JP2006318678A - Fuel cell system and operation method of fuel cell system - Google Patents

Fuel cell system and operation method of fuel cell system Download PDF

Info

Publication number
JP2006318678A
JP2006318678A JP2005137651A JP2005137651A JP2006318678A JP 2006318678 A JP2006318678 A JP 2006318678A JP 2005137651 A JP2005137651 A JP 2005137651A JP 2005137651 A JP2005137651 A JP 2005137651A JP 2006318678 A JP2006318678 A JP 2006318678A
Authority
JP
Japan
Prior art keywords
fuel
oxidant
flow path
power generation
flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005137651A
Other languages
Japanese (ja)
Inventor
Masaki Ichikawa
正樹 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2005137651A priority Critical patent/JP2006318678A/en
Publication of JP2006318678A publication Critical patent/JP2006318678A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system and an operation method of the same, advantageous to improvement of durability of a fuel cell. <P>SOLUTION: The system is provided with a switching means 8 (valves 81 to 84) capable of switching a relation of a fuel flow channel and an oxidant flow channel between a parallel flow mode and an opposite flow mode. The switching means 8 switches over to operate in the opposite flow mode at a high power generation area with a relatively high power generation volume and in the parallel flow mode at a low power generation area with a power generation volume relatively lower than the high power generation area. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は燃料電池の耐久性を向上させるのに有利な燃料電池システムおよび燃料電池システムの運転方法に関する。   The present invention relates to a fuel cell system advantageous for improving the durability of a fuel cell and a method for operating the fuel cell system.

燃料電池は、電解質を挟む燃料極および酸化剤極とを有する膜電極接合体(以下、MEAともいう)と、酸化剤ガスを酸化剤極に流す酸化剤流路と、燃料を燃料極に流す燃料流路とを有する。特許文献1には、電解質膜を構成するリン酸成分が燃料電池の運転時間の経過により飛散消失して燃料電池の性能が低下すると共に、リン酸成分が廃棄物として発生することに着目し、計測手段により燃料電池の運転時間を計測し、運転時間が所定値になったとき、燃料流路および酸化剤流路の流れを切り替える技術が開示されている。このものによれば、飛散消失するリン酸成分の消失がガス流れ方向において均一化されると記載されている。また特許文献2には、水が流路を狭くするフラッディング現象が燃料電池に生じているかを検出し、フラッディング現象が発生していると、ガス流れ方向を切り替える技術が開示されている。
特開平06−089729号公報 特開2003−249247号公報
The fuel cell includes a membrane electrode assembly (hereinafter also referred to as MEA) having a fuel electrode and an oxidant electrode sandwiching an electrolyte, an oxidant flow path for flowing an oxidant gas to the oxidant electrode, and a fuel flow to the fuel electrode. And a fuel flow path. Patent Document 1 focuses on the fact that the phosphoric acid component constituting the electrolyte membrane scatters and disappears with the passage of the operating time of the fuel cell and the performance of the fuel cell is reduced, and the phosphoric acid component is generated as waste, A technique is disclosed in which the operating time of a fuel cell is measured by a measuring means, and the flow of the fuel flow path and the oxidant flow path is switched when the operating time reaches a predetermined value. According to this, it is described that the disappearance of the phosphoric acid component that is scattered and disappeared is made uniform in the gas flow direction. Patent Document 2 discloses a technique for detecting whether or not a flooding phenomenon in which water narrows the flow path is generated in the fuel cell, and switching the gas flow direction when the flooding phenomenon occurs.
Japanese Patent Laid-Open No. 06-089729 JP 2003-249247 A

産業界では、燃料電池の耐久性を向上させることが要請されている。また、上記した技術によれば、発電量が相対的に大きい高発電領域と、発電量が相対的に小さい低発電領域とで、ガス流れの向きを切り替えるものではない。   There is a demand in the industry to improve the durability of fuel cells. Further, according to the above-described technique, the direction of gas flow is not switched between a high power generation region where the power generation amount is relatively large and a low power generation region where the power generation amount is relatively small.

本発明は上記した実情に鑑みてなされたものであり、燃料電池の耐久性を向上させるのに有利な燃料電池システムおよび燃料電池システムの運転方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a fuel cell system and a fuel cell system operating method that are advantageous in improving the durability of the fuel cell.

(1)本発明者は、上記した課題のもとに燃料電池システムについて長年にわたり鋭意研究を進めている。そして本発明者は研究により次の事項(a)(b)を発見し、かかる発見に基づいて本発明を完成させた。燃料の流れの基本的方向と酸化剤の基本的方向を対向させる対向流形態を採用するときには、燃料電池における発電分布の均一性が向上する利点が得られる。その理由としては次のように推察されている。対向流形態(図1参照)によれば、酸化剤流路を流れる酸化剤の上流域(酸化剤濃度が高い領域)と、燃料流路を流れる燃料の下流域(燃料濃度が低い領域)とが電解質膜を介して対向すると共に、酸化剤流路を流れる酸化剤の下流域(酸化剤濃度が低い領域)と、燃料流路を流れる燃料の上流域(燃料濃度が高い領域)とが電解質膜を介して対向する。このため、酸化剤濃度が高い領域と燃料濃度が高い領域とが電解質膜を介して対向すると共に、酸化剤濃度が低い領域と燃料濃度が低い領域とが電解質膜を介して対向する形態に比較して、対向流形態を採用したときには流れ方向における発電分布の均一性が向上する利点が得られる。   (1) The present inventor has been diligently researching the fuel cell system for many years based on the above-described problems. The present inventor discovered the following items (a) and (b) through research, and completed the present invention based on the findings. When adopting a counter flow configuration in which the basic direction of the fuel flow and the basic direction of the oxidant are opposed, there is an advantage that the uniformity of the power generation distribution in the fuel cell is improved. The reason is presumed as follows. According to the counterflow configuration (see FIG. 1), the upstream region of the oxidant flowing through the oxidant flow path (region where the oxidant concentration is high) and the downstream region of the fuel flowing through the fuel flow channel (region where the fuel concentration is low) Are opposed to each other through the electrolyte membrane, and the downstream area of the oxidant flowing through the oxidant flow path (the area where the oxidant concentration is low) and the upstream area of the fuel flowing through the fuel flow path (the area where the fuel concentration is high) are the electrolyte. Opposing through the membrane. For this reason, the region where the oxidant concentration is high and the region where the fuel concentration is high are opposed to each other through the electrolyte membrane, and the region where the oxidant concentration is low and the region where the fuel concentration is low are opposed to each other via the electrolyte membrane. Thus, when the counterflow mode is adopted, there is an advantage that the uniformity of the power generation distribution in the flow direction is improved.

(a)ところで、燃料電池の発電運転では、一般的には、発電反応で生成した水が、酸化剤流路を流れる酸化剤ガスと共に酸化剤流路の下流域に移行する影響で、酸化剤流路の下流域において水がガス流路を狭くすることが多い。このため、酸化剤流路の下流域では、発電反応が制約され易い。このため、酸化剤流路の下流域に電解質膜を介して対向する燃料流路の上流域では、発電反応が起こりにくい。結果として、前記した対向流形態を採用したときには、燃料流路の上流域では、燃料の消費が少なくなり、燃料濃度(燃料分圧)が高くなる。故に、燃料流路の上流域に存在する濃度が高い燃料成分(燃料がガス状の場合にはガス状態のまま)が、電解質膜を透過し、酸化剤極側に移行するおそれがある。   (A) By the way, in the power generation operation of the fuel cell, in general, the water generated by the power generation reaction is transferred to the downstream region of the oxidant flow path together with the oxidant gas flowing through the oxidant flow path. Water often narrows the gas flow path in the downstream area of the flow path. For this reason, the power generation reaction is easily restricted in the downstream region of the oxidant flow path. For this reason, the power generation reaction is unlikely to occur in the upstream region of the fuel flow channel facing the downstream region of the oxidant flow channel via the electrolyte membrane. As a result, when the above-described counterflow mode is employed, fuel consumption is reduced and fuel concentration (fuel partial pressure) is increased in the upstream region of the fuel flow path. Therefore, a fuel component having a high concentration existing in the upstream region of the fuel flow path (in a gaseous state when the fuel is in a gaseous state) may permeate the electrolyte membrane and move to the oxidant electrode side.

(b)更に、本発明者は、上記した研究により、図3の特性線W1に示すように、燃料極側の燃料が電解質膜を介して酸化剤極側に移行する移行量(燃料がガス状の場合にはガス状態の移行量)は、発電量が相対的に大きい高発電領域(電流密度が相対的に高い領域)においては少ないものの、発電量が相対的に小さい低発電領域(電流密度が相対的に低い領域)においては、大きくなる傾向があることを、最近、新たに発見した。なお、この高発電領域および低発電領域は、燃料電池の電流密度−出力特性(IV特性)における電流密度の大きさによって区別される領域である。   (B) Further, the present inventor has found that the amount of transition (fuel is gas) that the fuel on the fuel electrode side moves to the oxidant electrode side through the electrolyte membrane as shown by the characteristic line W1 in FIG. The amount of gas state transition is small in the high power generation region where the power generation amount is relatively large (region where the current density is relatively high), but low in the power generation region where the power generation amount is relatively small (current). Recently, it has been newly discovered that there is a tendency to increase in areas where the density is relatively low. The high power generation region and the low power generation region are regions that are distinguished by the magnitude of the current density in the current density-output characteristics (IV characteristics) of the fuel cell.

そこで、発電量が相対的に大きい領域において対向流形態を採用してガス流れ方向における発電分布の均一性を高めつつ、発電量が相対的に小さい低発電領域においては並行流形態(図2参照)を採用すれば良いことを知見した。即ち、並行流形態は、燃料の流れの基本的方向と酸化剤の基本的方向と同じ向きとするものである。並行流形態によれば、図2から理解できるように、酸化剤流路を流れる酸化剤の上流域(酸化剤濃度が高い領域)と、燃料流路を流れる燃料の上流域(燃料濃度が高い領域)とが電解質膜を介して対向すると共に、酸化剤流路を流れる酸化剤の下流域(酸化剤濃度が低い領域)と、燃料流路を流れる燃料の下流域(燃料濃度が低い領域)とが電解質膜を介して対向する。このような並行流形態によれば、燃料流路の上流域において燃料が発電反応に良好に消費されるので、燃料流路の上流域の燃料が電解質膜を介して酸化剤極側に移行することが抑制される。このように燃料極側の燃料が電解質膜を介して酸化剤極側に移行することが抑制されると、燃料電池を長期にわたり使用したときであっても、電解質膜の性質が変化することが良好に抑制され、電解質膜の長寿命化、耐久性の向上を図り得る。かかる発見に基づいて本発明は開発されたものである。   Therefore, a counter flow mode is adopted in a region where the power generation amount is relatively large to improve the uniformity of power generation distribution in the gas flow direction, while a parallel flow mode is used in a low power generation region where the power generation amount is relatively small (see FIG. 2). ) Was adopted. That is, the parallel flow mode is the same direction as the basic direction of the fuel flow and the basic direction of the oxidant. According to the parallel flow mode, as can be understood from FIG. 2, the upstream region of the oxidant flowing through the oxidant flow channel (region where the oxidant concentration is high) and the upstream region of fuel flowing through the fuel flow channel (the fuel concentration is high). Region) through the electrolyte membrane, the downstream region of the oxidant flowing through the oxidant flow path (region where the oxidant concentration is low), and the downstream region of fuel flowing through the fuel flow channel (region where the fuel concentration is low) Are opposed to each other through the electrolyte membrane. According to such a parallel flow mode, the fuel is favorably consumed in the power generation reaction in the upstream region of the fuel flow path, so that the fuel in the upstream region of the fuel flow path moves to the oxidant electrode side through the electrolyte membrane. It is suppressed. In this way, if the fuel on the fuel electrode side is suppressed from moving to the oxidant electrode side through the electrolyte membrane, the properties of the electrolyte membrane may change even when the fuel cell is used over a long period of time. It is suppressed well, and the lifetime of the electrolyte membrane can be improved and the durability can be improved. The present invention has been developed based on such findings.

(2)即ち、本発明に係る燃料電池システムは、電解質膜を挟む燃料極および酸化剤極とを有する膜電極接合体と、酸化剤を酸化剤極に流す酸化剤流路と、燃料を燃料極に流す燃料流路とを有する燃料電池を具備する燃料電池システムにおいて、燃料流路を流れる燃料および酸化剤流路を流れる酸化剤の流れ方向の関係を、第1形態と第2形態とに切替可能とする切替手段を具備しており、切替手段は、第1形態において、酸化剤流路を流れる酸化剤の上流域と燃料流路を流れる燃料の上流域とを電解質膜を介して対向させると共に、酸化剤流路を流れる酸化剤の下流域と燃料流路を流れる燃料の下流域とを電解質膜を介して対向させ、
第2形態において、酸化剤流路を流れる酸化剤の上流域と燃料流路を流れる燃料の下流域とを電解質膜を介して対向させると共に、酸化剤流路を流れる酸化剤の下流域と燃料流路を流れる燃料の上流域とを電解質膜を介して対向させ、且つ、切替手段は、発電量が相対的に大きい高発電領域では第2形態で運転し、発電量が高発電領域よりも相対的に小さい低発電領域では第1形態で運転するように切替えることを特徴とするものである。
(2) That is, a fuel cell system according to the present invention includes a membrane electrode assembly having a fuel electrode and an oxidant electrode sandwiching an electrolyte membrane, an oxidant flow path for flowing an oxidant to the oxidant electrode, and fuel as fuel. In the fuel cell system including a fuel cell having a fuel flow channel that flows to the pole, the relationship between the flow direction of the fuel that flows through the fuel flow channel and the oxidant that flows through the oxidant flow channel is the first mode and the second mode. In the first embodiment, the switching means opposes the upstream area of the oxidant flowing through the oxidant flow path and the upstream area of the fuel flowing through the fuel flow path through the electrolyte membrane. And making the downstream area of the oxidant flowing through the oxidant flow path and the downstream area of the fuel flowing through the fuel flow path face each other through the electrolyte membrane,
In the second embodiment, the upstream region of the oxidant flowing through the oxidant flow channel and the downstream region of the fuel flowing through the fuel flow channel are opposed to each other through the electrolyte membrane, and the downstream region of the oxidant flowing through the oxidant flow channel and the fuel The upstream portion of the fuel flowing through the flow path is opposed to the fuel through the electrolyte membrane, and the switching unit operates in the second form in the high power generation region where the power generation amount is relatively large, and the power generation amount is higher than that in the high power generation region. In a relatively small low power generation region, switching is performed so as to operate in the first mode.

(3)本発明に係る燃料電池システムの運転方法は、電解質膜を挟む燃料極および酸化剤極とを有する膜電極接合体と、酸化剤を酸化剤極に流す酸化剤流路と、燃料を燃料極に流す燃料流路とを有する燃料電池を用意すると共に、燃料流路における燃料の流れおよび酸化剤流路における酸化剤の流れの関係を切替可能とする切替手段とを用意する工程と、
酸化剤流路を流れる酸化剤の上流域と燃料流路を流れる燃料の下流域とを対向させると共に、酸化剤流路を流れる酸化剤の下流域と燃料流路を流れる燃料の上流域とを対向させる形態で発電運転する工程とを実施する燃料電池シテスムの運転方法において、
発電量が高発電領域よりも相対的に小さい低発電領域に変化するとき、酸化剤流路を流れる酸化剤の上流域と燃料流路を流れる燃料の上流域とを対向させると共に、酸化剤流路を流れる酸化剤の下流域と燃料流路を流れる燃料の下流域とを対向させる形態で発電運転するように切替えることを特徴とするものである。
(3) A method of operating a fuel cell system according to the present invention comprises a membrane electrode assembly having a fuel electrode and an oxidant electrode sandwiching an electrolyte membrane, an oxidant channel for flowing an oxidant to the oxidant electrode, and a fuel Preparing a fuel cell having a fuel flow path that flows to the fuel electrode, and preparing a switching means that can switch a relationship between a fuel flow in the fuel flow path and an oxidant flow in the oxidant flow path;
The upstream area of the oxidant flowing through the oxidant flow path is opposed to the downstream area of the fuel flowing through the fuel flow path, and the downstream area of the oxidant flowing through the oxidant flow path and the upstream area of the fuel flowing through the fuel flow path are In the operation method of the fuel cell system for carrying out the step of performing the power generation operation in the form of facing,
When the power generation amount changes to a low power generation region that is relatively smaller than the high power generation region, the upstream region of the oxidant that flows through the oxidant flow channel and the upstream region of the fuel that flows through the fuel flow channel face each other. The power generation operation is switched in such a manner that the downstream region of the oxidant flowing through the passage and the downstream region of the fuel flowing through the fuel flow channel are opposed to each other.

(4)本発明によれば、発電量が相対的に大きい高発電領域では、切替手段は、燃料と酸化剤との流れ方向の関係を第2形態に切り替える。第2形態(対向流形態に相当する)によれば、酸化剤流路を流れる酸化剤の上流域と燃料流路を流れる燃料の下流域とを対向させると共に、酸化剤流路を流れる酸化剤の下流域と燃料流路を流れる燃料の上流域とを対向させる。このため発電量が相対的に大きい高発電領域では、前述したように、流れ方向における発電分布の均一性が向上する。これに対して、発電量が高発電領域よりも相対的に小さい低発電領域では、切替手段は、燃料と酸化剤との流れを第1形態(並行流形態に相当する)に切り替える。第1形態によれば、酸化剤流路を流れる酸化剤の上流域と燃料流路を流れる燃料の上流域とを対向させると共に、酸化剤流路を流れる酸化剤の下流域と燃料流路を流れる燃料の下流域とを対向させる。この結果、燃料流路の上流域において燃料が発電反応に良好に消費される。故に、燃料流路の上流域の燃料が電解質膜を介して酸化剤極側に移行する移行量が抑制される。これにより電解質膜の性質の変化を抑制でき、電解質膜の長寿命化、耐久性の向上を図り得る。   (4) According to the present invention, in the high power generation region where the power generation amount is relatively large, the switching unit switches the relationship between the flow direction of the fuel and the oxidant to the second mode. According to the second form (corresponding to the counter flow form), the upstream area of the oxidant flowing through the oxidant flow path and the downstream area of the fuel flowing through the fuel flow path are opposed to each other, and the oxidant flowing through the oxidant flow path And the upstream region of the fuel flowing through the fuel flow path are opposed to each other. For this reason, in the high power generation region where the power generation amount is relatively large, the uniformity of the power generation distribution in the flow direction is improved as described above. In contrast, in the low power generation region where the power generation amount is relatively smaller than the high power generation region, the switching unit switches the flow of the fuel and the oxidant to the first mode (corresponding to the parallel flow mode). According to the first aspect, the upstream region of the oxidant flowing through the oxidant flow channel is opposed to the upstream region of the fuel flowing through the fuel flow channel, and the downstream region of the oxidant flowing through the oxidant flow channel and the fuel flow channel are It faces the downstream area of the flowing fuel. As a result, the fuel is favorably consumed for the power generation reaction in the upstream region of the fuel flow path. Therefore, the amount of transition of the fuel in the upstream region of the fuel flow path to the oxidant electrode side through the electrolyte membrane is suppressed. Thereby, the change in the properties of the electrolyte membrane can be suppressed, and the lifetime of the electrolyte membrane can be extended and the durability can be improved.

本発明によれば、燃料電池の長寿命化、耐久性を向上させるのに有利な燃料電池システムおよび燃料電池システムの運転方法を提供することができる。   According to the present invention, it is possible to provide a fuel cell system and an operation method of the fuel cell system that are advantageous for extending the life and durability of the fuel cell.

本発明によれば、切替手段は、発電量が相対的に大きい高発電領域では第2形態に切替えられ、発電量が高発電領域よりも相対的に小さい低発電領域では第1形態に切替えられる。本発明によれば、第1形態としては、燃料の基本的流れ方向と酸化剤の基本的流れ方向とが同じ向きである並行流形態を採用できる。第2形態としては、燃料の基本的流れ方向と酸化剤の基本的流れ方向とが逆向きである対向流形態を採用できる。高発電領域における発電量および低発電領域における発電量は、相対的なものである。従って、高発電領域は、発電面積の単位面積当たりの発電量(電流密度)が低発電領域よりも相対的に大きい領域を意味する。高発電領域は一般的には燃料電池で作動される電力負荷が大きい領域となる。高発電領域は中発電領域を含むことができる。低発電領域は、発電面積の単位面積当たりの発電量(電流密度)が高発電領域よりも相対的に小さい領域を意味する。従って低発電領域は一般的には燃料電池で作動される電力負荷が小さい領域となる。   According to the present invention, the switching means is switched to the second form in the high power generation region where the power generation amount is relatively large, and is switched to the first form in the low power generation region where the power generation amount is relatively smaller than the high power generation region. . According to the present invention, a parallel flow configuration in which the basic flow direction of the fuel and the basic flow direction of the oxidant are in the same direction can be adopted as the first mode. As the second mode, a counter flow mode in which the basic flow direction of the fuel and the basic flow direction of the oxidant are opposite to each other can be adopted. The amount of power generation in the high power generation region and the amount of power generation in the low power generation region are relative. Therefore, the high power generation region means a region where the power generation amount (current density) per unit area of the power generation area is relatively larger than that of the low power generation region. The high power generation region is generally a region where the power load operated by the fuel cell is large. The high power generation region can include a medium power generation region. The low power generation region means a region where the power generation amount (current density) per unit area of the power generation area is relatively smaller than that of the high power generation region. Therefore, the low power generation region is generally a region where the power load operated by the fuel cell is small.

本発明によれば、第1形態(並行流形態に相当する)は、燃料電池の発電面積において、酸化剤の基本的流れ方向と燃料の基本的流れ方向とが同じ向きとなる割合が、第2形態(対向流形態に相当する)よりも高い形態を意味する。第2形態(対向流形態に相当する)は、燃料電池の発電面積において、酸化剤の基本的流れ方向と燃料の基本的流れ方向とが逆となる割合が、第1形態(並行流形態に相当する)よりも高い形態を意味する。従って、第1形態(並行流形態に相当する)は、発電領域を100%としたとき、面積比で、酸化剤の基本的流れ方向と燃料の基本的流れ方向とが同じ向きとなる発電面積を55%以上または60%以上(または70%以上)占めることができる。また、第2形態(対向流形態に相当する)は、燃料電池の発電面積を100%としたとき、面積比で、酸化剤の基本的流れ方向と燃料の基本的流れ方向とが逆の向きとなる発電面積を55%以上または60%以上(または70%以上)占めることができる。   According to the present invention, in the first mode (corresponding to the parallel flow mode), the ratio of the basic flow direction of the oxidant and the basic flow direction of the fuel is the same in the power generation area of the fuel cell. It means a form higher than two forms (corresponding to the counterflow form). In the second mode (corresponding to the counter flow mode), the ratio of the basic flow direction of the oxidant and the basic flow direction of the fuel in the power generation area of the fuel cell is the first mode (parallel flow mode). Higher form). Therefore, the first form (corresponding to the parallel flow form) is a power generation area in which the basic flow direction of the oxidant and the basic flow direction of the fuel are in the same direction by the area ratio when the power generation region is 100%. Can account for 55% or more or 60% or more (or 70% or more). Further, in the second mode (corresponding to the counter flow mode), when the power generation area of the fuel cell is 100%, the basic flow direction of the oxidant and the basic flow direction of the fuel are opposite in the area ratio. It is possible to occupy 55% or more or 60% or more (or 70% or more).

本発明によれば、切替手段は、酸化剤流路を流れる酸化剤の流れの向きを維持しつつ、燃料流路を流れる燃料の流れの向きを逆に切替えることにより、第1形態と第2形態とを切替可能とする形態を例示することができる。酸化剤流路を流れる酸化剤の流れの基本的な向きとしては、下向きに維持しておくことが好ましい。酸化剤極では発電反応により水が生成するため、酸化剤流路における水を重力を利用して排出させるためである。本発明によれば、燃料流路は、燃料が供給される入口および燃料オフ流体が吐出される出口のうちの一方に切替可能な燃料用第1開口と、燃料が供給される入口および燃料オフ流体が吐出される出口のうちの他方に切替可能な燃料用第2開口とを備えている形態を例示することができる。この場合、切替手段は、好ましくは、燃料用第1開口に繋がる燃料供給用の第1供給バルブおよび燃料オフ流体排出用の第1排出バルブと、燃料用第2開口に繋がる燃料供給用の第2供給バルブおよび燃料オフ流体排出用の第2排出バルブとを備えている。上記した各バルブとしては、オンオフ式の開閉弁でも良いし、開口面積可変型の開閉弁でも良いし、三方弁でも良いし、公知のバルブを採用できる。   According to the present invention, the switching means switches the direction of the flow of the fuel flowing through the fuel flow path while maintaining the direction of the flow of the oxidant flowing through the oxidant flow path. The form which can switch a form can be illustrated. The basic direction of the oxidant flow that flows through the oxidant flow path is preferably maintained downward. This is because water is generated by a power generation reaction at the oxidant electrode, and thus water in the oxidant flow path is discharged using gravity. According to the present invention, the fuel flow path includes a first fuel opening that can be switched to one of an inlet through which fuel is supplied and an outlet through which fuel off fluid is discharged, and the inlet through which fuel is supplied and the fuel off. The form which is provided with the 2nd opening for fuel which can be switched to the other of the outlets from which fluid is discharged can be illustrated. In this case, the switching means preferably has a first supply valve for supplying fuel connected to the first opening for fuel and a first discharge valve for discharging fuel off fluid, and a first supply valve for supplying fuel connected to the second opening for fuel. 2 supply valves and a second discharge valve for discharging the fuel-off fluid. Each of the above-described valves may be an on-off type on-off valve, a variable opening area on-off valve, a three-way valve, or a known valve.

また本発明によれば、酸化剤流路は、酸化剤が供給される入口および酸化剤オフ流体が吐出される出口のうちの一方に切替可能な酸化剤用第1開口と、酸化剤が供給される入口および酸化剤オフ流体が吐出される出口のうちの他方に切替可能な酸化剤用第2開口とを備えている形態を例示することができる。この場合、切替手段は、好ましくは、酸化剤用第1開口に繋がる酸化剤供給用の第1供給バルブおよび酸化剤オフ流体排出用の第1排出バルブと、酸化剤用第2開口に繋がる酸化剤供給用の第2供給バルブおよび酸化剤オフ流体排出用の第2排出バルブとを備えている。   Further, according to the present invention, the oxidant flow path includes a first oxidant opening that can be switched to one of an inlet through which the oxidant is supplied and an outlet through which the oxidant-off fluid is discharged. The form which is provided with the 2nd opening for oxidizers which can be switched to the other of the entrance which is discharged, and the outlet from which oxidant off fluid is discharged can be illustrated. In this case, the switching means preferably has a first supply valve for supplying oxidant connected to the first opening for oxidant, a first discharge valve for discharging oxidant-off fluid, and an oxidation connected to the second opening for oxidant. A second supply valve for supplying the agent and a second discharge valve for discharging the oxidant-off fluid.

本発明によれば、高発電領域と低発電領域とを仕切る境界値としては、つまり、第1形態(並行流形態に相当する)と第2形態(対向流形態に相当する)とを切り替える境界値としては、燃料電池システムの種類、燃料電池システムの用途(例えば定置用、車両用、携帯用、電気機器用、電子機器用等)、発電最大出力値、燃料の種類、酸化剤の種類等の要因に応じて定まるものである。この境界値としては、高発電領域と低発電領域とを仕切る相対値であるため、一義的に決定できるものではない。定格運転時における燃料電池の電流密度をImaxとすると、この境界値としては、Imaxの例えば3%〜80%の範囲内(例えば3%、10%、20%、40%、50%、60%、80%)、5%〜70%の範囲内、10%〜60%の範囲内で適宜選択できる。なお、一般的には定格運転時の電流密度は最大電流密度に対応する。燃料電池の仕様によっては、定格運転時の電流密度より大きな最大電流密度を設定する場合があるので、この場合にはImaxは最大電流密度としても良い。この境界値としては、燃料電池システムが定置用の場合には、例えば、0.01〜0.5アンペア/cm2の範囲内(例えば0.01アンペア/cm2,0.1アンペア/cm2,0.2アンペア/cm2,0.3アンペア/cm2,0.4アンペア/cm2,0.5アンペア/cm2)で適宜選択することができるが、これに限定されるものではない。また、燃料電池システムが車両用の場合には、例えば、0.02〜1.5アンペア/cm2の範囲内で適宜選択することができるが、これに限定されるものではない。また、燃料電池システムが電子機器用、電気機器用の場合には、例えば、0.005〜2.5アンペア/cm2の範囲内で適宜選択することができるが、これに限定されるものではない。 According to the present invention, as a boundary value for partitioning the high power generation region and the low power generation region, that is, a boundary for switching between the first form (corresponding to the parallel flow form) and the second form (corresponding to the counter flow form). Values include the type of fuel cell system, the use of the fuel cell system (for example, stationary, vehicle, portable, electrical equipment, electronic equipment, etc.), maximum power output value, fuel type, oxidizer type, etc. It depends on the factors. Since this boundary value is a relative value that partitions the high power generation region and the low power generation region, it cannot be uniquely determined. Assuming that the current density of the fuel cell during rated operation is Imax, this boundary value is within the range of 3% to 80% of Imax (for example, 3%, 10%, 20%, 40%, 50%, 60%). 80%) within the range of 5% to 70%, and within the range of 10% to 60%. In general, the current density during rated operation corresponds to the maximum current density. Depending on the specifications of the fuel cell, a maximum current density larger than the current density during rated operation may be set. In this case, Imax may be the maximum current density. As the boundary value, when the fuel cell system is stationary, for example, within the range of 0.01 to 0.5 ampere / cm 2 (for example, 0.01 ampere / cm 2 , 0.1 ampere / cm 2). , 0.2 ampere / cm 2 , 0.3 ampere / cm 2 , 0.4 ampere / cm 2 , 0.5 ampere / cm 2 ), but not limited thereto. . Further, when the fuel cell system is used for a vehicle, for example, the fuel cell system can be appropriately selected within the range of 0.02 to 1.5 amperes / cm 2 , but is not limited thereto. Further, when the fuel cell system is for an electronic device or an electric device, it can be appropriately selected within a range of 0.005 to 2.5 amperes / cm 2 , for example, but is not limited thereto. Absent.

以下、本発明の実施例を図1〜図5を参照して説明する。図4は燃料電池の概念を示す。図4に示すように、燃料電池の膜電極接合体1は、イオン伝導体(プロトン伝導体)である高分子型の電解質膜10を挟む燃料極11および酸化剤極12とを有する。燃料電池は、酸化剤ガス(一般的には空気または酸素ガス)を酸化剤極12に流す酸化剤流路32と、ガス状の燃料(一般的には水素ガスまたは水素含有ガス)を燃料極11に流す燃料流路42とを有する。酸化剤流路32および燃料流路42は配流板2により形成される。燃料極11は、集電性およびガス拡散性を有するように炭素系の多孔質体(例えば炭素繊維の集合体)で形成されたガス拡散層11eを有する。酸化剤極12は、集電性およびガス拡散性を有するように炭素系の多孔質体(例えば炭素繊維の集合体)で形成されたガス拡散層12eを有する。図4に示すように、燃料極11は、ガス拡散層11eと発電反応を促進させるための燃料用の触媒層13とをもつ。酸化剤極12は、ガス拡散層12eと発電反応を促進させるための酸化剤用の触媒層14とをもつ。   Embodiments of the present invention will be described below with reference to FIGS. FIG. 4 shows the concept of the fuel cell. As shown in FIG. 4, the membrane electrode assembly 1 of the fuel cell includes a fuel electrode 11 and an oxidant electrode 12 that sandwich a polymer electrolyte membrane 10 that is an ion conductor (proton conductor). The fuel cell includes an oxidant flow path 32 for flowing an oxidant gas (generally air or oxygen gas) to the oxidant electrode 12, and a gaseous fuel (generally hydrogen gas or hydrogen-containing gas) as a fuel electrode. 11 and a fuel flow path 42 that flows into the fuel cell 11. The oxidant channel 32 and the fuel channel 42 are formed by the flow distribution plate 2. The fuel electrode 11 has a gas diffusion layer 11e formed of a carbon-based porous body (for example, an aggregate of carbon fibers) so as to have current collecting properties and gas diffusibility. The oxidant electrode 12 has a gas diffusion layer 12e formed of a carbon-based porous body (for example, an aggregate of carbon fibers) so as to have current collecting properties and gas diffusibility. As shown in FIG. 4, the fuel electrode 11 includes a gas diffusion layer 11e and a fuel catalyst layer 13 for promoting a power generation reaction. The oxidant electrode 12 has a gas diffusion layer 12e and an oxidant catalyst layer 14 for promoting a power generation reaction.

図5に示すように、燃料電池の酸化剤流路32は、発電反応前の酸化剤ガスが供給される入口となる酸化剤用第1開口171と、発電反応後の酸化剤オフガスが吐出される出口となる酸化剤用第2開口172とを備えている。酸化剤用第1開口171は酸化剤供給主流路191に繋がる。酸化剤供給主流路191には酸化剤供給バルブ181および加湿器183が設けられている。酸化剤用第2開口172は酸化剤排出主流路192に繋がる。酸化剤排出主流路192には酸化剤排出バルブ182が設けられている。図5に示すように、燃料電池の燃料流路42は、燃料用第1開口71と、燃料用第2開口72とを備えている。燃料用第1開口71は、発電反応前の燃料が供給される入口および発電反応後の燃料オフガスが吐出される出口のうちの一方になる。燃料用第2開口72は、発電反応前の燃料が供給される入口および発電反応後の燃料オフガスが吐出される出口のうちの他方になる。   As shown in FIG. 5, the oxidant flow path 32 of the fuel cell discharges the oxidant first opening 171 serving as an inlet to which the oxidant gas before the power generation reaction is supplied and the oxidant off-gas after the power generation reaction. And an oxidant second opening 172 serving as an outlet. The first oxidant opening 171 is connected to the oxidant supply main channel 191. An oxidant supply valve 181 and a humidifier 183 are provided in the oxidant supply main channel 191. The second oxidant opening 172 is connected to the oxidant discharge main flow path 192. An oxidant discharge valve 182 is provided in the oxidant discharge main flow path 192. As shown in FIG. 5, the fuel flow path 42 of the fuel cell includes a first fuel opening 71 and a second fuel opening 72. The first fuel opening 71 is one of an inlet through which fuel before power generation reaction is supplied and an outlet through which fuel off-gas after power generation reaction is discharged. The second fuel opening 72 is the other of the inlet through which fuel before power generation reaction is supplied and the outlet through which fuel off-gas after power generation reaction is discharged.

図5に示す切替手段8は、燃料電池における燃料流路42および酸化剤流路32のガス流れの関係を並行流形態と対向流形態とに切替可能とするものである。本実施例では、燃料電池の内部における酸化剤ガスの流れの向きを下向きに維持しつつ、燃料電池の内部における燃料の流れの向きを上向きまたは下向きに変えるものである。図5に示すように、切替手段8は、燃料用第1開口71に繋がる燃料供給用の第1供給バルブ81と、燃料用第1開口71に繋がる燃料オフガス排出用の第1排出バルブ83と、燃料用第2開口72に繋がる燃料供給用の第2供給バルブ82と、燃料用第2開口72に繋がる燃料オフガス排出用の第2排出バルブ84とを備えている。第1供給バルブ81および第2供給バルブ82は燃料供給主流路91を介して燃料源95に繋がる。第1排出バルブ83および第2排出バルブ84は燃料オフガス排出主流路92を介して燃料排出部に繋がる。本実施例によれば、電力負荷が大きく発電量が相対的に大きい高発電領域では、制御装置200は、対向流形態で燃料電池を運転するように切替手段8を切り替える。また、電力負荷が小さく発電量が高発電領域よりも相対的に小さい低発電領域では、制御装置200は、並行流形態で燃料電池を運転するように切替手段8を切替える。以下、更に説明を加える。   The switching means 8 shown in FIG. 5 makes it possible to switch the gas flow relationship between the fuel flow path 42 and the oxidant flow path 32 in the fuel cell between a parallel flow mode and a counter flow mode. In this embodiment, the direction of the flow of the fuel inside the fuel cell is changed upward or downward while the direction of the flow of the oxidant gas inside the fuel cell is maintained downward. As shown in FIG. 5, the switching means 8 includes a first supply valve 81 for supplying fuel connected to the first opening 71 for fuel, and a first discharge valve 83 for discharging fuel off-gas connected to the first opening 71 for fuel. The second supply valve 82 for supplying fuel connected to the second opening 72 for fuel and the second discharge valve 84 for discharging fuel off-gas connected to the second opening 72 for fuel are provided. The first supply valve 81 and the second supply valve 82 are connected to the fuel source 95 via the fuel supply main channel 91. The first discharge valve 83 and the second discharge valve 84 are connected to the fuel discharge portion via the fuel off-gas discharge main flow path 92. According to the present embodiment, in the high power generation region where the power load is large and the power generation amount is relatively large, the control device 200 switches the switching unit 8 so as to operate the fuel cell in the counterflow mode. In the low power generation region where the power load is small and the power generation amount is relatively smaller than the high power generation region, the control device 200 switches the switching means 8 so as to operate the fuel cell in a parallel flow mode. Further explanation will be given below.

燃料電池の発電運転時には、バルブ181および182が開放するので、加湿器183で加湿された酸化剤ガスは、燃料電池の酸化剤用第1開口171から燃料電池の酸化剤流路32に供給され、酸化剤流路32を下向きに流れ、発電反応に使用される。燃料電池の内部で発電反応を経た後の酸化剤オフガスは、出口となる酸化剤用第2開口172から酸化剤排出主流路192に排出される。燃料電池の発電運転時には、発電量が相対的に大きい高発電領域(発電量が相対的に中間の中発電領域を含む)では、制御装置200は、燃料電池の内部における燃料と酸化剤とのガス流れの関係が対向流となる対向流形態で運転されるように切替手段8を制御する。このような対向流形態によれば、図1に模式的に示すように、酸化剤流路32を流れる酸化剤の上流域と燃料流路42を流れる燃料の下流域とを対向させると共に、酸化剤流路32を流れる酸化剤の下流域と燃料流路42を流れる燃料の上流域とを対向させる。   During the power generation operation of the fuel cell, the valves 181 and 182 are opened, so that the oxidant gas humidified by the humidifier 183 is supplied from the first oxidant opening 171 of the fuel cell to the oxidant flow path 32 of the fuel cell. The oxidant channel 32 flows downward and is used for power generation reaction. The oxidant off-gas after undergoing a power generation reaction inside the fuel cell is discharged to the oxidant discharge main channel 192 from the second oxidant opening 172 serving as an outlet. At the time of power generation operation of the fuel cell, in a high power generation region where the power generation amount is relatively large (including a middle power generation region where the power generation amount is relatively intermediate), the control device 200 performs the fuel and oxidant in the fuel cell. The switching means 8 is controlled so that the gas flow is operated in a counterflow mode in which the countercurrent flow is a counterflow. According to such a counter flow mode, as schematically shown in FIG. 1, the upstream region of the oxidant flowing through the oxidant flow channel 32 and the downstream region of the fuel flowing through the fuel flow channel 42 are opposed to each other, and oxidation is performed. The downstream area of the oxidant flowing through the agent flow path 32 and the upstream area of the fuel flowing through the fuel flow path 42 are opposed to each other.

この対向流形態によれば、具体的には、図5において、第1供給バルブ81を開放すると共に第1排出バルブ83を閉鎖する。更に、第2排出バルブ84を開放すると共に第2供給バルブ82を閉鎖する。この結果、ガス状の燃料は、燃料供給主流路91→第1供給バルブ81→第1分岐部101→燃料用第1開口71→燃料電池内部の燃料流路42を矢印Y2方向(上向き)に流れる→燃料用第2開口72→第2排出バルブ84→燃料オフガス排出主流路92に排出される。   Specifically, according to this counterflow mode, in FIG. 5, the first supply valve 81 is opened and the first discharge valve 83 is closed. Further, the second discharge valve 84 is opened and the second supply valve 82 is closed. As a result, the gaseous fuel passes through the fuel supply main flow path 91 → the first supply valve 81 → the first branching part 101 → the first opening for fuel 71 → the fuel flow path 42 inside the fuel cell in the direction of arrow Y2 (upward). Flow → Second opening for fuel 72 → Second exhaust valve 84 → Fuel off-gas exhaust main flow path 92 is discharged.

これに対して、発電量が相対的に小さい低発電領域では、制御装置200は、燃料電池の内部における燃料と酸化剤との流れの関係が並行流となる並行流形態で運転されるように切替手段8を制御する。このような並行流形態によれば、図2に模式的に示すように、燃料電池の酸化剤流路32を流れる酸化剤の上流域と燃料電池の燃料流路42を流れる燃料の上流域とを電解質膜10を介して対向させると共に、燃料電池の酸化剤流路32を流れる酸化剤の下流域と燃料電池の燃料流路42を流れる燃料の下流域とを電解質膜10を介して対向させる。この並行流形態によれば、具体的には、図5において、第2供給バルブ82を開放すると共に第2排出バルブ84を閉鎖する。更に、第1排出バルブ83を開放すると共に第1供給バルブ81を閉鎖する。この結果、ガス状の燃料は、燃料供給主流路91→第2供給バルブ82→第2分岐部102→燃料用第2開口72→燃料電池内部の燃料流路42を矢印Y1方向に流れる→燃料用第1開口71→第1分岐部101→第1排出バルブ83→燃料オフガス排出主流路92に排出される。   On the other hand, in the low power generation region where the power generation amount is relatively small, the control device 200 is operated in a parallel flow mode in which the flow relationship between the fuel and the oxidant in the fuel cell is a parallel flow. The switching means 8 is controlled. According to such a parallel flow mode, as schematically shown in FIG. 2, the upstream region of the oxidant flowing through the oxidant flow path 32 of the fuel cell and the upstream region of the fuel flowing through the fuel flow path 42 of the fuel cell And the downstream region of the oxidant flowing through the oxidant flow path 32 of the fuel cell and the downstream region of the fuel flowing through the fuel flow path 42 of the fuel cell through the electrolyte membrane 10. . Specifically, according to this parallel flow mode, the second supply valve 82 is opened and the second discharge valve 84 is closed in FIG. Further, the first discharge valve 83 is opened and the first supply valve 81 is closed. As a result, the gaseous fuel flows in the direction of arrow Y1 in the fuel supply main flow path 91 → second supply valve 82 → second branching section 102 → second fuel opening 72 → fuel flow path 42 in the fuel cell → fuel The first opening 71 → the first branch portion 101 → the first discharge valve 83 → the fuel off-gas discharge main flow path 92 is discharged.

以上説明したように本実施例によれば、発電量が相対的に大きい高発電領域では、制御装置200は、対向流形態で運転するように切替手段8を切替える。これにより高発電量を確保しつつ、燃料電池の内部における発電分布の均一化を図り得る。これに対して発電量が高発電領域よりも相対的に小さい低発電領域では、制御装置200は、並行流形態で運転するように切替手段8を切替える。この結果、低発電領域において、燃料電池の燃料極11側の燃料が燃料電池の酸化剤極12に移行することが抑制される。この結果、電解質膜10の性質の変化が抑制され、電解質膜10の長寿命化および耐久性の向上を図り得、燃料電池の耐久性を向上させるのに有利である。   As described above, according to the present embodiment, in the high power generation region where the power generation amount is relatively large, the control device 200 switches the switching unit 8 so as to operate in the counterflow mode. As a result, the power generation distribution in the fuel cell can be made uniform while securing a high power generation amount. On the other hand, in the low power generation region where the power generation amount is relatively smaller than the high power generation region, the control device 200 switches the switching unit 8 so as to operate in a parallel flow mode. As a result, in the low power generation region, the fuel on the fuel electrode 11 side of the fuel cell is suppressed from transferring to the oxidant electrode 12 of the fuel cell. As a result, the change in the properties of the electrolyte membrane 10 is suppressed, the life of the electrolyte membrane 10 can be extended and the durability can be improved, which is advantageous in improving the durability of the fuel cell.

図6は実施例2を示す。本実施例は実施例1と基本的には同様の構成、作用効果を有する。但し、燃料の流れの向きを上向きに維持しつつ、酸化剤ガスの流れの向きを下向きまたは上向きに変えるものである。図6に示すように、燃料電池の燃料流路42は、燃料供給バルブ181xに繋がる燃料用第1開口171xと、燃料排出バルブ182xに繋がる燃料用第2開口172xとを備えている。燃料電池の酸化剤流路32は、酸化剤用第1開口71xと、酸化剤用第2開口72xとを備えている。酸化剤用第1開口71xは、発電反応前の酸化剤ガスが供給される入口および発電反応後の酸化剤オフガスが吐出される出口のうちの一方になる。また、酸化剤用第2開口72xは、発電反応前の酸化剤ガスが供給される入口および発電反応後の酸化剤オフガスが吐出される出口のうちの他方になる。   FIG. 6 shows a second embodiment. The present embodiment basically has the same configuration and operational effects as the first embodiment. However, the flow direction of the oxidant gas is changed downward or upward while maintaining the flow direction of the fuel upward. As shown in FIG. 6, the fuel flow path 42 of the fuel cell includes a first fuel opening 171x connected to the fuel supply valve 181x and a second fuel opening 172x connected to the fuel discharge valve 182x. The oxidant flow path 32 of the fuel cell includes a first oxidant opening 71x and a second oxidant opening 72x. The first oxidant opening 71x is one of an inlet through which oxidant gas before power generation reaction is supplied and an outlet through which oxidant off-gas after power generation reaction is discharged. Further, the second oxidant opening 72x is the other of the inlet for supplying the oxidant gas before the power generation reaction and the outlet for discharging the oxidant off-gas after the power generation reaction.

図6に示すように、切替手段8xは、酸化剤用第1開口71xに繋がる酸化剤供給用の第1供給バルブ81xと、酸化剤用第1開口71xに繋がる酸化剤オフガス排出用の第1排出バルブ83xと、酸化剤用第2開口72xに繋がる酸化剤供給用の第2供給バルブ82xと、酸化剤用第2開口72xに繋がる酸化剤オフガス排出用の第2排出バルブ84xとを備えている。第1供給バルブ81xおよび第2供給バルブ82xは、酸化剤供給主流路91xおよび加湿器183を介して酸化剤搬送源95x(例えばブロア、ファン等)に繋がる。第1排出バルブ83xおよび第2排出バルブ84xは酸化剤オフガス排出主流路92xを介して酸化剤排出部(外気など)に繋がる。本実施例においても、電力負荷が大きく発電量が相対的に大きい高発電領域では、対向流形態で燃料電池を運転するように切替手段8xを切り替える。また、電力負荷が小さく発電量が高発電領域よりも相対的に小さい低発電領域では、並行流形態で燃料電池を運転するように切替手段8xを切替える。   As shown in FIG. 6, the switching means 8x includes a first supply valve 81x for supplying an oxidant connected to the first opening for oxidant 71x and a first oxidant off-gas discharge connected to the first opening for oxidant 71x. A discharge valve 83x, a second supply valve 82x for supplying oxidant connected to the second opening 72x for oxidant, and a second discharge valve 84x for discharging oxidant off-gas connected to the second opening 72x for oxidant are provided. Yes. The first supply valve 81x and the second supply valve 82x are connected to an oxidant transport source 95x (for example, a blower or a fan) via the oxidant supply main flow path 91x and the humidifier 183. The first discharge valve 83x and the second discharge valve 84x are connected to an oxidant discharge part (outside air or the like) via an oxidant off-gas discharge main flow path 92x. Also in the present embodiment, in the high power generation region where the power load is large and the power generation amount is relatively large, the switching means 8x is switched so as to operate the fuel cell in the counterflow mode. In the low power generation region where the power load is small and the power generation amount is relatively smaller than the high power generation region, the switching means 8x is switched so as to operate the fuel cell in a parallel flow mode.

以下、更に説明を加える。発電運転時には、燃料供給バルブ181xおよび燃料排出バルブ182xが開放される。すると、燃料供給主流路91の燃料は、燃料電池の燃料用第1開口171xから燃料電池の燃料流路42に供給され、燃料流路42を上向きに流れ、発電反応に使用される。燃料電池の内部で発電反応を経た後の燃料オフガスは、出口となる燃料用第2開口172xから燃料オフガス排出主流路92に排出される。   Further explanation will be given below. During the power generation operation, the fuel supply valve 181x and the fuel discharge valve 182x are opened. Then, the fuel in the fuel supply main channel 91 is supplied to the fuel channel 42 of the fuel cell from the fuel first opening 171x of the fuel cell, flows upward through the fuel channel 42, and is used for the power generation reaction. The fuel off-gas after undergoing a power generation reaction inside the fuel cell is discharged to the fuel off-gas discharge main flow path 92 from the fuel second opening 172x serving as an outlet.

さて、発電量が相対的に大きい高発電領域では、制御装置200は、燃料と酸化剤ガスとの流れの関係が対向流となる対向流形態で運転されるように切替手段8xを制御する。具体的には、図6において、第2供給バルブ82xを開放すると共に第2排出バルブ84xを閉鎖する。更に、第1排出バルブ83xを開放すると共に第1供給バルブ81xを閉鎖する。従って、酸化剤ガスは、酸化剤供給主流路91x→第2供給バルブ82x→第2分岐部102→酸化剤用第2開口72x→燃料電池の内部の酸化剤流路32を矢印Y1方向(下向き)に流れる→酸化剤用第1開口71x→第1分岐部101→第1排出バルブ83x→酸化剤オフガス排出主流路92xに排出される。これに対して、発電量が相対的に小さい低発電領域では、制御装置200は、燃料と酸化剤ガスとの流れの関係が並行流となる並行流形態で運転されるように切替手段8xを制御する。このような並行流形態によれば、具体的には、図6において、第1供給バルブ81xを開放すると共に第1排出バルブ83xを閉鎖する。更に、第2排出バルブ84xを開放すると共に第2供給バルブ82xを閉鎖する。この結果、酸化剤ガスは、酸化剤供給主流路91x→第1供給バルブ81x→第1分岐部101→酸化剤用第1開口71x→燃料電池内部の酸化剤流路32を矢印Y2方向(上向き)に流れる→酸化剤用第2開口72x→第2排出バルブ84x→酸化剤オフガス排出主流路92xに排出される。   Now, in the high power generation region where the power generation amount is relatively large, the control device 200 controls the switching unit 8x so that the flow relationship between the fuel and the oxidant gas is operated in a counterflow configuration in which the countercurrent flow is counterflowing. Specifically, in FIG. 6, the second supply valve 82x is opened and the second discharge valve 84x is closed. Further, the first discharge valve 83x is opened and the first supply valve 81x is closed. Therefore, the oxidant gas flows through the oxidant supply main flow path 91x → the second supply valve 82x → the second branch portion 102 → the second oxidant opening 72x → the oxidant flow path 32 inside the fuel cell in the direction of arrow Y1 (downward). ) → first oxidant opening 71 x → first branch portion 101 → first discharge valve 83 x → oxidant off-gas discharge main flow path 92 x is discharged. On the other hand, in the low power generation region where the power generation amount is relatively small, the control device 200 sets the switching unit 8x so that the flow relationship between the fuel and the oxidant gas is operated in a parallel flow mode in which the flow is parallel. Control. According to such a parallel flow mode, specifically, in FIG. 6, the first supply valve 81x is opened and the first discharge valve 83x is closed. Further, the second discharge valve 84x is opened and the second supply valve 82x is closed. As a result, the oxidant gas flows through the oxidant supply main flow path 91x → the first supply valve 81x → the first branch portion 101 → the first opening for oxidant 71x → the oxidant flow path 32 inside the fuel cell in the direction of arrow Y2 (upward). ) → second oxidant opening 72 x → second discharge valve 84 x → oxidant off-gas discharge main flow path 92 x is discharged.

以上説明したように本実施例によれば、発電量が相対的に大きい高発電領域では、制御装置200は、対向流形態で運転するように切替手段8xを切替える。これにより高発電量を確保しつつ、燃料電池の内部における発電分布の均一化を図り得る。これに対して発電量が高発電領域よりも相対的に小さい低発電領域では、制御装置200は、並行流形態で運転するように切替手段8xを切替える。この結果、低発電領域において、燃料電池の燃料極11側の燃料が燃料電池の酸化剤極12に移行することが抑制される。この結果、電解質膜10の長寿命化、耐久性の向上を図り得、燃料電池の耐久性を向上させるのに有利である。   As described above, according to the present embodiment, in the high power generation region where the power generation amount is relatively large, the control device 200 switches the switching unit 8x so as to operate in the counterflow mode. As a result, the power generation distribution in the fuel cell can be made uniform while securing a high power generation amount. On the other hand, in the low power generation region where the power generation amount is relatively smaller than the high power generation region, the control device 200 switches the switching unit 8x so as to operate in a parallel flow mode. As a result, in the low power generation region, the fuel on the fuel electrode 11 side of the fuel cell is suppressed from transferring to the oxidant electrode 12 of the fuel cell. As a result, the life of the electrolyte membrane 10 can be extended and the durability can be improved, which is advantageous for improving the durability of the fuel cell.

実施例3は、本発明の実施例1を適用したものである。この例について図7および図8を参照しつつ説明する。配流板2は導電性を有する材料、例えばカーボン材料または耐食性が良好な金属材料で形成されており、セパレータとも呼ばれる。配流板2は、一面側に酸化剤流路32をもち、他面側に燃料流路42をもつ。図7に示すように、配流板2は、縦長の四角形状をなしており、互いに対向する上辺部20及び下辺部21と、互いに対向する2つの側辺部22,23とを有する。配流板2は突起27を有する。配流板2の突起27は燃料極11や酸化剤極12に接触して電子伝導性を確保するものであり、発電反応で生成した電子を配流板2と酸化剤極12との間で伝導させることができる。   The third embodiment is an application of the first embodiment of the present invention. This example will be described with reference to FIGS. The distribution plate 2 is made of a conductive material, for example, a carbon material or a metal material having good corrosion resistance, and is also called a separator. The distribution plate 2 has an oxidant channel 32 on one side and a fuel channel 42 on the other side. As shown in FIG. 7, the flow distribution plate 2 has a vertically long rectangular shape, and includes an upper side portion 20 and a lower side portion 21 that face each other, and two side portions 22 and 23 that face each other. The distribution plate 2 has protrusions 27. The protrusions 27 of the flow distribution plate 2 are in contact with the fuel electrode 11 and the oxidant electrode 12 to ensure electron conductivity, and conduct electrons generated by the power generation reaction between the flow distribution plate 2 and the oxidant electrode 12. be able to.

図7に示すように、酸化剤入口30は、酸化剤ガス(一般的には空気あるいは酸素ガス)を流すものであり、配流板2の上辺部20側に横長形状に設けられている。酸化剤出口31(酸化剤出口)は配流板2の下辺部21側に横長形状に設けられている。酸化剤流路32は、酸化剤入口30から酸化剤出口31にかけて断続的に直状に延設された多数の仕切用の突起27により形成された直状とされている。従って、配流板2において、酸化剤ガスは、酸化剤入口30、酸化剤流路32、酸化剤出口31の順に、上から下に向けて下向き(矢印Y1方向)に流れる。よって、配流板2を流れる酸化剤ガスは、配流板2の一面側において上から下に向けて、基本的には下向きに流れる。   As shown in FIG. 7, the oxidant inlet 30 allows an oxidant gas (generally air or oxygen gas) to flow, and is provided in a horizontally long shape on the upper side 20 side of the flow distribution plate 2. The oxidant outlet 31 (oxidant outlet) is provided in a horizontally long shape on the lower side 21 side of the flow distribution plate 2. The oxidant flow path 32 has a straight shape formed by a large number of partitioning protrusions 27 that extend intermittently from the oxidant inlet 30 to the oxidant outlet 31. Accordingly, in the flow distribution plate 2, the oxidant gas flows downward (in the direction of arrow Y <b> 1) from top to bottom in the order of the oxidant inlet 30, the oxidant flow path 32, and the oxidant outlet 31. Therefore, the oxidant gas flowing through the flow distribution plate 2 flows downward from the top to the bottom on the one surface side of the flow distribution plate 2.

また、上記したように酸化剤流路32は直状に延設されており、しかも酸化剤出口31は配流板2の下辺部21側に設けられているため、酸化剤流路32に生成水が存在するときであっても、重力を利用してその生成水を下方に排出させる排出性を高めることができる。図7に示すように、突起27は切欠部28を介して長さ方向に断続されており、上下方向に配置されている。切欠部28が形成されているため、仮に、生成水の詰まりが酸化剤流路32に生じたとしても、生成水が詰まった部分を避けるように、酸化剤ガスは切欠部28を介して生成水の詰まり部分を迂回することができ、酸化剤ガスの流れ性が確保されている。   In addition, as described above, the oxidant flow path 32 extends straight, and the oxidant outlet 31 is provided on the lower side 21 side of the flow distribution plate 2, so that the generated water flows in the oxidant flow path 32. Even when there is water, it is possible to enhance the discharge property of discharging the generated water downward using gravity. As shown in FIG. 7, the protrusions 27 are intermittent in the length direction via the notches 28 and are arranged in the vertical direction. Since the cutout portion 28 is formed, even if the generated water is clogged in the oxidant flow path 32, the oxidant gas is generated through the cutout portion 28 so as to avoid the clogged portion of the generated water. The water clogging portion can be bypassed, and the flowability of the oxidant gas is ensured.

次に燃料の流れについて説明を加える。図8に示すように、一方の燃料出入口40は燃料(一般的には水素ガス、水素ガス)を流すものであり、配流板2の一方の側辺部22の下側に縦長に設けられている。他方の燃料出入口41は、配流板2の他方の側辺部22の上側に縦長に設けられている。燃料流路42は、酸化剤流路32と表裏の関係となるように酸化剤流路32に対向するように、配流板2の他面側に設けられている。燃料流路42は、燃料出入口40から燃料出入口41に向けて複数本並行に延設されている。   Next, the fuel flow will be described. As shown in FIG. 8, one fuel inlet / outlet port 40 flows fuel (generally, hydrogen gas, hydrogen gas) and is provided vertically below one side portion 22 of the flow distribution plate 2. Yes. The other fuel inlet / outlet port 41 is provided vertically above the other side portion 22 of the flow distribution plate 2. The fuel flow path 42 is provided on the other surface side of the flow distribution plate 2 so as to face the oxidant flow path 32 so as to have a front-back relationship with the oxidant flow path 32. A plurality of fuel flow paths 42 are extended in parallel from the fuel inlet / outlet 40 toward the fuel inlet / outlet 41.

上記した対向流形態によれば、燃料の流れは、酸化剤ガスの流れ方向と逆であり、基本的には上向き(矢印Y2方向)であるため、燃料流路42の下部(上流)側に存在する生成水を上向きに運び、燃料流路42の上部(下流)に移送させることができる。そして、生成水は電解質膜10を透過して酸化剤極12及び燃料極11との間で往来するため、燃料電池を構成する酸化剤極12及び燃料極11について、上部と下部との間における湿分ムラが低減され、ひいては配流板2の上部と下部との間における発電ムラが低減され易い。このように発電ムラを低減させるためには、燃料流路42の上下方向に沿った縦流路(後述する第2流路42b)の長さを長く設定することが好ましい。以下述べるように本実施例はこのような構造に設定されている。   According to the above-described counter flow configuration, the fuel flow is opposite to the flow direction of the oxidant gas, and is basically upward (in the direction of arrow Y2). The existing generated water can be conveyed upward and transferred to the upper part (downstream) of the fuel flow path 42. Since the generated water passes through the electrolyte membrane 10 and travels between the oxidant electrode 12 and the fuel electrode 11, the oxidant electrode 12 and the fuel electrode 11 constituting the fuel cell are between the upper part and the lower part. The moisture unevenness is reduced, and as a result, the power generation unevenness between the upper part and the lower part of the flow distribution plate 2 is easily reduced. Thus, in order to reduce power generation unevenness, it is preferable to set the length of the vertical flow path (second flow path 42b described later) along the vertical direction of the fuel flow path 42 to be long. As will be described below, the present embodiment is set to such a structure.

図8に示すように、燃料流路42は、燃料出入口40から横方向に沿って(つまり下辺部21に沿って)延設された第1流路42aと、第1流路42aの終部に連通すると共に縦方向に沿って(つまり側辺部22,23に沿って)延設された第2流路42bと、第2流路42bの上部に連通すると共に横方向に沿って(つまり上辺部20に沿って)延設された第3流路42cとを有する。図8に示すように第1流路42aと第2流路42bとはL字形状とされている。第2流路42bと第3流路42cとはL字形状とされている。第1流路42a、第2流路42b、第3流路42cは、突起27xにより延設されている。ここで、対向流形態によれば、配流板2において、燃料は、燃料出入口40、第1流路42a、第2流路42b、第3流路42c、燃料出入口41の順に上向き(矢印Y2方向)に流れる。図8に示すように、各第2流路42bは、電子伝導性を確保する突起としても機能できる分岐壁47により複数に分岐されている。直状をなす分岐壁47は上端47u及び下端47dをもつ。   As shown in FIG. 8, the fuel flow path 42 includes a first flow path 42 a extending from the fuel inlet / outlet port 40 along the lateral direction (that is, along the lower side portion 21), and an end portion of the first flow path 42 a. And the second flow path 42b extending along the vertical direction (that is, along the side portions 22 and 23) and the upper part of the second flow path 42b and along the horizontal direction (that is, A third flow path 42c extending along the upper side 20). As shown in FIG. 8, the first flow path 42a and the second flow path 42b are L-shaped. The second flow path 42b and the third flow path 42c are L-shaped. The first flow path 42a, the second flow path 42b, and the third flow path 42c are extended by protrusions 27x. Here, according to the counterflow mode, in the flow distribution plate 2, the fuel flows upward in the order of the fuel inlet / outlet port 40, the first channel 42a, the second channel 42b, the third channel 42c, and the fuel inlet / outlet 41 (in the direction of arrow Y2). ). As shown in FIG. 8, each of the second flow paths 42 b is branched into a plurality of branch walls 47 that can also function as protrusions that ensure electron conductivity. The straight branch wall 47 has an upper end 47u and a lower end 47d.

複数の分岐壁47についてみると、分岐壁47の下端47dは、図8に示すように、燃料出入口40から遠ざかるにつれて下降するように傾斜する仮想傾斜線R1に沿って次第に下降傾斜している。また、分岐壁47の上端47uは、燃料出入口41から遠ざかるにつれて上昇するように傾斜する仮想傾斜線R2に沿って次第に上昇傾斜している。図8に示すように、仮想傾斜線R1と仮想傾斜線R2とは互いに平行、あるいは、ほぼ平行とすることができる。なお、仮想傾斜線R1と仮想傾斜線R2とで区画される領域は、平行四辺形またはほぼ平行四辺形とされている。   Looking at the plurality of branch walls 47, the lower end 47 d of the branch wall 47 gradually inclines along a virtual inclination line R 1 that inclines so as to descend from the fuel inlet / outlet port 40, as shown in FIG. Further, the upper end 47u of the branch wall 47 is gradually inclined to rise along a virtual inclination line R2 that is inclined to rise as the distance from the fuel inlet / outlet 41 increases. As shown in FIG. 8, the virtual tilt line R1 and the virtual tilt line R2 can be parallel to each other or almost parallel to each other. Note that a region defined by the virtual inclination line R1 and the virtual inclination line R2 is a parallelogram or a substantially parallelogram.

図8に示すように、第1流路42aと第2流路42bとの連結部分、第2流路42bと第3流路42cとの連結部分は、燃料が流れる燃料流路42が屈曲する屈曲流路49(49d,49u)を構成する。即ち、仮想傾斜線R1及び仮想傾斜線R2に対応する部分は、燃料が流れる燃料流路42が屈曲する屈曲流路49を構成する。このように燃料流路42は屈曲流路49を有している。図8に示すように、1本の第1流路42aの流路幅をD1とし、1本の第2流路42bの流路幅をD2、1本の第3流路42cの流路幅をD3として示す。D1>D2の関係、D3>D2の関係、D1≒D3(D1=D3)の関係とされている。但しこれに限定されるものではない。   As shown in FIG. 8, the fuel flow path 42 through which the fuel flows is bent at the connection portion between the first flow path 42a and the second flow path 42b and at the connection section between the second flow path 42b and the third flow path 42c. A bent channel 49 (49d, 49u) is formed. That is, portions corresponding to the virtual inclination line R1 and the virtual inclination line R2 constitute a bent flow path 49 in which the fuel flow path 42 through which the fuel flows is bent. Thus, the fuel flow path 42 has the bent flow path 49. As shown in FIG. 8, the channel width of one first channel 42a is D1, the channel width of one second channel 42b is D2, and the channel width of one third channel 42c. Is denoted as D3. The relationship is D1> D2, D3> D2, and D1≈D3 (D1 = D3). However, it is not limited to this.

図8に示すように、各燃料流路42を構成する第1流路42aで形成された第1流路群の全体幅(ガス流れを横断する方向の全体幅)をLAとし、各燃料流路42を構成する第2流路42bで形成された第2流路群の全体幅(ガス流れを横断する方向の全体幅)をLBとするとき、LA<LBの関係に設定されている。また、各燃料流路42を構成する第3流路42cで形成された第3流路群の全体幅をLCとするとき、LC<LBの関係に設定されている。ここで、LA=LC、LA≒LCとされている。上記したような本例によれば、燃料流路42のうち上下方向に延設された第2流路42bの長さM1,M2(図8参照)を増加させることができる。ひいては、燃料流路42の第2流路42bの占める領域SAの面積を増加させることができる。この結果、酸化剤ガスと燃料とが逆向きで流れる対向流形態の面積を増加させることができる。このため対向流形態の利点を生かのに有利となる。なお図7,図8に示すように、配流板2には、燃料電池を冷却させるための冷却水を流入させる冷却水入口50が形成されていると共に、冷却水を流出させる冷却水出口51が形成されている。冷却水入口50及び冷却水出口51に連通する冷却水流路は図略の配流板に形成されている。図7および図8に示す本実施例によれば、高発電領域において、下側の燃料出入口40を燃料供給用として使用し、上側の燃料出入口41を燃料排出用として使用すれば、燃料流路42における燃料の基本的流れは上向き(矢印Y2方向)となるため、対向流形態に切替えることができる。これに対して、低発電領域において、前記した下側の燃料出入口40を燃料排出用として使用し、前記した上側の燃料出入口41を燃料供給用として使用すれば、燃料流路42における燃料の基本的流れは下向き(矢印Y2方向と反対方向)となるため、並行流形態に切替えることができる。   As shown in FIG. 8, the overall width of the first flow path group formed by the first flow paths 42a constituting each fuel flow path 42 (the overall width in the direction crossing the gas flow) is LA, and each fuel flow When the overall width of the second flow path group formed by the second flow paths 42b constituting the path 42 (the overall width in the direction crossing the gas flow) is LB, the relationship of LA <LB is set. Further, when the overall width of the third flow path group formed by the third flow paths 42c constituting each fuel flow path 42 is LC, the relationship LC <LB is set. Here, LA = LC and LA≈LC. According to this example as described above, the lengths M1 and M2 (see FIG. 8) of the second flow path 42b extending in the vertical direction in the fuel flow path 42 can be increased. As a result, the area of the area SA occupied by the second flow path 42b of the fuel flow path 42 can be increased. As a result, the area of the counter flow form in which the oxidant gas and the fuel flow in opposite directions can be increased. For this reason, it is advantageous to take advantage of the counter flow configuration. As shown in FIGS. 7 and 8, the distribution plate 2 is formed with a cooling water inlet 50 through which cooling water for cooling the fuel cell is introduced, and a cooling water outlet 51 through which the cooling water flows out. Is formed. A cooling water flow path communicating with the cooling water inlet 50 and the cooling water outlet 51 is formed in a flow distribution plate (not shown). According to this embodiment shown in FIGS. 7 and 8, in the high power generation region, if the lower fuel inlet / outlet 40 is used for fuel supply and the upper fuel inlet / outlet 41 is used for fuel discharge, the fuel flow path Since the basic flow of the fuel at 42 is upward (in the direction of arrow Y2), it can be switched to the counterflow mode. On the other hand, in the low power generation region, if the lower fuel inlet / outlet 40 is used for fuel discharge and the upper fuel inlet / outlet 41 is used for fuel supply, the basic fuel in the fuel flow path 42 is obtained. Since the target flow is downward (the direction opposite to the arrow Y2 direction), it can be switched to the parallel flow mode.

(その他)
図7および図8はあくまでも酸化剤流路32および燃料流路42の一例を示すものであり、酸化剤流路32の形状は図7に示す構造に限定されるものではなく、適宜変更できるものであり、燃料流路42の形状は図8に示す構造に限定されるものではなく、適宜変更できるものである。上記した実施例によれば、バルブ83,84、バルブ83x,84xによって切り替えているが、分岐点101,102に切替弁(例えば三方弁)を設けて切り替えても良い。本発明は上記しかつ図面に示した実施例のみに限定されるものでなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。
(Other)
7 and 8 show only an example of the oxidant flow path 32 and the fuel flow path 42, and the shape of the oxidant flow path 32 is not limited to the structure shown in FIG. 7, and can be changed as appropriate. Thus, the shape of the fuel flow path 42 is not limited to the structure shown in FIG. 8, but can be changed as appropriate. According to the above-described embodiment, the switching is performed by the valves 83 and 84 and the valves 83x and 84x. However, the switching may be performed by providing a switching valve (for example, a three-way valve) at the branch points 101 and 102. The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications without departing from the scope of the invention.

本発明は例えば定置用、車両用、携帯用、電気機器用、電子機器用等の燃料電池発電システムに利用することができる。   The present invention can be used in, for example, fuel cell power generation systems for stationary use, vehicle use, portable use, electrical equipment use, electronic equipment use, and the like.

燃料電池の燃料流路を流れる燃料の流れと酸化剤流路を流れる酸化剤ガスの流れとを対向流形態としているときにおける概念図である。It is a conceptual diagram when the flow of the fuel which flows through the fuel flow path of the fuel cell and the flow of the oxidant gas which flows through the oxidant flow path are in a counterflow form. 燃料電池の燃料流路を流れる燃料の流れと酸化剤流路を流れる酸化剤ガスの流れとを並行流形態としているときにおける概念図である。It is a conceptual diagram when the flow of the fuel flowing through the fuel flow path of the fuel cell and the flow of the oxidant gas flowing through the oxidant flow path are in a parallel flow form. 燃料極から酸化剤極に移行する燃料の移行量と電流密度との関係を模式的に示すグラフである。It is a graph which shows typically the relationship between the transfer amount of the fuel which transfers from a fuel electrode to an oxidant electrode, and current density. 燃料電池の内部を示す概念図である。It is a conceptual diagram which shows the inside of a fuel cell. 実施例1に係り、燃料電池に繋がるバルブを有するレイアウト図である。FIG. 4 is a layout diagram related to Example 1 and having a valve connected to a fuel cell. 実施例2に係り、燃料電池に繋がるバルブを有するレイアウト図である。FIG. 6 is a layout diagram related to Example 2 and having a valve connected to a fuel cell. 配流板の酸化剤流路側を模式的に示す正面図である。It is a front view which shows typically the oxidizing agent flow path side of a flow distributor. 配流板の燃料流路側を模式的に示す正面図である。It is a front view which shows typically the fuel flow path side of a distribution plate.

符号の説明Explanation of symbols

図中、1は膜電極接合体、10は電解質膜、11は燃料極、12は酸化剤極、32は酸化剤流路、42は燃料流路、71は第1開口、72は第2開口、8は切替手段、81は第1供給バルブ、82は第2供給バルブ、83は第1排出バルブ、84は第2排出バルブを示す。   In the figure, 1 is a membrane electrode assembly, 10 is an electrolyte membrane, 11 is a fuel electrode, 12 is an oxidant electrode, 32 is an oxidant channel, 42 is a fuel channel, 71 is a first opening, and 72 is a second opening. , 8 is a switching means, 81 is a first supply valve, 82 is a second supply valve, 83 is a first discharge valve, and 84 is a second discharge valve.

Claims (5)

電解質膜を挟む燃料極および酸化剤極とを有する膜電極接合体と、酸化剤を前記酸化剤極に流す酸化剤流路と、燃料を前記燃料極に流す燃料流路とを有する燃料電池を具備する燃料電池システムにおいて、
前記燃料流路を流れる燃料および前記酸化剤流路を流れる酸化剤の流れ方向の関係を第1形態と第2形態とに切替可能とする切替手段を具備しており、
前記切替手段は、
前記第1形態において、前記酸化剤流路を流れる酸化剤の上流域と前記燃料流路を流れる燃料の上流域とを前記電解質膜を介して対向させると共に、前記酸化剤流路を流れる酸化剤の下流域と前記燃料流路を流れる燃料の下流域とを前記電解質膜を介して対向させ、
前記第2形態において、前記酸化剤流路を流れる酸化剤の上流域と前記燃料流路を流れる燃料の下流域とを前記電解質膜を介して対向させると共に、前記酸化剤流路を流れる酸化剤の下流域と前記燃料流路を流れる燃料の上流域とを前記電解質膜を介して対向させ、且つ、
前記切替手段は、発電量が相対的に大きい高発電領域では第2形態で運転し、発電量が前記高発電領域よりも相対的に小さい低発電領域では第1形態で運転するように切替えることを特徴とする燃料電池システム。
A fuel cell having a membrane electrode assembly having a fuel electrode and an oxidant electrode sandwiching an electrolyte membrane, an oxidant flow path for flowing an oxidant to the oxidant electrode, and a fuel flow path for flowing fuel to the fuel electrode In the fuel cell system provided,
Comprising a switching means for switching the flow direction relationship between the fuel flowing through the fuel flow path and the oxidant flow path between the first form and the second form;
The switching means is
In the first embodiment, the upstream region of the oxidant flowing through the oxidant flow channel and the upstream region of the fuel flowing through the fuel flow channel are opposed to each other through the electrolyte membrane, and the oxidant flowing through the oxidant flow channel The downstream region of the fuel and the downstream region of the fuel flowing through the fuel flow path through the electrolyte membrane,
In the second embodiment, the upstream region of the oxidant flowing through the oxidant flow channel and the downstream region of the fuel flowing through the fuel flow channel are opposed to each other through the electrolyte membrane, and the oxidant flowing through the oxidant flow channel The downstream region of the fuel and the upstream region of the fuel flowing through the fuel flow path through the electrolyte membrane, and
The switching means switches to operate in the second mode in the high power generation region where the power generation amount is relatively large, and to operate in the first mode in the low power generation region where the power generation amount is relatively smaller than the high power generation region. A fuel cell system.
請求項1において、前記切替手段は、前記酸化剤流路を流れる酸化剤の流れの向きを維持しつつ、前記燃料流路を流れる燃料の流れの向きを逆に切替えることにより、前記第1形態と前記第2形態とを切替可能とすることを特徴とする燃料電池システム。   2. The first mode according to claim 1, wherein the switching unit switches the flow direction of the fuel flowing through the fuel flow path in reverse while maintaining the flow direction of the oxidant flowing through the oxidant flow path. And the second mode can be switched. 請求項1または2において、前記燃料流路は、燃料が供給される入口および燃料オフ流体が吐出される出口のうちの一方に切替可能な燃料用第1開口と、燃料が供給される入口および燃料オフ流体が吐出される出口のうちの他方に切替可能な燃料用第2開口とを備えており、
前記切替手段は、前記燃料用第1開口に繋がる燃料供給用の第1供給バルブおよび燃料オフ流体排出用の第1排出バルブと、前記燃料用第2開口に繋がる燃料供給用の第2供給バルブおよび燃料オフ流体排出用の第2排出バルブとを備えていることを特徴とする燃料電池システム。
3. The fuel flow path according to claim 1, wherein the fuel flow path includes a first fuel opening that can be switched to one of an inlet through which fuel is supplied and an outlet through which fuel off fluid is discharged, an inlet through which fuel is supplied, and A second opening for fuel that can be switched to the other of the outlets from which the fuel-off fluid is discharged,
The switching means includes a first supply valve for supplying fuel connected to the first opening for fuel and a first discharge valve for discharging fuel off fluid, and a second supply valve for supplying fuel connected to the second opening for fuel. And a second discharge valve for discharging the fuel-off fluid.
請求項1または2において、前記酸化剤流路は、酸化剤が供給される入口および酸化剤オフ流体が吐出される出口のうちの一方に切替可能な酸化剤用第1開口と、酸化剤が供給される入口および酸化剤オフ流体が吐出される出口のうちの他方に切替可能な酸化剤用第2開口とを備えており、
前記切替手段は、前記酸化剤用第1開口に繋がる酸化剤供給用の第1供給バルブおよび酸化剤オフ流体排出用の第1排出バルブと、前記酸化剤用第2開口に繋がる酸化剤供給用の第2供給バルブおよび酸化剤オフ流体排出用の第2排出バルブとを備えていることを特徴とする燃料電池システム。
3. The oxidant flow path according to claim 1, wherein the oxidant flow path includes a first oxidant opening that can be switched to one of an inlet through which an oxidant is supplied and an outlet through which an oxidant-off fluid is discharged. A second opening for oxidant that can be switched to the other of the supplied inlet and the outlet from which the oxidant-off fluid is discharged;
The switching means includes a first supply valve for supplying an oxidant connected to the first opening for oxidant, a first discharge valve for discharging an oxidant-off fluid, and an oxidant supply connected to the second opening for oxidant. And a second discharge valve for discharging the oxidant-off fluid.
電解質膜を挟む燃料極および酸化剤極とを有する膜電極接合体と、酸化剤を前記酸化剤極に流す酸化剤流路と、燃料を前記燃料極に流す燃料流路とを有する燃料電池を用意すると共に、前記燃料流路における燃料の流れおよび前記酸化剤流路における酸化剤の流れの関係を切替可能とする切替手段とを用意する工程と、
前記酸化剤流路を流れる酸化剤の上流域と前記燃料流路を流れる燃料の下流域とを対向させると共に、前記酸化剤流路を流れる酸化剤の下流域と前記燃料流路を流れる燃料の上流域とを対向させる形態で発電運転する工程とを実施する燃料電池シテスムの運転方法において、
発電量が高発電領域よりも相対的に小さい低発電領域に変化するとき、前記酸化剤流路を流れる酸化剤の上流域と前記燃料流路を流れる燃料の上流域とを対向させると共に、前記酸化剤流路を流れる酸化剤の下流域と前記燃料流路を流れる燃料の下流域とを対向させる形態で発電運転するように切替えることを特徴とする燃料電池システムの運転方法。
A fuel cell having a membrane electrode assembly having a fuel electrode and an oxidant electrode sandwiching an electrolyte membrane, an oxidant flow path for flowing an oxidant to the oxidant electrode, and a fuel flow path for flowing fuel to the fuel electrode Preparing a switching means that can switch a relationship between a fuel flow in the fuel flow channel and an oxidant flow in the oxidant flow channel; and
The upstream area of the oxidant flowing through the oxidant flow path faces the downstream area of the fuel flowing through the fuel flow path, and the downstream area of the oxidant flowing through the oxidant flow path and the fuel flowing through the fuel flow path In the operation method of the fuel cell system for performing the power generation operation in a form facing the upstream region,
When the power generation amount changes to a low power generation region that is relatively smaller than the high power generation region, the upstream region of the oxidant that flows through the oxidant flow channel and the upstream region of the fuel that flows through the fuel flow channel face each other, and A method for operating a fuel cell system, wherein the power generation operation is switched in such a manner that a downstream region of an oxidant flowing through an oxidant channel and a downstream region of fuel flowing through the fuel channel are opposed to each other.
JP2005137651A 2005-05-10 2005-05-10 Fuel cell system and operation method of fuel cell system Pending JP2006318678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137651A JP2006318678A (en) 2005-05-10 2005-05-10 Fuel cell system and operation method of fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137651A JP2006318678A (en) 2005-05-10 2005-05-10 Fuel cell system and operation method of fuel cell system

Publications (1)

Publication Number Publication Date
JP2006318678A true JP2006318678A (en) 2006-11-24

Family

ID=37539181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137651A Pending JP2006318678A (en) 2005-05-10 2005-05-10 Fuel cell system and operation method of fuel cell system

Country Status (1)

Country Link
JP (1) JP2006318678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099688A1 (en) * 2006-03-02 2007-09-07 National Institute Of Advanced Industrial Science And Technology Silicon carbide mos field effect transistor with built-in schottky diode and method for manufacturing such transistor
JP2012202624A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Refrigeration cycle apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099688A1 (en) * 2006-03-02 2007-09-07 National Institute Of Advanced Industrial Science And Technology Silicon carbide mos field effect transistor with built-in schottky diode and method for manufacturing such transistor
JP2012202624A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
US11152627B2 (en) Bipolar plate which has reactant gas channels with variable cross-sectional areas, fuel cell stack, and vehicle comprising such a fuel cell stack
US8158294B2 (en) Fuel cell system and method of operating fuel cell system
CN101636867B (en) Polymer electrolyte fuel cell and fuel cell stack having the same
EP2595226B1 (en) Fuel cell
JP2010503143A (en) FUEL CELL, FUEL CELL SYSTEM, AND METHOD FOR CONTROLLING FUEL CELL SYSTEM
JP2008010179A (en) Fuel cell separator
US8546038B2 (en) Fuel cell separator having reactant gas channels with different cross sections and fuel cell comprising the same
US7306873B2 (en) Method and apparatus for changing the direction of fluid flow in fuel cell flow fields
EP2515367B1 (en) Polyelectrolyte fuel cell, fuel cell stack provided with same, fuel cell system, and operation method for fuel cell system
CN101632190B (en) Fuel cell
KR101075518B1 (en) Bipolar plate with nano and micro structures
JP2009037759A (en) Fuel cell
EP1995812A1 (en) Fuel cell system
KR101092486B1 (en) Flow channel plate for fuel cell
JP2006318678A (en) Fuel cell system and operation method of fuel cell system
JP2005056671A (en) Fuel cell
JP2009540489A (en) Separator unit and fuel cell having separator unit
CN1330029C (en) Fuel cell system and stack used therein
KR20130076118A (en) Fuelcell stack using branched channel
JP4340417B2 (en) Polymer electrolyte fuel cell
KR20120072511A (en) Separator of fuel cell
KR100766154B1 (en) Seperator of a fuel cell
JP2007059105A (en) Fuel cell stack equipped with switching means
JP2004319165A (en) Polymer electrolyte type fuel cell
JP2003157873A (en) Fuel cell system