JP2006318345A - Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device - Google Patents

Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device Download PDF

Info

Publication number
JP2006318345A
JP2006318345A JP2005142272A JP2005142272A JP2006318345A JP 2006318345 A JP2006318345 A JP 2006318345A JP 2005142272 A JP2005142272 A JP 2005142272A JP 2005142272 A JP2005142272 A JP 2005142272A JP 2006318345 A JP2006318345 A JP 2006318345A
Authority
JP
Japan
Prior art keywords
reliability
feature point
vector
motion vector
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005142272A
Other languages
Japanese (ja)
Inventor
Jean-Aymeric Altherr
ジャン エメリック アルテール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005142272A priority Critical patent/JP2006318345A/en
Publication of JP2006318345A publication Critical patent/JP2006318345A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration in detection precision due to noise by applying an object tracking method, a program for the object tracking method, a recording medium where the program for the object tracking method is recorded, and an object tracking device to, for example, a monitor device. <P>SOLUTION: Reliability indicating likelihood of a feature point on an object to be tracked is detected and a moving vector is processed based upon the reliability to be reflected on a processing result more as the reliability is higher, thereby detecting a movement vector of the moving body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、物体追跡方法、物体追跡方法のプログラム、物体追跡方法のプログラムを記録した記録媒体及び物体追跡装置に関し、例えば監視装置に適用することができる。本発明は、追跡対象物体上に存在する特徴点の確からしさを示す信頼度を検出し、この信頼度により信頼性の低い動きベクトルを処理結果に反映しないように動きベクトルを処理して移動体の移動ベクトルを検出することにより、ノイズによる検出精度の劣化を防止する。   The present invention relates to an object tracking method, a program for the object tracking method, a recording medium on which the program for the object tracking method is recorded, and an object tracking apparatus, and can be applied to, for example, a monitoring apparatus. The present invention detects a reliability indicating the probability of a feature point existing on a tracking target object, and processes a motion vector so that a motion vector having low reliability is not reflected in a processing result by this reliability. By detecting this movement vector, the deterioration of detection accuracy due to noise is prevented.

従来、監視装置等に関して、処理対象フレームと次フレームとの比較により、移動体を追跡する方法が提案されており、この方法にあっては、この処理対象フレームと次フレームとの比較方法により、パターンマッチングの手法と特徴点の動きベクトル検出による手法とに大別される。   Conventionally, a method for tracking a moving object by comparing a processing target frame and a next frame has been proposed for a monitoring device or the like, and in this method, by a comparison method between the processing target frame and the next frame, It is roughly divided into a pattern matching method and a feature point motion vector detection method.

ここでパターンマッチングの手法による移動体の追跡は、例えば特開平5−298591号公報等に提案されているように、動画の各フレームで、追跡対象に相当するパターンを用いて相関値を計算し、最も相関の高い箇所を検出する方法であり、動きを予測してこのような相関値を計算する範囲を設定する。しかしながら実際の動画では追跡する移動体の形状が時々刻々変化し、これによりこの方法では、この移動体の検出に供するパターンを高速に更新することが必要になる。また相関値の計算自体、煩雑な処理を実行することが必要であり、これらにより高速度に処理できない欠点がある。   Here, tracking of a moving object by the pattern matching method is performed by calculating a correlation value using a pattern corresponding to a tracking target in each frame of a moving image, as proposed in, for example, Japanese Patent Laid-Open No. 5-298915. This is a method for detecting a location having the highest correlation, and sets a range in which such a correlation value is calculated by predicting motion. However, in the actual moving image, the shape of the moving body to be tracked changes from moment to moment, which makes it necessary to update the pattern used for detection of the moving body at high speed. Further, the calculation of the correlation value itself needs to execute complicated processing, and there is a drawback that it cannot be processed at high speed.

これに対して特徴点の動きベクトル検出による移動体の追跡は、例えば特開2003−44860号公報等に開示されているように、動画の各フレームで特徴的な箇所である特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡するものである。   On the other hand, tracking of a moving body by motion vector detection of a feature point detects a feature point that is a characteristic part in each frame of a moving image, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-44860. The moving object is tracked by detecting the motion vector of the feature point.

この方法では追跡対象領域を設定し、この追跡対象領域で複数の特徴点を検出する。またこの複数の特徴点でそれぞれ動きベクトルを検出し、この検出した動きベクトルの平均値により追跡対象領域を移動させ、これらにより移動体を追跡する。   In this method, a tracking target area is set, and a plurality of feature points are detected in the tracking target area. In addition, a motion vector is detected at each of the plurality of feature points, the tracking target area is moved by the average value of the detected motion vectors, and the moving body is tracked by these.

しかしながらこの方法では、追跡対象領域に背景が含まれる場合もあり、この背景で検出される特徴点の動きベクトルが検出精度を劣化させることになる。また追跡対象が人物のような場合、体の動きに対して四肢の動きが異なる場合もあり、この場合には、四肢の動きが検出精度を劣化させることになる。以下、このように検出精度を劣化させる特徴点、この特徴点に係る動きベクトルを、適宜、ノイズと呼ぶ。   However, in this method, the background may be included in the tracking target region, and the motion vector of the feature point detected in this background deteriorates the detection accuracy. When the tracking target is a person, the movement of the limb may be different from the movement of the body, and in this case, the movement of the limb deteriorates the detection accuracy. Hereinafter, the feature point that degrades the detection accuracy and the motion vector related to the feature point are appropriately referred to as noise.

これによりこのようなノイズによる検出精度の劣化を防止することが求められる。
特開平5−298591号公報 特開2003−44860号公報
Accordingly, it is required to prevent the detection accuracy from being deteriorated due to such noise.
Japanese Patent Laid-Open No. 5-298591 Japanese Patent Laid-Open No. 2003-44860

本発明は以上の点を考慮してなされたもので、ノイズによる検出精度の劣化を防止することができる物体追跡方法、物体追跡方法のプログラム、物体追跡方法のプログラムを記録した記録媒体及び物体追跡装置を提案しようとするものである。   The present invention has been made in consideration of the above points. An object tracking method capable of preventing deterioration in detection accuracy due to noise, a program for the object tracking method, a recording medium on which the program for the object tracking method is recorded, and object tracking The device is to be proposed.

かかる課題を解決するため請求項1の発明は、動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡方法に適用して、処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定のステップと、前記特徴点設定のステップにより設定された特徴点に基づいて、各フレームの画像データを順次処理する繰り返し処理ステップとを有し、前記繰り返し処理ステップは、前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出ステップと、前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出ステップと、前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出ステップと、前記移動ベクトル検出ステップで検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く繰り返しの処理における前記処理対象フレームに設定する追跡対象領域移動ステップとを有し、前記移動ベクトル検出ステップは、前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する。   In order to solve such a problem, the invention of claim 1 is applied to an object tracking method for detecting a feature point in each frame of a moving image and tracking a moving object by detecting a motion vector of the feature point. A feature point setting step for setting a predetermined number of the feature points in the tracking target region set in the region where the moving body is imaged, and each frame based on the feature points set by the feature point setting step A repetitive processing step of sequentially processing the image data, and the repetitive processing step detects a reliability indicating the probability of the feature point existing on the moving body for each feature point. A motion vector detecting step for detecting the motion vector to the next frame of the feature point, and the next frame of the moving body based on the motion vector. A movement vector detecting step for detecting a movement vector to a frame, and the tracking target area is moved by the movement vector detected in the movement vector detecting step to set the tracking target area in the next frame. A tracking target region moving step for setting the processing target frame in the subsequent repeated processing of the next frame, and the moving vector detecting step processes the motion vector having low reliability according to the reliability. The motion vector is detected so as not to be reflected in the result, and the movement vector is detected.

また請求項11の発明は、動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡方法のプログラムに適用して、処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定のステップと、前記特徴点設定のステップにより設定された特徴点に基づいて、各フレームの画像データを順次処理する繰り返し処理ステップとを有し、前記繰り返し処理ステップは、前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出ステップと、前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出ステップと、前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出ステップと、前記移動ベクトル検出ステップで検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く繰り返しの処理における前記処理対象フレームに設定する追跡対象領域移動ステップとを有し、前記移動ベクトル検出ステップは、前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する。   The invention of claim 11 is applied to a program of an object tracking method for detecting a feature point in each frame of a moving image and tracking the moving body by detecting a motion vector of the feature point. A feature point setting step for setting a predetermined number of the feature points in the tracking target region set in the imaged region, and image data of each frame based on the feature points set by the feature point setting step Repetitive processing step for sequentially processing, and the repetitive processing step detects a reliability indicating the probability of the feature point existing on the moving body for each feature point, and A motion vector detecting step for detecting the motion vector to the next frame of the feature point, and the next frame of the moving body based on the motion vector; A movement vector detection step for detecting a movement vector of the second movement vector, and the movement vector detected in the movement vector detection step to move the tracking target area to set the tracking target area in the next frame. A tracking target region moving step for setting the frame as the processing target frame in the subsequent repetitive processing, and the moving vector detection step reflects the motion vector having low reliability in the processing result according to the reliability. The motion vector is processed so as not to detect the movement vector.

また請求項12の発明は、動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡方法のプログラムを記録した記録媒体に適用して、前記物体追跡のプログラムは、処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定のステップと、前記特徴点設定のステップにより設定された特徴点に基づいて、各フレームの画像データを順次処理する繰り返し処理ステップとを有し、前記繰り返し処理ステップは、前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出ステップと、前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出ステップと、前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出ステップと、前記移動ベクトル検出ステップで検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く繰り返しの処理における前記処理対象フレームに設定する追跡対象領域移動ステップとを有し、前記移動ベクトル検出ステップは、前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する。   According to the invention of claim 12, the object tracking is applied to a recording medium on which a program of an object tracking method for detecting a feature point in each frame of a moving image and tracking a moving object by detecting a motion vector of the feature point is recorded. The program is set by a feature point setting step for setting a predetermined number of feature points in a tracking target region set in a region where the moving object of the processing target frame is imaged, and the feature point setting step. A repetitive processing step for sequentially processing the image data of each frame based on the feature points, and the repetitive processing step has a reliability indicating the probability of the feature points existing on the moving object. A reliability detection step for detecting point by point, a motion vector detection step for detecting the motion vector to the next frame of the feature point, and the motion A movement vector detection step for detecting a movement vector to the next frame of the moving body based on the vector, and the movement vector detected by the movement vector detection step moves the tracking target area, and The tracking target area is set in a frame, and the tracking target area moving step is set in the processing target frame in the repetitive processing of continuing the next frame, and the movement vector detecting step is performed according to the reliability. Then, the motion vector is processed so that the motion vector with low reliability is not reflected in the processing result, and the movement vector is detected.

また請求項13の発明は、所定の繰り返し処理を繰り返すことにより、動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡に適用して、処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定手段と、前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出手段と、前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出手段と、前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出手段と、前記移動ベクトル検出手段で検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く繰り返しの処理における前記処理対象フレームに設定する追跡対象領域移動手段とを有し、前記移動ベクトル検出手段は、前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する。   The invention of claim 13 is applied to object tracking in which a feature point is detected in each frame of a moving image by repeating a predetermined repetition process, and a moving object is tracked by detecting a motion vector of the feature point. Feature point setting means for setting a predetermined number of the feature points in the tracking target region set in the region where the moving body of the frame is imaged, and reliability indicating the probability of the feature points existing on the moving body Reliability detection means for detecting the degree of each feature point; motion vector detection means for detecting the motion vector to the next frame of the feature point; and the next frame of the moving body based on the motion vector The movement vector detecting means for detecting the movement vector to the position and the movement vector detected by the movement vector detecting means move the tracking target area, and The tracking target area is set in the next frame, and the tracking target area moving means is set in the processing target frame in the subsequent repetitive processing of the next frame, and the movement vector detecting means corresponds to the reliability. Then, the motion vector is processed so that the motion vector with low reliability is not reflected in the processing result, and the movement vector is detected.

請求項1の構成により、動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡方法に適用して、処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定のステップと、前記特徴点設定のステップにより設定された特徴点に基づいて、各フレームの画像データを順次処理する繰り返し処理ステップとを有し、前記繰り返し処理ステップは、前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出ステップと、前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出ステップと、前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出ステップと、前記移動ベクトル検出ステップで検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く繰り返しの処理における前記処理対象フレームに設定する追跡対象領域移動ステップとを有し、前記移動ベクトル検出ステップは、前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出すれば、背景等によるノイズについては、移動ベクトルに反映させないようにすることができる。これによりノイズによる検出精度の劣化を防止することができる。   According to the configuration of claim 1, a feature point is detected in each frame of a moving image, and the moving body of the processing target frame is imaged by applying to an object tracking method of tracking the moving body by detecting a motion vector of the feature point. A feature point setting step for setting a predetermined number of the feature points in the tracking target region set in the region, and sequentially processing the image data of each frame based on the feature points set by the feature point setting step A repetitive processing step, wherein the repetitive processing step detects a reliability indicating the probability of the feature point existing on the moving body for each feature point, and A motion vector detecting step for detecting each of the motion vectors to the next frame, and a moving vector of the moving body to the next frame based on the motion vectors; The movement vector detection step for detecting the movement vector and the movement vector detected in the movement vector detection step move the tracking target area, set the tracking target area in the next frame, and continue the next frame A tracking target region moving step set in the processing target frame in the repetitive processing, and the moving vector detecting step does not reflect the motion vector having low reliability in the processing result according to the reliability. If the motion vector is processed to detect the movement vector, noise due to the background or the like can be prevented from being reflected in the movement vector. Thereby, deterioration of detection accuracy due to noise can be prevented.

またこれにより請求項11、請求項12、請求項13の構成によれば、ノイズによる検出精度の劣化を防止することができる物体追跡方法のプログラム、物体追跡方法のプログラムを記録した記録媒体及び物体追跡装置を提供することができる。   According to the configurations of claims 11, 12, and 13, the object tracking method program capable of preventing the deterioration of detection accuracy due to noise, the recording medium storing the object tracking method program, and the object A tracking device can be provided.

本発明によれば、ノイズによる検出精度の劣化を防止することができる。   According to the present invention, it is possible to prevent deterioration in detection accuracy due to noise.

以下、適宜図面を参照しながら本発明の実施例を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

(1)実施例の構成
(1−1)全体構成
図1は、本発明の実施例1に係る物体追跡システムを示すブロック図である。この物体追跡システム1において、信号源2は、処理対象の画像データSVを出力する各種装置であり、例えば撮像結果を画像データSVにより出力する撮像装置、撮像装置による撮像結果を記録して画像データSVにより出力する記録再生装置等により構成される。
(1) Configuration of Embodiment (1-1) Overall Configuration FIG. 1 is a block diagram illustrating an object tracking system according to Embodiment 1 of the present invention. In this object tracking system 1, the signal source 2 is various devices that output image data SV to be processed. For example, an imaging device that outputs an imaging result as image data SV, an imaging result recorded by the imaging device, and image data The recording / reproducing apparatus etc. which output by SV are comprised.

物体追跡装置3は、例えばコンピュータ、ハードウエア構成による専用装置等により構成され、この信号源2からの画像データSVを処理して移動体を追跡し、追跡結果S1を出力する。すなわち物体追跡装置3は、コンピュータにより構成される場合、リードオンリメモリ(ROM)4の記録に従ってランダムアクセスメモリ(RAM)5にワークエリアを確保して動作を立ち上げ、中央処理ユニット(CPU)6によりハードディスク装置(HDD)7に記録した物体追跡に係る処理プログラムを実行する。物体追跡装置3は、これによりインターフェース(I/F)8を介して入力される画像データSVをリアルタイムにより処理して、又はハードディスク装置7に一旦記録した後、処理して、物体追跡に係る一連の処理を実行し、追跡結果S1を出力する。また必要に応じて処理過程の画像等をモニタ9により表示する。なおこの実施例において、この物体追跡に係る処理プログラムは、この物体追跡装置3に事前にインストールされて提供されるものの、このような事前のインストールに代えて、インターネット等のネットワークを介したダウンロードにより提供するようにしてもよく、光ディスク、磁気ディスク、メモリカード等の各種記録媒体に記録して提供するようにしてもよい。   The object tracking device 3 is configured by, for example, a computer, a dedicated device having a hardware configuration, etc., processes the image data SV from the signal source 2 to track the moving body, and outputs a tracking result S1. That is, when the object tracking device 3 is configured by a computer, the work tracking device 3 starts up the operation by securing a work area in the random access memory (RAM) 5 according to the recording in the read only memory (ROM) 4 and the central processing unit (CPU) 6. Thus, a processing program related to object tracking recorded in the hard disk device (HDD) 7 is executed. Thus, the object tracking device 3 processes the image data SV input via the interface (I / F) 8 in real time, or once records the data in the hard disk device 7, and then processes the image data SV to process the object tracking. The tracking result S1 is output. Further, an image or the like of the process is displayed on the monitor 9 as necessary. In this embodiment, the processing program related to the object tracking is provided by being installed in advance in the object tracking device 3, but instead of such a prior installation, it can be downloaded through a network such as the Internet. You may make it provide, You may make it provide by recording on various recording media, such as an optical disk, a magnetic disc, and a memory card.

処理装置10は、この追跡結果S1により、この物体追跡システム1に係る各種の処理を実行する。なおこの処理にあっては、この物体追跡システム1が適用されているシステムに応じた処理であり、例えばこの追跡結果S1により移動体を追跡するように撮像装置をパン、チルト、ズームさせる処理、この追跡結果により追跡対象の移動体が撮像されている領域がジャストフォーカスするようにフォーカス制御する処理、この追跡結果により追跡対象の移動体が撮像されている領域を切り出す等の処理である。   The processing device 10 executes various processes related to the object tracking system 1 based on the tracking result S1. Note that this process is a process according to the system to which the object tracking system 1 is applied. For example, a process of panning, tilting, and zooming the imaging device so as to track the moving body based on the tracking result S1. The focus control is performed so that the area where the tracking target moving body is imaged is just-focused based on the tracking result, and the area where the tracking target moving body is imaged is extracted based on the tracking result.

図2は、物体追跡装置3において、物体追跡に係る処理プログラムによる中央処理ユニット6の処理手順を示すフローチャートである。中央処理ユニット6は、オペレータによる指示等によりこの処理プログラムの実行が指示されると、この処理手順を開始してステップSP1からステップSP2に移る。   FIG. 2 is a flowchart showing the processing procedure of the central processing unit 6 by the processing program related to object tracking in the object tracking device 3. When the central processing unit 6 is instructed to execute this processing program by an operator's instruction or the like, the central processing unit 6 starts this processing procedure and proceeds from step SP1 to step SP2.

ここで中央処理ユニット6は、現フレーム及び前フレームの画像データSVを取得し、この現フレームの画像データSVと前フレームの画像データSVとの比較により、追跡対象である移動体を検出する。なおここで前フレームは、この実施例では処理対象のフレームであり、現フレームは、この前フレームに続くフレームである。またこの移動体の検出手法にあっては、種々の手法を適用することができ、この実施例では背景差分法を適用した。なおここで背景差分法による処理は、各画素毎に、又は所定画素毎に、さらには所定画素によるブロック毎に、現フレームと前フレームとの間でフレーム間差分値を計算してしきい値で判定することにより、動きのある画素、ブロックを検出して移動体が撮像された領域を検出する処理である。   Here, the central processing unit 6 acquires the image data SV of the current frame and the previous frame, and detects the moving object that is the tracking target by comparing the image data SV of the current frame with the image data SV of the previous frame. Here, the previous frame is a frame to be processed in this embodiment, and the current frame is a frame following the previous frame. Various methods can be applied to this moving object detection method, and the background subtraction method is applied in this embodiment. Here, the background difference method is performed by calculating the inter-frame difference value between the current frame and the previous frame for each pixel, for each predetermined pixel, and for each block of the predetermined pixel. This is a process for detecting a moving pixel or block and detecting a region where the moving body is imaged.

このようにして移動体を検出すると、中央処理ユニット6は、ステップSP3に移り、初期化処理により追跡対象領域の設定処理、特徴点の設定処理を実行する。中央処理ユニット6は、この追跡対象領域の設定処理により、ステップSP2で検出した移動体を追跡する追跡対象領域を前フレームに設定する。この実施例では、図3に示すように、ステップSP2で検出された領域の位置情報により、移動体を囲むように長方形形状の枠Wを設定することにより、この枠Wで囲まれる領域を追跡対象領域に設定する。この処理において、中央処理ユニット6は、ステップSP2で検出された移動体毎に枠Wを設定し、各移動体毎にそれぞれ追跡対象領域を設定する。なおこの追跡対象領域の設定にあっては、長方形形状により設定する場合に限らず、楕円形形状、三角形形状等、追跡する移動体の形状、中央処理ユニット6の演算処理能力等に応じて、種々の形状により設定することができる。なおこのような移動体の自動検出による追跡対象領域の設定に代えて、オペレータによる入力により追跡対象領域を設定するようにしてもよい。   When the mobile unit is detected in this way, the central processing unit 6 moves to step SP3, and executes the tracking target area setting process and the feature point setting process by the initialization process. The central processing unit 6 sets the tracking target area for tracking the moving object detected in step SP2 in the previous frame by the tracking target area setting process. In this embodiment, as shown in FIG. 3, by setting the rectangular frame W so as to surround the moving body based on the position information of the region detected in step SP2, the region surrounded by the frame W is tracked. Set to the target area. In this process, the central processing unit 6 sets a frame W for each moving object detected in step SP2, and sets a tracking target area for each moving object. Note that the setting of the tracking target area is not limited to the rectangular shape, but according to the shape of the moving body to be tracked, such as an elliptical shape or a triangular shape, the arithmetic processing capability of the central processing unit 6, etc. It can be set according to various shapes. Instead of setting the tracking target area by automatic detection of such a moving body, the tracking target area may be set by an input by an operator.

また中央処理ユニット6は、このステップSP3における特徴点の設定処理により、各追跡対象領域に、それぞれ所定個数の特徴点を検出する。ここでこの特徴点の設定処理は、KLT(Kanade−Lucas Track )法、SUSAN法、Harris作用素法等、種々の手法を適用することができる。なおこの実施例では、KLT法を使用して特徴点を設定し、これにより続くステップSP4における特徴点の追跡処理も併せて実行した。因みに、KLT法は、特徴点を検出して設定した後、勾配法により検出した特徴点の動きを検出する方法である。   Further, the central processing unit 6 detects a predetermined number of feature points in each tracking target region by the feature point setting process in step SP3. Here, various methods such as a KLT (Kanade-Lucas Track) method, a SUSAN method, a Harris operator method, and the like can be applied to the feature point setting process. In this embodiment, feature points are set using the KLT method, and the feature point tracking process in the subsequent step SP4 is also executed. Incidentally, the KLT method is a method of detecting the motion of the feature point detected by the gradient method after detecting and setting the feature point.

続いて中央処理ユニット6は、ステップSP4に移り、ステップSP3で設定した追跡対象領域の1つを選択し、この選択した追跡対象領域に含まれる特徴点毎に、前フレームの位置座標から現フレームの対応する位置座標をそれぞれ検出することにより、各特徴点の動きを検出する。具体的に、中央処理ユニット6は、(1)式により示す前フレームnのk番目の特徴点の位置座標に対して、(2)式により示す現フレームn+1の対応するk番目の特徴点の位置座標を検出する。   Subsequently, the central processing unit 6 moves to step SP4, selects one of the tracking target areas set in step SP3, and for each feature point included in the selected tracking target area, from the position coordinates of the previous frame, the current frame. The movement of each feature point is detected by detecting the corresponding position coordinates. Specifically, the central processing unit 6 calculates the k-th feature point corresponding to the current frame n + 1 represented by the equation (2) with respect to the position coordinates of the k-th feature point of the previous frame n represented by the equation (1). Detect position coordinates.

Figure 2006318345
Figure 2006318345

Figure 2006318345
Figure 2006318345

続いて中央処理ユニット6は、次式により示すように、これら前フレーム及び現フレームで検出される対応する特徴点の位置座標の差分値を計算し、これにより各特徴点の動きベクトルVFPkを計算する。なおこのような動きベクトルVFPkの検出にあっては、ブロックマッチング法等、種々の手法を広く適用することができる。 Subsequently, as shown by the following equation, the central processing unit 6 calculates a difference value between the position coordinates of the corresponding feature points detected in the previous frame and the current frame, thereby obtaining a motion vector VFP k of each feature point. calculate. Note that various methods such as a block matching method can be widely applied to detect the motion vector VFP k .

Figure 2006318345
Figure 2006318345

中央処理ユニット6は、続くステップSP5において、このようにして検出した各特徴点の動きベクトルから移動体の動きを示すベクトルである移動ベクトルを検出する。このとき中央処理ユニット6は、ノイズ対策処理を実行し、これによりノイズによる検出精度の低下を防止する。   In the subsequent step SP5, the central processing unit 6 detects a movement vector, which is a vector indicating the movement of the moving body, from the motion vectors of the feature points detected in this way. At this time, the central processing unit 6 executes noise countermeasure processing, thereby preventing a reduction in detection accuracy due to noise.

すなわち図4に示すように、このようにしてステップSP3で設定される追跡対象領域には、追跡対象の移動体だけでなく、静止物体等の前景、揺れる木等の背景も含まれる。これによりこのステップSP4で検出される動きベクトルにあっては、移動体の特徴点Pのみならず、前景、背景における特徴点Pの動きベクトルも含まれることになる。これによりこれら前景、背景の特徴点による動きベクトルは、移動体の動きを計算する際のノイズとなる。また追跡対象が人物のような場合、体の動きに対して四肢の動きが異なる場合もあり、この場合には、四肢に設定された特徴点の動きベクトルが、移動体の動きを計算する際のノイズとなる。   That is, as shown in FIG. 4, the tracking target area set in step SP3 in this way includes not only the tracking target moving body but also the foreground such as a stationary object and the background of a swaying tree. As a result, the motion vector detected in step SP4 includes not only the feature point P of the moving object but also the motion vector of the feature point P in the foreground and background. As a result, the motion vectors due to the foreground and background feature points become noise when calculating the motion of the moving object. When the tracking target is a person, the movement of the limb may differ from the movement of the body. In this case, the motion vector of the feature point set for the limb is used to calculate the movement of the moving body. Noise.

このため中央処理ユニット6は、このようなノイズである可能性を、追跡対象物体上に存在する特徴点の確からしさを示す信頼度により検出し、この信頼度により信頼性の低い動きベクトルを処理結果に反映しないように各特徴点の動きベクトルを処理して移動ベクトルを検出する。また信頼性の低い動きベクトルについては、続くフレームにおける処理から特徴点を除外する。なおこの実施例にあっては、このような追跡対象物体上に存在する特徴点の確からしさを、後述するようにこの物体上に特徴点が存在する確からしさと、特徴点自体の確からしさとにより検出する。   For this reason, the central processing unit 6 detects the possibility of such noise by the reliability indicating the probability of the feature point existing on the tracking target object, and processes a motion vector having low reliability by this reliability. A motion vector is detected by processing the motion vector of each feature point so as not to be reflected in the result. For motion vectors with low reliability, feature points are excluded from processing in subsequent frames. In this embodiment, the probability of a feature point existing on such an object to be tracked includes the probability that the feature point exists on this object and the probability of the feature point itself as will be described later. To detect.

続いて中央処理ユニット6は、ステップSP6に移り、遮蔽対策処理を実行する。すなわち実際に人物等を追跡する場合、手前側の構造物、人物等により追跡対象の全部又は一部が遮蔽されてしまう場合がある。この場合、従来の追跡手法によっては、追跡対象の動きを正しく検出できなくなる。このため中央処理ユニット6は、このステップSP6において、追跡対象が遮蔽されている程度を示す遮蔽度を検出し、この検出結果によりステップSP5で求めた移動ベクトルを過去のフレームで検出した移動ベクトルを参考にして補正し、これにより遮蔽による影響を防止して移動体の動きを検出する。   Subsequently, the central processing unit 6 moves to step SP6 and executes shielding countermeasure processing. That is, when a person or the like is actually tracked, the whole or a part of the tracking target may be shielded by the front structure or person. In this case, depending on the conventional tracking method, the movement of the tracking target cannot be detected correctly. Therefore, the central processing unit 6 detects the degree of occlusion indicating the degree to which the tracking target is occluded in this step SP6, and the movement vector obtained in step SP5 based on this detection result is detected in the past frame. Correction is made with reference, thereby preventing the influence of shielding and detecting the movement of the moving object.

中央処理ユニット6は、続くステップSP7において、移動体に対する移動ベクトルのずれを補正する。すなわち特徴点による動きベクトル検出は、局所的な動きについては、正確に動きを追跡できるものの、必ずしも追跡対象の動きを正しく反映するものではない。これによりこの実施例のように複数の特徴点で検出される動きベクトルを統計的に処理して追跡対象領域を移動させて移動体を追跡する場合、移動体の動きに対してこの追跡対象領域の移動が誤差を有するものとなり、この誤差の累積により移動体に対して追跡対象領域が徐々にずれてしまう場合がある。   In the subsequent step SP7, the central processing unit 6 corrects the shift of the movement vector with respect to the moving body. In other words, the motion vector detection based on feature points can accurately track the motion of a local motion, but does not necessarily reflect the motion of the tracking target. As a result, when the moving object is tracked by statistically processing motion vectors detected at a plurality of feature points and moving the tracking target area as in this embodiment, the tracking target area is detected with respect to the movement of the moving object. There is a case in which the tracking target area gradually shifts with respect to the moving object due to the accumulation of the errors.

これにより中央処理ユニット6は、このステップSP7において、複数の特徴点より求めた移動ベクトルについて、移動体に対するずれを補正し、これにより確実に移動体を追跡できるようにする。   As a result, the central processing unit 6 corrects the displacement with respect to the moving body with respect to the moving vector obtained from the plurality of feature points in this step SP7, so that the moving body can be traced reliably.

中央処理ユニット6は、続くステップSP8において、このずれ補正した移動ベクトルにより前フレームに設定した枠Wを移動させ、これにより現フレームに追跡対象領域を設定する。またこの現フレームに設定した追跡対象領域の位置情報を追跡結果S1として続く処理装置10に出力する。またこのとき追跡対象領域に含まれないことになった特徴点を削除する。   In the subsequent step SP8, the central processing unit 6 moves the frame W set as the previous frame by the shift corrected movement vector, thereby setting the tracking target region in the current frame. Further, the position information of the tracking target area set in the current frame is output to the subsequent processing device 10 as the tracking result S1. At this time, feature points that are not included in the tracking target area are deleted.

中央処理ユニット6は、続くステップSP9において、ステップSP8で設定した追跡対象領域について、ステップSP5、ステップSP8で削除した特徴点の分だけ、特徴点を追加設定し、これによりこの追跡対象領域に設定された特徴点の数をステップSP3で設定した当初の個数に設定する。   In the subsequent step SP9, the central processing unit 6 additionally sets feature points for the tracking target region set in step SP8 by the amount of the feature points deleted in step SP5 and step SP8, thereby setting this tracking target region. The number of feature points thus set is set to the initial number set in step SP3.

中央処理ユニット6は、これにより1つの追跡対象領域についての前フレームの処理を完了し、続くステップSP10において、この前フレームに設定された全ての追跡対象領域について処理を完了したか否か判断する。ここで否定結果が得られると、中央処理ユニット6は、ステップSP10からステップSP11に移り、この前フレームに設定された他の追跡対象領域に処理対象を切り換えた後、ステップSP4に戻る。これにより中央処理ユニット6は、前フレームに設定された追跡対象領域毎に、ステップSP4−SP5−SP6−SP7−SP8−SP9−SP10−SP11−SP4の処理手順を繰り返し、前フレームに設定された追跡対象領域の全てについて、この一連の処理を完了すると、ステップSP10で肯定結果が得られることにより、ステップSP10からステップSP12に移る。   The central processing unit 6 thereby completes the processing of the previous frame for one tracking target area, and determines whether or not the processing has been completed for all the tracking target areas set in the previous frame in the subsequent step SP10. . If a negative result is obtained here, the central processing unit 6 moves from step SP10 to step SP11, switches the processing target to another tracking target region set in the previous frame, and then returns to step SP4. Thereby, the central processing unit 6 repeats the processing procedure of steps SP4-SP5-SP6-SP7-SP8-SP9-SP10-SP11-SP4 for each tracking target area set in the previous frame, and is set in the previous frame. When this series of processing is completed for all the tracking target areas, an affirmative result is obtained in step SP10, and the process proceeds from step SP10 to step SP12.

このステップSP12において、中央処理ユニット6は、次フレームの有無を判定し、ここで処理対象の画像データSVに次フレームが存在する場合、ステップSP12からステップSP13に移り、それまでの現フレームを前フレームに設定すると共に、この次フレームの画像データSVを取得して現フレームに設定し、ステップSP4に戻る。これにより中央処理ユニット6は、画像データSVによる各フレーム毎に、この処理手順を繰り返し、全てのフレームについて処理を完了すると、ステップSP12で否定結果が得られることにより、ステップSP12からステップSP14に移ってこの処理手順を終了する。   In step SP12, the central processing unit 6 determines the presence or absence of the next frame. If the next frame exists in the image data SV to be processed, the process proceeds from step SP12 to step SP13, and the current frame up to that point is changed to the previous frame. In addition to setting the frame, the image data SV of the next frame is acquired and set to the current frame, and the process returns to step SP4. Thereby, the central processing unit 6 repeats this processing procedure for each frame of the image data SV, and when the processing is completed for all the frames, a negative result is obtained in step SP12, so that the process proceeds from step SP12 to step SP14. This processing procedure is completed.

(1−2)移動ベクトル計算処理(ノイズ対策処理)
図5は、図2のステップSP5に係る移動ベクトル計算処理を詳細に示すフローチャートである。中央処理ユニット6は、この処理手順を開始すると、ステップSP21からステップSP22に移り、各特徴点の信頼度Ckを計算する。
(1-2) Movement vector calculation processing (noise countermeasure processing)
FIG. 5 is a flowchart showing in detail the movement vector calculation process according to step SP5 of FIG. When starting this processing procedure, the central processing unit 6 proceeds from step SP21 to step SP22, and calculates the reliability Ck of each feature point.

ここで信頼度Ckは、追跡対象の移動体上に存在する特徴点kの確からしさを示す値であり、次式により表される。これにより信頼度Ckは、値1に近い程、追跡対象の移動体に設定されている可能性が高いことを示し、値0の場合、この特徴点は、背景等に設定されている特徴点であることを示すように設定される。   Here, the reliability Ck is a value indicating the probability of the feature point k existing on the tracking target moving body, and is represented by the following equation. Accordingly, the closer the value Ck is to 1, the higher the possibility that the moving object to be tracked is set. When the value C is 0, this feature point is a feature point set in the background or the like. Is set to indicate that

Figure 2006318345
Figure 2006318345

中央処理ユニット6は、このステップSP22において、異なる検出原理により各特徴点毎にそれぞれ複数種類の信頼度を計算し、続くステップSP23において、信頼度の低い特徴点を削除することにより、この信頼度の低い特徴点を移動ベクトルの計算対象、以降のフレームの処理から除外する。これにより中央処理ユニット6は、処理に供する特徴点数を削減して処理を簡略化する。また中央処理ユニット6は、続くステップSP24において、残る特徴点の動きベクトルを複数種類の信頼度を用いて処理することにより、移動体の移動ベクトルを計算し、続いてステップSP25に移って元の処理手順に戻る。これにより中央処理ユニット6は、ノイズによる影響を防止して検出精度の劣化を防止する。   In this step SP22, the central processing unit 6 calculates a plurality of types of reliability for each feature point based on different detection principles, and in the subsequent step SP23, deletes feature points having low reliability, thereby obtaining this reliability. Are excluded from the calculation target of the movement vector and the processing of the subsequent frames. Thus, the central processing unit 6 simplifies the processing by reducing the number of feature points used for the processing. In the subsequent step SP24, the central processing unit 6 calculates the movement vector of the moving object by processing the motion vectors of the remaining feature points using a plurality of types of reliability, and then proceeds to step SP25 to return to the original processing vector. Return to the procedure. Thus, the central processing unit 6 prevents the influence of noise and prevents the detection accuracy from deteriorating.

このステップSP22における処理において、中央処理ユニット6は、始めにステップSP22−1において、追跡回数により信頼度Ckを計算する。ここでこの実施例においては、この移動ベクトル計算処理のステップSP23の削除の処理により、さらにはステップSP8の処理により特徴点を削除すると共に、特徴点を削除した分、ステップSP9において特徴点を追加設定しながら、フレーム毎に、一連の処理手順を繰り返すことにより、移動体に正しく設定された特徴点であって、遮蔽等を受けることのない特徴点にあっては、連続するフレームで連続して動きベクトルが検出され、繰り返し移動体の移動ベクトルの検出に用いられることになる。すなわちこのような特徴点にあっては、連続するフレームで連続して追跡されることになる。   In the processing at step SP22, the central processing unit 6 first calculates the reliability Ck based on the number of tracking times at step SP22-1. Here, in this embodiment, the feature point is deleted by the deletion process of step SP23 of the movement vector calculation process, and further by the process of step SP8, and the feature point is added in step SP9 as much as the feature point is deleted. By repeating a series of processing procedures for each frame while setting, the feature points that are correctly set on the moving object and that are not subject to occlusion etc. are consecutive in consecutive frames. Thus, the motion vector is detected and used repeatedly to detect the motion vector of the moving body. In other words, such feature points are continuously tracked in successive frames.

これによりこのようにして連続して何回も追跡されている特徴点にあっては、移動体上に存在する確からしさが高いと言える。これによりこの実施例において、中央処理ユニット6は、この一連の処理における繰り返しの追跡回数を示すカウント値を各特徴点毎に設定し、ステップSP2における特徴点の設定により、またステップSP9における追加設定により、対応する特徴点のカウント値を初期設定によるカウント値(値0)に設定する。またステップSP9の追跡対象領域を移動させた後においても削除されていない特徴点については、このカウント値を値1だけインクリメントする。   Thus, it can be said that there is a high probability that the feature point that has been continuously tracked many times in this way is present on the moving body. Thereby, in this embodiment, the central processing unit 6 sets a count value indicating the number of times of repeated tracking in this series of processing for each feature point, and additional setting in step SP9 by setting the feature point in step SP2. Thus, the count value of the corresponding feature point is set to the count value (value 0) by the initial setting. For feature points that have not been deleted even after the tracking target area is moved in step SP9, the count value is incremented by one.

このようにカウント値を初期化、インクリメントするようにして、中央処理ユニット6は、このステップSP22−1の処理において、このカウント値に応じて図6に示すように、カウント値が大きくなるに従って値が増大するように、追跡回数による信頼度ωc を設定する。   In this way, the central processing unit 6 initializes and increments the count value, and in the processing of step SP22-1, the central processing unit 6 increases the value according to the count value as shown in FIG. The reliability ωc according to the number of times of tracking is set so that increases.

なおこの実施例では、カウント値が値0近傍の、所定のしきい値t1より小さい場合には、追跡回数による信頼度ωc を値0に設定し、カウント値が十分に値の大きな、所定のしきい値t2より大きい場合には、追跡回数による信頼度ωc を値1に設定した。またこのしきい値t1からt2の範囲では、カウント値の増大により値が増大するように一次関数を用いた線型補間により追跡回数による信頼度ωc を設定した。   In this embodiment, when the count value is near the value 0 and smaller than the predetermined threshold value t1, the reliability ωc according to the number of times of tracking is set to the value 0, and the count value is a sufficiently large value. When it is larger than the threshold value t2, the reliability ωc according to the number of times of tracking is set to 1. In the range from the threshold value t1 to t2, the reliability ωc according to the number of tracking is set by linear interpolation using a linear function so that the value increases as the count value increases.

続いて中央処理ユニット6は、ステップSP22−2に移り、時間的信頼度を計算する。ここで時間的信頼度は、過去のフレームで検出された移動体の移動ベクトルと、ステップSP4で検出した動きベクトルとの差分ベクトルの判定により、移動体上に特徴点が存在する確からしさを示すものである。この実施例では、この過去のフレームで検出された移動体の移動ベクトルに直前フレームで検出された移動ベクトルが適用される。   Subsequently, the central processing unit 6 moves to step SP22-2 and calculates the temporal reliability. Here, the temporal reliability indicates the probability that the feature point exists on the moving object by determining the difference vector between the moving vector of the moving object detected in the past frame and the motion vector detected in step SP4. Is. In this embodiment, the movement vector detected in the immediately preceding frame is applied to the movement vector of the moving body detected in the past frame.

すなわち動きベクトルのx方向成分Vx及びy方向成分Vyを2次元の座標軸に設定し、この座標軸による座標空間に各特徴点で検出される動きベクトルを表すと、図7に示すように、各特徴点で検出される動きベクトルは、グループを形成することになる。ここでx方向成分Vx及びy方向成分Vyが共に値0近傍である特徴点のグループG1にあっては、背景等の静止物体(図4では障害物が相当する)に設定された特徴点の動きベクトルであると判断される。これに対してこのようにx方向成分Vx及びy方向成分Vyが共に値0近傍では無く、他に比して数の多いグループG2は、移動体に設定された特徴点の動きベクトルであると判断され、同様に、x方向成分Vx及びy方向成分Vyが共に値0近傍では無く、グループG2に比して数の少ないグループG3は、追跡対象領域に含まれた他の移動体(図4では、揺れる木が相当する)に設定された特徴点の動きベクトルであると判断される。   That is, when the x-direction component Vx and the y-direction component Vy of the motion vector are set to a two-dimensional coordinate axis, and the motion vector detected at each feature point is represented in the coordinate space by this coordinate axis, as shown in FIG. The motion vectors detected at the points will form a group. Here, in the feature point group G1 in which both the x-direction component Vx and the y-direction component Vy are close to the value 0, the feature points set as a stationary object such as a background (corresponding to an obstacle in FIG. 4). It is determined to be a motion vector. On the other hand, in this way, the x-direction component Vx and the y-direction component Vy are not near the value 0, and the group G2 having a larger number than the others is a motion vector of feature points set in the moving body. Similarly, the group G3 in which both the x-direction component Vx and the y-direction component Vy are not close to the value 0 and is smaller than the group G2 is another mobile unit included in the tracking target region (FIG. 4). In this case, it is determined that the motion vector is a feature point motion vector set to “swaying tree”.

このような分布において、実際に移動体を撮像した場合、移動体にあっては連続するフレームで連続して移動していることにより、移動体上に存在する動きベクトルにあっては、時間軸方向の変化が連続的に変化していると判断することができる。これにより1フレーム前の移動体の移動ベクトルに対して大きく異なる動きベクトルにあっては、移動体上に存在する可能性が低いと判断することができる。   In such a distribution, when the moving object is actually imaged, the moving object continuously moves in successive frames, so that the motion vector existing on the moving object has a time axis. It can be determined that the change in direction is continuously changing. As a result, it can be determined that a motion vector that is significantly different from the motion vector of the moving body one frame before is less likely to exist on the moving body.

すなわち前フレームnで求められる各特徴点の動きベクトルをVFRk〔n〕とおき、1つ前のフレームn−1で求められる移動体慣性移動ベクトルをVobj〔n−1〕とおいたとき、移動体にこの特徴点が設定されている場合、慣性移動ベクトルVobj〔n−1〕に対して動きベクトルVFRk〔n〕は、似通った値となるはずである。なおここで移動体慣性移動ベクトルをVobjは、後述する遮蔽処理により求められる移動ベクトルであり、移動体が遮蔽されていない場合等には、直前のフレームで検出された移動ベクトルVpres〔n−1〕と一致する。 That is, when the motion vector of each feature point obtained in the previous frame n is VFR k [n] and the moving body inertial movement vector obtained in the previous frame n−1 is V obj [n−1], When this feature point is set in the moving body, the motion vector VFR k [n] should have a similar value to the inertial movement vector V obj [n−1]. Here, the moving body inertial movement vector, V obj, is a movement vector obtained by a shielding process, which will be described later. If the moving body is not shielded, the movement vector V pres [n -1].

これにより図7においてグループG3により示すように、移動体に設定された特徴点の動きベクトルVFRk〔n〕は、直前のフレームで検出された移動体慣性移動ベクトルVobj〔n−1〕による点P1をほぼ中心にして分布していると言える。 As a result, as indicated by the group G3 in FIG. 7, the motion vector VFR k [n] of the feature point set in the moving body is based on the moving body inertial movement vector V obj [n−1] detected in the immediately preceding frame. It can be said that the points P1 are distributed about the center.

これにより図8に示すように、中央処理ユニット6は、この直前のフレームで検出された慣性移動ベクトルVobj〔n−1〕を基準にして、このx方向成分Vx及びy方向成分Vyによる2次元空間において、移動体慣性移動ベクトルVobj〔n−1〕による点P1からの距離rに応じて時間的信頼度ωtを設定する。 As a result, as shown in FIG. 8, the central processing unit 6 uses the inertial movement vector V obj [n−1] detected in the immediately preceding frame as a reference and uses the x-direction component Vx and the y-direction component Vy as 2 In the dimensional space, the temporal reliability ωt is set according to the distance r from the point P1 by the moving body inertial movement vector V obj [n−1].

この実施例では、この距離rを3つのしきい値th1、th2、th3により判定し、最も値の小さなしきい値th1より距離rが小さい場合、すなわち1フレーム前で検出された移動体慣性移動ベクトルVobj〔n−1〕と、特徴点で検出される動きベクトルVFPkとの間で、次式の関係式が成立する場合、時間的信頼度ωtを値1に設定する。 In this embodiment, this distance r is determined by three threshold values th1, th2, and th3, and when the distance r is smaller than the smallest threshold value th1, that is, the moving body inertial movement detected one frame before. If the following relational expression is established between the vector V obj [n−1] and the motion vector VFP k detected at the feature point, the temporal reliability ωt is set to a value 1.

Figure 2006318345
Figure 2006318345

また最も値の大きなしきい値th3より距離rが大きい場合、すなわち1フレーム前で検出された移動体慣性移動ベクトルVobj〔n−1〕と、特徴点で検出される動きベクトルVFPkとの間で、次式の関係式が成立する場合、この特徴点を削除対象に設定し、この特徴点を移動ベクトルの計算に使用しないようにし、また続くフレームの処理から除外する。 When the distance r is greater than the threshold value th3 having the largest value, that is, the moving body inertial motion vector V obj [n−1] detected one frame before and the motion vector VFP k detected at the feature point. If the following relational expression holds, the feature point is set as a deletion target, the feature point is not used for the calculation of the movement vector, and is excluded from the subsequent frame processing.

Figure 2006318345
Figure 2006318345

これに対して続いて値の大きなしきい値th2より距離rが大きく、かつ値の大きなしきい値th3より距離rが小さい場合、すなわち1フレーム前で検出された移動体慣性移動ベクトルVobj〔n−1〕と、特徴点で検出される動きベクトルVFPkとの間で、次式の関係式が成立する場合、時間的信頼度ωtを値0に設定する。 In contrast, when the distance r is larger than the threshold value th2 having a large value and the distance r is smaller than the threshold value th3 having a large value, that is, the moving body inertial movement vector V obj [ n−1] and the motion vector VFP k detected at the feature point, the temporal reliability ωt is set to 0 when the following relational expression holds.

Figure 2006318345
Figure 2006318345

これに対して最も値の小さなしきい値th1より距離rが大きく、続いて値の小さなしきい値th2より距離rが小さい場合、すなわち1フレーム前で検出された移動体慣性移動ベクトルVobj〔n−1〕と、特徴点で検出される動きベクトルVFPkとの間で、次式の関係式が成立する場合、一次関数を用いた線型補間により距離rの増大により徐々に値1から値0に減少するように、時間的信頼度ωtを設定する。 On the other hand, when the distance r is larger than the threshold value th1 having the smallest value, and subsequently the distance r is smaller than the threshold value th2 having the smallest value, that is, the moving body inertial movement vector V obj [ n−1] and the motion vector VFP k detected at the feature point, when the following relational expression is established, the value gradually increases from the value 1 by increasing the distance r by linear interpolation using a linear function. The temporal reliability ωt is set so as to decrease to zero.

Figure 2006318345
Figure 2006318345

これによりy方向成分Vyが値0の場合の特徴点についての時間的信頼度ωtの設定を示すと、中央処理ユニット6は、図9に示すような特性により時間的信頼度ωtを設定することになる。なおこのような距離rによる動きベクトルの判定にあっては、移動体における移動の特性により、図8に示すような円による判定に代えて、例えば水平方向が長軸である楕円形により、1フレーム前で検出された移動体の移動体慣性移動ベクトルVobj〔n−1〕に対する分布を判定して実行するようにしてもよい。具体的に、例えば人物を追跡する場合にあっては、水平方向に移動する場合が殆どであることにより、この場合、水平方向が長軸である楕円形により判定するようにして、水平方向に比して垂直方向の判定基準を厳しいものとして信頼度の設定精度を向上することができる。 Thus, when setting the temporal reliability ωt for the feature point when the y-direction component Vy is 0, the central processing unit 6 sets the temporal reliability ωt according to the characteristics shown in FIG. become. In the determination of the motion vector based on the distance r, instead of the determination using a circle as shown in FIG. You may make it perform by determining the distribution with respect to the moving body inertial movement vector Vobj [n-1] of the moving body detected before the flame | frame. Specifically, for example, in the case of tracking a person, the movement in the horizontal direction is almost the case. In this case, the horizontal direction is determined by an ellipse having a long axis, and the horizontal direction is determined. In contrast, the determination criteria in the vertical direction are stricter, and the reliability setting accuracy can be improved.

また直前フレームで検出される移動ベクトルに代えて、直前の複数フレームで検出される移動ベクトルの平均値を適用する場合、さらには2フレーム前で検出された移動ベクトルを適用する場合等、差分値の生成に供する移動ベクトルにあっては、必要に応じて過去に検出した種々の移動ベクトルを適用することができる。   In addition, when the average value of the motion vectors detected in the immediately preceding multiple frames is applied instead of the motion vector detected in the immediately preceding frame, or when the motion vector detected two frames before is applied, the difference value is used. In the movement vector used for generating the above, various movement vectors detected in the past can be applied as necessary.

なお図10は、この時間的信頼度ωtの設定に係る中央処理ユニット6の一連の処理手順を示す図である。中央処理ユニット6は、この実施例では、オペレータによる事前の設定により、これらしきい値th1〜th3の設定を受け付ける。なおこのような設定の受け付けにあっては、例えば標準のしきい値の設定によりこの一連の処理を事前に実行して追跡対象領域(枠w)の変化を表示し、オペレータによる設定の変更を受け付ける場合等が考えられる。   FIG. 10 is a diagram showing a series of processing procedures of the central processing unit 6 relating to the setting of the temporal reliability ωt. In this embodiment, the central processing unit 6 accepts the settings of the threshold values th1 to th3 by the operator's prior settings. In accepting such a setting, for example, a series of processing is executed in advance by setting a standard threshold value to display a change in the tracking target area (frame w), and the operator can change the setting. The case where it accepts etc. can be considered.

このようにして時間的信頼度ωtを計算すると、中央処理ユニット6は、続くステップSP22−3において、他の特徴点との間の距離の変化を判定し、その判定結果を集計することにより空間的信頼度ωsを計算する。   When the temporal reliability ωt is calculated in this way, the central processing unit 6 determines the change in the distance to other feature points in subsequent step SP22-3, and totals the determination results to determine the space. The reliability ωs is calculated.

ここで図11(A1)及び(A2)に示すように、nフレームで検出される特徴点FP1〜FP5がそれぞれ動きベクトルV1〜V5により続くn+1フレームの位置に移動した場合にあって、1つの特徴点FP1が残りの他の特徴点FP2〜FP5とは異なる動きを示した場合、この1つの特徴点FP1は、追跡対象の移動体に設定されたものでは無い可能性が高い。   Here, as shown in FIGS. 11A1 and 11A2, when the feature points FP1 to FP5 detected in the n frame are moved to the position of the subsequent n + 1 frame by the motion vectors V1 to V5, respectively, When the feature point FP1 shows a different movement from the remaining other feature points FP2 to FP5, there is a high possibility that this one feature point FP1 is not set as the tracking target moving body.

これに対して図11(B1)及び(B2)に示すように、このように1つの特徴点FP1が残りの他の特徴点FP2〜FP5とは異なる動きを示した場合であっても、この1つの特徴点FP1が残りの他の特徴点FP2〜FP5と関連した動きである場合、これらの特徴点FP1〜FP5にあっては、同一の移動体に設定されたものである可能性が高い。ちなみに、この図11(B1)及び(B2)は、特徴点FP1〜FP5の相互の間隔が広がった場合であって、他の特徴点FP2〜FP5間の間隔に比して、1つの特徴点FP1との間の間隔が大きく開きつつ、これら5つの特徴点FP1〜FP5が同一方向に移動した場合であり、例えば追跡対象の移動体が人物である場合に、この人物が移動しながら背伸びをしたような場合が相当する。   On the other hand, as shown in FIGS. 11B1 and 11B2, even if one feature point FP1 shows a different movement from the other feature points FP2 to FP5 as described above, When one feature point FP1 is a movement related to the remaining other feature points FP2 to FP5, it is highly likely that these feature points FP1 to FP5 are set to the same moving body. . Incidentally, FIGS. 11B1 and 11B2 show a case where the mutual distance between the feature points FP1 to FP5 is widened, and one feature point compared to the distance between the other feature points FP2 to FP5. This is a case where these five feature points FP1 to FP5 are moved in the same direction while the gap between the FP1 and the FP1 is widened. For example, when the moving object to be tracked is a person, the person is stretched while moving. This is the case.

これに対して図11(C1)及び(C2)に示すように、このように1つの特徴点FP1が残りの他の特徴点FP2〜FP5とは異なる動きを示した場合であって、他の特徴点FP2〜FP5との間で相対的な位置関係が保持されていない場合、この1つの特徴点FP1は、追跡対象の移動体に設定されたものでは無い可能性が高い。   On the other hand, as shown in FIGS. 11 (C1) and (C2), when one feature point FP1 moves differently from the remaining other feature points FP2 to FP5, When the relative positional relationship between the feature points FP2 to FP5 is not maintained, there is a high possibility that this one feature point FP1 is not set as the tracking target moving body.

しかしながらこれら図11(A1)及び(C2)の例において、他の特徴点FP2〜FP5は、相互の位置関係を保持して移動していることにより、追跡対象の移動体に設定されたものである可能性が高い。   However, in these examples of FIGS. 11A1 and 11C2, the other feature points FP2 to FP5 are set as tracking target moving bodies because they move while maintaining their mutual positional relationship. There is a high possibility.

これにより中央処理ユニット6は、次式により示すように、このように1つの特徴点毎に、他の特徴点まで距離の変化を所定のしきい値thΔにより判定し、このしきい値thΔ以上に変化の大きな特徴点数を、各特徴点でカウントする。また全ての特徴点数から処理対象の特徴点数(値1)を減算した減算値により、このようにして計算したカウント値を割り算して正規化し、これによりk番目の特徴点の弾性インデックスkを計算する。なおここで(9)式において、FP1、FPkは、それぞれ処理対象の特徴点、他の特徴点の座標値であり、添え字により示すn−1、nは、それぞれ前フレーム及び現フレームを示し、また#は、カウント値を示す。   As a result, as shown by the following equation, the central processing unit 6 determines a change in distance to another feature point for each feature point based on a predetermined threshold thΔ, and exceeds the threshold thΔ. The number of feature points that change greatly is counted at each feature point. In addition, the subtracted value obtained by subtracting the number of feature points to be processed (value 1) from all the feature points is divided and normalized by dividing the count value thus calculated, thereby calculating the elasticity index k of the kth feature point. To do. In equation (9), FP1 and FPk are the feature points to be processed and the coordinate values of other feature points, respectively, and n−1 and n indicated by subscripts indicate the previous frame and the current frame, respectively. In addition, # indicates a count value.

Figure 2006318345
Figure 2006318345

なおこのしきい値thΔは、この実施例では定数を設定したが、処理対象の特徴点における動きベクトルの大きさ、ステップSP22−1、SP22−2における処理結果等により、特徴点毎に値を変更するようにしてもよい。   Although this threshold thΔ is a constant in this embodiment, a value is set for each feature point depending on the magnitude of the motion vector at the feature point to be processed, the processing results in steps SP22-1 and SP22-2, and the like. It may be changed.

具体的に、図11(B1)及び(B2)における1番目の特徴点FP1と5番目の特徴点FP5との関係について説明すると、nフレーム目における1番目の特徴点FP1から5番目の特徴点FP5までの距離δn,1(5)と、nフレーム目における5番目の特徴点FP5から1番目の特徴点FP1までの距離δn,5(1)との間では、δn,1(5)=δn,5(1)の関係式が成立し、続くn+1フレーム目における1番目の特徴点FP1から5番目の特徴点FP5までの距離δn+1,1(5)と、これら距離δn,1(5)又はδn,5(1)とを比較すると、この場合、距離δn+1,1(5)が伸びていることがわかる。 Specifically, the relationship between the first feature point FP1 and the fifth feature point FP5 in FIGS. 11B1 and 11B2 will be described. The fifth feature point from the first feature point FP1 in the nth frame. Between the distance δ n, 1 (5) to FP5 and the distance δ n, 5 (1) from the fifth feature point FP5 to the first feature point FP1 in the nth frame, δ n, 1 ( 5) = δ n, 5 The relational expression (1) holds, and the distance δ n + 1,1 (5) from the first feature point FP1 to the fifth feature point FP5 in the subsequent n + 1 frame, and these Comparing the distance δ n, 1 (5) or δ n, 5 (1), it can be seen that the distance δ n + 1,1 (5) is extended in this case.

中央処理ユニット6は、これによりこの場合、次式により示すように、これら距離δn+1,1 (5)とδn,1(5)との差分値がしきい値thΔより大きい場合、この特徴点FP1に係るカウント値counterFP1をアップカウントする。 Thus, the central processing unit 6 in this case, when the difference value between these distances δ n + 1,1 (5) and δ n, 1 (5) is larger than the threshold thΔ, as shown by the following equation: The count value counterFP1 related to the feature point FP1 is up-counted.

Figure 2006318345
Figure 2006318345

またこのようにして残りの特徴点FP2〜FP4との間で同様にして距離の差分値をしきい値thΔより判定してカウント値を更新し、この図11の例では、全ての特徴点数5より値1を減じた値4によりカウント値を割り算して弾性インデックスkを計算する。またさらに次式により示すように、この弾性インデックスkを値1から減算し、これにより空間的信頼度ωsを計算する。   In this way, the difference value of the distance is similarly determined from the threshold value thΔ between the remaining feature points FP2 to FP4, and the count value is updated. In the example of FIG. The elastic index k is calculated by dividing the count value by the value 4 obtained by subtracting 1 from the value. Further, as shown by the following equation, the elastic index k is subtracted from the value 1, thereby calculating the spatial reliability ωs.

Figure 2006318345
Figure 2006318345

なお図12は、この空間的信頼度ωsの設定に係る中央処理ユニット6の一連の処理手順を示す図である。中央処理ユニット6は、これにより直前フレームで検出された各特徴点間の距離の情報をメモリに記録して保持し、このメモリの記録と、この前フレームで検出される距離の情報とにより弾性インデックスを計算した後、空間的信頼度ωsを各特徴点毎に計算する。   FIG. 12 is a diagram showing a series of processing procedures of the central processing unit 6 relating to the setting of the spatial reliability ωs. Thus, the central processing unit 6 records and holds information on the distance between each feature point detected in the immediately preceding frame in a memory. The central processing unit 6 is elastic by recording the memory and information on the distance detected in the previous frame. After calculating the index, the spatial reliability ωs is calculated for each feature point.

このようにして空間的信頼度ωsを計算すると、中央処理ユニット6は、続くステップSP22−4において、静止点の検出処理を実行する。ここで図13は、この静止点の検出処理における中央処理ユニット6の処理手順を示すフローチャートである。中央処理ユニット6は、この処理手順を開始すると、ステップSP31からステップSP32に移る。ここで中央処理ユニット6は、移動体が静止しているか否か判断し、ここで静止していると判断される場合、ステップSP32からステップSP33に移ってこの処理手順を終了する。なおここでこの移動体が静止しているか否かの判断にあっては、ステップSP22−1〜ステップSP22−4で検出した各種信頼度により、又はこれらの信頼度の組み合わせにより、移動ベクトルを計算して判定する場合等、種々の判定手法を広く適用することができる。なお中央処理ユニット6は、このようにステップSP32からステップSP33に移って処理を完了する場合、この追跡対象領域の各特徴点に係る静止画カウンタ(後述する)については、カウント値を値0にリセットする。   When the spatial reliability ωs is calculated in this way, the central processing unit 6 executes a stationary point detection process in subsequent step SP22-4. Here, FIG. 13 is a flowchart showing a processing procedure of the central processing unit 6 in the stationary point detection processing. When starting the processing procedure, the central processing unit 6 proceeds from step SP31 to step SP32. Here, the central processing unit 6 determines whether or not the moving body is stationary. If it is determined that the moving body is stationary, the central processing unit 6 proceeds from step SP32 to step SP33 and ends this processing procedure. Here, in determining whether or not the moving body is stationary, the movement vector is calculated based on various reliability levels detected in Step SP22-1 to Step SP22-4 or a combination of these reliability levels. For example, various determination methods can be widely applied. When the central processing unit 6 moves from step SP32 to step SP33 and completes the processing in this way, the count value is set to 0 for the still image counter (described later) related to each feature point of the tracking target area. Reset.

これに対して移動体が静止していないとの判定結果が得られると、中央処理ユニット6は、ステップSP32からステップSP34に移る。ここで中央処理ユニット6は、処理対象の追跡対象領域に設定された1つの特徴点を選択し、この特徴点について、1フレーム前と同じ位置に位置するか否か判断する。なおここでこの判定にあっては、1フレーム前で検出された位置(xk,yk)nと、前フレームである処理対象のフレームで検出された位置(xk,yk)n+1との差分値を所定のしきい値により判定し、このしきい値より差分値が小さい場合に、同一位置と判定する。   On the other hand, if the determination result that the moving body is not stationary is obtained, the central processing unit 6 proceeds from step SP32 to step SP34. Here, the central processing unit 6 selects one feature point set in the tracking target region to be processed, and determines whether or not this feature point is located at the same position as one frame before. Here, in this determination, the difference value between the position (xk, yk) n detected one frame before and the position (xk, yk) n + 1 detected in the processing target frame which is the previous frame is calculated. Judgment is made based on a predetermined threshold value, and when the difference value is smaller than this threshold value, the same position is determined.

中央処理ユニット6は、ここで同一位置であるとの判定結果が得られない場合、ステップSP34からステップSP35に移る。ここで中央処理ユニット6は、静止していたフレーム数を示す静止カウンタkを値0にリセットした後、ステップSP36に移る。ここで中央処理ユニット6は、この追跡対象領域の全ての特徴点について処理を完了したか否か判断し、ここで否定結果が得られると、ステップSP36からステップSP37に移り、処理対象を次の特徴点に切り換えてステップSP34に戻る。   If the determination result that the central processing unit 6 is at the same position cannot be obtained, the central processing unit 6 proceeds from step SP34 to step SP35. Here, the central processing unit 6 resets the stillness counter k indicating the number of frames that have been still to 0, and then proceeds to step SP36. Here, the central processing unit 6 determines whether or not the processing has been completed for all the feature points in the tracking target area. If a negative result is obtained here, the process proceeds from step SP36 to step SP37, and the processing target is set to the next processing target. Switching to the feature point returns to step SP34.

これに対してステップSP34で肯定結果が得られると、中央処理ユニット6は、ステップSP34からステップSP38に移る。ここで中央処理ユニット6は、静止カウンタkを値1だけインクリメントした後、続くステップSP39において、この静止カウンタkのカウント値が所定のしきい値th5と一致するか否か判断する。   On the other hand, if a positive result is obtained in step SP34, the central processing unit 6 proceeds from step SP34 to step SP38. Here, the central processing unit 6 increments the stationary counter k by the value 1, and then determines whether or not the count value of the stationary counter k coincides with a predetermined threshold value th5 in the following step SP39.

ここで肯定結果が得られると、この場合、移動体が移動している場合にも係わらず、この処理対象の特徴点にあっては、このしきい値th5に対応する連続するフレームで同一の位置に位置することより、中央処理ユニット6は、この場合、ステップSP39からステップSP40に移り、この特徴点を静止点に設定する。また続いてステップSP36に移り、ここでこの追跡対象領域の全ての特徴点について処理を完了したか否か判断し、ここで否定結果が得られると、ステップSP36からステップSP37に移り、処理対象を次の特徴点に切り換えてステップSP34に戻る。   If an affirmative result is obtained here, in this case, the feature point to be processed is the same in consecutive frames corresponding to the threshold th5, regardless of whether the moving body is moving. In this case, the central processing unit 6 moves from step SP39 to step SP40, and sets this feature point as a stationary point. Subsequently, the process proceeds to step SP36, where it is determined whether or not the processing has been completed for all the feature points in the tracking target region. If a negative result is obtained here, the process proceeds from step SP36 to step SP37, where the processing target is changed. Switch to the next feature point and return to step SP34.

これに対してステップSP39で否定結果が得られると、中央処理ユニット6は、ステップSP39からステップSP41に移る。ここで中央処理ユニット6は、ステップSP22−3で検出したこの特徴点に係る空間的信頼度ωsが所定のしきい値th6より小さいか否か、すなわち他の多くの特徴点に対して空間的に異なる動きを呈した程度が大きいか否か判断する。   On the other hand, if a negative result is obtained in step SP39, the central processing unit 6 proceeds from step SP39 to step SP41. Here, the central processing unit 6 determines whether or not the spatial reliability ωs related to this feature point detected in step SP22-3 is smaller than a predetermined threshold th6, that is, for many other feature points. It is determined whether the degree of exhibiting different movements is large.

ここで肯定結果が得られると、中央処理ユニット6は、ステップSP41からステップSP40に移り、この特徴点を静止点に設定した後、ステップSP36に移る。これに対してステップSP41で否定結果が得られると、ステップSP41から直接ステップSP36に移る。   If a positive result is obtained here, the central processing unit 6 moves from step SP41 to step SP40, sets this feature point as a stationary point, and then moves to step SP36. On the other hand, if a negative result is obtained in step SP41, the process directly proceeds from step SP41 to step SP36.

これらにより中央処理ユニット6は、繰り返し検出される特徴点の位置座標の判定により、移動体上に特徴点が存在する確からしさを、それまで繰り返し静止していた回数により示す静止点信頼度を検出する。   Thus, the central processing unit 6 detects the reliability of the stationary point indicating the probability that the characteristic point exists on the moving object by the number of times it has been repeatedly stationary, by determining the position coordinates of the characteristic point that is repeatedly detected. To do.

中央処理ユニット6は、このようにして静止点を検出すると、続くステップSP22−5において、平滑ブロック処理を実行する。ここで中央処理ユニット6は、各特徴点毎に、周囲のサンプリング点との間でサンプリング値の差分値を計算する。ここでこの差分値が小さい場合には、この特徴点は、特徴点としての信頼度が低いことになる。これにより中央処理ユニット6は、この差分値が一定値以下の特徴点を検出する。なおこの処理においては、例えば特徴点に係るサンプリング点と、このサンプリング点の水平方向及び垂直方向に隣接するサンプリング点との間で、サンプリング値の差分絶対値和を計算し、この差分値絶対値和をしきい値により判定して実行される。なおこのような水平方向及び垂直方向に隣接すサンプリング点との間の処理に代えて、周囲8サンプリング点との間で処理する場合等、この判定に供する範囲にあっては、必要に応じて種々に設定することができる。   When the central processing unit 6 detects the still point as described above, the central processing unit 6 executes smooth block processing in the following step SP22-5. Here, the central processing unit 6 calculates, for each feature point, a difference value between the sampling values with the surrounding sampling points. Here, when the difference value is small, the feature point has low reliability as the feature point. Thereby, the central processing unit 6 detects a feature point whose difference value is equal to or smaller than a certain value. In this process, for example, the difference absolute value sum of the sampling values is calculated between the sampling points related to the feature points and the sampling points adjacent to the sampling points in the horizontal and vertical directions. The sum is determined by a threshold and executed. It should be noted that, instead of such processing between sampling points adjacent in the horizontal direction and vertical direction, when processing between eight sampling points in the vicinity, etc. Various settings can be made.

これにより中央処理ユニット6は、各特徴点毎に、周囲のサンプリング点との間でサンプリング値の差分値を判定することにより、移動体上に存在する特徴点の確からしさを、周囲のサンプリング点との比較により示す平滑度信頼度を検出する。   As a result, the central processing unit 6 determines the probability of the feature points existing on the moving object by determining the difference value of the sampling values with respect to the surrounding sampling points for each feature point. The smoothness reliability shown by comparison with is detected.

これらにより中央処理ユニット6は、続くステップSP23において、このように異なる検出原理で検出した複数種類の信頼度のうちの一部を用いて、信頼度の低い特徴点を削除し、この信頼度の低い特徴点については、移動ベクトルの計算に使用しないようにし、また以降のフレームの処理対象から除外する。またこのようにして特徴点を削除した分、上述のステップSP9において特徴点を追加設定する。これにより中央処理ユニット6は、後述する重み平均の処理の他に、この特徴点の削除処理によっても、信頼性の低い動きベクトルを処理結果に反映しないようにして移動ベクトルを検出し、さらにはこの移動ベクトルの検出に係る処理を簡略化する。   Thus, the central processing unit 6 deletes feature points with low reliability by using a part of the plurality of types of reliability detected by the different detection principles in the following step SP23. The low feature points are not used for the calculation of the movement vector, and are excluded from the processing target of subsequent frames. Further, the feature points are additionally set in the above-described step SP9 because the feature points are deleted in this way. As a result, the central processing unit 6 detects the motion vector so as not to reflect the motion vector with low reliability in the processing result by the feature point deletion processing in addition to the weighted average processing described later. The process related to the detection of the movement vector is simplified.

具体的に、中央処理ユニット6は、処理対象である追跡対象領域の特徴点から、ステップSP22で削除対象に設定された特徴点、ステップSP22−4で検出された静止点、ステップSP22−5で検出された平滑度信頼度の低い特徴点を削除する。   Specifically, the central processing unit 6 determines, from the feature points of the tracking target area that is the processing target, the feature points set as deletion targets in step SP22, the still points detected in step SP22-4, and the step SP22-5. The detected feature point with low smoothness reliability is deleted.

この特徴点の削除にあっては、これら静止点、平滑度信頼度等により削除する場合に限らず、これらに代えて、又はこれらに加えて、他の信頼度により削除するようにしてもよく、またさらにはこのように異なる検出原理で検出した複数種類の信頼度の全てを用いて削除するようにしてもよい。また削除の処理に使用する信頼度毎に、各信頼度を計算した直後に該当する特徴点を削除するようにして、続く信頼度検出の処理を簡略化することができる。   The deletion of the feature points is not limited to the case of deleting by these still points and smoothness reliability, but may be deleted by other reliability instead of or in addition to these. In addition, it is also possible to delete using all of a plurality of types of reliability detected by different detection principles. Further, for each reliability used for the deletion process, the corresponding feature point is deleted immediately after each reliability is calculated, so that the subsequent reliability detection process can be simplified.

また中央処理ユニット6は、続くステップSP24における移動ベクトルの計算において、このように異なる検出原理で検出した複数種類の信頼度のうちの一部を用いた重み付け処理により移動ベクトルを計算する。この実施例では、この一部の信頼度に、追跡回数信頼度ωc、時間的信頼度ωt、空間的信頼度ωsが適用される。またこの重み付け処理には、重み付け平均の処理が適用される。   Further, the central processing unit 6 calculates the movement vector by weighting processing using a part of the plurality of types of reliability detected by the different detection principles in the subsequent calculation of the movement vector in step SP24. In this embodiment, the tracking reliability ωc, the temporal reliability ωt, and the spatial reliability ωs are applied to the partial reliability. In addition, a weighted average process is applied to this weighting process.

これにより中央処理ユニット6は、このステップSP24において、次式により示すように、追跡回数信頼度ωc、時間的信頼度ωt、空間的信頼度ωsを乗算して総合の信頼度ωを計算する。   As a result, in this step SP24, the central processing unit 6 calculates the total reliability ω by multiplying the tracking number reliability ωc, the temporal reliability ωt, and the spatial reliability ωs as shown by the following equation.

Figure 2006318345
Figure 2006318345

さらにこの計算した総合の信頼度ωを用いた重み付け平均値を計算し、これによりこの処理対象である追跡対象領域における移動体の動きベクトルを計算する。これらによりこの実施例では、ノイズによる影響を防止して検出精度の劣化を防止する。   Further, a weighted average value using the calculated total reliability ω is calculated, thereby calculating a motion vector of the moving object in the tracking target region which is the processing target. As a result, in this embodiment, the influence of noise is prevented, and deterioration of detection accuracy is prevented.

なお中央処理ユニット6は、このようにして求めた移動ベクトルをステップSP6により遮蔽対策処理し、ステップSP7によりずれ補正処理した後、ステップSP8で枠Wを移動させて現フレームに追跡対象領域を設定する。このときこの追跡対象領域に含まれない特徴点をさらに削除する。またこのステップSP8で削除した分についても、ステップSP9において特徴点を追加設定する。   The central processing unit 6 performs a shielding countermeasure process on the movement vector obtained in this way at step SP6, performs a shift correction process at step SP7, and then moves the frame W at step SP8 to set the tracking target area in the current frame. To do. At this time, feature points not included in the tracking target area are further deleted. Further, the feature points are additionally set in step SP9 for the portion deleted in step SP8.

なお上述のステップSP32における判定は、この一連の処理を繰り返して検出される移動ベクトルにより、それまで連続してこの移動ベクトルが所定値以下の場合、移動体が静止していると判断する。   Note that the determination in step SP32 described above is based on the movement vector detected by repeating this series of processes, and if the movement vector has been continuously below the predetermined value, it is determined that the moving body is stationary.

(1−3)遮蔽処理
図14は、遮蔽の説明に供する略線図である。遮蔽は、移動体Mが遮蔽物Nの後方を横切ることにより発生し、これによりこの図14の例では、連続するnフレームからn+5フレームにおいて、移動体に設定される特徴点(黒丸により示す)の数が、遮蔽物Nと移動体Mとの重なり合いの程度によって順次変化することになる。
(1-3) Shielding Process FIG. 14 is a schematic diagram for explaining the shielding. The shielding occurs when the moving body M crosses behind the shielding object N, and in this example of FIG. 14, feature points (indicated by black circles) set in the moving body from the successive n frames to n + 5 frames. Are sequentially changed depending on the degree of overlap between the shield N and the moving body M.

これにより図15(A)に示すように、移動体に設定された特徴点数にあっては、遮蔽の開始により徐々に数が低下した後、遮蔽の終了に近づくに従って徐々に数が増大して遮蔽前の値に戻ることになる。すなわちこの場合、上述した追跡回数の信頼度ωcの検出処理において、追跡回数がしきい値t1以下の、追跡回数信頼度ωcの低い特徴点が増大し、これとは逆に追跡回数がしきい値t2以上の、追跡回数信頼度ωcの高い特徴点が減少する。   As a result, as shown in FIG. 15A, the number of feature points set in the moving body gradually decreases as the shielding starts, and then gradually increases as the shielding ends. It will return to the value before shielding. That is, in this case, in the above-described processing for detecting the reliability ωc of the number of times of tracking, feature points with a low number of times of tracking ωc having a tracking number of less than or equal to the threshold value t1 increase. Feature points with a high tracking number reliability ωc that are equal to or greater than the value t2 decrease.

これにより追跡対象領域の特徴点の数に対して、所定回数以上連続して追跡に成功している特徴点数の比率を求めることにより、遮蔽の程度を示す遮蔽度を検出することができる。なおこの実施例では、繰り返しのフレームの処理で信頼度の低い特徴点を削除すると共に、削除した分、特徴点を追加設定していることにより、このように所定回数以上連続して追跡に成功している特徴点は、この所定回数以上の繰り返し処理で、追加設定されなかった特徴点となる。   Accordingly, the degree of shielding indicating the degree of shielding can be detected by obtaining the ratio of the number of feature points that have been successfully tracked for a predetermined number of times or more with respect to the number of feature points in the tracking target region. In this embodiment, feature points with low reliability are deleted by repeated frame processing, and feature points are additionally set for the deleted amount, so that tracking has succeeded more than a predetermined number of times in this way. The feature points that have been added are feature points that have not been additionally set in the repeated processing more than the predetermined number of times.

これにより中央処理ユニット6は、この遮蔽度に応じてステップSP5で検出される移動ベクトルと、過去の繰り返し処理で検出された移動ベクトルとを演算処理することにより、このステップSP5で検出される移動ベクトルを補正し、遮蔽中の移動体を追跡する。   As a result, the central processing unit 6 calculates the movement detected in step SP5 by calculating the movement vector detected in step SP5 and the movement vector detected in the past repetition process according to the degree of shielding. Correct the vector and track moving objects that are occluded.

すなわち図16は、この遮蔽対策に係る中央処理ユニット6の処理手順を示すフローチャートである。中央処理ユニット6は、この処理手順を開始すると、ステップSP51からステップSP52に移り、遮蔽度を検出する。ここで中央処理ユニット6は、次式により示すように、追跡回数が所定回数以上の特徴点数を計算し、この計算した特徴点数を所定の基準値th7から減算し(図15(B))、その結果得られる減算値を基準値th7により割り算して正規化し(図15(C))、遮蔽度を検出する。なおここでV4.0は、追跡回数が所定回数以上の特徴点数である。なお追跡回数が所定回数以上の特徴点数に代えて、追跡回数信頼度ωcが所定値以上の特徴点数を検出して遮蔽度を検出するようにしてもよい。なおこの実施例では、この基準値th7を、追跡対象領域に設定されている特徴点の数の1/2の値に設定した。   That is, FIG. 16 is a flowchart showing the processing procedure of the central processing unit 6 according to this shielding measure. When starting this processing procedure, the central processing unit 6 moves from step SP51 to step SP52 and detects the degree of shielding. Here, as shown by the following equation, the central processing unit 6 calculates the number of feature points whose number of tracking is a predetermined number or more, and subtracts the calculated number of feature points from a predetermined reference value th7 (FIG. 15B), The subtraction value obtained as a result is divided by the reference value th7 and normalized (FIG. 15C), and the shielding degree is detected. Here, V4.0 is the number of feature points whose tracking number is a predetermined number or more. It should be noted that instead of the number of feature points having a tracking number of more than a predetermined number, the degree of occlusion may be detected by detecting the number of feature points having a tracking number reliability ωc of a predetermined value or more. In this embodiment, the reference value th7 is set to a value that is ½ of the number of feature points set in the tracking target area.

Figure 2006318345
Figure 2006318345

これにより中央処理ユニット6は、図15(C)に示すように、追跡回数が所定回数以上の特徴点数が、追跡対象領域に削除されてないで保持されている特徴点数の1/2以上の範囲では、値0に保持されるように、またこの追跡回数が所定回数以上の特徴点数が、追跡対象領域に削除されてないで保持されている特徴点数の1/2以下となると、この追跡回数が所定回数以上の特徴点数の減少により徐々に値が値0から増大するように、また追跡回数が所定回数以上の特徴点数が0個となる値1となるように、遮蔽度を計算する。   As a result, as shown in FIG. 15C, the central processing unit 6 has the number of feature points whose number of tracking is equal to or more than a predetermined number of times or more than half of the number of feature points held without being deleted in the tracking target region. In the range, the tracking is performed when the number of feature points of which the number of tracking is equal to or greater than the predetermined number of times is less than ½ of the number of feature points that are not deleted in the tracking target area, so that the value is maintained at a value of 0. The degree of occlusion is calculated so that the value gradually increases from the value 0 as the number of feature points decreases by a predetermined number of times or more, and the value of 1 that causes the number of tracking points to be zero when the number of tracking times is a predetermined number or more. .

続いて中央処理ユニット6は、ステップSP53において、この遮蔽度を用いた移動体慣性移動ベクトルを計算する。ここで移動体慣性移動ベクトルは、移動体が慣性により移動している場合の、この移動体の動きを示す動きベクトルであり、次式の演算処理により計算される。なおここで移動ベクトルは、ステップSP5で計算した移動ベクトルである。また過去移動ベクトルは、移動体の過去のフレームで検出される移動ベクトルであり、例えば、1フレーム前で検出された移動体の動きベクトル、10フレーム前で検出された移動体の動きベクトル等が適用される。またαは、帰還率を抑制するパラメータであり、この実施例では遮蔽度が代入される。これにより中央処理ユニット6は、重み付け係数を遮蔽度に応じて可変して、ステップSP5で検出した移動ベクトルと、過去の繰り返し処理で検出された移動ベクトルとの重み平均処理により、ステップSP5で検出した移動ベクトルを補正する。   Subsequently, in step SP53, the central processing unit 6 calculates a moving body inertial movement vector using this shielding degree. Here, the moving body inertial movement vector is a motion vector indicating the movement of the moving body when the moving body is moving due to inertia, and is calculated by the following arithmetic processing. Here, the movement vector is the movement vector calculated in step SP5. The past movement vector is a movement vector detected in the past frame of the moving body. For example, a motion vector of the moving body detected one frame before, a motion vector of the moving body detected ten frames ago, and the like. Applied. Α is a parameter for suppressing the feedback rate, and in this embodiment, the degree of shielding is substituted. As a result, the central processing unit 6 changes the weighting coefficient in accordance with the degree of occlusion, and detects in step SP5 by the weighted average process of the movement vector detected in step SP5 and the movement vector detected in the past iteration process. Correct the movement vector.

Figure 2006318345
Figure 2006318345

なお(14)式により明らかなように、この実施例では、特徴点による移動体の動きベクトルと、過去の1フレームで検出された移動体の動きベクトルとを用いた一次関数の演算処理により遮蔽された移動体の動きを計算する場合について述べたが、二次関数等の演算処理により過去の複数フレームで計算された動きベクトルにより移動体の動きを計算するようにしてもよい。   As is clear from the equation (14), in this embodiment, the moving object motion vector based on the feature points and the moving function motion vector detected in the past one frame are used for shielding by a linear function calculation process. Although the case of calculating the motion of the moving body described above has been described, the motion of the moving body may be calculated from motion vectors calculated in a plurality of past frames by a calculation process such as a quadratic function.

これにより中央処理ユニット6は、移動体が一定値以上遮蔽されるまでの間、特徴点の動きベクトルで検出される移動ベクトルにより移動体を追跡し、一定値以上遮蔽されると、(1−α)の帰還率により過去に検出した移動ベクトルを用いて動きベクトルで検出される移動ベクトルを補正する。しかして中央処理ユニット6は、この移動体慣性移動ベクトルを移動体の動きベクトルに設定した後、ステップSP54に移ってこの処理手順を終了する。   As a result, the central processing unit 6 tracks the moving body by the movement vector detected by the motion vector of the feature point until the moving body is shielded by a certain value or more. The movement vector detected by the motion vector is corrected using the movement vector detected in the past by the feedback rate of α). Therefore, the central processing unit 6 sets the moving body inertial movement vector as the motion vector of the moving body, and then moves to step SP54 to end the processing procedure.

(1−4)ずれ補正処理
ところで各特徴点の動きベクトル検出は、局所的な動きについては、正確に動きを追跡できるものの、必ずしも追跡対象の動きを正しく反映するものではない。これによりこの実施例のように複数の特徴点で検出される動きベクトルを統計的に処理して追跡対象領域を移動させる場合、移動体の動きに対してこの追跡対象領域の移動が誤差を有するものとなり、図17において、連続するNフレームにおける移動体と枠Wによる追跡対象領域との関係を示すように、この誤差の累積により移動体に対して追跡対象領域が徐々にずれてしまう場合があり、これにより徐々に追跡精度が低下することになる。
(1-4) Deviation Correction Processing By the way, the motion vector detection of each feature point can accurately track the movement of a local movement, but does not necessarily reflect the movement of the tracking target correctly. Thus, when the tracking target area is moved by statistically processing motion vectors detected at a plurality of feature points as in this embodiment, the movement of the tracking target area has an error with respect to the movement of the moving object. In FIG. 17, as shown in FIG. 17, the tracking target region may gradually shift with respect to the moving object due to the accumulation of errors, as shown in the relationship between the moving object in the consecutive N frames and the tracking target region by the frame W. There will be a gradual decrease in tracking accuracy.

このため中央処理ユニット6は、図18に示すずれ補正処理により、このようなずれを補正する。すなわち中央処理ユニット6は、この処理手順を開始すると、ステップSP61からステップSP62に移る。ここで中央処理ユニット6は、上述した遮蔽処理における遮蔽度の判定により、処理対象のフレームが遮蔽中であるか否か判断する。ここで肯定結果が得られると、中央処理ユニット6は、ステップSP62からステップSP63に移り、この場合、何ら補正処理することなく元の処理手順に戻る。これにより中央処理ユニット6は、遮蔽中の場合には、何ら移動ベクトルをずれ補正することなくこの処理手順を終了する。なおここでこの実施例における遮蔽中か否かの判断にあっては、遮蔽度の値0からの立ち上がりによりフラグを設定するようにして、このフラグの判定により実行される。   Therefore, the central processing unit 6 corrects such a shift by a shift correction process shown in FIG. That is, when starting this processing procedure, the central processing unit 6 proceeds from step SP61 to step SP62. Here, the central processing unit 6 determines whether or not the processing target frame is being occluded by determining the occlusion degree in the occlusion processing described above. If a positive result is obtained here, the central processing unit 6 moves from step SP62 to step SP63, and in this case, returns to the original processing procedure without performing any correction processing. As a result, the central processing unit 6 ends this processing procedure without correcting any shift of the movement vector in the case of shielding. It should be noted that here, in the determination of whether or not the shielding is in this embodiment, the flag is set by rising from the shielding degree value 0, and is executed by the determination of this flag.

これに対してステップSP62で否定結果が得られると、中央処理ユニット6は、ステップSP62からステップSP64に移り、ここで処理対象のフレームが遮蔽を終了した直後のフレームであるか否か判断する。なおここで遮蔽が終了した後、所定フレーム数Nだけ経過するまでの間にあっては、遮蔽を終了した直後のフレームであると判断する。またこれら遮蔽中であるか否かの判断にあっては、上述の遮蔽度の判定に限らず、遮蔽処理とは別に判定するようにしてもよい。   On the other hand, if a negative result is obtained in step SP62, the central processing unit 6 moves from step SP62 to step SP64, and determines whether or not the frame to be processed is a frame immediately after the occlusion. It should be noted that the frame immediately after the end of occlusion is determined until the predetermined number of frames N have elapsed after the occlusion ends. The determination of whether or not the shielding is in progress is not limited to the above-described determination of the shielding degree, but may be determined separately from the shielding process.

ここで否定結果が得られると、中央処理ユニット6は、ステップSP64からステップSP65に移る。ここで中央処理ユニット6は、既に移動ベクトルを検出したフレームであって、移動体が遮蔽されていないフレームの画像データSVより固定パターンを作成する(図17(A))。具体的に、この実施例では、Nフレームだけ前に処理した画像データSVを使用してこの固定パターンを作成し、これにより図18において時点t1により示す処理対象フレームから上述の所定フレーム数Nだけ時間軸を逆上った時点t1−Nにより示すフレームにおいて、同一の追跡対象領域の画像データSVより固定パターンを作成する(図17(A))。これにより中央処理ユニット6は、遮蔽中のフレームにあっては、ずれ補正処理に使用しないようにする。   If a negative result is obtained here, the central processing unit 6 proceeds from step SP64 to step SP65. Here, the central processing unit 6 creates a fixed pattern from the image data SV of the frame in which the movement vector has already been detected and the moving body is not shielded (FIG. 17A). Specifically, in this embodiment, this fixed pattern is created using the image data SV processed N frames before, so that the predetermined number N of frames is processed from the processing target frame indicated by time t1 in FIG. A fixed pattern is created from the image data SV of the same tracking target region in the frame indicated by the time point t1-N when the time axis is reversed (FIG. 17A). Thereby, the central processing unit 6 is not used for the shift correction process in the frame that is being shielded.

ここでこの固定パターンは、相関検出用のテンプレートであり、追跡対象領域の画像データを切り出して作成される。なお固定パターンは、このようにNフレーム前の画像データSVにより作成する場合に限らず、Nフレーム前からさらに逆上ったK個のフレームの画像データSVの平均値により作成する場合、さらにはこれらK個のフレームによる画像データの重み付け平均値により作成する場合、さらには帰還フィルタの手法により作成する場合等、既に移動ベクトルを検出したフレームであって、移動体が遮蔽されていないフレームの画像データより種々の方法で作成することができる。   Here, this fixed pattern is a template for correlation detection, and is created by cutting out image data of the tracking target area. Note that the fixed pattern is not limited to the case where the fixed pattern is generated by the image data SV N frames before in this way, but the case where the fixed pattern is generated by the average value of the image data SV of K frames that are further reversed from N frames before, An image of a frame in which a moving vector has already been detected and the moving object is not shielded, such as a case where the image is created using a weighted average value of image data of these K frames, or a case where the image is created by a feedback filter technique. It can be created in various ways from data.

中央処理ユニット6は、このようにして作成した固定パターンに対して、重み係数を設定した重みパターンをさらに作成する。ここでこの重みパターンは、この固定パターンに係る追跡対象領域に設定された特徴点について、それぞれ特徴点のサンプリング点と、このサンプリング点近傍のサンプリング点とに、各特徴点の信頼度の値による重み係数を設定し、残りのサンプリング点に値0の重み係数を設定して作成される。またこの信頼度にあっては、上述したノイズ除去処理に係る総合の信頼度、又は総合の信頼度の算出に供された各信頼度の何れかを適用することができる。またこのように信頼度の値による重み係数を設定する特徴点近傍のサンプリング点にあっては、必要に応じて種々に設定することができ、また移動体に応じて水平方向と垂直方向とでサンプリング点の数を異ならせるようにしてもよい。   The central processing unit 6 further creates a weight pattern in which a weight coefficient is set for the fixed pattern created in this way. Here, the weight pattern is obtained by using the reliability value of each feature point at each of the sampling points of the feature points and the sampling points in the vicinity of the sampling points for the feature points set in the tracking target region related to the fixed pattern. A weighting factor is set, and a weighting factor of value 0 is set for the remaining sampling points. As for the reliability, either the overall reliability related to the above-described noise removal processing or each reliability provided for calculation of the overall reliability can be applied. In addition, the sampling points in the vicinity of the feature points that set the weighting coefficient according to the reliability value can be set variously as necessary, and in the horizontal direction and the vertical direction depending on the moving object. The number of sampling points may be varied.

中央処理ユニット6は、続いてステップSP66に移り、この固定パターン、重みパターンを用いたブロックマッチングにより最も相関の高い位置を検出する。具体的に、中央処理ユニット6は、この固定パターンを追跡対象領域に重ね合わせた位置を中心にして、垂直方向及び水平方向にそれぞれ±S画素の範囲をサーチ範囲に設定し、処理対象のフレームに係る画像に対して、このサーチ範囲で順次、固定パターンを移動させる。また各移動位置毎に、固定パターンと処理対象フレームの画像との間で、重なり合うサンプリング点間で画素値の差分値を計算し、さらに重みパターンによる対応する重み係数により各差分値を乗算する。中央処理ユニット6は、この乗算値の絶対値和を計算し、これにより相関値を計算する。また各位置で検出される相関値より最も値の小さな相関値の位置を検出する。なおこれにより図17及び図19において示すサーチ範囲は、固定パターンの1つのサンプリング点についてのサーチ範囲である。またこの相関値の検出にあっては、追跡対象領域の全サンプリング点による固定パターンにより実行する場合に限らず、サンプリング点を間引きした低解像度の固定パターンにより実行する場合等、種々のパターンマッチング手法を広く適用することができる。   The central processing unit 6 then proceeds to step SP66 and detects the position with the highest correlation by block matching using this fixed pattern and weight pattern. Specifically, the central processing unit 6 sets a range of ± S pixels in the vertical direction and the horizontal direction as search ranges around the position where the fixed pattern is superimposed on the tracking target region, and sets the frame to be processed. The fixed pattern is sequentially moved in the search range with respect to the image related to. In addition, for each moving position, a difference value of pixel values is calculated between overlapping sampling points between the fixed pattern and the image of the processing target frame, and each difference value is multiplied by a corresponding weighting coefficient based on the weight pattern. The central processing unit 6 calculates the sum of absolute values of the multiplication values and thereby calculates the correlation value. Further, the position of the correlation value having the smallest value than the correlation value detected at each position is detected. Accordingly, the search range shown in FIGS. 17 and 19 is a search range for one sampling point of the fixed pattern. In addition, the detection of the correlation value is not limited to the case where it is executed by a fixed pattern using all sampling points in the tracking target area, but various pattern matching methods such as a case where it is executed using a low resolution fixed pattern obtained by thinning sampling points. Can be widely applied.

中央処理ユニット6は、これにより処理対象フレームより過去のフレームに設定された追跡対象領域と、次フレームとのパターンマッチングにより、過去のフレームに設定された追跡対象領域と次フレームとの間で最も相関の高い位置を検出し、これによりパターンマッチング法により処理対象フレームにおける移動体の位置を検出する。   As a result, the central processing unit 6 uses the pattern matching between the tracking target region set in the past frame and the next frame and the tracking target region set in the past frame and the next frame. A position with high correlation is detected, and thereby the position of the moving object in the processing target frame is detected by the pattern matching method.

中央処理ユニット6は、続いてステップSP67に移り、処理対象フレームの対応する追跡対象領域の中心位置から、このようにして検出した最も相関の高い位置までのベクトルを検出し、これにより移動体に対する追跡対象領域のずれを検出する。中央処理ユニット6は、この検出したベクトルをずれ修正用のベクトルとして用いて、続くステップSP68において、この処理対象フレームで検出した移動ベクトルにこの修正ベクトルを加算して移動ベクトルを補正し、これにより移動体に対する追跡対象領域のずれを補正した後、ステップSP63に移ってこの処理手順を終了する。   Subsequently, the central processing unit 6 moves to step SP67, and detects a vector from the center position of the corresponding tracking target area of the processing target frame to the position with the highest correlation detected in this way. The shift of the tracking target area is detected. The central processing unit 6 uses the detected vector as a vector for correcting the deviation, and in the subsequent step SP68, corrects the movement vector by adding the correction vector to the movement vector detected in the processing target frame. After correcting the shift of the tracking target area with respect to the moving object, the process proceeds to step SP63 and the processing procedure is terminated.

これに対してステップSP64で肯定結果が得られると、中央処理ユニット6は、ステップSP64からステップSP69に移る。ここで中央処理ユニット6は、遮蔽されていたフレームの分だけさらに逆上ったフレームにより固定パターンを作成する。これにより図19に示す例において、時点t3によるフレームにあっては、遮蔽を開始した時点t2よりNフレーム分だけ逆上った時点t2−Nによるフレームを用いて、固定パターンを作成し、さらに重みパターンを作成し、これによっても遮蔽中のフレームを処理に使用しないようにする。   On the other hand, if a positive result is obtained in step SP64, the central processing unit 6 proceeds from step SP64 to step SP69. Here, the central processing unit 6 creates a fixed pattern with the frames that are further raised up by the amount of the shielded frames. Thus, in the example shown in FIG. 19, in the frame at time t3, a fixed pattern is created using the frame at time t2-N that is back by N frames from time t2 at which occlusion is started, A weight pattern is created so that the occluded frame is not used for processing.

また続くステップSP65において、中央処理ユニット6は、上述したと同様にして、この固定パターン、重みパターンにより重み相関値を計算する。この処理において、中央処理ユニット6は、このように遮蔽終了直後においては、何ら遮蔽されていなかった場合に比して、サーチ範囲を拡大して相関値を計算する。これにより中央処理ユニット6は、遮蔽終了直後にあっても、確実にずれを補正する。なおこのサーチ範囲の拡大にあっては、遮蔽により位置ずれ補正を中止したフレーム数に応じて設定され、例えばこのフレーム数に比例してサーチ範囲が拡大するように設定される。   In the subsequent step SP65, the central processing unit 6 calculates a weight correlation value from the fixed pattern and the weight pattern in the same manner as described above. In this processing, the central processing unit 6 calculates the correlation value by expanding the search range immediately after the end of shielding as compared to the case where nothing is shielded. As a result, the central processing unit 6 reliably corrects the deviation even immediately after the end of shielding. Note that the expansion of the search range is set according to the number of frames for which the displacement correction is stopped due to shielding, and for example, the search range is set to expand in proportion to the number of frames.

図20は、これら一連の中央処理ユニット6の処理により構成されるこの物体追跡装置3の機能ブロック図である。この物体追跡装置3において、特徴点処理部11は、前フレームに追跡対象領域を設定して特徴点を設定し、また一連の処理により削除された分、特徴点を追加設定する特徴点選択部12を構成すると共に、この特徴点選択部12による特徴点の現フレームへの動きベクトルを検出して特徴点を追跡する特徴点追跡部13を構成する。これに対して動き解析部14は、特徴点処理部11で検出される動きベクトルにより移動ベクトルを検出する。すなわち動き解析部14において、ノイズ削減、削除部15は、信頼度を検出して特徴点を削除することによりノイズの影響を低減し、また現フレームの動き算出部16は、残った特徴点の動きベクトルにより移動ベクトルを計算する。これに対して遮蔽対策部17は、この移動ベクトルを遮蔽対策処理し、遮蔽検出部18において、移動体の遮蔽度を検出する。またこの検出した遮蔽度により、過去の動き情報19を用いて慣性部20により移動体慣性移動ベクトルを検出し、この移動体慣性移動ベクトルにより移動体の移動ベクトルを出力する。これに対してズレ対策部21は、移動体に対するこの移動ベクトルのずれを補正する。すなわちズレ対策部21において、遮蔽直後対策部22は、遮蔽直後のフレームを検出し、ズレ補正部23は、この遮蔽直後対策部22の検出結果を参考にして、次フレームに設定する追跡対象領域の位置を補正し、この追跡対象領域の位置情報を物体追跡結果S1として出力する。   FIG. 20 is a functional block diagram of the object tracking device 3 configured by the series of processing of the central processing unit 6. In this object tracking device 3, the feature point processing unit 11 sets a tracking target region in the previous frame to set a feature point, and additionally sets a feature point by the amount deleted by a series of processes. 12, and a feature point tracking unit 13 that detects a motion vector of the feature point to the current frame by the feature point selection unit 12 and tracks the feature point. On the other hand, the motion analysis unit 14 detects a movement vector from the motion vector detected by the feature point processing unit 11. That is, in the motion analysis unit 14, the noise reduction / deletion unit 15 detects the reliability and deletes the feature points to reduce the influence of noise, and the motion calculation unit 16 of the current frame calculates the remaining feature points. The movement vector is calculated from the motion vector. On the other hand, the shielding countermeasure unit 17 performs a shielding countermeasure process on the movement vector, and the shielding detection unit 18 detects the shielding degree of the moving object. Further, based on the detected shielding degree, the inertial unit 20 detects the moving body inertial movement vector using the past motion information 19 and outputs the movement vector of the moving body based on the moving body inertial movement vector. On the other hand, the deviation countermeasure unit 21 corrects the shift of the movement vector with respect to the moving body. That is, in the deviation countermeasure unit 21, the immediately after shielding unit 22 detects the frame immediately after shielding, and the deviation correction unit 23 refers to the detection result of the immediately after shielding unit 22 and sets the tracking target area to be set to the next frame. The position information of the tracking target area is output as the object tracking result S1.

(2)実施例の動作
以上の構成において、この物体追跡装置3は(図1及び図2)、画像データSVにより処理対象フレームの処理により、この処理対象フレームに移動体の領域を示す追跡対象領域が設定され、この追跡対象領域と次フレームの画像データSVの比較により、移動体の移動ベクトルが検出される。またこの移動体の移動ベクトルにより、この次フレームに追跡対象領域が設定され、この次フレームが続く処理の処理対象フレームに設定されて同様の処理が繰り返される。これによりこの物体追跡装置3は、連続するフレームで順次移動体の移動に追従するように追跡対象領域を移動させて移動物体を追跡する。
(2) Operation of Embodiment In the above configuration, the object tracking device 3 (FIGS. 1 and 2) is a tracking target that indicates a region of a moving object in the processing target frame by processing the processing target frame with the image data SV. An area is set, and the movement vector of the moving object is detected by comparing the tracking target area with the image data SV of the next frame. Further, the tracking target area is set in the next frame based on the moving vector of the moving body, and the same processing is repeated by setting the tracking target region as the processing target frame in the subsequent frame. As a result, the object tracking device 3 tracks the moving object by moving the tracking target region so as to follow the movement of the moving body sequentially in successive frames.

物体追跡装置3は、このような追跡対象領域と次フレームの画像データSVを比較して移動ベクトルを検出する処理が、特徴点で検出される動きベクトルの処理により実行される。すなわち物体追跡装置3では、前フレームによる処理対象フレームから動きのある領域が検出され、この領域を囲むように長方形形状による枠Wが設定されて追跡対象領域が設定され、この追跡対象領域で特徴点が所定個数検出される(図3)。物体追跡装置3では、この特徴点の次フレームへの動きベクトルが検出され、この動きベクトルの統計的な処理により移動体の次フレームへの動きを示す移動ベクトルが検出される。   In the object tracking device 3, the process of detecting the movement vector by comparing the tracking target area with the image data SV of the next frame is executed by the process of the motion vector detected at the feature point. In other words, in the object tracking device 3, a region having motion is detected from the processing target frame of the previous frame, a rectangular frame W is set so as to surround this region, and a tracking target region is set. A predetermined number of points are detected (FIG. 3). In the object tracking device 3, a motion vector of the feature point to the next frame is detected, and a motion vector indicating a motion of the moving object to the next frame is detected by statistical processing of the motion vector.

しかしながらこのようにして検出される追跡対象領域には(図4)、移動体以外の背景、前提等に特徴点が設定される場合もあり、これによりこのような特徴点にあっては移動体の動きを正しく反映していないことになり、移動ベクトル検出のノイズとなる。また例えば歩行する人物の四肢のように、移動体の一部ではあるものの、移動体とは異なる動きを呈する特徴点も存在し、このような特徴点の動きベクトルも移動ベクトル検出のノイズとなる。このようなノイズの存在にあっては、移動ベクトルの検出精度を劣化させることになる。   However, in the tracking target area detected in this way (FIG. 4), a feature point may be set for a background, a premise, etc. other than the moving object. Therefore, the movement vector detection noise is not correctly reflected, and this becomes a noise of movement vector detection. Also, for example, there are feature points that are part of a moving body, such as the limbs of a walking person, but exhibit a different motion from the moving body, and the motion vector of such a feature point also becomes noise for motion vector detection. . In the presence of such noise, the detection accuracy of the movement vector is deteriorated.

これによりこの実施例では、移動体上に存在する特徴点の確からしさを示す信頼度が各特徴点で検出され、この信頼度により、信頼度の低い特徴点で検出される動きベクトルを処理結果に反映しないように動きベクトルが処理されて移動ベクトルが検出される。これによりこの実施例では、背景、前景の特徴点、移動体自身の動きに対して動きが大きく異なる四肢等の特徴点については、移動ベクトルに反映させないようにすることができ、これによりノイズによる検出精度の劣化が防止される。   Thereby, in this embodiment, the reliability indicating the certainty of the feature points existing on the moving object is detected at each feature point, and the motion vector detected at the feature point with low reliability is processed by this reliability. The motion vector is processed so as not to be reflected in the motion vector and the movement vector is detected. Thus, in this embodiment, the feature points of the limbs and the like whose movement greatly differs with respect to the movement of the background, the foreground, and the movement of the moving body can be prevented from being reflected in the movement vector. Deterioration of detection accuracy is prevented.

またこのように移動ベクトルを検出するようにして、信頼度の低い特徴点が削除され、この特徴点の動きベクトルが移動ベクトルの検出に使用しないように設定されると共に、この削除した分だけ続く繰り返しの処理における追跡対象領域に特徴点が設定され、これにより移動ベクトルの算出処理に供する動きベクトルの数を少なくして、信頼性の低い動きベクトルを移動ベクトルに反映しないように設定され、これにより簡易な処理によりノイズによる検出精度の劣化が防止される。   In addition, by detecting the movement vector in this way, the feature point with low reliability is deleted, and the motion vector of the feature point is set not to be used for detection of the movement vector, and continues for the deleted amount. Feature points are set in the region to be tracked in the iterative process, and this reduces the number of motion vectors used for the motion vector calculation process, so that motion vectors with low reliability are not reflected in the motion vector. Therefore, deterioration of detection accuracy due to noise can be prevented by simple processing.

また信頼度を用いた動きベクトルの重み付け処理により移動ベクトルが検出され、これによっても信頼性の低い動きベクトルを移動ベクトルに反映しないように設定され、これによっても確実にノイズによる検出精度の劣化が防止される。   Also, the motion vector is detected by the motion vector weighting process using the reliability, and this is also set so that the motion vector with low reliability is not reflected in the motion vector, and this also reliably degrades the detection accuracy due to noise. Is prevented.

より具体的に、この実施例では、異なる検出手法により複数種類の信頼度が検出される(図5)。すなわちこのような信頼度により特徴点を削除、設定して処理を繰り返すようにして、特徴点毎に、繰り返し処理における追跡回数により追跡回数信頼度が検出され(図6)、これにより追跡することが困難となった、例えば移動体の遮蔽を開示した直後のこの遮蔽に係る遮蔽物に設定された特徴点、それまで隠れていた移動体の特徴点等が低い信頼度により検出され、これらの特徴点による動きベクトルが移動ベクトルに反映されないように設定されてノイズによる検出精度の劣化が防止される。   More specifically, in this embodiment, multiple types of reliability are detected by different detection methods (FIG. 5). That is, feature points are deleted and set with such reliability, and the process is repeated, and the reliability of the number of tracking times is detected for each feature point by the number of times of tracking in the iterative processing (FIG. 6). For example, the feature points set on the shielding object immediately after disclosing the shielding of the moving object, the feature points of the moving object that had been hidden until then, etc. are detected with low reliability. It is set so that the motion vector due to the feature point is not reflected in the movement vector, and deterioration of detection accuracy due to noise is prevented.

また直前で検出された移動ベクトルと動きベクトルとの差分ベクトルが判定されて時間的信頼度が検出され(図7〜図10)、これにより時間軸上の変化により観察して移動体と異なる動き呈する背景、前景等の特徴点については、移動ベクトルに動きベクトルが反映されないように設定され、これによってもノイズによる検出精度の劣化が防止される。   In addition, a difference vector between the motion vector and the motion vector detected immediately before is determined, and the temporal reliability is detected (FIGS. 7 to 10). The feature points such as the background and the foreground to be presented are set so that the motion vector is not reflected in the movement vector, and this also prevents deterioration in detection accuracy due to noise.

また弾性インデックスを用いて、他の特徴点との間の距離の変化が判定され、この判定結果の集計により空間的信頼度が検出される(図11及び図12)。これにより例えば移動する人体の四肢に設定された特徴点あって、人体の移動に対して大きく動きが異なる特徴点、さらには背景、前景等の特徴点については、動きベクトルが移動ベクトルに反映されないように設定され、これによってもノイズによる検出精度の劣化が防止される。   In addition, a change in the distance from another feature point is determined using the elastic index, and the spatial reliability is detected by counting the determination results (FIGS. 11 and 12). As a result, for example, feature points set on the extremities of the moving human body, which have different movements with respect to the movement of the human body, and for feature points such as the background and foreground, the motion vector is not reflected in the movement vector. This also prevents deterioration in detection accuracy due to noise.

また移動体が移動していることを条件に、特徴点の位置座標の判定により、それまで繰り返し静止していた回数によって信頼度を示す静止点信頼度が検出され、これによっても静止した背景、前景等による特徴点の動きベクトルが移動ベクトルに反映されないように設定され、これによってもノイズによる検出精度の劣化が防止される(図5)。   Also, on the condition that the moving body is moving, the determination of the position coordinates of the feature point, the stationary point reliability indicating the reliability is detected based on the number of times of stationary until then, the stationary background, The motion vector of the feature point due to the foreground or the like is set so as not to be reflected in the movement vector, and this also prevents the detection accuracy from deteriorating due to noise (FIG. 5).

また各特徴点毎に、周囲のサンプリング点との間でサンプリング値の差分値が判定され、これにより周囲のサンプリング点との比較により信頼度を示す平滑度信頼度が検出され、これにより特徴点自体の信頼度が低いものについては、動きベクトルが移動ベクトルに反映されないように設定され、これによってもノイズによる検出精度の劣化が防止される(図5)。   In addition, for each feature point, the difference value of the sampling value is determined with respect to the surrounding sampling points, and thereby the smoothness reliability indicating the reliability is detected by comparison with the surrounding sampling points. Those having low reliability are set so that the motion vector is not reflected in the movement vector, and this also prevents deterioration in detection accuracy due to noise (FIG. 5).

この実施例では、このようにして検出される複数種類の信頼度のうちの一部の信頼度である追跡回数信頼度、時間的信頼度、空間的信頼度の乗算処理により総合の信頼度が検出される。またこの総合の信頼度を用いた動きベクトルの重み付け処理の1つである重み付け平均により、移動ベクトルが検出される。これによりこの実施例では、1つの手法によって検出される信頼度を用いた処理によっては、ノイズの影響を除去できない場合でも、他の手法によって検出される信頼度によりノイズの影響を除去することができ、一段と確実にノイズによる検出精度の劣化が防止される。   In this embodiment, the total reliability is obtained by multiplying the reliability of the number of times of tracking, the temporal reliability, and the spatial reliability, which are some of the multiple types of reliability detected in this way. Detected. Further, the motion vector is detected by a weighted average which is one of the motion vector weighting processes using the total reliability. Thereby, in this embodiment, even if the influence of noise cannot be removed by processing using the reliability detected by one technique, the influence of noise can be removed by the reliability detected by another technique. It is possible to prevent the deterioration of detection accuracy due to noise more reliably.

また同様にしてこのようにして検出される複数種類の信頼度のうちの一部の信頼度である時間的信頼度、静止点信頼度、平滑度信頼度により特徴点が削除され、これにより1つの手法によって検出される信頼度を用いた処理によっては、削除困難なノイズに係る特徴点についても、他の手法によって検出される信頼度により削除することができ、これによっても一段と確実にノイズによる検出精度の劣化が防止される。   Similarly, feature points are deleted based on temporal reliability, static point reliability, and smoothness reliability, which are some of the reliability types detected in this way. Depending on the process using the reliability detected by one method, the feature points related to noise that is difficult to delete can be deleted by the reliability detected by other methods, and this also makes it more reliable due to noise. Deterioration of detection accuracy is prevented.

しかしながらこのようにノイズにより影響を解消するようにしても、移動体が遮蔽物により遮蔽された場合には、移動体を追跡することが困難になる。また複数フレームに渡って追跡すると、移動体に対して、徐々に追跡対象枠がずれるようになり、これにより検出精度が劣化することになる。   However, even if the influence is eliminated by noise as described above, it is difficult to track the moving body when the moving body is blocked by the shielding object. In addition, when tracking is performed over a plurality of frames, the tracking target frame gradually shifts with respect to the moving object, thereby degrading the detection accuracy.

このためこの実施例では、移動体の遮蔽の程度を示す遮蔽度が検出され、動きベクトルより検出される移動ベクトルと、過去の繰り返し処理で検出された移動ベクトルとによるこの遮蔽度に応じた演算処理により、動きベクトルにより検出された移動ベクトルが補正される(図14〜図16)。これによりこの実施例では、遮蔽された場合でも、移動体を追跡することが可能となる。   For this reason, in this embodiment, the degree of occlusion indicating the degree of occlusion of the moving object is detected, and a calculation according to the degree of occlusion based on the movement vector detected from the motion vector and the movement vector detected in the past iteration process. The movement vector detected by the motion vector is corrected by the processing (FIGS. 14 to 16). Thus, in this embodiment, it is possible to track the moving body even when it is shielded.

また処理対象フレームより過去のフレームにおける追跡対象領域を用いたブロックマッチングにより、次フレームにおける追跡対象領域の移動体に対するずれが補正される(図17〜図19)。これによりこの実施例では、位置ずれが防止されて検出精度が向上される。   Further, the block matching using the tracking target area in the frame past the processing target frame corrects the shift of the tracking target area in the next frame with respect to the moving object (FIGS. 17 to 19). As a result, in this embodiment, misalignment is prevented and detection accuracy is improved.

この実施例では、これらの処理のうち、遮蔽に係る処理が、重み付け係数を遮蔽度に応じて可変した、動きベクトルによる移動ベクトルと、過去の繰り返し処理で検出された移動ベクトルとの重み平均処理により実行される。これにより何ら移動体が遮蔽されていない場合と移動体が遮蔽された場合とで処理を切り換えることなく、移動ベクトルを処理することができ、その分、処理が簡略化される。また遮蔽の程度が小さい場合には、動きベクトルによる移動ベクトルを優先的に使用して移動ベクトルを求め、遮蔽の程度が大きくなるに従って過去の繰り返し処理で検出された移動ベクトルによる補正量を増大させて移動ベクトルを検出することができ、これにより例えば移動体の移動速度が変化している過程で遮蔽されたような場合の、追跡の失敗が防止される。   In this embodiment, among these processes, the process related to shielding is a weighted average process between a motion vector based on a motion vector and a motion vector detected in a past iteration process, in which the weighting coefficient is varied according to the degree of shielding. It is executed by. Accordingly, the movement vector can be processed without switching the process between the case where the moving body is not shielded and the case where the moving body is shielded, and the processing is simplified correspondingly. If the degree of occlusion is small, the movement vector based on the motion vector is preferentially used to obtain the movement vector, and the correction amount based on the movement vector detected in the past iterative process is increased as the degree of occlusion increases. Thus, it is possible to detect the movement vector, thereby preventing a tracking failure in the case where, for example, the moving object is blocked in the process of changing the moving speed.

またこのような移動ベクトルの補正に使用する繰り返し処理で検出された移動ベクトルにあっては、処理対象フレームの所定フレーム数だけ前のフレームで検出された移動ベクトルが適用され、これによりこのほぼ一定の速度により移動する移動体と、動きの変化が激しい移動体とで、この所定フレーム数を適宜設定することにより、遮蔽された移動体を正しく追跡することができる。またこの移動ベクトルには、処理対象フレームより前の複数フレームで検出された移動ベクトルの平均値による移動ベクトルを適用するようにしてもよく、この場合には、ほぼ一定の速度により移動する移動体に関して、検出された移動ベクトルのばらつきによる影響を低減して、遮蔽された移動体を正しく追跡することができる。   In addition, for the motion vector detected by the iterative process used for correction of such a motion vector, the motion vector detected in the previous frame by the predetermined number of frames of the processing target frame is applied. By appropriately setting the predetermined number of frames between a moving body that moves at the speed of the moving object and a moving body that moves rapidly, it is possible to correctly track the shielded moving body. Further, a movement vector based on an average value of movement vectors detected in a plurality of frames before the processing target frame may be applied to this movement vector. In this case, a moving body that moves at a substantially constant speed is used. , The influence of the detected movement vector variation can be reduced, and the shielded moving object can be correctly tracked.

これに対してこの遮蔽度の計算にあっては、上述した追跡回数信頼度の検出に係る連続して追跡される特徴点、すなわち所定回数以上の繰り返し処理で追加設定されていない特徴点の数が検出され、追跡対象領域の特徴点の数に対するこの特徴点の数の比率により遮蔽度が検出される。これにより特徴点による動きベクトルを用いて移動体を追跡する構成を有効に利用して遮蔽率が計算され、その分、全体の処理が簡略化される。またこの実施例では、追跡回数信頼度の検出処理を利用して、遮蔽率を計算することができ、これによっても全体の処理が簡略化される。   On the other hand, in the calculation of the degree of occlusion, the number of feature points that are continuously tracked according to the detection of the tracking number of reliability described above, that is, the number of feature points that are not additionally set in the repeated processing more than a predetermined number of times. Is detected, and the degree of occlusion is detected by the ratio of the number of feature points to the number of feature points in the tracking target region. Accordingly, the shielding rate is calculated by effectively using the configuration for tracking the moving object using the motion vector based on the feature points, and the entire processing is simplified accordingly. Further, in this embodiment, the shielding rate can be calculated using the tracking number reliability detection process, which also simplifies the overall process.

これに対して位置ずれにあっては、過去のフレームに設定された追跡対象領域の各サンプリング点のサンプリング値により固定パターンが作成され、またこの固定パターンに対応する各サンプリング点について、信頼度に応じた重み付け係数が設定されて重みパターンが生成される。また固定パターンを走査させて、各走査位置で重なり合うサンプリング点間でサンプリング値の差分値を重みパターンの対応する重み係数により重み付けして集計することにより、各走査位置における相関値が検出される。またこの相関値を判定して最も相関の高い位置が検出されて位置ずれが補正される。   On the other hand, in the case of misalignment, a fixed pattern is created based on the sampling value of each sampling point in the tracking target area set in the past frame, and each sampling point corresponding to this fixed pattern has a reliability level. A corresponding weighting coefficient is set to generate a weight pattern. Further, the correlation value at each scanning position is detected by scanning the fixed pattern and summing up the difference values of the sampling values between the sampling points overlapping at each scanning position by weighting with the corresponding weighting coefficient of the weight pattern. Further, the correlation value is determined, the position with the highest correlation is detected, and the positional deviation is corrected.

これによりこの実施例では、信頼度の低い箇所については、固定パターンにより相関値の検出に使用しないようにして検出精度の劣化が防止され、正しく位置ずれが防止される。   As a result, in this embodiment, the position with low reliability is not used for the detection of the correlation value by the fixed pattern, so that the detection accuracy is prevented from deteriorating and the position shift is prevented correctly.

また次フレームの追跡対象領域の中心を基準とした所定のサーチ範囲でサーチしてこのような相関値が検出され、これにより不必要な相関値検出の処理を省略して処理が簡略化される。   Further, such a correlation value is detected by searching in a predetermined search range based on the center of the tracking target area of the next frame, thereby simplifying the process by omitting unnecessary correlation value detection processing. .

また遮蔽中には、このような処理が中止され、これにより誤った位置ずれ防止処理が防止される。   Further, during the shielding, such processing is stopped, thereby preventing erroneous misalignment prevention processing.

また遮蔽の開始から遮蔽の終了までの間の処理対象フレームについては、過去のフレームに設定しないように設定され、これによっても誤った位置ずれ防止処理が防止される。   In addition, the processing target frame from the start of shielding to the end of shielding is set not to be set as a past frame, and this also prevents erroneous misalignment prevention processing.

また遮蔽の終了直後にあっては、遮蔽の開始直前に比してサーチ範囲が拡大され、これにより遮蔽の期間の複数フレームにより位置ずれが累積する場合でも、確実に位置ずれが防止される。   Further, immediately after the end of the shielding, the search range is expanded compared to immediately before the beginning of the shielding, so that the positional displacement is reliably prevented even when the positional displacement is accumulated by a plurality of frames during the shielding period.

(3)実施例の効果
以上の構成によれば、追跡対象物体上に存在する特徴点の確からしさを示す信頼度を検出し、この信頼度により信頼性の低い動きベクトルを処理結果に反映しないように動きベクトルを処理して移動体の移動ベクトルを検出することにより、ノイズによる検出精度の劣化を防止することができる。
(3) Effects of the embodiment According to the above configuration, the reliability indicating the certainty of the feature point existing on the tracking target object is detected, and the motion vector having low reliability is not reflected in the processing result by this reliability. Thus, by detecting the motion vector of the moving body by processing the motion vector, it is possible to prevent deterioration in detection accuracy due to noise.

すなわち信頼度の低い特徴点については、削除して、移動ベクトルの計算に使用しないように、また続くフレームの処理に使用しないようにすることにより、信頼性の低い動きベクトルを処理結果に反映しないように動きベクトルを処理して移動体の移動ベクトルを検出することができ、ノイズによる検出精度の劣化を防止することができる。   In other words, feature points with low reliability are deleted so that they are not used for calculation of movement vectors, and are not used for processing of subsequent frames, so that motion vectors with low reliability are not reflected in the processing results. Thus, the motion vector can be processed to detect the moving vector of the moving body, and the deterioration of detection accuracy due to noise can be prevented.

またこのような信頼度を用いた動きベクトルの重み付け処理により移動ベクトルを検出することによっても、信頼性の低い動きベクトルを処理結果に反映しないように動きベクトルを処理して移動体の移動ベクトルを検出することができ、ノイズによる検出精度の劣化を防止することができる。   Also, by detecting a motion vector by motion vector weighting processing using such reliability, the motion vector is processed so that the motion vector with low reliability is not reflected in the processing result, and the motion vector of the moving object is determined. Detection can be performed, and deterioration in detection accuracy due to noise can be prevented.

またこの信頼度が、連続した処理回数により表される特徴点の追跡回数による追跡回数信頼度であることにより、例えば移動体の遮蔽を開示した直後のこの遮蔽に係る遮蔽物に設定された特徴点、それまで隠れていた移動体の特徴点等による動きベクトルを移動ベクトルに反映させないようにして、ノイズによる検出精度の劣化を防止することができる。   In addition, since the reliability is the tracking frequency reliability based on the tracking frequency of the feature point represented by the continuous processing frequency, for example, the feature set in the shielding object related to the shielding immediately after disclosing the shielding of the moving object On the other hand, it is possible to prevent the detection accuracy from being deteriorated due to noise by not reflecting the motion vector due to the feature point of the moving object which has been hidden until then.

また信頼度が、それまでに検出された移動ベクトルと、動きベクトルとの間の差分ベクトルの判定による時間的信頼度であることにより、時間軸上の変化により観察して移動体と異なる動き呈する背景、前景等の特徴点については、移動ベクトルに動きベクトルが反映させないようにすることができ、これによってもノイズによる検出精度の劣化を防止することができる。   In addition, since the reliability is the temporal reliability based on the determination of the difference vector between the motion vector detected so far and the motion vector, the motion appears different from that of the moving object as observed by the change on the time axis. For feature points such as the background and foreground, the motion vector can be prevented from being reflected in the movement vector, and this can also prevent deterioration in detection accuracy due to noise.

また信頼度が、他の特徴点との間の距離の変化を判定し、該判定結果を集計した空間的信頼度であることにより、例えば移動する人体の四肢に設定された特徴点であって、人体の移動に対して大きく動きが異なる特徴点、さらには背景、前景等の特徴点については、動きベクトルが移動ベクトルに反映されないように設定することができ、これによってもノイズによる検出精度の劣化を防止することができる。   In addition, the reliability is a feature point set on the extremity of a moving human body, for example, by determining a change in distance between other feature points and summing up the determination results. For feature points that vary greatly in movement with respect to the movement of the human body, and for feature points such as the background and foreground, the motion vector can be set so that it is not reflected in the motion vector. Deterioration can be prevented.

また信頼度が、特徴点の位置座標の判定による繰り返し静止していた回数による静止点信頼度であることにより、静止した背景、前景等による特徴点の動きベクトルを移動ベクトルに反映しないように設定することができ、これによってもノイズによる検出精度の劣化を防止することができる。   In addition, since the reliability is the reliability of the stationary point based on the number of times that the feature point position coordinates are repeatedly stationary, the motion vector of the feature point based on the stationary background, foreground, etc. is set not to be reflected in the movement vector. This can also prevent deterioration in detection accuracy due to noise.

また信頼度が、特徴点のサンプリング値と、特徴点の周囲のサンプリング点との間でサンプリング値の差分値を判定して検出される平滑度信頼度であることにより、特徴点自体の信頼度が低いものについては、移動ベクトルに反映させないように設定することができ、これによってもノイズによる検出精度の劣化を防止することができる。   In addition, since the reliability is the smoothness reliability detected by determining the difference between the sampling value of the feature point and the sampling points around the feature point, the reliability of the feature point itself Those having a low value can be set so as not to be reflected in the movement vector, and this can also prevent deterioration in detection accuracy due to noise.

またこのような追跡回数信頼度、時間的信頼度、空間的信頼度、静止点信頼度、平滑度信頼度の全部又は一部により総合の信頼度を計算し、この総合の信頼度により移動ベクトルを求めることにより、1つの手法によって検出される信頼度を用いた処理によっては、ノイズの影響を除去できない場合でも、他の手法によって検出される信頼度によりノイズの影響を除去することができ、一段と確実にノイズによる検出精度の劣化を防止することができる。   In addition, the total reliability is calculated based on all or part of the tracking number reliability, temporal reliability, spatial reliability, stationary point reliability, and smoothness reliability, and the movement vector is calculated based on the total reliability. By obtaining the above, even if the influence of noise cannot be removed by the process using the reliability detected by one technique, the influence of noise can be removed by the reliability detected by the other technique. Deterioration of detection accuracy due to noise can be prevented more reliably.

またこのようにしてノイズによる検出精度の劣化を防止する構成を前提に、遮蔽度の検出により、動きベクトルより検出される移動ベクトルと、過去に検出された移動ベクトルとを演算処理して動きベクトルより検出される移動ベクトルを補正することにより、また処理対象フレームより過去のフレームの追跡対象領域を用いたパターンマッチングにより、次フレームにおける追跡対象領域の移動体に対するずれ検出して修正することにより、一段と確実に移動体を追跡することができる。   Further, on the premise of the configuration that prevents the detection accuracy from being deteriorated due to noise in this way, the movement vector detected from the motion vector and the movement vector detected in the past by the detection of the shielding degree are arithmetically processed to obtain the motion vector. By detecting and correcting the shift of the tracking target area in the next frame by the pattern matching using the tracking target area of the previous frame from the processing target frame, by correcting the detected movement vector, The moving body can be traced more reliably.

なお上述の実施例においては、追跡回数信頼度、時間的信頼度、空間的信頼度、静止点信頼度、平滑度信頼度の一部により信頼性の低い特徴点を削除し、また総合の信頼度を求めて動きベクトルを重み付け平均する場合について述べたが、本発明はこれに限らず、例えばこれらの信頼度の全部により信頼性の低い特徴点を削除し、また総合の信頼度を求めて動きベクトルを重み付け平均する場合等、各信頼度の各処理への適用にあっては、種々に設定することができる。またこれら以外の信頼度をこれらの信頼度に加えて、またはこれらの信頼度に代えて使用するようにしてもよい。   In the above-described embodiment, feature points with low reliability are deleted by a part of the tracking number reliability, temporal reliability, spatial reliability, stationary point reliability, and smoothness reliability, and the overall reliability Although the case where the motion vector is weighted and averaged by calculating the degree is described, the present invention is not limited to this, and for example, feature points having low reliability are deleted based on all of these reliability levels, and the overall reliability level is calculated. Various settings can be made in applying each reliability to each process, such as when weighted averaging of motion vectors. Further, reliability other than these may be used in addition to or instead of these reliability.

また上述の実施例においては、信頼度により特徴点を削除する処理と、動きベクトルを重み付け平均化する処理とにより、信頼度の低い動きベクトルを処理結果に反映しないようにする場合について述べたが、本発明はこれに限らず、実用上十分な特性を確保できる場合には、これらの処理の一方のみを採用して移動ベクトルを求めるようにしてもよい。   In the above-described embodiment, a case has been described in which a motion vector with low reliability is not reflected in the processing result by processing for deleting feature points based on reliability and processing for weighted averaging of motion vectors. However, the present invention is not limited to this, and if a practically sufficient characteristic can be secured, only one of these processes may be employed to obtain the movement vector.

また上述の実施例においては、追跡回数より遮蔽度を計算する場合について述べたが、本発明はこれに限らず、位置ずれ補正について上述した相関値の値により遮蔽率を計算する場合等、遮蔽率の計算方法にあっては、種々の手法を広く適用することができる。   In the above-described embodiment, the case where the shielding degree is calculated from the number of times of tracking has been described. However, the present invention is not limited thereto, and the shielding ratio is calculated when the shielding ratio is calculated based on the correlation value described above for the positional deviation correction. Various methods can be widely applied to the rate calculation method.

本発明は、物体追跡方法、物体追跡方法のプログラム、物体追跡方法のプログラムを記録した記録媒体及び物体追跡装置に関し、例えば監視装置に適用することができる。   The present invention relates to an object tracking method, a program for the object tracking method, a recording medium on which the program for the object tracking method is recorded, and an object tracking apparatus, and can be applied to, for example, a monitoring apparatus.

本発明の実施例に係る物体追跡システムを示すブロック図である。1 is a block diagram illustrating an object tracking system according to an embodiment of the present invention. 図1の物体追跡装置における中央処理ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the central processing unit in the object tracking apparatus of FIG. 追跡対象領域を示す略線図である。It is a basic diagram which shows a tracking object area | region. ノイズの説明に供する略線図である。It is an approximate line figure used for explanation of noise. 図2の移動ベクトル計算処理を詳細に示すフローチャートである。It is a flowchart which shows the movement vector calculation process of FIG. 2 in detail. 追跡回数信頼度を示す特性曲線図である。It is a characteristic curve figure which shows tracking frequency reliability. 動きベクトルの分布を示す特性曲線図である。It is a characteristic curve figure which shows distribution of a motion vector. 過去に検出された移動ベクトルとの関係により動きベクトルの分布を示す特性曲線図である。It is a characteristic curve figure which shows distribution of a motion vector by the relationship with the movement vector detected in the past. 時間的信頼度の説明に供する特性曲線図である。It is a characteristic curve figure with which it uses for description of temporal reliability. 時間的信頼度の処理に供するフローチャートである。It is a flowchart with which it uses for the process of temporal reliability. 特徴点の変化の説明に供する特性曲線図である。It is a characteristic curve figure with which it uses for description of the change of a feature point. 空間的信頼度の処理に供するフローチャートである。It is a flowchart with which it uses for the process of spatial reliability. 静止点検出処理を示すフローチャートである。It is a flowchart which shows a still point detection process. 遮蔽の説明に供する略線図である。It is a basic diagram with which it uses for description of shielding. 遮蔽度の説明に供する特性曲線図である。It is a characteristic curve figure with which it uses for description of a shielding degree. 遮蔽対策処理を示すフローチャートである。It is a flowchart which shows a shielding countermeasure process. 位置ずれの説明に供する略線図である。It is a basic diagram with which it uses for description of position shift. ズレ補正処理を示すフローチャートである。It is a flowchart which shows misalignment correction processing. ズレ補正処理の説明に供する略線図である。It is an approximate line figure used for explanation of gap correction processing. 物体追跡装置の機能ブロック図である。It is a functional block diagram of an object tracking device.

符号の説明Explanation of symbols

1……物体追跡システム、2……信号源、3……物体追跡装置、6……中央処理ユニット、10……処理装置

DESCRIPTION OF SYMBOLS 1 ... Object tracking system, 2 ... Signal source, 3 ... Object tracking apparatus, 6 ... Central processing unit, 10 ... Processing apparatus

Claims (13)

動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡方法において、
処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定のステップと、
前記特徴点設定のステップにより設定された特徴点に基づいて、各フレームの画像データを順次処理する繰り返し処理ステップとを有し、
前記繰り返し処理ステップは、
前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出ステップと、
前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出ステップと、
前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出ステップと、
前記移動ベクトル検出ステップで検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く前記繰り返し処理ステップにおける前記処理対象フレームに設定する追跡対象領域移動ステップとを有し、
前記移動ベクトル検出ステップは、
前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する
ことを特徴とする物体追跡方法。
In an object tracking method for detecting a feature point in each frame of a moving image and tracking a moving object by detecting a motion vector of the feature point,
A feature point setting step of setting a predetermined number of the feature points in a tracking target region set in a region where the moving object of the processing target frame is imaged;
Repetitive processing step of sequentially processing the image data of each frame based on the feature points set in the feature point setting step,
The iterative processing step includes
A reliability detection step of detecting, for each feature point, a reliability level indicating the certainty of the feature point existing on the moving body;
A motion vector detection step of detecting each of the motion vectors to the next frame of the feature points;
A moving vector detection step of detecting a moving vector of the moving body to the next frame based on the motion vector;
The tracking target region is moved by the moving vector detected in the moving vector detection step to set the tracking target region in the next frame, and the processing target frame in the iterative processing step that continues the next frame A tracking target area moving step set to
The moving vector detection step includes:
According to the reliability, the motion vector is detected by processing the motion vector so that the motion vector having low reliability is not reflected in the processing result.
前記移動ベクトル検出ステップは、
前記信頼度の低い特徴点を削除して、該特徴点の動きベクトルを前記移動ベクトルの検出に使用しないように設定する特徴点削除ステップと、
前記特徴点削除ステップにより削除した特徴点の数だけ、続く前記繰り返し処理ステップにおける前記処理対象フレームの追跡対象領域に、前記特徴点を設定する特徴点追加設定のステップとを有する
ことを特徴とする請求項1に記載の物体追跡方法。
The moving vector detection step includes:
A feature point deleting step of deleting the feature point with low reliability and setting the motion vector of the feature point not to be used for detection of the movement vector;
A feature point addition setting step for setting the feature points in the tracking target region of the processing target frame in the subsequent iterative processing step by the number of feature points deleted by the feature point deleting step. The object tracking method according to claim 1.
前記移動ベクトル検出ステップは、
前記信頼度を用いた前記動きベクトルの重み付け処理により、前記移動ベクトルを検出する
ことを特徴とする請求項1に記載の物体追跡方法。
The moving vector detection step includes:
The object tracking method according to claim 1, wherein the movement vector is detected by weighting processing of the motion vector using the reliability.
前記移動ベクトル検出ステップは、
前記信頼度の低い特徴点を削除して、該特徴点の動きベクトルを前記移動ベクトルの検出に使用しないように設定する特徴点削除ステップと、
前記特徴点削除ステップにより削除した特徴点の数だけ、続く前記繰り返し処理ステップにおける前記処理対象フレームの追跡対象領域に、前記特徴点を設定する特徴点追加設定のステップとを有し、
前記信頼度が、
前記繰り返し処理ステップにおける連続した処理回数により表される特徴点の追跡回数による追跡回数信頼度である
ことを特徴とする請求項1に記載の物体追跡方法。
The moving vector detection step includes:
A feature point deleting step of deleting the feature point with low reliability and setting the motion vector of the feature point not to be used for detection of the movement vector;
A feature point addition setting step for setting the feature points in the tracking target region of the processing target frame in the subsequent iterative processing step by the number of feature points deleted by the feature point deleting step,
The reliability is
The object tracking method according to claim 1, wherein the object tracking method is a tracking frequency reliability based on a tracking frequency of a feature point represented by a continuous processing frequency in the repetitive processing step.
前記信頼度が、
それまでの前記繰り返し処理ステップで検出された前記移動ベクトルと、前記動きベクトルとの間の差分ベクトルの判定による時間的信頼度である
ことを特徴とする請求項1に記載の物体追跡方法。
The reliability is
2. The object tracking method according to claim 1, wherein the object tracking method is a temporal reliability based on a determination of a difference vector between the motion vector detected in the previous iteration processing step and the motion vector.
前記信頼度が、
他の特徴点との間の距離の変化を判定し、該判定結果を集計した空間的信頼度である
ことを特徴とする請求項1に記載の物体追跡方法。
The reliability is
The object tracking method according to claim 1, wherein the object tracking method is a spatial reliability obtained by determining a change in a distance from another feature point and totaling the determination results.
前記信頼度が、
前記特徴点の位置座標の判定による、それまで繰り返し静止していた回数による静止点信頼度である
ことを特徴とする請求項1に記載の物体追跡方法。
The reliability is
The object tracking method according to claim 1, wherein the object tracking method is a reliability of a stationary point based on the number of times the stationary point has been repeatedly stationary by determining the position coordinates of the feature point.
前記信頼度が、
前記特徴点のサンプリング点と、前記特徴点の近傍のサンプリング点との間でサンプリング値の差分値を判定して検出される平滑度信頼度である
ことを特徴とする請求項1に記載の物体追跡方法。
The reliability is
The object according to claim 1, wherein the smoothness reliability is detected by determining a difference value of sampling values between a sampling point of the feature point and a sampling point in the vicinity of the feature point. Tracking method.
前記移動ベクトル検出ステップは、
前記信頼度の低い特徴点を削除して、該特徴点の動きベクトルを前記移動ベクトルの検出に使用しないように設定する特徴点削除ステップと、
前記特徴点削除ステップにより削除した特徴点の数だけ、続く前記繰り返し処理ステップにおける前記処理対象フレームの追跡対象領域に、前記特徴点を設定する特徴点追加設定のステップとを有し、
前記信頼度検出ステップは、
前記繰り返し処理ステップにおける連続した処理回数により表される特徴点の追跡回数による追跡回数信頼度と、
それまでの前記繰り返し処理ステップで検出された前記移動ベクトルと、前記動きベクトルとの間の差分ベクトルの判定による時間的信頼度と、
他の特徴点との間の距離の変化を判定し、該判定結果を集計した空間的信頼度と、
前記特徴点の位置座標の判定による、それまで繰り返し静止していた回数による静止点信頼度と、
前記特徴点のサンプリング点と、前記特徴点の周囲のサンプリング点との間でサンプリング値の差分値を判定して検出される平滑度信頼度との全部又は一部の処理により総合の信頼度を計算し、
前記移動ベクトル検出ステップで前記移動ベクトルの検出に供する信頼度が、前記総合の信頼度である
ことを特徴とする請求項1に記載の物体追跡方法。
The moving vector detection step includes:
A feature point deleting step of deleting the feature point with low reliability and setting the motion vector of the feature point not to be used for detection of the movement vector;
A feature point addition setting step for setting the feature points in the tracking target region of the processing target frame in the subsequent iterative processing step by the number of feature points deleted by the feature point deleting step,
The reliability detection step includes:
The tracking number reliability by the tracking number of feature points represented by the continuous processing number in the iterative processing step,
A temporal reliability based on a determination of a difference vector between the motion vector detected in the previous iteration processing step and the motion vector;
The change in distance between other feature points is determined, and the spatial reliability obtained by tabulating the determination results;
By determining the position coordinates of the feature point, the stationary point reliability based on the number of times of stationary until then,
The total reliability is obtained by processing all or part of the smoothness reliability detected by determining the difference value of the sampling values between the sampling points of the feature points and the sampling points around the feature points. Calculate
The object tracking method according to claim 1, wherein a reliability used for detecting the movement vector in the movement vector detection step is the total reliability.
前記移動ベクトル検出ステップは、
前記移動体の遮蔽の程度を示す遮蔽度を検出する遮蔽度検出ステップと、
前記遮蔽度に応じた前記動きベクトルから求められる前記移動ベクトルと、過去の前記繰り返し処理ステップで検出された前記移動ベクトルとによる演算処理により、前記動きベクトルから求められる前記移動ベクトルを補正する遮蔽処理ステップとを有し、
前記繰り返し処理のステップは、
前記処理対象フレームから複数フレームだけ逆上ったフレームにおける前記追跡対象領域を用いたパターンマッチングにより、前記追跡対象領域移動ステップで設定された前記次フレームにおける前記追跡対象領域の前記移動体に対するずれを示す修正ベクトルを検出する修正ベクトル検出ステップと、
前記修正ベクトルにより、前記ずれを補正する補正ステップとを有する
ことを特徴とする請求項1に記載の物体追跡方法。
The moving vector detection step includes:
A shielding degree detecting step of detecting a shielding degree indicating a degree of shielding of the moving body;
A shielding process for correcting the movement vector obtained from the motion vector by an arithmetic process using the movement vector obtained from the motion vector according to the degree of shielding and the movement vector detected in the past iterative processing step. And having steps
The iterative processing step includes:
By pattern matching using the tracking target area in a frame that is reversed by a plurality of frames from the processing target frame, the tracking target area in the next frame set in the tracking target area moving step is shifted from the moving object. A correction vector detection step of detecting a correction vector to be indicated;
The object tracking method according to claim 1, further comprising: a correction step of correcting the shift by the correction vector.
動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡方法のプログラムにおいて、
処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定のステップと、
前記特徴点設定のステップにより設定された特徴点に基づいて、各フレームの画像データを順次処理する繰り返し処理ステップとを有し、
前記繰り返し処理ステップは、
前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出ステップと、
前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出ステップと、
前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出ステップと、
前記移動ベクトル検出ステップで検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く前記繰り返しの処理ステップにおける前記処理対象フレームに設定する追跡対象領域移動ステップとを有し、
前記移動ベクトル検出ステップは、
前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する
ことを特徴とする物体追跡方法のプログラム。
In a program of an object tracking method for detecting a feature point in each frame of a moving image and tracking a moving object by detecting a motion vector of the feature point,
A feature point setting step of setting a predetermined number of the feature points in a tracking target region set in a region where the moving object of the processing target frame is imaged;
Repetitive processing step of sequentially processing the image data of each frame based on the feature points set in the feature point setting step,
The iterative processing step includes
A reliability detection step of detecting, for each feature point, a reliability level indicating the certainty of the feature point existing on the moving body;
A motion vector detection step of detecting each of the motion vectors to the next frame of the feature points;
A moving vector detection step of detecting a moving vector of the moving body to the next frame based on the motion vector;
The tracking target area is moved by the movement vector detected in the movement vector detecting step, the tracking target area is set in the next frame, and the processing target in the repetitive processing step following the next frame A tracking target area moving step set in the frame,
The moving vector detection step includes:
According to the reliability, the motion vector is detected by processing the motion vector so that the motion vector having low reliability is not reflected in the processing result.
動画の各フレームで特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡方法のプログラムを記録した記録媒体において、
前記物体追跡のプログラムは、
処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定のステップと、
前記特徴点設定のステップにより設定された特徴点に基づいて、各フレームの画像データを順次処理する繰り返し処理ステップとを有し、
前記繰り返し処理ステップは、
前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出ステップと、
前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出ステップと、
前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出ステップと、
前記移動ベクトル検出ステップで検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く前記繰り返しの処理ステップにおける前記処理対象フレームに設定する追跡対象領域移動ステップとを有し、
前記移動ベクトル検出ステップは、
前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する
ことを特徴とする物体追跡方法のプログラムを記録した記録媒体。
In a recording medium recording a program of an object tracking method for detecting a feature point in each frame of a moving image and tracking a moving object by detecting a motion vector of the feature point,
The object tracking program includes:
A feature point setting step of setting a predetermined number of the feature points in a tracking target region set in a region where the moving object of the processing target frame is imaged;
Repetitive processing step of sequentially processing the image data of each frame based on the feature points set in the feature point setting step,
The iterative processing step includes
A reliability detection step of detecting, for each feature point, a reliability level indicating the certainty of the feature point existing on the moving body;
A motion vector detection step of detecting each of the motion vectors to the next frame of the feature points;
A moving vector detection step of detecting a moving vector of the moving body to the next frame based on the motion vector;
The tracking target area is moved by the movement vector detected in the movement vector detecting step, the tracking target area is set in the next frame, and the processing target in the repetitive processing step following the next frame A tracking target area moving step set in the frame,
The moving vector detection step includes:
According to the reliability, the motion vector is processed so that the motion vector having low reliability is not reflected in the processing result, and the movement vector is detected. Medium.
所定の繰り返し処理を繰り返すことにより、動画の各フレームで特徴的な箇所である特徴点を検出し、この特徴点の動きベクトル検出により移動体を追跡する物体追跡装置において、
処理対象フレームの前記移動体が撮像された領域に設定された追跡対象領域に、所定個数の前記特徴点を設定する特徴点設定手段と、
前記移動体上に存在する前記特徴点の確からしさを示す信頼度を前記特徴点毎に検出する信頼度検出手段と、
前記特徴点の次フレームへの前記動きベクトルをそれぞれ検出する動きベクトル検出手段と、
前記動きベクトルに基づいて、前記移動体の前記次フレームへの移動ベクトルを検出する移動ベクトル検出手段と、
前記移動ベクトル検出手段で検出される前記移動ベクトルにより、前記追跡対象領域を移動させて、前記次フレームに前記追跡対象領域を設定すると共に、前記次フレームを続く繰り返しの処理における前記処理対象フレームに設定する追跡対象領域移動手段とを有し、
前記移動ベクトル検出手段は、
前記信頼度に応じて、信頼性の低い前記動きベクトルを処理結果に反映しないように前記動きベクトルを処理して、前記移動ベクトルを検出する
ことを特徴とする物体追跡装置。


In an object tracking device that detects a feature point that is a characteristic part in each frame of a moving image by repeating a predetermined repetition process, and tracks a moving object by detecting a motion vector of the feature point,
Feature point setting means for setting a predetermined number of the feature points in a tracking target region set in a region where the moving body of the processing target frame is imaged;
Reliability detection means for detecting the reliability indicating the certainty of the feature points existing on the moving body for each feature point;
Motion vector detection means for detecting each of the motion vectors to the next frame of the feature points;
Movement vector detection means for detecting a movement vector of the moving body to the next frame based on the motion vector;
The tracking target area is moved by the movement vector detected by the moving vector detection means, the tracking target area is set in the next frame, and the next frame is set as the processing target frame in the repeated processing. A tracking target area moving means to set,
The movement vector detection means includes
An object tracking device, wherein the motion vector is detected by processing the motion vector so that the motion vector having low reliability is not reflected in a processing result according to the reliability.


JP2005142272A 2005-05-16 2005-05-16 Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device Pending JP2006318345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142272A JP2006318345A (en) 2005-05-16 2005-05-16 Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142272A JP2006318345A (en) 2005-05-16 2005-05-16 Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device

Publications (1)

Publication Number Publication Date
JP2006318345A true JP2006318345A (en) 2006-11-24

Family

ID=37538948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142272A Pending JP2006318345A (en) 2005-05-16 2005-05-16 Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device

Country Status (1)

Country Link
JP (1) JP2006318345A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093585A1 (en) * 2007-01-30 2008-08-07 Aisin Seiki Kabushiki Kaisha Moving object recognizing device
JP2008192060A (en) * 2007-02-07 2008-08-21 Denso Corp Image processing device and image processing method
KR100902738B1 (en) 2007-04-27 2009-06-15 한국정보통신대학교 산학협력단 Apparatus and Method of Tracking Object in Bitstream
WO2009078056A1 (en) * 2007-12-14 2009-06-25 Fujitsu Limited Moving object detecting apparatus and moving object detecting program
EP2101486A2 (en) 2008-03-13 2009-09-16 Sony Corporation Image processing apparatus and image processing method
JP2011123563A (en) * 2009-12-08 2011-06-23 Sony Corp Image processor, image processing method and program
JP2011135538A (en) * 2009-12-25 2011-07-07 Fujitsu Ltd Imaging apparatus and imaging program
CN102194238A (en) * 2010-03-16 2011-09-21 索尼公司 Moving-object detection apparatus, moving-object detection method and moving-object detection program
JP2012080221A (en) * 2010-09-30 2012-04-19 Jvc Kenwood Corp Target tracking device and target tracking method
JP2012080222A (en) * 2010-09-30 2012-04-19 Jvc Kenwood Corp Target tracking device and target tracking method
JP2012257157A (en) * 2011-06-10 2012-12-27 Canon Inc Image synthesizer
JP2013120551A (en) * 2011-12-08 2013-06-17 Denso It Laboratory Inc Driving support device for vehicle
JP2014035560A (en) * 2012-08-07 2014-02-24 Nissan Motor Co Ltd Jump-to-street detection device
WO2014207892A1 (en) * 2013-06-28 2014-12-31 楽天株式会社 Information processing device, information processing method, information processing device program, and recording medium
JP2015052942A (en) * 2013-09-06 2015-03-19 キヤノン株式会社 Image processing method, image processing apparatus, and program
JP2018045405A (en) * 2016-09-14 2018-03-22 株式会社デンソーアイティーラボラトリ Object following system, object following device, object following method, and object following program
JP2018124689A (en) * 2017-01-31 2018-08-09 株式会社日立製作所 Moving body detection device, moving body detection system and moving body detection method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186246A (en) * 2007-01-30 2008-08-14 Aisin Seiki Co Ltd Moving object recognizing device
US8184857B2 (en) 2007-01-30 2012-05-22 Aisin Seiki Kabushiki Kaisha Moving object recognizing apparatus
WO2008093585A1 (en) * 2007-01-30 2008-08-07 Aisin Seiki Kabushiki Kaisha Moving object recognizing device
JP2008192060A (en) * 2007-02-07 2008-08-21 Denso Corp Image processing device and image processing method
KR100902738B1 (en) 2007-04-27 2009-06-15 한국정보통신대학교 산학협력단 Apparatus and Method of Tracking Object in Bitstream
US8150104B2 (en) 2007-12-14 2012-04-03 Fujitsu Limited Moving object detection apparatus and computer readable storage medium storing moving object detection program
WO2009078056A1 (en) * 2007-12-14 2009-06-25 Fujitsu Limited Moving object detecting apparatus and moving object detecting program
JP4957807B2 (en) * 2007-12-14 2012-06-20 富士通株式会社 Moving object detection apparatus and moving object detection program
EP2101486A2 (en) 2008-03-13 2009-09-16 Sony Corporation Image processing apparatus and image processing method
US8611424B2 (en) 2008-03-13 2013-12-17 Sony Corporation Image processing apparatus and image processing method
JP2011123563A (en) * 2009-12-08 2011-06-23 Sony Corp Image processor, image processing method and program
JP2011135538A (en) * 2009-12-25 2011-07-07 Fujitsu Ltd Imaging apparatus and imaging program
JP2011192141A (en) * 2010-03-16 2011-09-29 Sony Corp Moving body detecting device and moving body detection method and program
CN102194238A (en) * 2010-03-16 2011-09-21 索尼公司 Moving-object detection apparatus, moving-object detection method and moving-object detection program
JP2012080222A (en) * 2010-09-30 2012-04-19 Jvc Kenwood Corp Target tracking device and target tracking method
JP2012080221A (en) * 2010-09-30 2012-04-19 Jvc Kenwood Corp Target tracking device and target tracking method
JP2012257157A (en) * 2011-06-10 2012-12-27 Canon Inc Image synthesizer
JP2013120551A (en) * 2011-12-08 2013-06-17 Denso It Laboratory Inc Driving support device for vehicle
JP2014035560A (en) * 2012-08-07 2014-02-24 Nissan Motor Co Ltd Jump-to-street detection device
WO2014207892A1 (en) * 2013-06-28 2014-12-31 楽天株式会社 Information processing device, information processing method, information processing device program, and recording medium
JP5894707B2 (en) * 2013-06-28 2016-03-30 楽天株式会社 Information processing apparatus, information processing method, and program for information processing apparatus
JPWO2014207892A1 (en) * 2013-06-28 2017-02-23 楽天株式会社 Information processing apparatus, information processing method, and program for information processing apparatus
US9811736B2 (en) 2013-06-28 2017-11-07 Rakuten, Inc. Information processing device, information processing method, information processing device program, and recording medium
JP2015052942A (en) * 2013-09-06 2015-03-19 キヤノン株式会社 Image processing method, image processing apparatus, and program
JP2018045405A (en) * 2016-09-14 2018-03-22 株式会社デンソーアイティーラボラトリ Object following system, object following device, object following method, and object following program
JP2018124689A (en) * 2017-01-31 2018-08-09 株式会社日立製作所 Moving body detection device, moving body detection system and moving body detection method

Similar Documents

Publication Publication Date Title
JP2006318345A (en) Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device
US10782688B2 (en) Method, control apparatus, and system for tracking and shooting target
KR101643672B1 (en) Optical flow tracking method and apparatus
JP2006318350A (en) Object tracking method, program for object tracking method, recording medium where program for object tracking method is recorded, and object tracking device
JP2006323437A (en) Object tracking method, program for object tracking method, recording medium for recording program for object tracking method, and object tracing device
JP5487298B2 (en) 3D image generation
US8098885B2 (en) Robust online face tracking
EP1703466B1 (en) Moving object detection apparatus, method and program
EP2420975B1 (en) System and method for 3d wireframe reconstruction from video
KR101271092B1 (en) Method and apparatus of real-time segmentation for motion detection in surveillance camera system
US20090324013A1 (en) Image processing apparatus and image processing method
KR101051389B1 (en) Adaptive background-based object detection and tracking device and method
KR102169309B1 (en) Information processing apparatus and method of controlling the same
JPH11502351A (en) A method for detecting a moving object in a temporally successive image
JP2001506820A (en) Motion tracking using image texture templates
KR101592798B1 (en) Resolving homography decomposition ambiguity based on orientation sensors
KR101885839B1 (en) System and Method for Key point Selecting for Object Tracking
EP2901236A1 (en) Video-assisted target location
KR100994367B1 (en) Method for tracking a movement of a moving target of image tracking apparatus
JP2000306108A (en) Optical flow estimation method
CN110738688A (en) novel infrared ultra-weak moving target detection method
KR101991307B1 (en) Electronic device capable of feature vector assignment to a tracklet for multi-object tracking and operating method thereof
JP4070618B2 (en) Object tracking method, object tracking apparatus, object tracking method program, and recording medium recording the program
KR101470367B1 (en) Apparatus and method for detecting and tracking multiple objects by using dual-layer particle filter
JP5177030B2 (en) Target tracking device