JP2006316915A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2006316915A
JP2006316915A JP2005140820A JP2005140820A JP2006316915A JP 2006316915 A JP2006316915 A JP 2006316915A JP 2005140820 A JP2005140820 A JP 2005140820A JP 2005140820 A JP2005140820 A JP 2005140820A JP 2006316915 A JP2006316915 A JP 2006316915A
Authority
JP
Japan
Prior art keywords
bearing
raceway
ring
raceway groove
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005140820A
Other languages
Japanese (ja)
Inventor
Hironori Suzuki
弘典 鈴木
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005140820A priority Critical patent/JP2006316915A/en
Publication of JP2006316915A publication Critical patent/JP2006316915A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and small bearing device with high rigidity and lubricity, and superior sealing performance. <P>SOLUTION: The bearing device is provided with a rolling bearing supporting a swing arm 20 so as to be turnable with respect to a spindle 14, and the rolling bearing is provided with bearing rings (inner rings 2 and 4, and an outer ring 6) arranged facing one another so as to relatively turn, and a plurality of rolling elements 8 incorporated between the bearing rings. The inner ring is comprised of two bearing ring components divided in an axial direction, and raceway grooves 2g and 4g with mutually the same curvature are formed on each bearing ring component. By mutually combining each raceway groove, a Gothic arch like raceway groove is positioned facing an outer ring raceway groove 6g. A line L1 of action connecting points of the contact of one raceway groove 2g, the rolling element 8, and the outer ring raceway groove, and a line L2 of action connecting points of the contact of the other raceway groove 4g, the rolling element, and the outer ring raceway groove cross each other at a predetermined contact angle with respect to the spindle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば高速で微小揺動する部位に用いられる軸受装置に関し、特にハードディスクドライブ装置(HDD装置)に設けられたスイングアーム用の軸受装置に関する。   The present invention relates to a bearing device that is used, for example, in a portion that swings at a high speed, and particularly to a bearing device for a swing arm provided in a hard disk drive device (HDD device).

従来から、例えばコンピュータ(PC)やビデオレコーダなどの各種OA(Office Automation)機器などにおいて、そのHDD装置のスイングアームには、種々の軸受装置が用いられている。例えば特許文献1に示された軸受装置には、支軸に対してスイングアームを回転自在に支持する一対の転がり軸受が設けられており、各転がり軸受は、それぞれ相対回転可能に対向配置された内輪及び外輪と、内外輪間に転動自在に組込まれた複数の転動体(玉)と、軸受両側の内外輪間に配置された密封板とを備えている。   Conventionally, in various OA (Office Automation) devices such as a computer (PC) and a video recorder, various bearing devices are used for the swing arm of the HDD device. For example, the bearing device shown in Patent Document 1 is provided with a pair of rolling bearings that rotatably support a swing arm with respect to a support shaft, and each rolling bearing is disposed so as to be relatively rotatable. An inner ring and an outer ring, a plurality of rolling elements (balls) that are rotatably assembled between the inner and outer rings, and a sealing plate disposed between the inner and outer rings on both sides of the bearing are provided.

しかしながら、転動体として玉を用いた転がり軸受では、内外輪間に組込む玉数や玉径に制限があるため、軸受の剛性を高めるのには限界があった。この場合、例えば内輪又は外輪の軌道溝の一方を削り落とした肩おとし玉軸受を適用し、玉数を加増することで軸受の剛性を高めることが可能である。   However, in rolling bearings using balls as rolling elements, the number of balls and the ball diameter incorporated between the inner and outer rings are limited, and there is a limit to increasing the rigidity of the bearing. In this case, for example, it is possible to increase the rigidity of the bearing by applying a shoulder ball bearing in which one of the race grooves of the inner ring or the outer ring is scraped off and increasing the number of balls.

ところで、肩おとし玉軸受には、内輪又は外輪がバラけるのを防止するための“かかり代”が設けられる場合があり、その場合の軸受(密封板)組立では、高周波加熱嵌め処理がされる。このような軸受では、高温耐久性に優れた材料(例えば、フェノール材料など)で形成された保持器を使用しなければならないため、軸受装置の製造コストが上昇してしまう。   By the way, the shoulder and ball bearings may be provided with “capping allowance” for preventing the inner ring or the outer ring from being loosened. In this case, the bearing (sealing plate) is subjected to a high-frequency heat fitting process. . In such a bearing, since it is necessary to use a cage formed of a material excellent in high-temperature durability (for example, a phenol material), the manufacturing cost of the bearing device increases.

また、現在では、HDD装置のコンパクト化も進んでおり、これに応えるものとして、高い剛性を有すると共に、長期に亘って一定の潤滑性を維持しつつ同時に優れたシール性を有し、製造コストの安価な小型の軸受装置の開発が望まれている。
特開2005−90592号公報
At present, HDD devices are also becoming more compact, and as a response to this, it has high rigidity and at the same time has excellent sealing performance while maintaining constant lubricity over a long period of time. Therefore, development of an inexpensive small bearing device is desired.
JP-A-2005-90592

そこで、本発明の目的は、高い剛性を有し且つ潤滑性及びシール性に優れた低価格で小型の軸受装置を提供することにある。   Accordingly, an object of the present invention is to provide a low-priced and small-sized bearing device having high rigidity and excellent lubricity and sealing performance.

このような目的を達成するために、本発明は、ハードディスクドライブ装置に設けられたスイングアーム用の軸受装置であって、軸受装置には、支軸に対してスイングアームを回転自在に支持する転がり軸受が設けられており、転がり軸受は、相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組込まれた複数の転動体とを具備し、一方の軌道輪は、軸方向に分割された2つの軌道輪構成体から成り且つ各軌道輪構成体には互いに同一の曲率を成した軌道溝がそれぞれ形成されており、これら軌道溝を相互に組み合わせることで、ゴシックアーチ状の軌道溝が他方の軌道輪の軌道溝に対向して位置付けられると共に、一方の軌道輪構成体の軌道溝と転動体と他方の軌道輪の軌道溝との接触点相互を結んだ作用線と、他方の軌道輪構成体の軌道溝と転動体と他方の軌道輪の軌道溝との接触点相互を結んだ作用線とが、支軸に対して所定の接触角で交差する。   In order to achieve such an object, the present invention is a bearing device for a swing arm provided in a hard disk drive device, and the bearing device is a rolling device that rotatably supports the swing arm with respect to a support shaft. A bearing is provided, and the rolling bearing includes a bearing ring disposed so as to be relatively rotatable and a plurality of rolling elements that are rotatably incorporated between the bearing rings. Each track ring structure is formed with two track grooves having the same curvature, and by combining these track grooves with each other, a Gothic arch shape is formed. The raceway groove of the other raceway is positioned opposite to the raceway groove of the other raceway, and a line of action connecting the contact points of the raceway groove of one raceway ring and the rolling element with the raceway groove of the other raceway ring, and The other race ring A working line connecting the contact points mutually the raceway groove and the rolling element and the other race of the raceway grooves of adult intersect at a predetermined contact angle with the support shaft.

本発明では、以下のような構成を付加することが可能である。
分割されていない他方の軌道輪には、その軌道溝に凹溝が形成されている。また、一方の軌道輪の各軌道輪構成体には、その軌道溝が形成された周面に段差が形成されている。また、段差は、軌道輪間に配置された密封板の先端に対するかかり代として構成されている。更に、段差は、保持器の内径部に対するかかり代として構成されている。また、一方の軌道輪の側面と他方の軌道輪の側面との間に寸法差が設けられており、いずれかの軌道輪の側面に密封体を装着する。
In the present invention, the following configuration can be added.
A concave groove is formed in the raceway groove of the other raceway which is not divided. Further, a step is formed on the peripheral surface in which each raceway groove is formed in each raceway structure of one raceway. Further, the step is configured as a margin for the tip of the sealing plate disposed between the races. Further, the step is configured as a margin for the inner diameter portion of the cage. Further, a dimensional difference is provided between the side surface of one of the race rings and the side surface of the other race ring, and a sealing body is attached to the side surface of one of the race rings.

ここで、一方の軌道輪の側面と他方の軌道輪の側面との間に寸法差がある場合、複数の転がり軸受を軸方向に並べて支軸に装着して予圧を付加し、他方の軌道輪にハウジング又はEブロックを固定する。また、一方の軌道輪の側面と他方の軌道輪の側面との間に寸法差が無い複数の転がり軸受を軸方向に並べて支軸に装着する場合、いずれかの軌道輪間に間座を介挿して予圧を付加し、他方の軌道輪にハウジング又はEブロックを固定する。   Here, when there is a dimensional difference between the side surface of one raceway ring and the side surface of the other raceway ring, a plurality of rolling bearings are arranged in the axial direction and attached to the support shaft to apply preload, and the other raceway ring Secure the housing or E block to the In addition, when a plurality of rolling bearings with no dimensional difference between the side surface of one bearing ring and the side surface of the other bearing ring are mounted on the support shaft in the axial direction, a spacer is interposed between any of the bearing rings. Insert the preload and fix the housing or E block to the other race.

本発明によれば、高い剛性を有し且つ潤滑性及びシール性に優れた低価格で小型の軸受装置を実現することができる。   According to the present invention, it is possible to realize a low-priced and compact bearing device having high rigidity and excellent lubricity and sealing performance.

以下、本発明の軸受装置について添付図面を参照して説明する。なお、本発明は、HDD装置に設けられたスイングアーム用の軸受装置を想定しており、かかる軸受装置の実施の形態について添付図面を参照して説明する。   The bearing device of the present invention will be described below with reference to the accompanying drawings. Note that the present invention assumes a bearing device for a swing arm provided in the HDD device, and an embodiment of the bearing device will be described with reference to the accompanying drawings.

図1(a)には、本発明の一実施の形態に係る軸受装置の構成例が示されている。
本実施の形態の軸受装置は、相対回転可能に対向配置された内輪2,4及び外輪6と、内外輪間に転動自在に組込まれた複数の転動体(玉)8と、各転動体(玉)8を1つずつ回転自在に保持する複数のポケット10pが形成された保持器10と、軸受両側の内外輪間に配置された密封板12とを備えており、内輪2,4が支軸14に外嵌され、外輪6がハウジング16(又は図示しない、スイングアーム)に内嵌されている。このような構成によれば、内外輪が相対的に回転することで、ハウジング16(スイングアーム)を支軸14に対して回転させることが可能となる。
FIG. 1A shows a configuration example of a bearing device according to an embodiment of the present invention.
The bearing device of the present embodiment includes an inner ring 2, 4 and an outer ring 6 that are opposed to each other so as to be relatively rotatable, a plurality of rolling elements (balls) 8 that are rotatably incorporated between the inner and outer rings, and each rolling element. (Ball) 8 is provided with a cage 10 formed with a plurality of pockets 10p for rotatably holding one by one and a sealing plate 12 disposed between inner and outer rings on both sides of the bearing. The outer ring 6 is fitted into a housing 16 (or a swing arm (not shown)). According to such a configuration, the housing 16 (swing arm) can be rotated with respect to the support shaft 14 by the relative rotation of the inner and outer rings.

この構成例では図面上、保持器10の一例として、一方に転動体(玉)8をポケット10pに挿入するための開口(図示しない)を有する冠形保持器10を例示し、密封板12の一例として、基端(外径部12e)が外輪6の内周面6sに固定され、先端(内径部12t)が内輪2,4の外周面2s,4sに非接触で狭いすきまを有する軸受シールド12を例示する。
なお、これら保持器10や密封板12は一例であり、他の保持器(例えば、合わせ保持器)や密封板(例えば、接触或いは非接触タイプの軸受シール)を適用することも可能である。また、保持器10の材質としては、例えば金属や樹脂など軸受装置の使用目的や使用環境に応じて任意の材料を適用することが可能である。
In this configuration example, as an example of the cage 10 in the drawing, a crown-shaped cage 10 having an opening (not shown) for inserting the rolling element (ball) 8 into the pocket 10p is illustrated on one side. As an example, a bearing shield in which the base end (outer diameter portion 12e) is fixed to the inner peripheral surface 6s of the outer ring 6 and the distal end (inner diameter portion 12t) is not in contact with the outer peripheral surfaces 2s and 4s of the inner rings 2 and 4 and has a narrow clearance. 12 is illustrated.
Note that the cage 10 and the sealing plate 12 are examples, and other cages (for example, mating cage) and sealing plates (for example, contact or non-contact type bearing seals) can be applied. Moreover, as a material of the cage | basket 10, it is possible to apply arbitrary materials, such as a metal and resin, according to the intended purpose and use environment of a bearing apparatus.

内輪2,4は、軸方向に分割された2つの内輪構成体2,4から構成されており、各内輪構成体2,4の外周面2s,4sにそれぞれ形成された2つの軌道溝2g,4gは、互いに同一の曲率を成している。そして、これら軌道溝2g,4gを相互に組み合わせることで、ゴシックアーチ状の軌道溝(総称して、内輪軌道溝Gという)が、外輪6の内周面6sに形成された1つの軌道溝6g(以下、外輪軌道溝6gという)に対向して位置付けられる。この場合、2つの内輪構成体2,4は、ゴシックアーチの頂点で分断された状態で支軸14に外嵌されるため、転動体(玉)8は、各内輪構成体2,4の2つの軌道溝2g,4gで両側から挟持された状態で内輪軌道溝Gと外輪軌道溝6gとの間に回転自在に組込まれる。   The inner rings 2, 4 are composed of two inner ring components 2, 4 divided in the axial direction, and two raceway grooves 2g, formed on the outer peripheral surfaces 2s, 4s of the inner ring components 2, 4 respectively. 4g has the same curvature. By combining these raceway grooves 2g and 4g with each other, a gothic arch-like raceway groove (generally referred to as an inner ring raceway groove G) is formed into one raceway groove 6g formed on the inner peripheral surface 6s of the outer ring 6. (Hereinafter, referred to as outer ring raceway groove 6g). In this case, since the two inner ring components 2, 4 are externally fitted to the support shaft 14 in a state where they are separated at the top of the Gothic arch, the rolling elements (balls) 8 are the two of the inner ring components 2, 4 respectively. It is rotatably assembled between the inner ring raceway groove G and the outer ring raceway groove 6g with the two raceway grooves 2g and 4g sandwiched from both sides.

ここで、支軸14とハウジング16との間に転がり軸受を嵌合させるプロセスについて簡単に説明する。例えば、一方の内輪構成体2を支軸14に外嵌させて、その側面2mを支軸14のフランジ14fに当接させた後、複数の転動体(玉)8を保持した状態の保持器10を外輪6と共に支軸14に外装し、各転動体(玉)8を一方の内輪構成体2の軌道溝2g(以下、一方の軌道溝2gという)と外輪軌道溝6gとの間に位置付ける。この状態で、他方の内輪構成体4を支軸14に圧入し、その軌道溝4g(以下、他方の軌道溝4gという)を転動体(玉)8に当付けると共に、外輪6をハウジング16に内嵌させる。そして、他方の内輪構成体4の側面4mに押圧力を作用させることで、転がり軸受に所定の予圧を付加する。このようなプロセスでは、内外輪間に組込む玉数を深溝型玉軸受より増やすことができる。   Here, a process for fitting a rolling bearing between the support shaft 14 and the housing 16 will be briefly described. For example, a retainer in a state where a plurality of rolling elements (balls) 8 are held after one inner ring constituting body 2 is fitted onto the support shaft 14 and its side surface 2m is brought into contact with the flange 14f of the support shaft 14. 10 is mounted on the support shaft 14 together with the outer ring 6, and each rolling element (ball) 8 is positioned between the raceway groove 2 g (hereinafter referred to as one raceway groove 2 g) of one inner ring constituting body 2 and the outer ring raceway groove 6 g. . In this state, the other inner ring constituting body 4 is press-fitted into the support shaft 14, and its raceway groove 4 g (hereinafter referred to as the other raceway groove 4 g) is brought into contact with a rolling element (ball) 8 and the outer ring 6 is brought into contact with the housing 16. Fit inside. Then, a predetermined preload is applied to the rolling bearing by applying a pressing force to the side surface 4 m of the other inner ring constituting body 4. In such a process, the number of balls incorporated between the inner and outer rings can be increased as compared with the deep groove type ball bearing.

このように予圧が付加された状態において、転動体(玉)8は、内輪軌道溝Gと外輪軌道溝6gとの間で4点接触した状態に維持される。この状態において、一方の軌道溝2gと転動体(玉)8と外輪軌道溝6gとの接触点相互を結んだ作用線L1(以下、一方の作用線L1)と、他方の軌道溝4gと転動体(玉)8と外輪軌道溝6gとの接触点相互を結んだ作用線L2(以下、他方の作用線L2)とが、支軸14に対して所定の接触角で交差する。この場合、接触角を大きくするほど軸受のアキシアル荷重の負荷能力を向上させることができ、逆に接触角が小さくするほど軸受のラジアル荷重の負荷能力を向上させることができる。なお、いずれの負荷能力を向上させるかは、軸受装置の使用環境や使用目的に応じて任意に選択されるため、ここでは特に接触角について限定しない。   In such a state in which the preload is applied, the rolling elements (balls) 8 are maintained in a state where they contact each other between the inner ring raceway groove G and the outer ring raceway groove 6g. In this state, an action line L1 (hereinafter, one action line L1) connecting the contact points of one raceway groove 2g, the rolling element (ball) 8 and the outer ring raceway groove 6g, and the other raceway groove 4g and the rolling contact point. An action line L2 (hereinafter, the other action line L2) connecting the contact points of the moving body (ball) 8 and the outer ring raceway groove 6g intersects the support shaft 14 at a predetermined contact angle. In this case, as the contact angle increases, the bearing load capacity of the axial load can be improved. Conversely, as the contact angle decreases, the bearing load capacity of the radial load can be improved. Note that which load capacity is to be improved is arbitrarily selected according to the use environment and purpose of use of the bearing device, and therefore the contact angle is not particularly limited here.

以上、本実施の形態によれば、従来の玉軸受と内部緒元(例えば、内輪軌道溝G及び外輪軌道溝6gの曲率、軸受ラジアル内部すきま、玉径、玉数、転動体の中心相互を結んだ仮想円の直径(P.C.D)など)が同じ場合、本実施品1個で従来品2個分の剛性(2倍の剛性)を得ることができる。また、従来品と比較して玉数を増加させることができるため、その玉数増加分を加えた剛性を更に加えることができる。即ち、本実施品の剛性は、(従来品に比べて2倍+玉数増加分)×2倍の剛性を得ることができる。   As described above, according to the present embodiment, the conventional ball bearing and the internal specifications (for example, the curvature of the inner ring raceway groove G and the outer ring raceway groove 6g, the bearing radial internal clearance, the ball diameter, the number of balls, and the center of the rolling elements are compared. If the diameters of the connected virtual circles (PCD) are the same, one product can achieve the rigidity (double the rigidity) of two conventional products. Moreover, since the number of balls can be increased as compared with the conventional product, the rigidity added with the increased number of balls can be further added. That is, the rigidity of the present product can be obtained as (2 times the increase in the number of balls compared to the conventional product) × 2 times the rigidity.

更に、本実施の形態によれば、双方の作用線L1,L2が支軸14に対して所定の接触角で交差するため、1つの転がり軸受でアキシアル荷重とラジアル荷重の負荷能力を同時に向上させることができる。このため、例えば図1(b)に示すように、2つの転がり軸受を支軸14に外装し、それらの外輪6にEブロック18を介してスイングアーム20を固定した構成において、支軸14やEブロック18の軸方向の長さを短くしても、スイングアーム20を高い回転精度で安定して支持することができる。これにより、HDD装置のコンパクト化を図ることができる。   Furthermore, according to the present embodiment, both action lines L1 and L2 intersect the support shaft 14 at a predetermined contact angle, so that the load capacity of the axial load and the radial load is simultaneously improved with one rolling bearing. be able to. For this reason, for example, as shown in FIG. 1B, in the configuration in which two rolling bearings are externally mounted on the support shaft 14 and the swing arm 20 is fixed to the outer ring 6 via the E block 18, the support shaft 14 and Even if the axial length of the E block 18 is shortened, the swing arm 20 can be stably supported with high rotational accuracy. Thereby, the HDD device can be made compact.

なお、本発明は、上述した実施の形態に限定されることは無く、以下のように変更することが可能である。なお、各変形例の説明に際し、上述した実施の形態と同一の構成には図面上に同一符号を付して、その説明を省略する。   In addition, this invention is not limited to embodiment mentioned above, It can change as follows. In the description of each modification, the same reference numerals are given to the same components as those in the above-described embodiment, and the description thereof is omitted.

第1の変形例として例えば図1(a)に示すように、分割されていない外輪6の外輪軌道溝6gに、周方向に沿って凹溝22を形成しても良い。この場合、凹溝22は、外輪軌道溝6gの底面(最深部)に形成することが好ましい。なお、凹溝22は周方向に沿って連続的或いは断続的に形成することが可能であり、また、凹溝22の深さや形状などについても任意に設定することが可能である。このように凹溝22を形成することにより、軸受内に封入された潤滑剤(例えば、グリース、油)を当該凹溝22に溜めることができるため、外輪軌道溝6gと転動体(玉)8との間に長期に亘って潤滑剤を供給することができる。この結果、転がり軸受の潤滑性を長期に亘って一定に維持することができるため、軸受寿命の延命化を図ることが可能となる。   As a first modification, for example, as shown in FIG. 1A, a concave groove 22 may be formed in the outer ring raceway groove 6g of the outer ring 6 that is not divided along the circumferential direction. In this case, the concave groove 22 is preferably formed on the bottom surface (deepest part) of the outer ring raceway groove 6g. The groove 22 can be formed continuously or intermittently along the circumferential direction, and the depth and shape of the groove 22 can be arbitrarily set. By forming the concave groove 22 in this way, the lubricant (for example, grease, oil) enclosed in the bearing can be stored in the concave groove 22, so that the outer ring raceway groove 6 g and the rolling elements (balls) 8. The lubricant can be supplied over a long period of time. As a result, since the lubricity of the rolling bearing can be kept constant over a long period of time, it is possible to extend the life of the bearing.

第2の変形例として例えば図2(a)に示すように、内輪2,4(内輪構成体2,4)の外周面2s,4sに段差2d,4dを形成しても良い。図面では一例として、それぞれの段差2d,4dを側面2m,4m寄りに形成している。このような段差2d,4dを形成することにより、当該段差2d,4dの高さ分だけ軌道溝2g,4gから側面2m,4mまでの各内輪構成体2,4の外周面2s,4sの距離を長くすることができる。これにより、潤滑剤が側面2m,4mまで伝わる時間を遅らせることが可能となる。別の言い方をすると、封入された潤滑剤を軸受内に留めておく時間を長くすることが可能となる。この結果、転がり軸受の潤滑性を長期に亘って一定に維持することができるため、軸受寿命の延命化を図ることが可能となる。なお、段差2d,4dの高さや位置は、例えば内輪2,4(内輪構成体2,4)の厚さ、転がり軸受の大きさや種類に応じて最適な値に設定されるため、ここでは特に限定しない。   As a second modification, for example, as shown in FIG. 2A, steps 2d and 4d may be formed on the outer peripheral surfaces 2s and 4s of the inner rings 2 and 4 (inner ring components 2 and 4). In the drawing, as an example, the steps 2d and 4d are formed closer to the side surfaces 2m and 4m. By forming such steps 2d and 4d, the distance between the outer peripheral surfaces 2s and 4s of the inner ring components 2 and 4 from the raceway grooves 2g and 4g to the side surfaces 2m and 4m by the height of the steps 2d and 4d. Can be lengthened. This makes it possible to delay the time for the lubricant to travel to the side surfaces 2m and 4m. In other words, it is possible to increase the time for which the enclosed lubricant remains in the bearing. As a result, since the lubricity of the rolling bearing can be kept constant over a long period of time, it is possible to extend the life of the bearing. The height and position of the steps 2d and 4d are set to optimum values according to, for example, the thickness of the inner rings 2 and 4 (inner ring constituent bodies 2 and 4) and the size and type of the rolling bearings. Not limited.

また、上記段差2d,4dは、密封板(軸受シールド)12の先端(内径部12t)に対する“かかり代”として構成することも可能であり、これら段差2d,4dを“かかり代”とすることにより、当該内径部12tにより内輪(内輪構成体2,4)の軸方向の動きを規制することができるため、内輪(内輪構成体2,4)がバラけるのを防止することができる。   Further, the steps 2d and 4d can be configured as “baring allowance” with respect to the tip (inner diameter portion 12t) of the sealing plate (bearing shield) 12, and these steps 2d and 4d are set as “baring allowance”. As a result, the inner ring 12t can restrict the axial movement of the inner ring (inner ring constituting bodies 2, 4), so that the inner ring (inner ring constituting bodies 2, 4) can be prevented from being scattered.

更に、第3の変形例として例えば図2(b)に示すように、上記段差2d,4dのうち例えば段差2dを保持器10の内径部10nに対する“かかり代”として構成することも可能である。この場合、段差2dの位置を転動体(玉)8寄りに設定すると共に、保持器10の内径部10nを一方の内輪構成体2の外周面2s方向に突出させる。これにより、一方の内輪構成体2の軸方向の動きを規制することができる。なお、その他の構成及び効果は、第2の変形例と同様であるため、その説明は省略する。   Furthermore, as a third modification, for example, as shown in FIG. 2B, for example, the step 2d of the steps 2d and 4d can be configured as a “bare allowance” for the inner diameter portion 10n of the cage 10. . In this case, the position of the step 2d is set closer to the rolling element (ball) 8, and the inner diameter portion 10n of the cage 10 is protruded in the direction of the outer peripheral surface 2s of one inner ring constituting body 2. Thereby, the movement of the axial direction of one inner ring structure 2 can be controlled. Other configurations and effects are the same as those of the second modified example, and thus description thereof is omitted.

また、第4の変形例として例えば図3(a),(b)に示すように、内輪2,4(内輪構成体2,4)の側面2m,4mと外輪6の側面6mとの間に寸法差を設けても良い。
同図(a)の構成では、内輪2,4(内輪構成体2,4)の側面2m,4mが外輪6の側面6mよりも軸方向に突出した幅寸法に設定されており、他方の内輪構成体4の側面4mに環状の密封体24が装着されている。これにより、当該密封体24と外輪6の側面6mとの間にラビリンスシールが構成される。この場合、内外輪間に配置された密封板12と新たに装着した密封体24とによりダブルシール構造が構築されるため、シール性を更に向上させることができる。また、例えば支軸14のフランジ14fを外輪6の側面6mまで延出させて(図示しない)、当該延出部分を密封体24として併用し、かかる延出部分と側面6mとの間にラビリンスシールを構成しても良い。これにより、軸受両側にダブルシール構造を構築することができる。
Further, as a fourth modification, for example, as shown in FIGS. 3A and 3B, between the side surfaces 2m, 4m of the inner rings 2, 4 (inner ring components 2, 4) and the side surface 6m of the outer ring 6, A dimensional difference may be provided.
In the configuration of FIG. 5A, the side surfaces 2m and 4m of the inner rings 2, 4 (inner ring structural bodies 2, 4) are set to have a width dimension protruding in the axial direction from the side surface 6m of the outer ring 6, and the other inner ring An annular sealing body 24 is attached to the side surface 4 m of the structure 4. Thereby, a labyrinth seal is comprised between the said sealing body 24 and the side surface 6m of the outer ring | wheel 6. FIG. In this case, since the double seal structure is constructed by the sealing plate 12 disposed between the inner and outer rings and the newly installed sealing body 24, the sealing performance can be further improved. Further, for example, the flange 14f of the support shaft 14 is extended to the side surface 6m of the outer ring 6 (not shown), and the extended portion is used as a sealing body 24, and a labyrinth seal is provided between the extended portion and the side surface 6m. May be configured. Thereby, a double seal structure can be constructed on both sides of the bearing.

一方、同図(b)の構成では、内輪2,4(内輪構成体2,4)の側面2m,4mが外輪6の側面6mよりも軸方向に没入した幅寸法に設定されており、外輪6の側面6mに環状の密封体24が装着されている。これにより、当該密封体24と他方の内輪構成体4の側面4mとの間にラビリンスシールが構成される。この場合、内外輪間に配置された密封板12と新たに装着した密封体24とによりダブルシール構造が構築されるため、シール性を更に向上させることができる。   On the other hand, in the configuration of FIG. 5B, the side surfaces 2m and 4m of the inner rings 2 and 4 (inner ring components 2 and 4) are set so as to have a width dimension that is more immersed in the axial direction than the side surface 6m of the outer ring 6. An annular sealing body 24 is attached to the side surface 6 m of 6. Thereby, a labyrinth seal is comprised between the said sealing body 24 and the side surface 4m of the other inner ring | wheel structure body 4. As shown in FIG. In this case, since the double seal structure is constructed by the sealing plate 12 disposed between the inner and outer rings and the newly installed sealing body 24, the sealing performance can be further improved.

このように密封体24を新たに装着することにより、密封板12が不要となるため、当該密封板12の配置スペースを軸受に確保する必要が無くなる。この場合、密封板12を無くする分だけ部品点数の削減を図ることが可能となり、その結果、装置の製造コストを低減することができる。更に、軸受幅の幅狭化を図ることができるため、軸受装置の軸方向の小型化を実現することができる。これにより、例えば図1(b)のように2つの転がり軸受を支軸14に外装した場合でも、本変形例の構成を適用することでHDD装置のコンパクト化を図ることができる。なお、密封体24としては、潤滑剤の漏洩や異物(例えば、水、塵埃)の浸入を防止できるようなものであれば任意の部材を適用することが可能である。例えば薄板状の環状体を適用しても良いし、或いは、シールやシールドを適用しても良い。   By newly mounting the sealing body 24 in this manner, the sealing plate 12 is not necessary, and therefore it is not necessary to secure a space for arranging the sealing plate 12 in the bearing. In this case, it is possible to reduce the number of parts by eliminating the sealing plate 12, and as a result, the manufacturing cost of the apparatus can be reduced. Furthermore, since the bearing width can be reduced, the bearing device can be downsized in the axial direction. Accordingly, even when two rolling bearings are externally mounted on the support shaft 14 as shown in FIG. 1B, for example, the HDD device can be made compact by applying the configuration of this modification. As the sealing body 24, any member can be applied as long as it can prevent leakage of the lubricant and intrusion of foreign matters (for example, water and dust). For example, a thin plate-like annular body may be applied, or a seal or a shield may be applied.

また、第5の変形例として例えば図4(a),(b)に示すように、2つの転がり軸受を支軸14に外装し、それらの外輪6にEブロック18を介してスイングアーム20を固定した構成を想定する。なお、同図(a)には、内輪2,4(内輪構成体2,4)の側面2m,4mと外輪6の側面6mとの間に寸法差がある場合の軸受装置の構成例が示されており、同図(b)には、寸法差が無い場合の構成例が示されている。   As a fifth modification, for example, as shown in FIGS. 4A and 4B, two rolling bearings are externally mounted on the support shaft 14, and a swing arm 20 is attached to the outer ring 6 via an E block 18. Assume a fixed configuration. In addition, the same figure (a) shows the structural example of a bearing apparatus in case there exists a dimensional difference between the side surfaces 2m and 4m of the inner ring | wheels 2 and 4 (inner ring structure 2 and 4), and the side surface 6m of the outer ring | wheel 6. FIG. 4B shows a configuration example in the case where there is no dimensional difference.

同図(a)では一例として、内輪2,4(内輪構成体2,4)の側面2m,4mが外輪6の側面6mよりも軸方向に突出した幅寸法に設定された2つの転がり軸受が支軸14に装着されている。この場合、軸方向に隣り合う内輪2,4(内輪構成体2,4)相互の側面2m,4m同士を当接させた状態で、内輪構成体4に軸方向の押圧力Fpを作用させることで、2つの転がり軸受に所定の予圧を付加することができる。   As an example in FIG. 2A, there are two rolling bearings in which the side surfaces 2m, 4m of the inner rings 2, 4 (inner ring components 2, 4) are set to have a width dimension that protrudes in the axial direction from the side surface 6m of the outer ring 6. It is attached to the support shaft 14. In this case, an axial pressing force Fp is applied to the inner ring component 4 in a state where the side surfaces 2m and 4m of the inner rings 2, 4 (inner ring components 2, 4) adjacent in the axial direction are in contact with each other. Thus, a predetermined preload can be applied to the two rolling bearings.

同図(b)では一例として、内輪2,4(内輪構成体2,4)の側面2m,4mと外輪6の側面6mとの間に寸法差が無い2つの転がり軸受が支軸14に装着されている。この場合、軸方向に隣り合う内輪2,4(内輪構成体2,4)相互の側面2m,4m間に間座26を介挿させた状態で、内輪構成体4に軸方向の押圧力Fpを作用させることで、2つの転がり軸受に所定の予圧を付加することができる。   In FIG. 2B, as an example, two rolling bearings having no dimensional difference between the side surfaces 2m, 4m of the inner rings 2, 4 (inner ring components 2, 4) and the side surface 6m of the outer ring 6 are mounted on the support shaft 14. Has been. In this case, the axial pressure Fp is applied to the inner ring component 4 with the spacer 26 interposed between the side surfaces 2m and 4m of the inner rings 2, 4 (inner ring components 2, 4) adjacent in the axial direction. By applying the above, a predetermined preload can be applied to the two rolling bearings.

以上、第5の変形例によれば、2つの軸受を組み込んだ従来品と内部緒元(例えば、内輪軌道溝G及び外輪軌道溝6gの曲率、軸受ラジアル内部すきま、玉径、玉数、転動体の中心相互を結んだ仮想円の直径(P.C.D)など)が同じ場合、軸受装置全体の剛性を2倍に向上させることができる。このため、スイングアーム20を高い回転精度で安定して支持することが可能となる。   As described above, according to the fifth modification, the conventional product incorporating two bearings and the internal specifications (for example, the curvature of the inner ring raceway groove G and the outer ring raceway groove 6g, the bearing radial internal clearance, the ball diameter, the number of balls, When the diameters of virtual circles (PCD) connecting the centers of moving objects are the same, the rigidity of the entire bearing device can be improved by a factor of two. For this reason, it becomes possible to stably support the swing arm 20 with high rotational accuracy.

この場合、例えば図5に示すように、支軸14を軸方向に延長して2つ以上(図面では4つ)の転がり軸受を組込んだ軸受装置を想定すると、例えば2つの軸受の外輪6に対してEブロック18を介してスイングアーム20を固定した場合、各Eブロック18を独立して回転制御させることが可能となり、その場合でも、スイングアーム20を高い回転精度で安定して支持することができる。これにより、例えばディスクに対する情報の書込精度や書込速度或いは情報の再生精度や再生速度を向上させることができる。この場合、Eブロック18に代えて、例えばハウジング16を固定しても良い。   In this case, for example, as shown in FIG. 5, assuming a bearing device in which two or more (four in the drawing) rolling bearings are installed by extending the support shaft 14 in the axial direction, for example, the outer ring 6 of two bearings. On the other hand, when the swing arm 20 is fixed via the E block 18, it is possible to independently control the rotation of each E block 18, and even in that case, the swing arm 20 is stably supported with high rotational accuracy. be able to. Thereby, for example, the writing accuracy and writing speed of information on the disc or the reproducing accuracy and reproducing speed of information can be improved. In this case, instead of the E block 18, for example, the housing 16 may be fixed.

なお、上述した実施の形態及び各変形例では、内輪2,4を分割した軸受装置を想定して説明したが、これに限定されることは無く、外輪6を軸方向に分割した軸受装置にも本発明の構成を適用することができる。この場合、上述した実施の形態及び各変形例の構成を外輪6に施すことで同様の効果を得ることができる。また、密封板12については、その基端(外径部12e)を外輪6の内周面6sに固定し、先端(内径部12t)を内輪2,4の外周面2s,4s方向に延出させているが、逆に、基端を内輪2,4の外周面2s,4sに固定し、先端を外輪6の内周面6s方向に延出させても良い。   In the above-described embodiment and each modification, the bearing device in which the inner rings 2 and 4 are divided has been described. However, the present invention is not limited to this, and the bearing device in which the outer ring 6 is divided in the axial direction is used. The configuration of the present invention can also be applied. In this case, the same effect can be obtained by applying the configuration of the above-described embodiment and each modification to the outer ring 6. The sealing plate 12 has a base end (outer diameter portion 12 e) fixed to the inner peripheral surface 6 s of the outer ring 6 and a distal end (inner diameter portion 12 t) extending in the direction of the outer peripheral surfaces 2 s and 4 s of the inner rings 2 and 4. However, conversely, the base end may be fixed to the outer peripheral surfaces 2 s and 4 s of the inner rings 2 and 4, and the distal end may be extended in the direction of the inner peripheral surface 6 s of the outer ring 6.

(a)は、本発明の一実施の形態並びに第1の変形例に係る軸受装置の構成例を一部拡大して示す断面図、(b)は、同図(a)の軸受装置をHDD装置に組込んだ構成例を示す断面図。(a) is sectional drawing which expands partially the structural example of the bearing apparatus which concerns on one embodiment of this invention, and a 1st modification, (b) is HDD of the bearing apparatus of the same figure (a). Sectional drawing which shows the structural example integrated in the apparatus. (a)は、本発明の第2の変形例に係る軸受装置の構成例を一部拡大して示す断面図、(b)は、本発明の第3の変形例に係る軸受装置の構成例を一部拡大して示す断面図。(a) is sectional drawing which expands and partially shows the structural example of the bearing apparatus which concerns on the 2nd modification of this invention, (b) is a structural example of the bearing apparatus which concerns on the 3rd modification of this invention. Sectional drawing which expands and shows a part. 本発明の第4の変形例に係る軸受装置の構成例を一部拡大して示す断面図であり、(a)は、内輪の側面が外輪の側面よりも軸方向に突出した幅寸法に設定された構成図、(b)は、内輪の側面が外輪の側面よりも軸方向に没入した幅寸法に設定された構成図。It is sectional drawing which expands and partially shows the structural example of the bearing apparatus which concerns on the 4th modification of this invention, (a) is set to the width dimension which the side surface of the inner ring protruded in the axial direction rather than the side surface of the outer ring FIG. 5B is a configuration diagram in which the side surface of the inner ring is set to have a width dimension that is more immersed in the axial direction than the side surface of the outer ring. 本発明の第5の変形例に係る軸受装置の構成例を一部拡大して示す断面図であり、(a)は、内輪の側面と外輪の側面との間に寸法差がある場合の軸受装置の構成図、(b)は、内輪の側面と外輪の側面との間に寸法差が無い場合の軸受装置の構成図。It is sectional drawing which expands and shows a part of example of a structure of the bearing apparatus which concerns on the 5th modification of this invention, (a) is a bearing in case there exists a dimensional difference between the side surface of an inner ring | wheel, and the side surface of an outer ring | wheel. The block diagram of an apparatus, (b) is a block diagram of a bearing apparatus when there is no dimensional difference between the side surface of an inner ring | wheel and the side surface of an outer ring | wheel. 2つ以上の転がり軸受を有する軸受装置をHDD装置に組込んだ構成例を示す断面図。Sectional drawing which shows the structural example which incorporated the bearing apparatus which has two or more rolling bearings in HDD apparatus.

符号の説明Explanation of symbols

2,4 内輪
2g,4g 軌道溝
6 外輪
6g 外輪軌道溝
8 転動体
10 保持器
12 密封板
14 支軸
16 ハウジング
18 Eブロック
20 スイングアーム
L1,L2 作用線
2,4 inner ring
2g, 4g Raceway groove 6 Outer ring 6g Outer raceway groove 8 Rolling element 10 Cage 12 Sealing plate 14 Support shaft 16 Housing 18 E block 20 Swing arm
L1, L2 action line

Claims (8)

ハードディスクドライブ装置に設けられたスイングアーム用の軸受装置であって、
軸受装置には、支軸に対してスイングアームを回転自在に支持する転がり軸受が設けられており、転がり軸受は、相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組込まれた複数の転動体とを具備し、
一方の軌道輪は、軸方向に分割された2つの軌道輪構成体から成り且つ各軌道輪構成体には互いに同一の曲率を成した軌道溝がそれぞれ形成されており、これら軌道溝を相互に組み合わせることで、ゴシックアーチ状の軌道溝が他方の軌道輪の軌道溝に対向して位置付けられると共に、
一方の軌道輪構成体の軌道溝と転動体と他方の軌道輪の軌道溝との接触点相互を結んだ作用線と、他方の軌道輪構成体の軌道溝と転動体と他方の軌道輪の軌道溝との接触点相互を結んだ作用線とが、支軸に対して所定の接触角で交差することを特徴とする軸受装置。
A bearing device for a swing arm provided in a hard disk drive device,
The bearing device is provided with a rolling bearing that rotatably supports the swing arm with respect to the support shaft, and the rolling bearing is configured to be capable of rolling between the raceway and the raceway arranged so as to be relatively rotatable. A plurality of incorporated rolling elements,
One bearing ring is composed of two bearing ring components divided in the axial direction, and each bearing ring component is formed with a track groove having the same curvature, and these track grooves are mutually connected. In combination, the Gothic arched raceway groove is positioned opposite the raceway groove of the other raceway,
The line of contact between the raceway groove and rolling element of one raceway ring structure and the contact point of the raceway groove of the other raceway ring, the raceway groove and rolling element of the other raceway ring structure, and the other raceway ring A bearing device characterized in that a line of action connecting contact points with the raceway groove intersects the support shaft at a predetermined contact angle.
分割されていない他方の軌道輪には、その軌道溝に凹溝が形成されていることを特徴とする請求項1に記載の軸受装置。   The bearing device according to claim 1, wherein a concave groove is formed in the raceway groove of the other non-divided raceway ring. 一方の軌道輪の各軌道輪構成体には、その軌道溝が形成された周面に段差が形成されていることを特徴とする請求項1又は2に記載の軸受装置。   The bearing device according to claim 1 or 2, wherein each bearing ring structure of one of the bearing rings has a step formed on a circumferential surface where the raceway groove is formed. 段差は、軌道輪間に配置された密封板の先端に対するかかり代として構成されていることを特徴とする請求項3に記載の軸受装置。   The bearing device according to claim 3, wherein the step is configured as a margin for a front end of a sealing plate disposed between the race rings. 段差は、保持器の内径部に対するかかり代として構成されていることを特徴とする請求項3又は4に記載の軸受装置。   The bearing device according to claim 3 or 4, wherein the step is configured as a margin for the inner diameter portion of the cage. 一方の軌道輪の側面と他方の軌道輪の側面との間に寸法差が設けられており、いずれかの軌道輪の側面に密封体を装着することを特徴とする請求項1〜5のいずれかに記載の軸受装置。   6. A dimensional difference is provided between a side surface of one of the race rings and a side surface of the other race ring, and a sealing body is attached to a side surface of any of the race rings. A bearing device according to claim 1. 一方の軌道輪の側面と他方の軌道輪の側面との間に寸法差がある複数の転がり軸受を軸方向に並べて支軸に装着して予圧を付加し、他方の軌道輪にハウジング又はEブロックを固定したことを特徴とする請求項6に記載の軸受装置。   A plurality of rolling bearings having a dimensional difference between the side surface of one bearing ring and the side surface of the other bearing ring are arranged in the axial direction and attached to the support shaft to apply preload, and a housing or E block is attached to the other bearing ring. The bearing device according to claim 6, wherein the bearing device is fixed. 一方の軌道輪の側面と他方の軌道輪の側面との間に寸法差が無い複数の転がり軸受を軸方向に並べて支軸に装着する場合、いずれかの軌道輪間に間座を介挿して予圧を付加し、他方の軌道輪にハウジング又はEブロックを固定したことを特徴とする請求項1〜5のいずれかに記載の軸受装置。
When mounting a plurality of rolling bearings with no dimensional difference between the side surface of one raceway ring and the side surface of the other raceway in the axial direction, insert a spacer between any of the raceways. 6. A bearing device according to claim 1, wherein a preload is applied and a housing or an E block is fixed to the other race ring.
JP2005140820A 2005-05-13 2005-05-13 Bearing device Pending JP2006316915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140820A JP2006316915A (en) 2005-05-13 2005-05-13 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140820A JP2006316915A (en) 2005-05-13 2005-05-13 Bearing device

Publications (1)

Publication Number Publication Date
JP2006316915A true JP2006316915A (en) 2006-11-24

Family

ID=37537775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140820A Pending JP2006316915A (en) 2005-05-13 2005-05-13 Bearing device

Country Status (1)

Country Link
JP (1) JP2006316915A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210038A (en) * 2008-03-05 2009-09-17 Ntn Corp Rolling bearing
CN102725545A (en) * 2010-01-20 2012-10-10 Ntn株式会社 Torque calculation method for four-pont contact ball bearing, calculation device, and calculation program
CN103174740A (en) * 2013-03-20 2013-06-26 河南科技大学 Method for designing groove curvature radius coefficient of four-point contact ball bearing
US10861488B2 (en) 2019-03-19 2020-12-08 Kabushiki Kaisha Toshiba Disk device having first and second actuator assemblies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210038A (en) * 2008-03-05 2009-09-17 Ntn Corp Rolling bearing
CN102725545A (en) * 2010-01-20 2012-10-10 Ntn株式会社 Torque calculation method for four-pont contact ball bearing, calculation device, and calculation program
US9002662B2 (en) 2010-01-20 2015-04-07 Ntn Corporation Torque calculation method, calculation device, and calculation program for four-point contact ball bearing
CN103174740A (en) * 2013-03-20 2013-06-26 河南科技大学 Method for designing groove curvature radius coefficient of four-point contact ball bearing
US10861488B2 (en) 2019-03-19 2020-12-08 Kabushiki Kaisha Toshiba Disk device having first and second actuator assemblies

Similar Documents

Publication Publication Date Title
US4656545A (en) Magnetic disc memory device
JP2007305268A (en) Bearing unit
JP2006329218A (en) Rolling bearing cage
JP2006316915A (en) Bearing device
JP5593654B2 (en) Robot joint
JPH11328835A (en) Motor and hard disk driving device provided with the same motor
JPH11210771A (en) Double row bearing device
JP2011163541A (en) Ball bearing and bearing device
JP2001241448A (en) Cage for ball bearing and ball bearing
JP6157439B2 (en) Bearing device, pivot assembly bearing and hard disk drive
WO2019151456A1 (en) Ball bearing and bearing unit
JP2004003532A (en) Retainer
JP2007309455A (en) Ball bearing
JP6445770B2 (en) Rolling bearing, rolling bearing device, and information recording device
JP2017166523A (en) Ball bearing and pivot bearing unit
JP2006214507A (en) Anti-friction bearing and sealing plate for bearing
JP2007010054A (en) Rolling bearing
JP2007285463A (en) Rolling bearing
JP2003227514A (en) Swing arm device
JP2005030507A (en) Ball bearing
JP2007120722A (en) Rolling bearing
JP2006250201A (en) Roller bearing
JP2016091588A (en) Pivot assembly bearing
JP2002206524A (en) Bearing and rotary body support device
JP2003240002A (en) Bearing device