(2φG)、およびA相一線地絡事故(1φG)等の単一事故が発生した場合状況を示す図である。   FIG. 7 shows a three-phase short-circuit accident (3φS), a BC-phase two-wire short-circuit accident (2φS), a BC-phase two-wire ground fault (2φG), and an A-phase one-wire ground fault behind the installation point of the digital protective relay Ry1. It is a figure which shows a condition when single accidents, such as an accident (1phiG), have occurred.

この背後事故の場合は、非電源端からは零相電流のみが供給されることより、どの事故様相においても前方事故検出継電器16a〜16cは動作しない。また、地絡方向距離継電器11a〜11cのいずれかが誤動作したとしても、遅れ相の不足電圧継電器12a〜12cの動作によりロック機能が有効に働いており、誤動作を防止する。この結果、ディジタル保護継電装置Ry1の応動は従来通り、誤動作することはない。   In the case of this rear accident, since only the zero-phase current is supplied from the non-power supply end, the forward accident detection relays 16a to 16c do not operate in any accident aspect. Moreover, even if any of the ground fault direction distance relays 11a to 11c malfunctions, the lock function works effectively by the operation of the underphase relays 12a to 12c of the lagging phase to prevent malfunction. As a result, the response of the digital protection relay device Ry1 does not malfunction as usual.

図8はディジタル保護継電装置Ry1、Ry2の設置点の前方事故すなわち、第1、第2回線送電線L1,L2に跨る前方多重事故((3φS)、(2φS)、(2φG)、および(1φG))が発生した状態を示す図である。   FIG. 8 shows a front accident at the installation point of the digital protection relay devices Ry1 and Ry2, that is, a front multiple accident ((3φS), (2φS), (2φG), and (1) It is a figure which shows the state which 1phiG)) generate | occur | produced.

この前方多重事故の場合、事故相の地絡方向距離継電器11a〜11cおよび前方事故検出継電器16が動作するため、第1回線送電線1L側のbc相地絡事故および第2回線送電線2L側のb相事故や異名相の両回線1線地絡事故などでも不足電圧継電器12a〜12cによるロックが解除される。このため、ディジタル保護継電器Ry2は従来のように隣回線(背後側)の事故除去による不足電圧継電器の復帰を待たずに地絡方向距離継電器の出力を有効にすることができる。この結果、ディジタル保護継電器Ry1同様、自己区間内事故を速やかに除去することができる。   In the case of this forward multiple accident, the fault phase ground fault direction distance relays 11a to 11c and the forward accident detection relay 16 operate, so the bc phase ground fault on the first line transmission line 1L side and the second line transmission line 2L side The undervoltage relays 12a to 12c are unlocked even in the case of a b-phase accident or an uncommon phase both-line 1-line ground fault. For this reason, the digital protective relay Ry2 can validate the output of the ground fault direction distance relay without waiting for the return of the undervoltage relay due to the accident removal of the adjacent line (back side) as in the prior art. As a result, as in the case of the digital protective relay Ry1, it is possible to quickly eliminate the accident within the self section.

図9は前方・後方多重(進展)事故時の状態を示す図である。
図9において、前方・後方多重(進展)事故のうち、前方事故が先行した場合は、前方事故検出継電器16が出力されている間は地絡方向距離継電器11a〜11cによる3相遮断は可能である。
FIG. 9 is a diagram showing a state at the time of a front / rear multiplex (progress) accident.
In FIG. 9, when the front accident precedes the front / rear multiplex (progress) accident, the three-phase interruption by the ground fault distance relays 11a to 11c is possible while the front accident detection relay 16 is output. is there.

また、背後事故が先行した場合は、従来の場合と同様にして不足電圧継電器によるロック機能が有効となり、誤遮断に至ることない。一方、前方事故側に前方事故検出継電器16が事故検出可能な事故電流が流れる場合は、地絡方向距離継電器11a〜11cの出力を有効にすることが可能であり、事故検出可能な事故電流がない場合は、背後事故が解消された後に事故除去となる。   In addition, when a rear accident precedes, the lock function by the undervoltage relay becomes effective in the same way as in the conventional case, and no erroneous interruption occurs. On the other hand, when an accident current that can be detected by the forward accident detection relay 16 flows on the front accident side, the outputs of the ground fault direction distance relays 11a to 11c can be validated, and the accident current that can detect the accident is If not, the accident will be removed after the back accident is resolved.

このように、背後事故時には従来通り不足電圧継電器によるロック機能を有効とし、かつ前方事故時には、前方事故検出継電器の応動によって、不足電圧継電器によるロックを受けないようになり、従来のように背後側の事故除去を待ってから前方事故の除去を行うといった不具合を解消することが可能である。
なお、以上述べた実施の形態では、事故方向識別に正相電気量を用いたが、本発明は正相電気量に限定されるものではなく、各相電気量や逆相電気量を用いても良い。
In this way, in the event of a rear accident, the lock function by the undervoltage relay is made effective as before, and in the event of a forward accident, the forward accident detection relay responds to prevent the undervoltage relay from being locked. It is possible to solve the problem of removing the forward accident after waiting for the accident to be removed.
In the embodiment described above, the positive phase electric quantity is used for identifying the accident direction. However, the present invention is not limited to the normal phase electric quantity, and each phase electric quantity or the reverse phase electric quantity is used. Also good.

本発明のディジタル保護継電装置が設置される電力系統図。The electric power system diagram in which the digital protection relay device of this invention is installed. 本発明の実施形態に係る前方事故検出機能を備えた正相非電源対策用地絡距離継電器誤動作防止回路の構成図。The block diagram of the ground fault distance relay malfunction prevention circuit for the positive phase non-power supply countermeasures provided with the forward accident detection function which concerns on embodiment of this invention. 電力系統事故時の対称分回路を示す図。The figure which shows the symmetrical distribution circuit at the time of an electric power system failure. 前方事故時の事故様相を示す図。The figure which shows the accident aspect at the time of a forward accident. 前方事故検出継電器の特性図。The characteristic figure of a forward accident detection relay. 前方単一事故時における応動を説明する図。The figure explaining the response at the time of a single forward accident. 背後事故時における応動を説明する図。The figure explaining the response at the time of a back accident. 前方多重事故時の応動を説明する図。The figure explaining the response at the time of a forward multiple accident. 前方・後方多重(進展)事故時の応動を説明する図。The figure explaining the response at the time of the front and back multiplex (progress) accident. 従来の2線地絡事故時の誤動作防止対策用不足電圧継電器を備えた地絡距離継電器の誤動作防止回路図。The malfunction prevention circuit diagram of the ground fault distance relay provided with the undervoltage relay for the malfunction prevention measure at the time of the conventional 2-wire ground fault accident. 従来技術を説明するための平行2回線系統の多重事故様相を示す図。The figure which shows the multiple accident aspect of a parallel 2 line system | strain for demonstrating a prior art.

符号の説明Explanation of symbols

Ry1,Ry2…ディジタル保護継電装置、CT1,CT2…変流器、11a〜11c…地絡距離継電器、12a〜12c…不足電圧継電器、13a〜13c…アンド回路、14a〜14c…否定回路、15…オア回路、16…前方事故検出継電器、17a〜17c…オア回路。   Ry1, Ry2 ... digital protective relay, CT1, CT2 ... current transformer, 11a-11c ... ground fault distance relay, 12a-12c ... undervoltage relay, 13a-13c ... AND circuit, 14a-14c ... negative circuit, 15 ... OR circuit, 16 ... forward accident detection relay, 17a to 17c ... OR circuit.

Claims (4)

電力系統の各相の電圧及び電流をそれぞれ入力し、電圧及び電流から事故インピーダンスを算出して整定インピーダンスと比較し、その比較結果から送電線保護区間内部事故か否かを判定する地絡方向距離継電器と、
電力系統各相の不足電圧を検出して動作する不足電圧継電器と、
電力系統から得られた電圧及び電流の位相関係により事故方向判別を行う前方事故検出継電器とを備え、
前記不足電圧継電器の動作により前記地絡方向距離継電器の出力をロックし、前記前方事故検出継電器の動作により不足電圧継電器によるロックを解除して地絡方向距離継電器の動作を有効とすることにより、事故除去指令を出力するように構成したことを特徴とするディジタル保護継電装置。
Input the voltage and current of each phase of the power system, calculate the fault impedance from the voltage and current, compare with the settling impedance, and determine the ground fault direction distance from the comparison result to determine whether there is an internal fault in the transmission line protection section A relay,
Undervoltage relay that operates by detecting undervoltage of each phase of power system,
With a forward accident detection relay that determines the accident direction based on the phase relationship between the voltage and current obtained from the power system,
By locking the output of the ground fault direction distance relay by the operation of the undervoltage relay, by releasing the lock by the under voltage relay by the operation of the forward accident detection relay, to enable the operation of the ground fault direction distance relay, A digital protection relay device configured to output an accident elimination command.
前記前方事故検出継電器は、正相量の電圧及び電流の位相関係により事故方向判別を行うことを特徴とする請求項1記載のディジタル保護継電装置。   2. The digital protective relay device according to claim 1, wherein the forward accident detection relay performs an accident direction determination based on a phase relationship between a positive-phase voltage and current. 前記前方事故検出継電器は、各相の電圧及び電流の位相関係により事故方向判別を行うことを特徴とする請求項1記載のディジタル保護継電装置。   2. The digital protective relay device according to claim 1, wherein the forward accident detection relay determines an accident direction based on a phase relationship between a voltage and a current of each phase. 前記前方事故検出継電器は、逆相量の電圧及び電流の位相関係により事故方向判別を行うことを特徴とする請求項1記載のディジタル保護継電装置。   2. The digital protective relay according to claim 1, wherein the forward accident detection relay performs an accident direction determination based on a phase relationship between a voltage and a current having a reverse phase amount.
JP2005138526A 2005-05-11 2005-05-11 Digital protective relay system Pending JP2006320075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138526A JP2006320075A (en) 2005-05-11 2005-05-11 Digital protective relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138526A JP2006320075A (en) 2005-05-11 2005-05-11 Digital protective relay system

Publications (1)

Publication Number Publication Date
JP2006320075A true JP2006320075A (en) 2006-11-24

Family

ID=37540223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138526A Pending JP2006320075A (en) 2005-05-11 2005-05-11 Digital protective relay system

Country Status (1)

Country Link
JP (1) JP2006320075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189090A (en) * 2008-02-04 2009-08-20 Chugoku Electric Power Co Inc:The Protective relay system
CN108631280A (en) * 2018-04-18 2018-10-09 福建工程学院 The cascading trip prevention method of power grid for configuration apart from type back-up protection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129843A (en) * 1973-04-19 1974-12-12
JP2003070151A (en) * 2001-08-27 2003-03-07 Toshiba Corp Protective relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129843A (en) * 1973-04-19 1974-12-12
JP2003070151A (en) * 2001-08-27 2003-03-07 Toshiba Corp Protective relay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189090A (en) * 2008-02-04 2009-08-20 Chugoku Electric Power Co Inc:The Protective relay system
CN108631280A (en) * 2018-04-18 2018-10-09 福建工程学院 The cascading trip prevention method of power grid for configuration apart from type back-up protection
CN108631280B (en) * 2018-04-18 2019-09-20 福建工程学院 The cascading trip prevention method of power grid for configuration apart from type back-up protection

Similar Documents

Publication Publication Date Title
US7576963B2 (en) Circuit protection system
JP2018064416A (en) Two parallel line transmission line protection system
KR20050007043A (en) Fault detecting method using harmonics and state transition diagram on transmission lines
US6937453B2 (en) Directional comparison distance relay system
JP2007244138A (en) Protective circuit
CN101097818A (en) Distance protection relay and method
JP2006320075A (en) Digital protective relay system
JP5208684B2 (en) Ground fault protection relay system
JP6745707B2 (en) Transmission line protection relay system and transmission line protection method
JP5578888B2 (en) Current differential relay
JP2017112741A (en) Ground fault protection system
JPWO2004042883A1 (en) Protective relay
JP2020167774A (en) Protection device
JP4836663B2 (en) Loop system protection device and method
JP4602271B2 (en) Protection system for two parallel transmission lines
JP3843663B2 (en) Protection relay device
JP2009022063A (en) Power transmission line protection system, and protection relay device
JP4540621B2 (en) Line selection relay device with electrical premises protection function and line selection relay system with electrical premises protection function
JP2004297967A (en) Protection relay system
JP3940492B2 (en) Digital type protective relay
JPH1141791A (en) Line selection ground fault protective relay
JP2013070475A (en) Relay system
JP3433992B2 (en) Protection system for different bus supply loop transmission line system
CN114389239A (en) Bus protection voltage determination method and device in hand-in-hand wiring mode and storage medium
JP2898555B2 (en) Current differential protection relay

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070402

A711 Notification of change in applicant

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A977 Report on retrieval

Effective date: 20091005

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413