JP2006316799A - Shaft alignment system and its method - Google Patents

Shaft alignment system and its method Download PDF

Info

Publication number
JP2006316799A
JP2006316799A JP2005136772A JP2005136772A JP2006316799A JP 2006316799 A JP2006316799 A JP 2006316799A JP 2005136772 A JP2005136772 A JP 2005136772A JP 2005136772 A JP2005136772 A JP 2005136772A JP 2006316799 A JP2006316799 A JP 2006316799A
Authority
JP
Japan
Prior art keywords
shaft
support member
pressurizing
shaft support
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005136772A
Other languages
Japanese (ja)
Inventor
Eiji Ishibashi
英次 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005136772A priority Critical patent/JP2006316799A/en
Publication of JP2006316799A publication Critical patent/JP2006316799A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft alignment system for a reciprocating shaft having high shaft aligning accuracy and requiring less working man-hours and to provide its method. <P>SOLUTION: A shaft supporting member 3 in a laminated structure for supporting the shaft 2 via a spring 31 is positioned and held by a cylinder 61 as an original point setting means and an X-stage 62 as a shaft supporting member moving means and a Y-stage, not illustrated, and it is pressed and held into the state of being fixed with screwing by a pressing mechanism 4. Then, the shaft 2 is shifted and released from a balance position for free motion. The motion is detected by a position detecting sensor 71 and its output is analyzed by a vibration analyzer 72 to determine the contact or not of the shaft 2 with a shaft insertion portion 11. Depending on the determination result, the shaft supporting member 3 is re-located and the shaft 2 is positioned. Acoustic emission can be utilized for determining the contact or not. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、軸とその挿入孔との嵌め合わせにおいて、非接触位置、または摺動抵抗の小さい位置に両者を位置決め(軸芯合わせ)するための技術の内の、軸が位置調節可能な軸支持部材にばねによって宙吊り状態に支持されて長さ方向に往復運動する軸(以下では「往復軸」といい、前後の関係から省略できる場合には単に「軸」と略称する)である場合の軸芯合わせ技術に関する。   The present invention relates to a shaft in which the shaft can be adjusted among the techniques for positioning (shaft alignment) the shaft and the insertion hole in a non-contact position or a position having a small sliding resistance. A shaft that is supported by a support member in a suspended state by a spring and reciprocates in the length direction (hereinafter referred to as a “reciprocal shaft”, and simply abbreviated as “axis” if it can be omitted from the front-rear relationship). It is related with a shaft alignment technology.

最初に、この発明が対象とする往復軸を有する構造物の軸近傍の構成から説明する。
図11は、往復軸(図11では軸)2を有する構造物の軸2近傍の構成を示し、(a)は分解斜視図、(b)は断面図である。
往復軸2は、軸支持部材3にばね31によって宙吊りされた状態で支持されており、本体1の軸挿入部11に挿入される。軸挿入部11と軸2との嵌め合わせ状態が良好と判定されると、固定用ねじ5が、軸支持部材3の貫通孔32に挿入されて本体1のねじ孔12にねじ込まれ、本体1に軸支持部材3を均等なねじ締めによって固定(以下では「ねじ締めによる固定」を「ねじ固定」という)する。
ばね31としては、板ばねが最も一般的に使用される。軸支持部材3としては、加工の容易さおよび低コスト化の観点から、この板ばねとスペーサとを積層して構成する積層構造物が採用されることが多い。図11の場合の軸支持部材3は、上下一対の板ばねと中間の2つのスペーサとで構成され、これらがスポット溶接で一体化されている。
First, the structure in the vicinity of the axis of a structure having a reciprocating axis that is the subject of the present invention will be described.
FIG. 11 shows a structure in the vicinity of the shaft 2 of a structure having a reciprocating shaft (shaft in FIG. 11) 2, (a) is an exploded perspective view, and (b) is a sectional view.
The reciprocating shaft 2 is supported by the shaft support member 3 in a suspended state by a spring 31 and is inserted into the shaft insertion portion 11 of the main body 1. When it is determined that the fitting state of the shaft insertion portion 11 and the shaft 2 is good, the fixing screw 5 is inserted into the through hole 32 of the shaft support member 3 and screwed into the screw hole 12 of the main body 1. The shaft support member 3 is fixed by uniform screw tightening (hereinafter, “fixing by screw tightening” is referred to as “screw fixing”).
As the spring 31, a leaf spring is most commonly used. As the shaft support member 3, a laminated structure in which the leaf spring and the spacer are laminated is often employed from the viewpoint of ease of processing and cost reduction. The shaft support member 3 in the case of FIG. 11 includes a pair of upper and lower leaf springs and two intermediate spacers, which are integrated by spot welding.

本体1に軸支持部材3がねじ固定された状態において最も重要なことは、軸2が軸挿入部11内をできる限り少ない摩擦抵抗で往復運動できることであり、そのためには、軸2と軸挿入部11とが非接触状態にあることである。しかし、軸2は、往復運動中においてその向きを常に一定に保っているとは限らないので、外形から軸挿入孔11との位置関係を特定することはできず、また、図11(b)の状態にセットされ往復運動する場合には、挿入部分が接触しているか否かを外部から目視検査することは不可能である。このため、従来技術においては、軸2の振動具合を目視して判断するとか、摩擦音を聞き分けるというような感覚的な検査で、軸挿入部11と軸2との嵌め合わせの良否を判定している。
嵌め合わせの状態が不良と判定された場合には、ねじを緩めて軸挿入部11の位置を調整した後、再度ねじ固定して嵌め合わせの良否を判定する。
The most important thing when the shaft support member 3 is screwed to the main body 1 is that the shaft 2 can reciprocate in the shaft insertion portion 11 with as little frictional resistance as possible. That is, the part 11 is in a non-contact state. However, the orientation of the shaft 2 is not always kept constant during the reciprocating motion, so the positional relationship with the shaft insertion hole 11 cannot be specified from the outer shape, and FIG. When the reciprocating motion is set in this state, it is impossible to visually inspect whether or not the insertion portion is in contact with the outside. For this reason, in the prior art, whether or not the shaft insertion portion 11 and the shaft 2 are fitted is determined by a sensory inspection such as judging the vibration state of the shaft 2 by visual observation or listening to frictional sounds. Yes.
When it is determined that the fitting state is poor, the screw is loosened and the position of the shaft insertion portion 11 is adjusted, and then the screw is fixed again to determine whether the fitting is good or bad.

上述のような人間の感覚に頼る検査では、僅かな接触状態等を判別することは困難であるし自動化もできない。
また、軸支持部材3が本体1に固定用ねじ5で固定される場合には、ねじの締め付けによって軸2が締め付け前の状態から変化することがある。図12はこのような軸状態の変化の一例を示す断面図であり、(a)図のように、締め付け前の状態では、軸2が軸挿入部11内の中央に垂直に位置決めされた状態であっても、固定用ねじ5で軸支持部材3を本体1にねじ固定した後には、(b)図のように、ねじ締めによって左側より右側が大きく圧縮されて圧縮差を生じ、軸2が傾いて軸の下部が左に片寄った状態になり、状況によっては接触状態になる。このようにねじ固定によって軸2の状態が変化する場合には、ねじ固定しない状態で軸2と軸挿入部11とが接触しない状態に軸心合わせされていても、ねじ固定によって接触状態になることもある、という問題点を有している。この問題点は、軸支持部材3が剛体構造物の場合にはそれほど問題にはならないが、軸支持部材3が積層構造物の場合には、各積層部材の反りや曲がりやばり等によって層間に存在した間隙がねじの締めつけによってつぶれるので顕著となる。更に、層間に間隙が存在する状態では、バランスよくねじ締めするために、順序良く且つ少しずつねじ締めすることが必要となるので、軸心合わせに要する時間を長くする。
In the inspection that relies on the human sense as described above, it is difficult to discriminate a slight contact state or the like, and it cannot be automated.
When the shaft support member 3 is fixed to the main body 1 with the fixing screw 5, the shaft 2 may change from the state before tightening due to the tightening of the screw. FIG. 12 is a cross-sectional view showing an example of such a change in the shaft state. As shown in FIG. 12A, in the state before tightening, the shaft 2 is positioned vertically at the center in the shaft insertion portion 11. However, after the shaft support member 3 is fixed to the main body 1 with the fixing screw 5, the right side is greatly compressed from the left side by screw tightening as shown in FIG. Will tilt and the lower part of the shaft will be shifted to the left, and depending on the situation, it will be in contact. In this way, when the state of the shaft 2 is changed by screw fixing, even if the shaft 2 and the shaft insertion portion 11 are not in contact with each other without being screwed, they are brought into contact with the screw fixing. There is a problem that sometimes. This problem is not so much a problem when the shaft support member 3 is a rigid structure, but when the shaft support member 3 is a laminated structure, it is caused between the layers due to warpage, bending, flashing, etc. of each laminated member. This is noticeable because the existing gaps are crushed by tightening the screws. Further, in the state where there is a gap between layers, in order to perform screw tightening in a balanced manner, it is necessary to perform screw tightening in order and little by little, so that the time required for axial alignment is lengthened.

この発明の課題は、軸芯合わせ精度が高く且つ作業工数が少ない往復軸の軸心合わせシステムおよびその軸心合わせ方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a reciprocating shaft centering system and a shaft centering method thereof that have high centering accuracy and low work man-hours.

往復軸が軸変位解放手段を離れると、この軸は軸挿入部との位置関係に応じて運動する。軸は、軸挿入部と強く接触しているとそのまま動かないし、接触が弱くなると動くことは動くが振動せず、接触が更に弱くなって初めて振動し始める。しかし、その振動数は低く減衰が激しい。殆ど摩擦力を持たない接触状態か非接触状態になって、軸は固有の振動数および減衰率で振動する。また、接触部分があると、その部分での摩擦によって、その材質と形状と表面状態等による特有の音(超音波を含む)を発する(アコースティックエミッション)。したがって、このような情報を把握すれば往復軸と軸挿入部との位置関係を把握できる。この発明は、本体に軸挿入部をねじ固定した状態に近い加圧状態で得られるこのような情報を軸芯合わせに利用したものである。
請求項1の発明は、本体の軸挿入部に挿入され且つ本体上で位置調節可能な積層構造の軸支持部材にばねによって宙吊り状態に支持されて長さ方向に往復運動する軸を、本体上で軸支持部材を位置調節してねじ固定することによって、軸と軸挿入部が接触しない位置関係に本体と軸支持部材を位置決め固定する軸心合わせシステムであって、前記軸支持部材が前記本体にねじ固定される際に軸支持部材に印加される締結力と同等の加圧力(以下では「ねじ締め等価加圧力」という)を軸支持部材のねじ固定に支障のない位置に印加するための加圧手段と、前記軸を平衡位置から長さ方向に変位させた後に解放するための軸変位解放手段と、この軸変位解放手段による軸の変位・解放後の運動または運動に伴う現象を検出するための軸状態検出手段と、この軸状態検出手段の検出信号に基づいて、軸が軸挿入部と接触状態にあるか否かを判定するための軸状態判定手段と、この軸状態判定手段からの信号に基づいて、前記軸支持部材を移動させるための軸移動手段と、を備えている。
When the reciprocating shaft leaves the shaft displacement releasing means, the shaft moves according to the positional relationship with the shaft insertion portion. If the shaft is in strong contact with the shaft insertion portion, the shaft does not move as it is. If the contact weakens, the shaft moves but does not vibrate, and starts to vibrate only after the contact is further weakened. However, the frequency is low and the damping is severe. The shaft oscillates at a natural frequency and damping rate, either in contact or non-contact with little friction. Further, when there is a contact portion, a specific sound (including ultrasonic waves) due to the material, shape, surface condition, and the like is emitted by the friction at that portion (acoustic emission). Therefore, if such information is grasped, the positional relationship between the reciprocating shaft and the shaft insertion portion can be grasped. In the present invention, such information obtained in a pressurized state close to the state in which the shaft insertion portion is fixed to the main body by screws is used for the alignment of the shaft.
According to the first aspect of the present invention, a shaft that is inserted into the shaft insertion portion of the main body and is supported in a suspended state by a spring on a shaft support member having a laminated structure that can be adjusted on the main body and reciprocating in the length direction is provided A shaft centering system that positions and fixes the main body and the shaft support member in a positional relationship in which the shaft and the shaft insertion portion do not come into contact with each other by adjusting the position of the shaft support member and screwing the shaft support member, the shaft support member being the main body For applying a pressure equal to the fastening force applied to the shaft support member when the screw is fixed to the shaft (hereinafter referred to as “screw tightening equivalent pressure”) to a position where there is no hindrance to screw fixing of the shaft support member. Pressurization means, shaft displacement release means for releasing the shaft after it has been displaced from the equilibrium position in the length direction, and detecting movements after the displacement or release of the shaft by this shaft displacement release means or a phenomenon associated with the movement Axis status detection A shaft state determining unit for determining whether or not the shaft is in contact with the shaft insertion portion based on a detection signal of the shaft state detecting unit, and a signal from the shaft state determining unit And a shaft moving means for moving the shaft support member.

したがって、加圧手段によって軸挿入部を本体にねじ固定された状態に近い状態に加圧し、その状態で、軸変位解放手段によって軸を運動させて、その運動またはその運動に伴う現象を軸状態検出手段で検出し、検出された情報から軸状態検出手段によって軸と軸挿入部との接触の有無を判定し、「両者の接触あり」と判定した場合には、加圧状態を解除して軸移動手段によって軸支持部材を移動させることができる。これら一連の操作またはこの繰り返しによって、軸挿入部が本体にねじ固定された状態において「両者の接触なし」となる領域が存在する場合には、ほぼ確実にその領域内に軸を位置決めすることができる。
請求項2の発明は、前記加圧手段として、軸支持部材のねじ固定位置毎に配置され固定位置の近傍に接触して軸支持部材を加圧するための複数の加圧ピンを有する加圧手段を備えている。
Therefore, the shaft insertion part is pressurized to a state close to the state of being screw-fixed to the main body by the pressurizing means, and in that state, the shaft is moved by the shaft displacement releasing means, and the motion or the phenomenon accompanying the motion is in the axial state. Detected by the detecting means, the shaft state detecting means determines whether or not the shaft and the shaft insertion portion are in contact with each other based on the detected information. The shaft support member can be moved by the shaft moving means. When there is a region where there is no contact between the shaft insertion portion and the shaft insertion portion fixed to the main body by this series of operations or this repetition, the shaft can be positioned almost certainly in that region. it can.
According to a second aspect of the present invention, as the pressurizing means, a pressurizing means having a plurality of pressurizing pins disposed at each screw fixing position of the shaft support member and contacting the vicinity of the fixed position to pressurize the shaft support member. It has.

加圧ピンが軸支持部材のねじ固定位置の個々の近傍に配置されているので、加圧手段による軸支持部材の加圧で、軸支持部材が本体にねじ固定された状態に近い状態を得ることができる。
請求項3の発明は、前記加圧ピンとして、スプリングで付勢される加圧ピンを備えている。
スプリングはその変形量から作用力を算出できるので、スプリングで付勢される加圧ピンを用いると、加圧ピンが軸支持部材にかけている加圧力を加圧ピン毎に算出することができる。
請求項4の発明は、前記加圧ピンの先端位置を個々に調整するための零点調節機構を備えている。
Since the pressure pins are arranged in the vicinity of the screw fixing positions of the shaft support member, a state close to the state in which the shaft support member is screwed to the main body is obtained by pressurization of the shaft support member by the pressing means. be able to.
According to a third aspect of the present invention, a pressure pin that is biased by a spring is provided as the pressure pin.
Since the spring can calculate the acting force from the amount of deformation, the pressure applied by the pressure pin to the shaft support member can be calculated for each pressure pin when the pressure pin biased by the spring is used.
According to a fourth aspect of the present invention, there is provided a zero point adjusting mechanism for individually adjusting the tip position of the pressure pin.

零点調節機構を備えることによって、加圧ピン間の加圧力のばらつきを許容範囲以内に収めることができる。
請求項5の発明は、前記加圧ピン毎に、加圧力を印加するための個別加圧手段およびその加圧力を計測するための加圧力センサを備えている。
加圧ピン毎に個別加圧手段と加圧力センサを備えているので、加圧ピン間の加圧力のばらつきを許容範囲以内に収めることができる。
請求項6の発明は、請求項1の発明において、前記軸状態検出手段として、軸の長さ方向の位置を検出する位置検出センサを備え、前記軸状態判定手段として、位置検出センサの出力信号から少なくとも軸運動の振動数または振動減衰率を求めて軸と軸挿入部との接触の有無を判定する振動解析装置を備えている。
By providing the zero point adjusting mechanism, it is possible to keep the variation in the applied pressure between the pressure pins within an allowable range.
According to a fifth aspect of the present invention, each pressurizing pin includes an individual pressurizing unit for applying a pressurizing force and a pressurizing sensor for measuring the pressurizing force.
Since the individual pressurizing means and the pressurizing sensor are provided for each pressurizing pin, the variation in pressurizing force between the pressurizing pins can be kept within an allowable range.
According to a sixth aspect of the present invention, in the first aspect of the present invention, the shaft state detection unit includes a position detection sensor that detects a position in the length direction of the shaft, and the output signal of the position detection sensor is used as the shaft state determination unit. A vibration analysis device for determining at least the frequency of vibration of the shaft motion or the vibration damping rate and determining the presence or absence of contact between the shaft and the shaft insertion portion.

位置検出センサおよび振動解析装置を備えているので、軸の運動がその軸とそれを支持しているばねとで決まる固有の振動数および減衰特性での振動か否かを判定することが可能となる。振動数は同じと判定されても、減衰が大きい場合には、僅かに接触しているか非常に接近している状態であるから、微調整することで更に良い状態を得ることができる可能性が高い。
請求項7の発明は、請求項1の発明において、前記軸として磁化された軸を備え、前記軸状態検出手段として、軸挿入部の内壁面に配置されたコイルおよびコイルの誘導起電力を測定する起電力測定装置を備え、前記軸状態判定手段として、起電力測定器の出力信号から少なくとも軸運動の振動数または振動減衰率を求めて軸と軸挿入部との接触の有無を判定する振動解析装置を備えている。
Since it has a position detection sensor and a vibration analysis device, it is possible to determine whether the movement of the shaft is a vibration with a specific frequency and damping characteristics determined by the shaft and the spring supporting it. Become. Even if it is determined that the frequency is the same, if the damping is large, it is in a state where it is slightly touching or very close, so there is a possibility that a better state can be obtained by fine adjustment. high.
The invention of claim 7 is the invention of claim 1, comprising a magnetized shaft as the shaft, and measuring the induced electromotive force of the coil disposed on the inner wall surface of the shaft insertion portion as the shaft state detecting means. A vibration for determining the presence or absence of contact between the shaft and the shaft insertion portion by obtaining at least the vibration frequency or vibration damping rate of the shaft motion from the output signal of the electromotive force measuring device as the shaft state determination means. An analysis device is provided.

磁化された軸の運動を検出するコイルおよび起電力測定器と振動解析装置とを備えているので、請求項6の発明と同様に、軸と軸挿入部との接触の有無を判定することができる。
請求項8の発明は、請求項1の発明において、前記軸状態検出手段として、アコースティックエミッション検出センサを備え、前記軸状態判定手段として、アコースティックエミッション検出センサからの出力信号が軸と軸挿入部との摩擦音であるか否かを判別して軸と軸挿入部との接触の有無を判定する音波解析装置を備えている。
アコースティックエミッション検出センサおよび音波解析装置を備えているので、軸の運動時に嵌め合わせ部分から発生する音を検出・解析して、軸と軸挿入部との接触の有無を判定することができる。
Since a coil, an electromotive force measuring device, and a vibration analysis device are provided for detecting the motion of the magnetized shaft, it is possible to determine whether or not there is contact between the shaft and the shaft insertion portion, as in the sixth aspect of the invention. it can.
The invention according to claim 8 is the invention according to claim 1, wherein the shaft state detecting means includes an acoustic emission detection sensor, and the shaft state determining means outputs an output signal from the acoustic emission detection sensor to the shaft and the shaft insertion portion. And a sound wave analysis device for determining whether or not the shaft and the shaft insertion portion are in contact with each other.
Since the acoustic emission detection sensor and the sound wave analysis device are provided, it is possible to detect / analyze the sound generated from the fitting portion during the movement of the shaft and determine whether or not the shaft is in contact with the shaft insertion portion.

請求項9の発明は、請求項1の発明において、前記軸を前記軸挿入部の壁面に押し当てることによって前記軸移動手段の原点位置を決めるための原点設定手段を備えている。
原点位置は軸支持部材の移動基点となり、軸支持部材の位置を明確化できる。更に、この原点設定手段で決められる原点位置は軸と軸挿入部とが接触している位置であるから、軸芯合わせ作業時の軸移動手段の送り方向を片方向に限定することができる。
請求項10の発明は、請求項9の発明において、前記軸移動手段として、直交する2つの方向へ移動させるXステージおよびYステージの一対のステージを備え、前記原点設定手段として、XステージおよびYステージのそれぞれから135度の位置に配備されて前記軸支持部材を両ステージ側へ押すシリンダを備えている。
原点設定手段としてのシリンダが、XステージおよびYステージのそれぞれから135°の位置に配備されて軸支持部材を両ステージ側へ押すので、軸支持部材はほぼ均等に両ステージ側へ押され、両ステージのそれぞれの原点位置が確実に設定される。この原点位置を基準点にして、軸支持部材は、XステージおよびYステージによってそれぞれX方向およびY方向に独立に送られることによって、軸が移動できる全領域のどの部分へも、軸を確実に移動させることができる。
According to a ninth aspect of the present invention, in the first aspect of the invention, there is provided an origin setting means for deciding the origin position of the shaft moving means by pressing the shaft against the wall surface of the shaft insertion portion.
The origin position becomes the movement base point of the shaft support member, and the position of the shaft support member can be clarified. Further, since the origin position determined by the origin setting means is a position where the shaft and the shaft insertion portion are in contact with each other, the feed direction of the shaft moving means during the shaft alignment operation can be limited to one direction.
The invention of claim 10 is the invention of claim 9, wherein the axis moving means includes a pair of stages of an X stage and a Y stage that are moved in two orthogonal directions, and the origin setting means is the X stage and the Y stage. A cylinder is provided at a position of 135 degrees from each of the stages and pushes the shaft support member toward both stages.
Since the cylinder as the origin setting means is arranged at a position of 135 ° from each of the X stage and the Y stage and pushes the shaft support member toward both stages, the shaft support member is pushed toward both stages almost evenly. Each origin position of the stage is set reliably. Using this origin position as a reference point, the shaft support member is independently sent in the X and Y directions by the X stage and Y stage, respectively, so that the shaft can be reliably moved to any part of the entire region where the shaft can move. Can be moved.

請求項11の発明は、請求項1に記載の軸心合わせシステムによる軸心合わせ方法であって、本体上に軸支持部材を置いて本体の軸挿入部に軸を挿入した状態で、ねじ締め等価加圧力を前記加圧手段によって軸支持部材に印加する当初加圧工程と、前記軸変位解放手段によって軸を運動させ、前記軸状態検出手段および前記軸状態判定手段によって軸と軸挿入部との接触の有無を判定する接触状態判定工程と、軸状態判定手段が「両者の接触あり」と判定した場合には、加圧手段の加圧力を除いた後、前記軸移動手段によって軸支持部材を所定の距離だけ移動させる軸支持部材移動工程と、移動後の位置で、ねじ締め等価加圧力を前記加圧手段によって軸支持部材に印加する移動後加圧工程と、を有し、軸状態判定手段が「両者の接触なし」と判定するまで、軸支持部材移動工程、移動後加圧工程および接触状態判定工程を繰り返す。   The invention of claim 11 is an axis alignment method by the axis alignment system according to claim 1, wherein the shaft support member is placed on the main body and the shaft is inserted into the shaft insertion portion of the main body, and then screw tightening is performed. An initial pressurizing step in which an equivalent pressure is applied to the shaft support member by the pressurizing unit, a shaft is moved by the shaft displacement releasing unit, and the shaft and the shaft insertion portion are moved by the shaft state detecting unit and the shaft state determining unit. When the contact state determination step for determining the presence or absence of contact and the shaft state determination means determine that “there is contact between both”, after the pressure applied by the pressure means is removed, the shaft support member is A shaft support member moving step of moving the shaft support member by a predetermined distance, and a post-movement pressurizing step of applying a screw tightening equivalent pressure force to the shaft support member by the pressurizing means at the position after the movement The judging means is “no contact between the two” Until constant, the shaft support member moving step, repeat the movement after the pressing step and the contact state determining step.

軸支持部材移動工程、移動後加圧工程および接触状態判定工程を繰り返すことによって、「両者の接触なし」となる領域が存在する場合には、必ずその領域内に軸を位置決めすることができる。
請求項12の発明は、請求項9に記載の軸芯合わせシステムによる軸芯合わせ方法であって、本体上に軸支持部材を置いて本体の軸挿入部に軸を挿入した状態で、前記原点設定手段によって前記軸移動手段の原点を設定する原点設定工程と、原点位置で、ねじ締め等価加圧力を前記加圧手段によって軸支持部材に印加する原点位置加圧工程と、前記軸変位解放手段によって軸を運動させ、前記軸状態検出手段および前記軸状態判定手段によって軸と軸挿入部との接触の有無を判定する接触状態判定工程と、軸状態判定手段が「両者の接触あり」と判定した場合には、加圧手段の加圧力を除いた後、前記軸移動手段によって軸支持部材を所定の距離だけ移動させる軸支持部材移動工程と、移動後の位置で、ねじ締め等価加圧力を前記加圧手段によって軸支持部材に印加する移動後加圧工程と、を有し、軸状態判定手段が「両者の接触なし」と判定するまで、軸支持部材移動工程、移動後加圧工程および接触状態判定工程を繰り返す。
By repeating the shaft support member moving step, the post-moving pressurizing step, and the contact state determining step, if there is a region where “there is no contact between the two”, the shaft can always be positioned in that region.
The invention of claim 12 is an axis alignment method by the axis alignment system according to claim 9, wherein the origin is placed in a state where an axis support member is placed on the main body and the axis is inserted into the axis insertion portion of the main body. An origin setting step of setting the origin of the shaft moving means by the setting means; an origin position pressurizing step of applying a screw tightening equivalent pressure force to the shaft support member by the pressurizing means at the origin position; and the shaft displacement releasing means The shaft state is moved, and the shaft state detecting means and the shaft state determining means determine whether or not the shaft and the shaft insertion portion are in contact with each other, and the shaft state determining means determines that both are in contact. In this case, after removing the pressurizing force of the pressurizing unit, the shaft support member moving step of moving the shaft support member by a predetermined distance by the shaft moving unit, and the screw tightening equivalent pressurizing force at the position after the movement are performed. By the pressurizing means And a post-movement pressurizing step applied to the shaft support member, and the shaft support member moving step, post-movement pressurizing step, and contact state determining step until the shaft state determining means determines that there is no contact between them. repeat.

原点設定工程が最初にあるので、軸支持部材の位置が明確になり、且つ軸支持部材を原点を基準にした片方向への送りで位置決めすることができる。   Since the origin setting step is first, the position of the shaft support member is clarified, and the shaft support member can be positioned by feeding in one direction based on the origin.

請求項1の発明においては、ねじ締め等価加圧力を軸支持部材のねじ固定位置近傍に印加するための加圧手段と、軸を平衡位置から長さ方向に変位させた後に解放するための軸変位解放手段と、この軸変位解放手段による軸の変位・解放後の運動または運動に伴う現象を検出するための軸状態検出手段と、その検出信号に基づいて、軸が軸挿入部と接触状態にあるか否かを判定する軸状態判定手段と、軸状態判定手段からの信号に基づいて、軸支持部材を移動させるための軸移動手段と、を備えているので、加圧手段によって軸挿入部を本体にねじ固定された状態に近い状態に加圧し、その状態で、軸変位解放手段によって軸を運動させて、その運動またはその運動に伴う現象を軸状態検出手段で検出し、検出された情報から軸状態検出手段によって軸と軸挿入部との接触の有無を判定し、「両者の接触あり」と判定した場合には、加圧状態を解除して軸移動手段によって軸支持部材を移動させることができる。これら一連の操作またはこの繰り返しによって、ねじ固定に近い状態に加圧した状態での接触の有無を判定することができるので、軸挿入部が本体にねじ固定された状態において「両者の接触なし」となる領域が存在する場合には、ほぼ確実にその領域内に軸を位置決めすることができ、しかも、最終のねじ締めだけが必要であって途中でのねじ締めおよびねじ緩めの工程がなくなり、その結果として、工数が短縮される。したがって、この発明によれば、軸芯合わせ精度が高く且つ作業工数が少ない往復軸の軸心合わせシステムを提供することができる。   According to the first aspect of the present invention, a pressurizing means for applying a screw tightening equivalent pressing force in the vicinity of the screw fixing position of the shaft support member, and a shaft for releasing the shaft after displacing it from the equilibrium position in the length direction. Displacement release means, shaft state detection means for detecting movement after the displacement / release of the shaft by the shaft displacement release means or a phenomenon accompanying the movement, and the shaft is in contact with the shaft insertion portion based on the detection signal The shaft state determining means for determining whether or not the shaft is present and the shaft moving means for moving the shaft support member based on the signal from the shaft state determining means are provided. The part is pressurized to a state close to the state of being fixed to the main body with the screw, and in that state, the shaft is moved by the shaft displacement releasing means, and the movement or the phenomenon accompanying the movement is detected by the shaft state detecting means. Shaft status detection means Therefore to determine the presence or absence of contact between the shaft and the shaft inserting portion, when it is determined that "there is contact between the two" can move the shaft support member by a shaft moving means to release the pressure. By this series of operations or this repetition, it is possible to determine whether or not there is contact in a state where the pressure is close to that of screw fixing. Therefore, in the state where the shaft insertion portion is screwed to the main body, “no contact between both” If there is a region that becomes, the shaft can be positioned almost certainly in that region, and only the final screw tightening is necessary, and the process of screw tightening and screw loosening in the middle is eliminated, As a result, the man-hour is shortened. Therefore, according to the present invention, it is possible to provide an axis alignment system for a reciprocating shaft that has a high axis alignment accuracy and a small number of work steps.

請求項2の発明においては、軸支持部材のねじ固定位置の個々の近傍に接触して軸支持部材を加圧するための、固定位置毎に配置された加圧ピンを有する加圧手段を備えているので、加圧手段による軸支持部材の加圧で、軸支持部材が本体にねじ固定された状態に近い状態を得ることができ、軸芯合わせ精度がより高くなる。
請求項3の発明においては、加圧ピンとして、固定位置毎にスプリングで付勢される加圧ピンを備えている。スプリングはその変形量から作用力を算出できるので、スプリングで付勢される加圧ピンを用いると、加圧ピンが軸支持部材にかけている加圧力を加圧ピン毎に算出することができ、それらの値から全体としての最適加圧条件に加圧条件を調節することが可能となる。
請求項4の発明においては、加圧ピンの先端位置を個々に調整するための零点調節機構を備えているので、加圧ピン間の加圧力のばらつきを許容範囲以内に収めることができ、軸芯合わせ精度がより一層高くなる。
According to a second aspect of the present invention, there is provided a pressurizing means having a pressure pin arranged at each fixed position for pressing the shaft support member in contact with the vicinity of each screw fixing position of the shaft support member. Therefore, when the shaft supporting member is pressed by the pressurizing means, a state close to the state where the shaft supporting member is screwed to the main body can be obtained, and the shaft alignment accuracy is further increased.
According to a third aspect of the present invention, the pressure pin includes a pressure pin that is biased by a spring at each fixed position. Since the spring can calculate the acting force from the amount of deformation, if a pressure pin urged by the spring is used, the pressure applied by the pressure pin to the shaft support member can be calculated for each pressure pin. It becomes possible to adjust a pressurization condition to the optimal pressurization condition as a whole from the value of.
In the invention of claim 4, since the zero point adjustment mechanism for individually adjusting the tip position of the pressure pin is provided, the variation in the pressure force between the pressure pins can be kept within an allowable range. The centering accuracy is further increased.

請求項5の発明においては、加圧ピン毎に所定の加圧力を印加するための加圧力印加手段と、加圧ピン毎の加圧力を計測するための加圧力センサと、を備えているので、請求項4の発明と同様に、加圧ピン間の加圧力のばらつきを許容範囲以内に収めることができ、軸芯合わせ精度がより一層高くなる。
請求項6の発明においては、軸状態検出手段として、軸の長さ方向の位置を検出する位置検出センサを備え、軸状態判定手段として、位置検出センサの出力信号から少なくとも軸運動の振動数または振動減衰率を求めて軸と軸支持部材との接触の有無を判定する振動解析装置を備えているので、軸の運動が、その軸とそれを支持しているばねとで決まる固有の振動数および減衰特性での振動か否かを判定することが可能であり、その判定によって軸と軸支持部材との接触の有無を判定することができる。振動数は同じと判定されても、減衰が大きい場合には、僅かに接触しているか非常に接近している状態であるから、位置を微調整することで更に良い状態を得られる可能性が高い。
In the fifth aspect of the invention, the pressure application means for applying a predetermined pressure for each pressure pin and the pressure sensor for measuring the pressure for each pressure pin are provided. As in the fourth aspect of the invention, the variation in the pressing force between the pressure pins can be kept within an allowable range, and the alignment accuracy is further increased.
In a sixth aspect of the present invention, the shaft state detection means includes a position detection sensor that detects a position in the length direction of the shaft, and as the shaft state determination means, at least the vibration frequency of the shaft motion or from the output signal of the position detection sensor Since it has a vibration analysis device that determines the presence or absence of contact between the shaft and the shaft support member by determining the vibration damping factor, the shaft's motion is determined by the shaft and the spring that supports it. In addition, it is possible to determine whether or not the vibration is a damping characteristic, and the determination can determine whether or not the shaft and the shaft support member are in contact with each other. Even if it is determined that the frequency is the same, if the damping is large, it is in a state of being slightly touching or very close, so there is a possibility that a better state can be obtained by finely adjusting the position. high.

請求項7の発明においては、軸状態検出手段として、磁化された軸と軸の移動を誘起起電力に変換するコイルとコイルの誘導起電力を測定する起電力測定器とを備え、軸状態判定手段として、起電力測定器の出力信号から少なくとも軸運動の振動数または振動減衰率を求めて軸と軸挿入部との接触の有無を判定する振動解析装置を備えているので、請求項6の発明と同様に、軸と軸挿入部との接触の有無を判定することができる。
請求項8の発明において、軸状態検出手段として、アコースティックエミッション検出センサを備え、軸状態判定手段として、アコースティックエミッション検出センサからの出力信号が軸と軸挿入部との摩擦音であるか否かを判別して軸と軸支持部材との接触の有無を判定する音波解析装置を備えているので、軸の運動時に嵌め合わせ部分から発生する音を検出してその特徴を解析すれば、軸と軸挿入部との接触の有無を判定することができる。
In the seventh aspect of the present invention, the shaft state detection means includes a magnetized shaft, a coil that converts the movement of the shaft into an induced electromotive force, and an electromotive force measuring device that measures the induced electromotive force of the coil, and determines the shaft state. As a means, a vibration analysis device is provided for determining at least the vibration frequency or vibration damping rate of the shaft motion from the output signal of the electromotive force measuring device and determining the presence or absence of contact between the shaft and the shaft insertion portion. Similar to the invention, the presence or absence of contact between the shaft and the shaft insertion portion can be determined.
The shaft state detecting means includes an acoustic emission detection sensor, and the shaft state determining means determines whether or not an output signal from the acoustic emission detection sensor is a friction sound between the shaft and the shaft insertion portion. Since the sound wave analysis device that determines the presence or absence of contact between the shaft and the shaft support member is provided, if the sound generated from the mating part is detected during the motion of the shaft and its characteristics are analyzed, the shaft and the shaft are inserted. The presence or absence of contact with the part can be determined.

請求項9の発明においては、軸を軸挿入部の壁面に押し当てることによって軸移動手段の原点位置を決めるための原点設定手段を備えている。原点位置は軸支持部材の移動基点となり、軸支持部材の位置を明確化できる。更に、この原点設定手段で決められる原点位置は軸と軸挿入部とが接触している位置であるから、軸芯合わせ作業時の軸移動手段の送り方向を片方向に限定することができる。したがって、この発明によれば、軸移動手段の送り精度が高まり且つ送りプロセスが単純になる。
請求項10の発明においては、軸移動手段として、直行する2つの方向へ移動させるXステージおよびYステージの一対のステージを備え、原点設定手段として、XステージおよびYステージのそれぞれから135°の位置に配備されて軸支持部材を両ステージ側へ押すシリンダを備えているので、原点設定手段としてのシリンダが、軸支持部材をXステージ側およびYステージ側へほぼ均等に押し、両ステージのそれぞれの原点位置を確実に設定させ、この原点位置を基準点にして、XステージおよびYステージが、軸支持部材を、それぞれX方向およびY方向に独立に片方向送りで送る。したがって、この方法によれば、軸を移動させるべき領域のどの部分へも、軸支持部材を高い精度で二次元的に移動させることができる。
According to a ninth aspect of the present invention, there is provided an origin setting means for determining the origin position of the axis moving means by pressing the shaft against the wall surface of the shaft insertion portion. The origin position becomes the movement base point of the shaft support member, and the position of the shaft support member can be clarified. Further, since the origin position determined by the origin setting means is a position where the shaft and the shaft insertion portion are in contact with each other, the feed direction of the shaft moving means during the shaft alignment operation can be limited to one direction. Therefore, according to the present invention, the feeding accuracy of the shaft moving means is increased and the feeding process is simplified.
In the invention of claim 10, the axis moving means includes a pair of X stage and Y stage that are moved in two orthogonal directions, and the origin setting means is at a position of 135 ° from each of the X stage and the Y stage. Is provided with a cylinder that pushes the shaft support member to both stages, so that the cylinder as the origin setting means pushes the shaft support member almost evenly to the X stage side and the Y stage side. The origin position is set reliably, and the X stage and the Y stage send the shaft support members by one-way feeding independently in the X direction and the Y direction, respectively, with the origin position as a reference point. Therefore, according to this method, the shaft support member can be moved two-dimensionally with high accuracy to any part of the region in which the shaft is to be moved.

請求項11の発明においては、本体上に軸支持部材が置かれて本体の軸挿入部に軸が挿入された状態で、ねじ締め等価加圧力を加圧手段によって軸支持部材に印加する当初加圧工程と、軸変位解放手段によって軸を運動させ、軸状態検出手段および軸状態判定手段によって軸と軸挿入部との接触の有無を判定する接触状態判定工程と、軸状態判定手段が「両者の接触あり」と判定した場合には、加圧手段の圧力を除いた後、軸移動手段によって軸支持部材を所定の距離だけ移動させる軸支持部材移動工程と、移動後の位置で、ねじ締め等価加圧力を加圧手段によって軸支持部材に印加する移動後加圧工程と、を有し、軸状態判定手段が「両者の接触なし」と判定するまで、軸支持部材移動工程、移動後加圧工程および接触状態判定工程を繰り返すので、「両者の接触なし」となる領域が存在する場合には、ほぼ確実にその領域内に軸を位置決めすることができる。   In the invention of claim 11, with the shaft support member placed on the main body and the shaft inserted into the shaft insertion portion of the main body, the initial application of applying the screw tightening equivalent pressure to the shaft support member by the pressurizing means. The pressure state, the contact state determination step of moving the shaft by the shaft displacement release means, and determining the presence or absence of contact between the shaft and the shaft insertion portion by the shaft state detection means and the shaft state determination means, and the shaft state determination means If it is determined that there is contact, the shaft support member moving step of moving the shaft support member by a predetermined distance by the shaft moving means after removing the pressure of the pressurizing means, and screw tightening at the moved position A post-movement pressurizing step in which an equivalent pressurizing force is applied to the shaft support member by the pressurizing means, and the shaft support member moving step, post-movement pressurization, until the shaft state determining means determines that there is no contact between the two. Repeat the pressure process and contact state determination process Because, if there is an area to be a "no both contacting" can position the axis almost certainly that region.

請求項12の発明においては、本体上に軸支持部材が置かれて本体の軸挿入部に軸が挿入された状態で、原点設定手段によって前記軸移動手段の原点を設定する原点設定工程と、原点位置で、ねじ締め等価加圧力を加圧手段によって軸支持部材に印加する原点位置加圧工程と、軸変位解放手段によって軸を運動させ、軸状態検出手段および軸状態判定手段によって軸と軸挿入部との接触の有無を判定する接触状態判定工程と、軸状態判定手段が「両者の接触あり」と判定した場合には、加圧手段の加圧力を除いた後、軸移動手段によって軸支持部材を所定の距離だけ移動させる軸支持部材移動工程と、移動後の位置で、ねじ締め等価加圧力を加圧手段によって軸支持部材に印加する移動後加圧工程と、を有し、軸状態判定手段が「両者の接触なし」と判定するまで、軸支持部材移動工程、移動後加圧工程および接触状態判定工程を繰り返すので、最初の原点設定の効果で、軸支持部材の位置が明確になり、且つ軸支持部材を片方向送りで移動させることができて、高い移動精度が得られ、軸芯合わせの作業効率も高くなる。   In the invention of claim 12, in a state where the shaft support member is placed on the main body and the shaft is inserted into the shaft insertion portion of the main body, the origin setting step of setting the origin of the axis moving means by the origin setting means, At the origin position, an origin position pressurizing process in which a screw tightening equivalent pressing force is applied to the shaft support member by the pressurizing means, the shaft is moved by the shaft displacement releasing means, and the shaft state is detected by the shaft state detecting means and the shaft state determining means. When the contact state determination step for determining the presence or absence of contact with the insertion portion and the shaft state determination means determine that “there is contact between both”, after the pressure applied by the pressurizing means is removed, the shaft is moved by the shaft moving means. A shaft support member moving step of moving the support member by a predetermined distance, and a post-movement pressurizing step of applying a screw tightening equivalent pressure force to the shaft support member by a pressurizing means at a position after the movement. The state judgment means The shaft support member moving step, the post-movement pressurizing step, and the contact state determining step are repeated until it is determined that the position of the shaft support member is clear and the shaft support member It can be moved by direction feed, high movement accuracy can be obtained, and the work efficiency of axis alignment is increased.

この発明による軸芯合わせシステムおよびその軸芯合わせ方法は、軸支持部材として、本体にねじ固定されたときに内在層間間隙のつぶれによって軸状態の変化を発生し易い積層構造の軸支持部材を用いる場合に適用されるものであって、この特徴は、ねじ固定に近い状態で軸支持部材を本体に押し付けた状態で、往復軸とこれを挿入する軸挿入部との接触を、両者の接触に伴う軸の往復運動(振動)への影響やアコースティックエミッションによって検知し、接触を検知した場合には、軸を支持している軸支持部材を移動させて、軸の変位・解放と接触の検知とを繰り返し、両者が接触していない状態、すなわち軸芯合わせされた状態、を探し出すことである。
以下に、この発明を実施するための最良の形態について実施例を用いてより詳しく説明する。
The shaft centering system and the shaft centering method according to the present invention use a shaft support member having a laminated structure that is likely to cause a change in shaft state due to the collapse of the inner interlayer gap when screwed to the main body as the shaft support member. This feature is applied to the case where the shaft support member is pressed against the main body in a state close to screw fixing, and the contact between the reciprocating shaft and the shaft insertion portion into which the shaft is inserted is changed to the contact between the two. When the contact is detected by detecting the influence on the reciprocating motion (vibration) of the shaft and acoustic emission, the shaft support member supporting the shaft is moved to detect the displacement / release of the shaft and the contact. Is repeated to find a state in which the two are not in contact, that is, a state in which the axes are aligned.
Hereinafter, the best mode for carrying out the present invention will be described in more detail with reference to examples.

図1は、この発明による軸芯合わせシステムの実施例1の構成を示す概念図であり、図2は、実施例1の加圧機構4の構成例を示す概念図である。なお、図3には、原点設定手段であるシリンダ61と、軸移動手段であるXステージ62およびYステージ63との配置が示されている。
図1に示した往復軸(図1では軸)2を有する構造物は、「従来の技術」の項で、図11を用いて説明した、往復軸2を有する構造物と全く同じである。往復軸2は、4層積層構造の軸支持部材3にばね31によって宙吊りされた状態で保持されており、本体1の軸挿入部11に挿入されている。軸支持部材3は、軸芯合わせされた状態で、軸支持部材3の不図示の貫通孔(図11では図示)に挿入された不図示の固定用ねじ(図11では図示)によって、本体1にねじ固定される。なお、本体1の上部には、軸支持部材3をガイドするための凹みが形成されている。
FIG. 1 is a conceptual diagram showing a configuration of a first embodiment of an axis alignment system according to the present invention, and FIG. 2 is a conceptual diagram showing a configuration example of a pressurizing mechanism 4 of the first embodiment. FIG. 3 shows the arrangement of the cylinder 61 as origin setting means and the X stage 62 and Y stage 63 as axis moving means.
The structure having the reciprocating shaft 2 (shaft in FIG. 1) shown in FIG. 1 is exactly the same as the structure having the reciprocating shaft 2 described in FIG. The reciprocating shaft 2 is held in a suspended state by a spring 31 on a shaft support member 3 having a four-layer structure, and is inserted into the shaft insertion portion 11 of the main body 1. The shaft support member 3 is in a state in which the shaft 1 is aligned with the body 1 by a fixing screw (not shown in FIG. 11) inserted in a through hole (not shown in FIG. 11) of the shaft support member 3. It is fixed to the screw. A recess for guiding the shaft support member 3 is formed in the upper portion of the main body 1.

この実施例は、軸支持部材3を本体1に押し付けるための加圧機構4と、軸2を長さ方向に変位させて解放するための不図示の軸変位解放手段と、位置検出センサ71と、振動解析装置72と、Xステージ62およびYステージ63(図1には不図示)と、シリンダ61と、で構成されている。
加圧機構4は、軸支持部材3が本体1にねじ固定されたのに近い状態を作り出すための手段であって、軸支持部材3が本体1にねじ固定される際に軸支持部材3に印加される圧縮力と同等の加圧力(ねじ締め等価加圧力)で軸支持部材3を本体1に押し付けるための加圧手段である。図2に示した加圧機構4は、取付台41と加圧モータ42と加圧ユニット43と加圧ピン44とで構成され、取付台41に取り付けられた加圧モータ42によって加圧方向に駆動される加圧ユニット43の所定位置に配置された複数の加圧ピン44によって、軸支持部材3を本体1にねじ締め等価加圧力で押し付ける。加圧ピン44は、できる限りねじ固定状態に近い状態をつくるために、ねじ孔(図11の貫通孔32)の近傍でねじ固定を妨げない位置に対応させて配置されている。
In this embodiment, a pressurizing mechanism 4 for pressing the shaft support member 3 against the main body 1, a shaft displacement release means (not shown) for releasing the shaft 2 by displacing the shaft 2 in the length direction, a position detection sensor 71, The vibration analysis device 72, the X stage 62 and the Y stage 63 (not shown in FIG. 1), and the cylinder 61 are configured.
The pressurizing mechanism 4 is a means for creating a state close to that of the shaft support member 3 screwed to the main body 1, and is applied to the shaft support member 3 when the shaft support member 3 is screwed to the main body 1. It is a pressurizing means for pressing the shaft support member 3 against the main body 1 with a pressurizing force equivalent to the applied compressive force (equivalent pressurizing force with screws). The pressurizing mechanism 4 shown in FIG. 2 includes a mounting base 41, a pressurizing motor 42, a pressurizing unit 43, and a pressurizing pin 44. The pressurizing motor 42 attached to the mounting base 41 is used in the pressurizing direction. The shaft support member 3 is pressed against the main body 1 with a screw tightening equivalent pressure by a plurality of pressure pins 44 arranged at predetermined positions of the pressure unit 43 to be driven. The pressure pin 44 is arranged in the vicinity of the screw hole (through hole 32 in FIG. 11) so as to correspond to a position that does not hinder screw fixation in order to create a state as close to the screw fixed state as possible.

軸変位解放手段は、軸2を有する構造物が内蔵している手段、例えば電磁力によって軸2を上下に往復運動させるための手段、であって、これを直流励磁で使用する。この直流励磁を切ることによって、軸2は変位していた位置から平衡位置に戻ろうとして往復運動をすることになる。すなわち、この手段は軸変位解放手段となる。位置検出センサ71は、軸状態検出手段として軸2の上方に設置され、軸2の長さ方向の位置を検出する。振動解析装置72は、位置検出センサ71の出力信号を受けて軸運動の振動数や振動減衰率等を求め、軸2と軸挿入部11との接触の有無を判定する軸状態判定手段である。軸変位解放手段と軸状態検出手段と軸状態判定手段とによって、軸の状態が把握される。
Xステージ62およびYステージ63は、振動解析装置8からの信号を受けて軸支持部材3を移動させて軸2の位置を調節する軸移動手段である。シリンダ61は、軸支持部材3をXステージ62およびYステージ63の中間位置側へ移動させて、軸2を軸挿入部11の壁面に押し当て、Xステージ62およびYステージ63の原点位置を決める原点設定手段である。
The shaft displacement release means is a means built in the structure having the shaft 2, for example, a means for reciprocating the shaft 2 up and down by electromagnetic force, and is used for direct current excitation. By turning off this direct current excitation, the shaft 2 reciprocates to return to the equilibrium position from the displaced position. That is, this means becomes an axial displacement release means. The position detection sensor 71 is installed above the shaft 2 as a shaft state detection means, and detects the position of the shaft 2 in the length direction. The vibration analysis device 72 is an axis state determination unit that receives the output signal of the position detection sensor 71 to obtain the frequency of vibration of the shaft, the vibration attenuation rate, etc., and determines whether or not the shaft 2 and the shaft insertion portion 11 are in contact with each other. . The shaft state is grasped by the shaft displacement releasing means, the shaft state detecting means, and the shaft state determining means.
The X stage 62 and the Y stage 63 are shaft moving means for receiving the signal from the vibration analysis device 8 and moving the shaft support member 3 to adjust the position of the shaft 2. The cylinder 61 moves the shaft support member 3 to the intermediate position side of the X stage 62 and the Y stage 63, presses the shaft 2 against the wall surface of the shaft insertion portion 11, and determines the origin positions of the X stage 62 and the Y stage 63. Origin setting means.

図3に示すように、Xステージ62およびYステージ63は、共に軸挿入部11の中央に向かって互いに直交するように配置され、それぞれモータで駆動される。シリンダ61は、Xステージ62およびYステージ63の両方から135°の位置に、その軸が軸挿入部11の直径方向に移動するような向きで配置されている。
次に、このシステムによる軸芯合わせ方法の実施例について説明する。
図3は、原点設定手段であるシリンダ61と、軸移動手段であるXステージ62およびYステージ63との操作を説明するための図で、(a)は軸支持部材3を片寄せた状態を示す平面図、(b)はXステージ62およびYステージ63の原点を設定した状態を示す平面図、(c)は軸支持部材3を保持して移動させている段階の状態を示す平面図である。
図4は、位置検出センサ71および振動解析装置72の出力例を示し、(a)は位置検出センサの出力信号をパソコンでサンプリングしたデータ、(b)はサンプリングデータを振動解析装置で連続した振動波形に変換した振動波形図であり、図5は、図4(b)の振動波形の解析結果を示し、(a)は周波数特性図、(b)は減衰特性図である。
As shown in FIG. 3, both the X stage 62 and the Y stage 63 are arranged so as to be orthogonal to each other toward the center of the shaft insertion portion 11, and each is driven by a motor. The cylinder 61 is disposed at a position of 135 ° from both the X stage 62 and the Y stage 63 so that its axis moves in the diameter direction of the shaft insertion portion 11.
Next, an embodiment of an axis alignment method using this system will be described.
FIG. 3 is a view for explaining the operation of the cylinder 61 as origin setting means and the X stage 62 and Y stage 63 as axis moving means. FIG. (B) is a plan view showing a state in which the origins of the X stage 62 and the Y stage 63 are set, and (c) is a plan view showing a state where the shaft support member 3 is held and moved. is there.
4A and 4B show output examples of the position detection sensor 71 and the vibration analysis device 72. FIG. 4A shows data obtained by sampling the output signal of the position detection sensor with a personal computer, and FIG. FIG. 5 is a vibration waveform diagram converted into a waveform, FIG. 5 shows the analysis result of the vibration waveform of FIG. 4B, (a) is a frequency characteristic diagram, and (b) is an attenuation characteristic diagram.

最初に、シリンダ61、Xステージ62およびYステージ63のそれぞれの軸支持部材3への接触端を、本体1の外側に位置取らせた状態で、本体1の中央部へ軸支持部材3を載せて、軸挿入部11へ軸2を挿入する。
次に、シリンダ61で軸支持部材3を押して、軸支持部材3をXステージ62およびYステージ63の中間位置側へ片寄せる[図3(a)]。
続いて、Xステージ62およびYステージ63のそれぞれの軸支持部材3への接触端を、軸支持部材3に接触する位置まで移動させる。この状態が原点設定状態であり、軸支持部材3は、シリンダ61、Xステージ62およびYステージ63のそれぞれの接触端に保持される[図3(b)]。
この状態で、Xステージ62およびYステージ63のモータを駆動して、軸支持部材3をそれぞれX方向およびY方向に所定の距離だけ移動させる。このため、シリンダ61の押す力は、Xステージ62およびYステージ63の押す力に比べて十分に小さく設定されている。
First, the shaft support member 3 is mounted on the center of the main body 1 with the contact ends of the cylinder 61, the X stage 62, and the Y stage 63 positioned on the outer side of the main body 1. Thus, the shaft 2 is inserted into the shaft insertion portion 11.
Next, the shaft support member 3 is pushed by the cylinder 61, and the shaft support member 3 is shifted to the intermediate position side of the X stage 62 and the Y stage 63 [FIG. 3 (a)].
Subsequently, the contact end of each of the X stage 62 and the Y stage 63 with respect to the shaft support member 3 is moved to a position where it contacts the shaft support member 3. This state is the origin setting state, and the shaft support member 3 is held at the contact ends of the cylinder 61, the X stage 62, and the Y stage 63 [FIG. 3 (b)].
In this state, the motors of the X stage 62 and the Y stage 63 are driven to move the shaft support member 3 by a predetermined distance in the X direction and the Y direction, respectively. For this reason, the pushing force of the cylinder 61 is set sufficiently smaller than the pushing force of the X stage 62 and the Y stage 63.

この位置で、加圧機構4によって軸支持部材3を本体1にねじ締め等価加圧力で押し付けた後、構造物が備えているコイルを直流励磁して、軸2を下方に下げ、励磁を切って軸2を解放し、軸2をばね4の力によって軸挿入孔11内で運動させる。軸2の運動は、その上方に設置されている位置検出センサ7によって検出され、その検出値がサンプリングされる。このサンプリングデータを振動解析装置8で解析して、軸2と軸挿入部11との接触の有無を判定する[図3(c)]。
この判定結果が「接触なし」の場合には、軸支持部材3を固定用ねじで本体1に固定し、シリンダ61、Xステージ62およびYステージ63のそれぞれの軸支持部材3への接触端を、本体1の外側に戻して、軸芯合わせプロセスを終了する。
この判定結果が「接触あり」の場合には、加圧機構4の加圧を除いた状態で、Xステージ62およびYステージ63のいずれかまたは両方のモータを駆動して、軸支持部材3をそれぞれX方向およびY方向のいずれかまたは両方に所定の距離だけ移動させた後、上述と同様の方法で、軸2を上下に往復運動させてその運動を解析し、軸2と軸挿入部11との接触の有無を判定する。判定結果が「接触あり」である場合には、想定できる移動範囲内において、この工程を繰り返し、判定結果が「接触なし」になった時点で、軸支持部材3を本体1にねじ固定し、軸支持部材3の加圧機構4による加圧とシリンダ61、Xステージ62およびYステージ63の保持を解除して、軸芯合わせプロセスを終了する。
At this position, after the shaft support member 3 is pressed against the main body 1 with an equivalent pressure by the pressurizing mechanism 4, the coil provided in the structure is DC-excited, the shaft 2 is lowered downward, and the excitation is turned off. The shaft 2 is released, and the shaft 2 is moved in the shaft insertion hole 11 by the force of the spring 4. The movement of the shaft 2 is detected by a position detection sensor 7 installed above the shaft 2, and the detected value is sampled. The sampling data is analyzed by the vibration analysis device 8 to determine whether or not the shaft 2 and the shaft insertion portion 11 are in contact [FIG. 3 (c)].
When the determination result is “no contact”, the shaft support member 3 is fixed to the main body 1 with a fixing screw, and the contact ends of the cylinder 61, the X stage 62, and the Y stage 63 with respect to the shaft support member 3 are set. Returning to the outside of the main body 1, the axis alignment process is completed.
If the determination result is “contact”, the motor of either or both of the X stage 62 and the Y stage 63 is driven in a state where the pressurization of the pressurizing mechanism 4 is removed, and the shaft support member 3 is moved. After moving a predetermined distance in either or both of the X direction and the Y direction, the shaft 2 is reciprocated up and down in the same manner as described above to analyze the motion, and the shaft 2 and the shaft insertion portion 11 are analyzed. The presence or absence of contact with is determined. When the determination result is “with contact”, this process is repeated within the assumed range of movement, and when the determination result becomes “without contact”, the shaft support member 3 is screwed to the main body 1, The pressurization mechanism 4 of the shaft support member 3 and the holding of the cylinder 61, the X stage 62 and the Y stage 63 are released, and the shaft alignment process is completed.

加圧機構4による加圧状態で軸支持部材3を本体1にねじ固定するので、ねじ締めによって軸支持部材3が変形することはなく、したがって軸の状態も変わらない。その結果として、望ましい状態の軸心合わせが確実に実行できる。
ここで、取得データおよび解析結果について、図4および図5を用いて説明する。
図4(a)は、位置検出センサ71の出力をパソコンに取り込んだサンプリングデータであり、横軸が時間であり、縦軸が平衡位置からの変位量である。このデータから作成した連続波形が図4(b)であり、この連続波形を周波数分析した結果が図5(a)であり、減衰率を求めるものが図5(b)である。なお、図4(b)および図5(b)でも、横軸が時間であり、縦軸が変位量である。図5(a)では、横軸が周波数であり、縦軸が振幅である
図4および図5に示した結果は、周波数が約17Hzで、減衰も正常であって、軸2と軸挿入部11とは接触していない状態にあるものである。これに対して、軸2と軸挿入部11とが接触している場合には、その接触状態によって程度は異なるが、減衰が激しくなり、周波数が低くなって、波形も乱れてくる。したがって、「接触なし」の状態の周波数および減衰率を基準として、取得データをこれと比較すれば、接触の程度も含めて接触を検知することができるので、両者の比較から、Xステージ62およびYステージ63の送り量を調整することも可能であり、これによって軸芯合わせの効率を高めることができる。
Since the shaft support member 3 is screwed to the main body 1 in a pressurized state by the pressurizing mechanism 4, the shaft support member 3 is not deformed by screw tightening, and therefore the shaft state does not change. As a result, the desired centering can be reliably performed.
Here, acquired data and analysis results will be described with reference to FIGS. 4 and 5.
FIG. 4A shows sampling data obtained by taking the output of the position detection sensor 71 into a personal computer, the horizontal axis is time, and the vertical axis is the amount of displacement from the equilibrium position. FIG. 4B shows a continuous waveform created from this data, FIG. 5A shows the result of frequency analysis of this continuous waveform, and FIG. 5B shows the attenuation factor. In FIGS. 4B and 5B, the horizontal axis is time, and the vertical axis is displacement. In FIG. 5 (a), the horizontal axis is the frequency and the vertical axis is the amplitude. The results shown in FIGS. 4 and 5 show that the frequency is about 17 Hz and the attenuation is normal. 11 is in a non-contact state. On the other hand, when the shaft 2 and the shaft insertion portion 11 are in contact with each other, the degree of attenuation is increased, the frequency is lowered, and the waveform is also disturbed, depending on the contact state. Therefore, if the acquired data is compared with the frequency and attenuation rate in the state of “no contact” as a reference, the contact including the degree of contact can be detected. It is also possible to adjust the feed amount of the Y stage 63, which can increase the efficiency of axis alignment.

なお、参考までに記すと、軸2と軸挿入部11との間隔は、例えば数10μmである。   For reference, the distance between the shaft 2 and the shaft insertion portion 11 is, for example, several tens of μm.

この実施例は、実施例1の加圧機構4を、図6に示した加圧機構4aに置き換えたものである。
この加圧機構4aは、加圧ピンとして、個々にスプリング45で付勢された加圧ピン44aを有する加圧ユニットを用いている。加圧ピン44aがスプリング45で個々に付勢されるので、それぞれのスプリング45の変形量から対応する加圧ピン44aの加圧力を個別に知ることができる。そのため、加圧モータ42の加圧力(全ピンの総加圧力)を必要に応じて増減させて全体としての加圧状態を最適化することが可能となる。
In this embodiment, the pressure mechanism 4 of the first embodiment is replaced with a pressure mechanism 4a shown in FIG.
The pressurizing mechanism 4a uses a pressurizing unit having pressurizing pins 44a urged by springs 45 as pressurizing pins. Since the pressure pins 44a are individually urged by the springs 45, the pressure applied to the corresponding pressure pins 44a can be individually known from the deformation amount of each spring 45. For this reason, it is possible to optimize the pressure state as a whole by increasing or decreasing the pressing force of the pressing motor 42 (the total pressing force of all the pins) as necessary.

この実施例は、実施例1の加圧機構4を、図7に示した加圧機構4bに置き換えたものである。
この加圧機構4bは、実施例2と同様に、加圧ピンとして個々にスプリング45で付勢された加圧ピン44aを用いているのに加えて、加圧ピン44a毎にその零点位置を調整するための零点調整部46を備えている。この零点調整部46を調整することによって、個々の加圧ピン44aの加圧力を調節できるので、個々の加圧ピン44a間のばらつきを軽減させることができ、ねじ固定の状態に近い加圧状態を確実に確保することができる。
In this embodiment, the pressure mechanism 4 of the first embodiment is replaced with a pressure mechanism 4b shown in FIG.
In the same manner as in the second embodiment, the pressure mechanism 4b uses the pressure pins 44a individually urged by the springs 45 as pressure pins, and sets the zero point position for each pressure pin 44a. A zero point adjustment unit 46 for adjustment is provided. By adjusting this zero point adjustment section 46, the pressure applied to each pressure pin 44a can be adjusted, so variations between individual pressure pins 44a can be reduced, and the pressure state close to the screw-fixed state Can be ensured.

この実施例は、実施例1の加圧機構4を、図8に示した加圧機構4cに置き換えたものである。
この加圧機構4cは、加圧ピン44cごとに、加圧モータ42cおよび加圧力を検出するための荷重センサ47を備えている。荷重センサ47の出力に応じて対応する加圧モータ42cの加圧力を調節することによって、ねじ固定の状態に近い加圧状態を確実に確保することができる。
In this embodiment, the pressurizing mechanism 4 of the first embodiment is replaced with a pressurizing mechanism 4c shown in FIG.
The pressurizing mechanism 4c includes a pressurizing motor 42c and a load sensor 47 for detecting the applied pressure for each pressurizing pin 44c. By adjusting the pressurizing force of the corresponding pressurizing motor 42c according to the output of the load sensor 47, a pressurizing state close to the screw fixing state can be reliably ensured.

図9は、実施例5の構成を示す概念図である。
この実施例は、実施例1の軸を保磁力の大きな材料で作成した磁化された軸2aに置き換え、実施例1の軸状態検出手段としての位置検出センサ71を、コイル81および誘導起電力測定器82に置き換えたものである。
コイル81は、軸挿入部11の壁面に配置され、誘導起電力測定器82に接続されている。磁化された軸2aが上下運動することによって、その運動に対応してコイル81に誘導起電力が発生するので、その誘導起電力を誘導起電力測定器82で測定して軸2aの運動情報を把握するのである。誘導起電力測定器82の出力を振動解析装置に入力すれば、実施例1と全く同様にして、軸2aと軸挿入部11との接触状態の有無を判定することができ、軸芯を合わせることができる。
FIG. 9 is a conceptual diagram illustrating a configuration of the fifth embodiment.
In this embodiment, the shaft of the first embodiment is replaced with a magnetized shaft 2a made of a material having a large coercive force, and the position detection sensor 71 as the shaft state detecting means of the first embodiment is replaced with a coil 81 and an induced electromotive force measurement. It is replaced with the vessel 82.
The coil 81 is disposed on the wall surface of the shaft insertion portion 11 and connected to the induced electromotive force measuring device 82. When the magnetized shaft 2a moves up and down, an induced electromotive force is generated in the coil 81 in response to the motion. Therefore, the induced electromotive force is measured by the induced electromotive force measuring device 82 and the motion information of the shaft 2a is obtained. To figure it out. If the output of the induced electromotive force measuring device 82 is input to the vibration analyzer, the presence or absence of the contact state between the shaft 2a and the shaft insertion portion 11 can be determined in the same manner as in the first embodiment, and the shaft core is aligned. be able to.

図10は、磁化された軸2aの変位と誘導起電力とを示した線図であり、横軸が時間であり、縦軸が変位量および誘導起電力である。誘導起電力の位相は変位量の位相に対して90度分だけずれている。しかし、この点に留意すれば、この誘導起電力の測定データを実施例1の変位量の測定データと全く同様に取り扱うことができる。
実施例1および実施例5においては、接触検知の手段として、位置検出センサ71と振動解析装置72の組み合わせ、または、磁化された軸2aとコイル81と誘導起電力測定器82と不図示の振動解析装置の組み合わせ、を用いたが、アコースティックエミッション検出センサおよび音波解析装置を用いることも可能である。この場合には、軸と軸挿入部の接触に伴うアコースティックエミッションの特徴を予め把握しておき、これとアコースティックエミッション検出センサが検出した超音波も含めた音波の特徴とを比較することによって、接触の有無を判定する。
FIG. 10 is a diagram showing the displacement of the magnetized shaft 2a and the induced electromotive force, the horizontal axis is time, and the vertical axis is the displacement amount and induced electromotive force. The phase of the induced electromotive force is shifted by 90 degrees with respect to the phase of the displacement amount. However, if this point is noted, the measurement data of the induced electromotive force can be handled in the same manner as the measurement data of the displacement amount of the first embodiment.
In the first and fifth embodiments, as a means for detecting contact, a combination of the position detection sensor 71 and the vibration analyzing device 72, or the magnetized shaft 2a, the coil 81, the induced electromotive force measuring device 82, and vibration (not shown). Although a combination of analysis devices is used, an acoustic emission detection sensor and a sound wave analysis device can also be used. In this case, the characteristics of acoustic emission associated with the contact between the shaft and the shaft insertion portion are grasped in advance, and this is compared with the characteristics of the sound wave including the ultrasonic wave detected by the acoustic emission detection sensor. The presence or absence of is determined.

この発明による軸芯合わせシステムの実施例1の構成を示す概念図The conceptual diagram which shows the structure of Example 1 of the axial alignment system by this invention 実施例1の加圧機構4の構成を示す概念図Conceptual diagram showing the configuration of the pressurizing mechanism 4 of the first embodiment. 原点設定手段であるシリンダ61と、軸移動手段であるXステージ62およびYステージ63の操作を説明するための図で、(a)は軸支持部材を片寄せた状態を示す平面図、(b)はXステージ62およびYステージ63の原点を設定した状態を示す平面図、(c)は軸支持部材3を固持して移動させている段階の状態を示す平面図FIG. 6 is a diagram for explaining the operation of a cylinder 61 as an origin setting means and an X stage 62 and a Y stage 63 as axis moving means, (a) is a plan view showing a state in which the shaft support members are offset; ) Is a plan view showing a state in which the origins of the X stage 62 and the Y stage 63 are set, and (c) is a plan view showing a state where the shaft support member 3 is fixed and moved. 位置検出センサ71および振動解析装置72の出力を示し、(a)は位置検出センサ71の出力信号をパソコンでサンプリングしたデータ、(b)はサンプリングデータを振動解析装置72で振動波形に変換した振動波形図The output of the position detection sensor 71 and the vibration analysis device 72 is shown, (a) is the data obtained by sampling the output signal of the position detection sensor 71 with a personal computer, and (b) is the vibration obtained by converting the sampling data into the vibration waveform by the vibration analysis device 72. Waveform diagram 図4(b)の振動波形図の解析結果を示し、(a)は周波数特性図、(b)は減衰特性図The analysis result of the vibration waveform diagram of FIG. 4B is shown, (a) is a frequency characteristic diagram, (b) is an attenuation characteristic diagram. 実施例2の加圧機構4aの構成を示す概念図Conceptual diagram showing the configuration of the pressurizing mechanism 4a of the second embodiment. 実施例3の加圧機構4bの構成を示す概念図Conceptual diagram showing the configuration of the pressurizing mechanism 4b of the third embodiment. 実施例4の加圧機構4cの構成を示す概念図Conceptual diagram showing the configuration of the pressurizing mechanism 4c of the fourth embodiment. 実施例5の構成を示す概念図Conceptual diagram showing the configuration of the fifth embodiment. 実施例5による測定結果を示す線図Diagram showing measurement results according to Example 5 このシステムの適用対象となる往復軸を有する構造物の軸2近傍の構成を示し、(a)は分解斜視図、(b)は断面図2 shows a configuration in the vicinity of an axis 2 of a structure having a reciprocating axis to which this system is applied, (a) is an exploded perspective view, and (b) is a sectional view. 従来技術の問題点を説明するための概念図Conceptual diagram for explaining the problems of the prior art

符号の説明Explanation of symbols

1 本体
11 軸挿入部 12 ねじ孔
2 軸 2a 磁化された軸
3 軸支持部材
31 ばね 32 貫通孔
4、4a、4b、4c 加圧機構
41、41a 取付台 42、42c 加圧モータ
43、43a、43b、43c 加圧ユニット 44、44a、44c 加圧ピン
45 スプリング 46 零点調整部
47 荷重センサ
5 固定用ねじ
61 シリンダ 62 Xステージ
63 Yステージ
71 位置検出センサ 72 振動解析装置
81 コイル 82 誘導起電力測定器
1 Body
11 Shaft insertion part 12 Screw hole 2 Shaft 2a Magnetized shaft 3 Shaft support member
31 Spring 32 Through hole 4, 4a, 4b, 4c Pressure mechanism
41, 41a Mounting base 42, 42c Pressure motor
43, 43a, 43b, 43c Pressure unit 44, 44a, 44c Pressure pin
45 Spring 46 Zero adjustment section
47 Load sensor 5 Fixing screw
61 Cylinder 62 X stage
63 Y stage
71 Position detection sensor 72 Vibration analyzer
81 Coil 82 Inductive electromotive force measuring instrument

Claims (12)

本体の軸挿入部に挿入され且つ本体上で位置調節可能な積層構造の軸支持部材にばねによって宙吊り状態に支持されて長さ方向に往復運動する軸を、本体上で軸支持部材を位置調節してねじ締めにより固定することによって、軸と軸挿入部が接触しない位置関係に本体と軸支持部材を位置決め固定する軸心合わせシステムであって、
前記軸支持部材が前記本体にねじ締めにより固定される際に軸支持部材に印加される締結力と同等の加圧力を軸支持部材のねじ締めに支障のない位置に印加するための加圧手段と、
前記軸を平衡位置から長さ方向に変位させた後に解放するための軸変位解放手段と、
この軸変位解放手段による軸の変位・解放後の運動または運動に伴う現象を検出するための軸状態検出手段と、
この軸状態検出手段の検出信号に基づいて、軸が軸挿入部と接触状態にあるか否かを判定するための軸状態判定手段と、
この軸状態判定手段からの信号に基づいて、前記軸支持部材を移動させるための軸移動手段と、
を備えている、
ことを特徴とする軸心合わせシステム。
Adjusting the position of the shaft that is inserted into the shaft insertion part of the main body and reciprocated in the length direction supported by the spring of the laminated structure that can be adjusted in position on the main body. A shaft centering system that positions and fixes the main body and the shaft support member in a positional relationship in which the shaft and the shaft insertion portion do not contact by fixing by screw tightening,
Pressurizing means for applying a pressing force equivalent to a fastening force applied to the shaft support member when the shaft support member is fixed to the main body by screw tightening to a position that does not hinder screw tightening of the shaft support member When,
A shaft displacement release means for releasing the shaft after displacing the shaft in the length direction from the equilibrium position;
A shaft state detecting means for detecting the movement after the displacement / release of the shaft by the shaft displacement releasing means or a phenomenon accompanying the movement;
Based on the detection signal of the shaft state detection means, the shaft state determination means for determining whether or not the shaft is in contact with the shaft insertion portion,
Based on a signal from the shaft state determination means, a shaft moving means for moving the shaft support member;
With
An axial alignment system characterized by this.
前記加圧手段として、軸支持部材のねじ締めによる固定位置毎に配置され固定位置の近傍に接触して軸支持部材を加圧するための複数の加圧ピンを有する加圧手段を備えている、
ことを特徴とする請求項1に記載の軸心合わせシステム。
As the pressurizing means, there is provided a pressurizing means having a plurality of pressurizing pins that are arranged at fixed positions by screwing of the shaft support member and are in contact with the vicinity of the fixed position to pressurize the shaft support member.
The axis alignment system according to claim 1, wherein:
前記加圧ピンとして、スプリングで付勢される加圧ピンを備えている、
ことを特徴とする請求項2に記載の軸心合わせシステム。
As the pressure pin, a pressure pin biased by a spring is provided.
The axis alignment system according to claim 2, wherein:
前記加圧ピンの先端位置を個々に調整するための零点調節機構を備えている、
ことを特徴とする請求項2に記載の軸心合わせシステム。
A zero point adjustment mechanism for individually adjusting the tip position of the pressure pin;
The axis alignment system according to claim 2, wherein:
前記加圧ピン毎に、加圧力を印加するための個別加圧手段およびその加圧力を計測するための加圧力センサを備えている、
ことを特徴とする請求項2に記載の軸心合わせシステム。
Each pressurizing pin includes an individual pressurizing unit for applying a pressurizing force and a pressurizing sensor for measuring the pressurizing force.
The axis alignment system according to claim 2, wherein:
前記軸状態検出手段として、軸の長さ方向の位置を検出する位置検出センサを備え、
前記軸状態判定手段として、位置検出センサの出力信号から少なくとも軸運動の振動数または振動減衰率を求めて軸と軸挿入部との接触の有無を判定する振動解析装置を備えている、
ことを特徴とする請求項1に記載の軸心合わせシステム。
As the shaft state detecting means, a position detection sensor for detecting a position in the length direction of the shaft is provided,
The shaft state determination means includes a vibration analysis device that determines at least the number of vibrations or vibration attenuation rate of the shaft motion from the output signal of the position detection sensor and determines the presence or absence of contact between the shaft and the shaft insertion portion.
The axis alignment system according to claim 1, wherein:
前記軸として磁化された軸を備え、
前記軸状態検出手段として、軸挿入部の内壁面に配置されたコイルおよびコイルの誘導起電力を測定する起電力測定装置を備え、
前記軸状態判定手段として、起電力測定器の出力信号から少なくとも軸運動の振動数または振動減衰率を求めて軸と軸挿入部との接触の有無を判定する振動解析装置を備えている、
ことを特徴とする請求項1に記載の軸心合わせシステム。
Comprising a magnetized axis as said axis;
As the shaft state detecting means, a coil disposed on the inner wall surface of the shaft insertion portion and an electromotive force measuring device for measuring an induced electromotive force of the coil are provided.
The shaft state determination means includes a vibration analysis device that determines at least the frequency or vibration attenuation rate of the shaft motion from the output signal of the electromotive force measuring device and determines the presence or absence of contact between the shaft and the shaft insertion portion.
The axis alignment system according to claim 1, wherein:
前記軸状態検出手段として、アコースティックエミッション検出センサを備え、
前記軸状態判定手段として、アコースティックエミッション検出センサからの出力信号が軸と軸挿入部との摩擦音であるか否かを判別して軸と軸挿入部との接触の有無を判定する音波解析装置を備えている、
ことを特徴とする請求項1に記載の軸心合わせシステム。
As the shaft state detection means, an acoustic emission detection sensor is provided,
As the shaft state determination means, a sound wave analysis device that determines whether or not the output signal from the acoustic emission detection sensor is a friction sound between the shaft and the shaft insertion portion and determines whether there is contact between the shaft and the shaft insertion portion. Have
The axis alignment system according to claim 1, wherein:
前記軸を前記軸挿入部の壁面に押し当てることによって前記軸移動手段の原点位置を決める原点設定手段を備えている、
ことを特徴とする請求項1に記載の軸心合わせシステム。
An origin setting means for determining an origin position of the axis moving means by pressing the shaft against the wall surface of the shaft insertion portion;
The axis alignment system according to claim 1, wherein:
前記軸移動手段として、直交する2つの方向へ移動させるXステージおよびYステージの一対のステージを備え、
前記原点設定手段として、XステージおよびYステージのそれぞれから135度の位置に配備されて前記軸支持部材を両ステージ側へ押すシリンダを備えている、
ことを特徴とする請求項9に記載の軸心合わせシステム。
As the axis moving means, a pair of X stage and Y stage to move in two orthogonal directions is provided,
The origin setting means includes a cylinder that is disposed at a position of 135 degrees from each of the X stage and the Y stage and pushes the shaft support member toward both stages.
The axis alignment system according to claim 9.
請求項1に記載の軸心合わせシステムによる軸心合わせ方法であって、
本体上に軸支持部材を置いて本体の軸挿入部に軸を挿入した状態で、軸支持部材を本体にねじ締めにより固定する際に軸支持部材に印加する締結力と同等の加圧力を前記加圧手段によって軸支持部材に印加する当初加圧工程と、
前記軸変位解放手段によって軸を運動させ、前記軸状態検出手段および前記軸状態判定手段によって軸と軸挿入部との接触の有無を判定する接触状態判定工程と、
軸状態判定手段が「両者の接触あり」と判定した場合には、加圧手段の加圧力を除いた後、前記軸移動手段によって軸支持部材を所定の距離だけ移動させる軸支持部材移動工程と、
移動後の位置で、軸支持部材を本体にねじ締めにより固定する際に軸支持部材に印加する締結力と同等の加圧力を前記加圧手段によって軸支持部材に印加する移動後加圧工程と、を有し、
軸状態判定手段が「両者の接触なし」と判定するまで、軸支持部材移動工程、移動後加圧工程および接触状態判定工程を繰り返す、
ことを特徴とする軸芯合わせ方法。
An axis alignment method by the axis alignment system according to claim 1,
In a state where the shaft support member is placed on the main body and the shaft is inserted into the shaft insertion portion of the main body, a pressure equal to the fastening force applied to the shaft support member when the shaft support member is fixed to the main body by screw tightening is applied. An initial pressurizing step applied to the shaft support member by a pressurizing means;
A contact state determination step of determining whether or not the shaft and the shaft insertion portion are in contact with each other by moving the shaft by the shaft displacement release unit and the shaft state detection unit and the shaft state determination unit;
A shaft support member moving step of moving the shaft support member by a predetermined distance by the shaft moving means after removing the pressure force of the pressurizing means when the shaft state determining means determines that “there is contact between both”; ,
A post-movement pressurizing step in which a pressure equivalent to a fastening force applied to the shaft support member when the shaft support member is fixed to the main body by screwing at a position after the movement is applied to the shaft support member by the pressurizing means; Have
The shaft support member moving step, the post-movement pressurizing step, and the contact state determining step are repeated until the shaft state determining means determines that “no contact between both”.
An axial alignment method characterized by the above.
請求項9に記載の軸芯合わせシステムによる軸芯合わせ方法であって、
本体上に軸支持部材を置いて本体の軸挿入部に軸を挿入した状態で、前記原点設定手段によって前記軸移動手段の原点を設定する原点設定工程と、
原点位置で、軸支持部材を本体にねじ締めにより固定する際に軸支持部材に印加する締結力と同等の加圧力を前記加圧手段によって軸支持部材に印加する原点位置加圧工程と、
前記軸変位解放手段によって軸を運動させ、前記軸状態検出手段および前記軸状態判定手段によって軸と軸挿入部との接触の有無を判定する接触状態判定工程と、
軸状態判定手段が「両者の接触あり」と判定した場合には、加圧手段の加圧力を除いた後、前記軸移動手段によって軸支持部材を所定の距離だけ移動させる軸支持部材移動工程と、
移動後の位置で、軸支持部材を本体にねじ締めにより固定する際に軸支持部材に印加する締結力と同等の加圧力を前記加圧手段によって軸支持部材に印加する移動後加圧工程と、を有し、
軸状態判定手段が「両者の接触なし」と判定するまで、軸支持部材移動工程、移動後加圧工程および接触状態判定工程を繰り返す、
ことを特徴とする軸芯合わせ方法。
An axis alignment method using the axis alignment system according to claim 9,
An origin setting step of setting the origin of the axis moving means by the origin setting means in a state where a shaft support member is placed on the body and the shaft is inserted into the shaft insertion portion of the body,
An origin position pressurizing step in which a pressure equivalent to a fastening force applied to the shaft support member when the shaft support member is fixed to the main body by screwing at the origin position is applied to the shaft support member by the pressing means;
A contact state determination step of determining whether or not the shaft and the shaft insertion portion are in contact with each other by moving the shaft by the shaft displacement release unit and the shaft state detection unit and the shaft state determination unit;
A shaft support member moving step of moving the shaft support member by a predetermined distance by the shaft moving means after removing the pressure force of the pressurizing means when the shaft state determining means determines that “there is contact between both”; ,
A post-movement pressurizing step in which a pressure equivalent to a fastening force applied to the shaft support member when the shaft support member is fixed to the main body by screwing at a position after the movement is applied to the shaft support member by the pressurizing means; Have
The shaft support member moving step, the post-movement pressurizing step, and the contact state determining step are repeated until the shaft state determining means determines that “no contact between both”.
An axial alignment method characterized by the above.
JP2005136772A 2005-05-10 2005-05-10 Shaft alignment system and its method Pending JP2006316799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136772A JP2006316799A (en) 2005-05-10 2005-05-10 Shaft alignment system and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136772A JP2006316799A (en) 2005-05-10 2005-05-10 Shaft alignment system and its method

Publications (1)

Publication Number Publication Date
JP2006316799A true JP2006316799A (en) 2006-11-24

Family

ID=37537668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136772A Pending JP2006316799A (en) 2005-05-10 2005-05-10 Shaft alignment system and its method

Country Status (1)

Country Link
JP (1) JP2006316799A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264275A (en) * 2003-01-08 2004-09-24 Fuji Electric Holdings Co Ltd Shaft alignment system and method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264275A (en) * 2003-01-08 2004-09-24 Fuji Electric Holdings Co Ltd Shaft alignment system and method therefor

Similar Documents

Publication Publication Date Title
JP4783575B2 (en) Contact displacement measuring instrument
JP4507898B2 (en) Torsion test equipment
EP1788366A2 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
JP6362533B2 (en) Residual stress evaluation method and residual stress evaluation apparatus
CN110998253A (en) Apparatus and method for performing impact excitation techniques
US11467132B2 (en) Insertable waveguide to improve acoustic signal transmission in wooden specimen
CN107238452B (en) Multi-functional touch sensor and measurement method
KR101430249B1 (en) Apparatus for fixing probe
JP2006504953A (en) Coordinate measuring device with vibration damping system
US20200400621A1 (en) Waveguide usable for non-destructive evaluation of specimen including wooden specimen
JP2004264275A (en) Shaft alignment system and method therefor
JP2006316799A (en) Shaft alignment system and its method
CN108226289A (en) The device and test specimen test method of acoustic emission probe and microseism probe are installed simultaneously
EP3373291B1 (en) Self-supporting vibration excitator with built-in sensor accommodation chamber
US20220229021A1 (en) Ultrasound probe
JP2001281121A (en) Fretting fatigue test device and fretting fatigue estimation method
JP2006010503A (en) Mechanical characteristic measuring instrument and mechanical characteristic measuring method for piezoelectric element
JP2005315743A (en) Nondestructive defect detector for sheet
JP2004291217A (en) Nut runner with axial force meter
JP3595849B1 (en) Fatigue test equipment for micro / nano materials
KR101935932B1 (en) Method for measuring dynamic elasticity using iet technique for cylinder shape
JP6079652B2 (en) Ultrasonic fatigue testing machine
EP1095254B1 (en) Surface testing equipment and method
EP4303545A1 (en) Density asymmetry measurement method and apparatus
KR101955441B1 (en) Specimen characteristics measuring device for measuring characteristics by striking specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206