JP2006316487A - Entrained-air control system for headrace - Google Patents

Entrained-air control system for headrace Download PDF

Info

Publication number
JP2006316487A
JP2006316487A JP2005139413A JP2005139413A JP2006316487A JP 2006316487 A JP2006316487 A JP 2006316487A JP 2005139413 A JP2005139413 A JP 2005139413A JP 2005139413 A JP2005139413 A JP 2005139413A JP 2006316487 A JP2006316487 A JP 2006316487A
Authority
JP
Japan
Prior art keywords
water
air control
mixed air
conduit
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005139413A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Kimura
光良 木村
Yuichi Kawachi
友一 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005139413A priority Critical patent/JP2006316487A/en
Publication of JP2006316487A publication Critical patent/JP2006316487A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an entrained-air control system for a headrace which can effectively control air entrained into flowing water without requiring the upsizing of existing equipment or requiring large-scale equipment. <P>SOLUTION: In a combined structure wherein a vertical shaft 2 for injecting taken-in water by using a fall is connected to the headrace 1, a barrier 5 is provided in the upper section of the head race positioned on the side of the downstream of a section to which the vertical shaft 2 is connected; an exhaust pipe 6 is connected to the upper part of the headrace 1 which is positioned between the vertical shaft 2 and the barrier 5; and a protrusion 7 which is protruded into the head race is formed in the lower section of the headrace 1 which is positioned directly below and near the vertical shaft 2. An energy dissipating mechanism for reducing the depth of the penetration of water to be injected can also be provided in the vertical shaft 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水力発電所等の圧力導水路へ取水した水を注入合流させる合流構造物に設けられる混入空気防除装置に関する。   The present invention relates to a mixed air control apparatus provided in a merge structure that injects and merges water taken into a pressure conduit such as a hydroelectric power plant.

水力発電所においては、集水地域の効果的な水の利用のために渓流取水を行い、この取水した水を圧力導水路へ注入合流させるようにしている設備(ダム水路式発電所等)がある。   In hydropower plants, there are facilities (dam waterway type power plants, etc.) that take mountain streams for effective use of water collection areas and inject and merge the collected water into pressure conduits. is there.

例えば、図3及び図4に示される設備においては、圧力導水路1が本水路1aとこの本水路1aをバイパスして取水した水を注入合流する支水路1bとによって構成され、支水路1bに注入合流される取水した水は、支水路1bに接続された立抗2を介して落差をもって注入されるようになっている。   For example, in the facilities shown in FIG. 3 and FIG. 4, the pressure conduit 1 is constituted by a main water channel 1a and a branch water channel 1b that injects and joins water taken by bypassing the main water channel 1a. The collected water to be injected and merged is injected with a drop through a resister 2 connected to the water channel 1b.

このような合流構造物においては、立抗2の流入口2aから自由落下して高速となった水3が水面に貫入すると、図5にも示されるように、多量の空気4が導水路の流水中に混入し、この混入した空気によって、導水路中にエアポケットが形成されて水頭損失を招いたり、危険なエアハンマー作用を発生させたり、水車の効率を低下させる等の不都合が懸念されている。   In such a confluence structure, when water 3 that has fallen freely from the inlet 2a of the resisting 2 has entered the surface of the water, a large amount of air 4 flows into the water channel as shown in FIG. There is concern about inconveniences such as mixing in running water, air pockets formed in the water channel by this mixed air, leading to head loss, generating a dangerous air hammer action, and reducing the efficiency of the water turbine. ing.

また、圧力導水路1に渓流取水を合流させる場合において、空気の連行により水路及び水車に著しい損傷を与えるおそれがないようにすることは法令の要請するところでもある(「発電用水力設備に関する技術基準を定める省令」第29条4号ロ参照)。   In addition, when the stream intake water is merged into the pressure conduit 1, it is also required by laws and regulations that there is no risk of significant damage to the waterway and water turbine due to air entrainment (“Technology related to power generation hydropower equipment”). “Ministerial Ordinance for Establishing Standards”, Article 29-4 (b)).

したがって、このような合流構造物を利用する場合には、以上のような現象を防ぐために、渓流取水量を制限しなければならなくなるため、有効な水利用ができなくなり、また、電力量増加に対応できなくなる不都合が懸念されている。   Therefore, when using such a confluence structure, it is necessary to limit the amount of water intake in the mountain stream in order to prevent the above phenomenon, so that effective water use cannot be achieved, and the amount of power consumption is increased. There is concern about the inconvenience that cannot be handled.

これに対する施策として、下記する非特許文献に示されるように、(a)気泡の自由浮上による除去方法、(b)水圧の作用下において空気を除去する方法、(c)水と空気が一緒に落下しないようにする方法を採用することも有効である。   As measures against this, as shown in the following non-patent literature, (a) a method of removing bubbles by free floating, (b) a method of removing air under the action of water pressure, (c) water and air together It is also effective to adopt a method that prevents the camera from falling.

ここで、(a)の気泡の自由浮上による除去方法は、立抗の断面積を大きくとり、自由落下する水脈とともに連行されて水中に進入する気泡を自由浮上させることにより除去する方法であり、(b)の水圧の作用下において空気を除去する方法は、水路断面を大きくした気泡除去室を設けて水と空気の混合流の流速を低下させ、気泡を浮上させて排気管から排気する方法であり、(c)の水と空気が一緒に落下することがないようにする方法は、立抗内の流れを常に満管流状態にして自由落下による気泡の混入をなくすか、取水した水を真空中を自由落下させるようにし、空気を混入を遮断する方法である。
千秋信一著,「発電水力演習」,第7版,株式会社学献社,1988年2月10日, p265−271
Here, the removal method by free levitation of the bubbles in (a) is a method of removing the bubbles that are entrained with the free-falling water veins and enter the water by free levitation, taking the cross-sectional area of the resist The method of removing air under the action of water pressure in (b) is a method in which a bubble removal chamber having a larger channel cross section is provided, the flow rate of the mixed flow of water and air is lowered, the bubbles are lifted and exhausted from the exhaust pipe. (C) The method of preventing the water and air from falling together is to keep the flow in the resister always in a full-pipe state so that air bubbles are not mixed by free fall or This is a method in which air is allowed to fall freely in a vacuum and air is prevented from being mixed.
Shinichi Chiaki, “Hydraulic power generation exercise”, 7th edition, Gakushinsha Co., Ltd., February 10, 1988, p265-271

しかしながら、上述した(a)の施策においては、気泡の浮上速度が気泡の混入率によって異なるため、気泡を除去するために立抗の断面積を大きくする必要があり、また、(b)の施策においては、水路断面を大きくした気泡除去室を設ける必要があるので、設備が大きくなり、また、自由落下する水脈の変動によっても左右される不都合がある。さらに、(c)の施策においては、立抗内を取水した水で満たすか真空状態にしなければならず、設備が大掛かりとなり、廉価な設備で対応できなくなる不都合がある。   However, in the measure (a) described above, since the rising speed of the bubble varies depending on the mixing rate of the bubble, it is necessary to increase the cross-sectional area of the resist in order to remove the bubble, and the measure (b) In this case, since it is necessary to provide a bubble removal chamber having a large cross section of the water channel, the equipment becomes large, and there is a disadvantage that it is also affected by fluctuations in the free-falling water vein. Furthermore, in the measure (c), it is necessary to fill the inside of the reaction chamber with water or to make it in a vacuum state, so that the facility becomes large and there is an inconvenience that it is not possible to cope with an inexpensive facility.

本発明は、以上のような事情に鑑みてなされたものであり、既存の設備を大きくする必要がなく、また、大掛かりな設備を必要とせずに流水に混入する空気を効果的に防除する
ことが可能な導水路における混入空気防除装置を提供することを主たる課題としている。
The present invention has been made in view of the circumstances as described above, and it is not necessary to enlarge existing facilities, and to effectively control air mixed in running water without requiring large facilities. The main problem is to provide a mixed-air control device in a water conduit that can be used.

上記課題を達成するために、この発明に係る導水路における混入空気防除装置は、導水路に対して取水した水を落差をもって注入する立抗が接続された合流構造物に設けられる装置であって、前記立抗が接続された部位より下流側に位置する前記導水路の少なくとも上部に障壁を設けると共に前記立抗と前記障壁との間に位置する前記導水路の上部に排気管を接続し、さらに前記立抗の直下又はその近傍に位置する前記導水路の下部に該導水路内へ突出する突出部を設けたことを特徴としている(請求項1)。   In order to achieve the above object, a mixed air control apparatus in a water conduit according to the present invention is an apparatus provided in a junction structure to which a resist for injecting water taken into the water conduit with a drop is connected. A barrier is provided on at least the upper part of the water conduit located downstream from the site where the resist is connected, and an exhaust pipe is connected to the upper part of the conduit that is located between the resist and the barrier, Furthermore, a projecting portion that projects into the water conduit is provided at a lower portion of the water conduit that is located directly under or near the counterweight (Claim 1).

したがって、取水した水が立抗を介して落下し、水面に貫入すると、多量の空気が流水中に混入するが、この混入した空気は、導水路の下部に設けられた突出部により上方へ案内されるので、気泡を導水路の上部へ導き、導水路上部の障壁より手前に設けられた排気管から除去されることになる。   Therefore, when the water taken in falls through the counter and penetrates into the surface of the water, a large amount of air is mixed into the running water. This mixed air is guided upward by the protrusion provided at the lower part of the water conduit. Therefore, the bubbles are guided to the upper part of the water conduit and removed from the exhaust pipe provided in front of the barrier above the water conduit.

また、上記課題を達成するために、導水路における混入空気防除装置は、導水路に対して取水した水を落差をもって注入する立抗が接続されている合流構造物に設けられる装置であって、前記立抗に、注入される水の貫入深さを小さくする減勢機構を設けるようにしてもよい(請求項2)。   Further, in order to achieve the above-mentioned problem, the mixed air control device in the water conduit is a device provided in a confluence structure to which a resist for injecting water taken into the water conduit with a drop is connected, You may make it provide the depressing mechanism which makes the penetration depth of the inject | poured water small to the said resist (Claim 2).

したがって、注入された水の勢いが減勢機構によって減衰されるので、水面に貫入する水の勢いが低減され、水脈の貫入深さを小さくすることで水に混入する空気量を無くすこと又は少なくすることが可能となる。   Accordingly, the momentum of the injected water is attenuated by the reduction mechanism, so that the momentum of the water penetrating the water surface is reduced, and the amount of air mixed into the water is reduced or reduced by reducing the penetration depth of the water vein. It becomes possible to do.

より具体的には、前記減勢機構を、立抗内へ突出して水脈を受ける複数の突出体を立抗の上下にずらして複数設けることで構成し(請求項3)、落下水脈を突出体に順次衝突させることで減勢させ、これにより貫入速度を小さくして貫入深さを小さくするようにしてもよい。また、減勢機構を、立抗内を上下に仕切る仕切壁を設けると共に、この仕切壁に通孔を設けて構成し(請求項4)、落下水脈を仕切壁に衝突させることで減勢させ、しかる後に通孔を介して流下させることで貫入速度を小さくして貫入深さを小さくするようにしてもよい。   More specifically, the depressing mechanism is configured by providing a plurality of projecting bodies that protrude into the resist and receive the water veins by shifting the upper and lower sides of the resist (Claim 3), and the falling water veins are the projecting bodies. It is also possible to reduce the penetration depth by reducing the penetration speed by causing them to collide one after another. Further, the de-energizing mechanism is configured by providing a partition wall for vertically partitioning the inside of the resisting wall, and providing a through hole in this partition wall (Claim 4), and depressurizing by causing the falling water vein to collide with the partition wall. Then, the penetration speed may be reduced by flowing down through the through hole to reduce the penetration depth.

さらに、減勢機構を立抗内の水面に浮遊するフロートによって構成し(請求項5)、落下水脈をフロートに衝突させて減勢させ、水面に貫入する水の速度を小さくして貫入深さを小さくするようにしても、また、減勢機構を立抗の内壁に取水した水を螺旋状に流下させる手段を設けて構成し(請求項6)、水脈を螺旋状に流下させることで減勢させ、水面の貫入深さを小さくするようにしてもよい。   Further, the de-energizing mechanism is constituted by a float that floats on the water surface within the resist (Claim 5), the falling water vein collides with the float to de-energize, and the speed of water penetrating the water surface is reduced to reduce the penetration depth. However, the depressurization mechanism is provided with a means for spirally flowing water taken up on the inner wall of the resisting wall (Claim 6), and the water vein is reduced by flowing spirally. The penetration depth of the water surface may be reduced.

以上述べたように、請求項1に係る発明によれば、導水路に接続された立抗より下流側で導水路の上部に障壁を設けると共に立抗と障壁との間の導水路の上部に排気管を接続し、さらに立抗の直下又はその近傍に位置する導水路の下部に導水路内へ突出する突出部を設けるようにしたので、水脈の貫入に伴い空気が流水に混入しても、混入した空気を突出部で導水路の上部へ導き排気管から排気させることが可能となるので、既存の設備を大きくする必要がなく、また、大掛かりな設備を必要とせずに混入する空気を効果的に除去することが可能となる。   As described above, according to the first aspect of the present invention, a barrier is provided on the upper portion of the water conduit downstream from the resist connected to the conduit, and at the upper portion of the conduit between the resist and the barrier. Since an exhaust pipe is connected, and a projecting part that projects into the water channel is provided at the lower part of the water channel that is located directly under or near the resistance, even if air enters the running water due to the penetration of the water vein Because the mixed air can be led to the upper part of the water conduit by the protrusion and exhausted from the exhaust pipe, it is not necessary to enlarge the existing equipment, and it is possible to remove the mixed air without requiring large equipment. It can be effectively removed.

また、請求項2乃至6に係る発明によれば、導水路に接続される立抗に、減勢機構を設けて注入された水の勢いを減衰されて水脈の貫入深さを小さくしたので、既存の設備を大きくする必要がなく、また、大掛かりな設備を必要とせずに混入する空気を無くすこと又は少なくすることが可能となる。   Further, according to the inventions according to claims 2 to 6, since the force of the injected water is attenuated by providing a depressing mechanism to the resist connected to the water conduit, the penetration depth of the water vein is reduced. It is not necessary to increase the size of existing equipment, and it is possible to eliminate or reduce the amount of mixed air without requiring a large-scale equipment.

以下、この発明の最良の実施形態を添付図面を参照しながら説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment of the present invention will be described below with reference to the accompanying drawings.

図1において、圧力導水路1に立設された立抗2から渓流取水を注入合流させる合流構造物が示されている。
この例においては、合流構造物は、圧力導水路1の立抗2が接続された部位より下流側に位置する導水路1の上部に浮上した気泡が下流側へ流れることを阻止する障壁5を設け、この障壁5と立抗2との間に位置する導水路1の上部に障壁5の上流側に溜められた空気を排気する排気管6が接続されている。また、立抗の直下又はその近傍に位置する導水路の下部に導水路内へ突出する突出部7が設けられ、この突出部7により導水路1内の流水の向きを上方へ向けるようにしている。
In FIG. 1, a merging structure for injecting and merging mountain stream intake water from a ridge 2 erected in a pressure conduit 1 is shown.
In this example, the merging structure has a barrier 5 that prevents bubbles floating on the upper part of the water conduit 1 located downstream from the site where the resisting channel 2 of the pressure water conduit 1 is connected. An exhaust pipe 6 for exhausting the air accumulated on the upstream side of the barrier 5 is connected to the upper part of the water conduit 1 located between the barrier 5 and the resister 2. Moreover, the protrusion part 7 which protrudes in a water channel is provided in the lower part of the water channel located in the direct vicinity or in the vicinity of it, and the direction of the flowing water in the water channel 1 is made to face upwards by this projection part 7. Yes.

ここで、突出部7は、導水路の下部に装着されたブロック状の突設体であっても、導水路の下部を隆起させて一体に形成されるものであってもよい。さらに、導水路の下部に設けられる突出部7は、1つであっても複数であってもよい。この例においては、突出部7を導水路1の立抗2の直下とその下流側近傍の2箇所に設けられている。   Here, the projecting portion 7 may be a block-like projecting body attached to the lower portion of the water conduit, or may be integrally formed by raising the lower portion of the water conduit. Furthermore, the protrusion part 7 provided in the lower part of a water conduit may be one, or plural. In this example, the protrusions 7 are provided at two locations immediately below the stand-off 2 of the water conduit 1 and in the vicinity of the downstream side thereof.

このような構成においては、立抗2を自由落下して高速となった水3が水面に貫入すると、多量の空気が流水中に混入することになるが、この混入した空気は、導水路1の底部に設けられた突起部7により上方へ流れが変更された流水と共に導水路1の上部へ導かれ、障壁5の上流側に溜められ、この障壁上流側に接続された排気管6から排気されることになる。   In such a configuration, when the water 3 that has fallen freely through the resister 2 enters the surface of the water, a large amount of air is mixed into the flowing water. It is led to the upper part of the water conduit 1 along with running water whose flow has been changed upward by the projecting portion 7 provided at the bottom of the water, and is accumulated on the upstream side of the barrier 5 and exhausted from the exhaust pipe 6 connected to the upstream side of the barrier 5 Will be.

したがって、気泡を除去するために立抗2の断面積を大きくする必要がなくなり、また、導水路断面を大きくした気泡除去室を設ける必要もなくなるので、設備を大きくする必要がなく、また、気泡が流水に混入することを前提としているので、自由落下する水脈の変動によっても左右される不都合がなくなる。さらに、上述の構成によれば、導水路内の施策で対応することが可能となるので、設備が大掛かりになることもなく、廉価な設備で対応することが可能となる。   Therefore, it is not necessary to increase the cross-sectional area of the resist 2 in order to remove bubbles, and it is not necessary to provide a bubble removal chamber having a larger cross section of the conduit, so there is no need to increase the size of the equipment. Is assumed to be mixed in the running water, so there is no inconvenience caused by fluctuations in the free-falling water veins. Furthermore, according to the above-described configuration, it is possible to cope with measures in the water conduit, so that it is possible to cope with an inexpensive facility without requiring a large facility.

以上の構成は、導水路1内での施策によって混入空気を効果的に除去する構成であったが、立抗2内の構造を改良することで、対応するようにしてもよい。即ち、立抗内に、上部から注入される取水が自由落下して水面に直接貫入しないような機構、換言すれば、取水の貫入深さを小さくする減勢機構を設けるようにしてもよい。   The above configuration is a configuration in which mixed air is effectively removed by measures in the water conduit 1, but it may be dealt with by improving the structure in the resister 2. That is, a mechanism that prevents the water taken from the upper part from falling freely and does not directly penetrate the water surface, in other words, a depressurizing mechanism that reduces the penetration depth of the water may be provided.

図2にそのような減勢機構の構成例が示され、図2(a)に示される減勢機構は、立抗2の内壁に水脈を受ける複数の突出体8を立抗2の上下にずらして複数(本構成例においては2つ)設けて構成されている。即ち、立抗2の通路断面を小さくするように内壁から略垂直に突出する突出体8を上下方向にずらして複数設け、上下方向で隣り合う突設体を抗内に互い違いに突出させることで、それぞれの突出体8によって絞られた通路部分が立抗2の軸方向に投影した場合に重ならないようにしている。最上部の突出体にあっては、立抗2の流入口から流下した水3が直接衝突する位置に形成されている。   FIG. 2 shows an example of the configuration of such a depressing mechanism. The depressing mechanism shown in FIG. 2 (a) has a plurality of projecting bodies 8 that receive water veins on the inner wall of the resist 2 on the upper and lower sides of the resist 2. A plurality (two in this configuration example) are provided by being shifted. That is, by providing a plurality of projecting bodies 8 that project substantially vertically from the inner wall so as to reduce the cross section of the passage 2 in the vertical direction, and projecting bodies that are adjacent in the vertical direction are alternately projected into the interior. The passage portions constricted by the respective protrusions 8 are not overlapped when projected in the axial direction of the counterweight 2. The uppermost protrusion is formed at a position where the water 3 flowing down from the inlet of the resist 2 collides directly.

したがって、立抗2の上部から流入される取水した水3は、最上部の突出体8に衝突し、その後、この突出体8によって通路断面が狭められた部分を通って下方へ落下し、再び下方の突出体8に衝突し、この突出体8によって通路断面が狭められた部分を通って水面に流れ落ちる。このため、水面に貫入する水脈の速度を突出体8によって遅くすることが可能となり、これにより水脈の貫入深さを小さくすることができ、流水に混入する空気4を少なくすることが可能となる。   Therefore, the water 3 taken in from the upper part of the stand 2 collides with the uppermost projecting body 8, and then falls downward through a portion whose passage section is narrowed by the projecting body 8, and again. It collides with the lower projecting body 8 and flows down to the water surface through a portion where the cross section of the passage is narrowed by the projecting body 8. For this reason, it becomes possible to slow down the speed of the water vein which penetrates into the water surface by the protrusion 8, thereby making it possible to reduce the penetration depth of the water vein and to reduce the air 4 mixed in the running water. .

図2(b)に示される減勢機構は、立抗内を上下に仕切る仕切壁9を設け、この仕切壁9に通孔9aを設けて構成されている。この通孔9aは、立抗2の流入口から流下した水3が直接入らないような位置に形成されており、この例においては、中央に通孔9aを形成した仕切壁9を立抗2の中程に固定することによって構成されている。   The de-energizing mechanism shown in FIG. 2 (b) is configured by providing a partition wall 9 that partitions the interior of the stand up and down and providing a through hole 9 a in the partition wall 9. The through-hole 9a is formed at a position where the water 3 flowing down from the inlet of the stand 2 does not enter directly. In this example, the partition wall 9 having the through-hole 9a formed at the center is provided with the stand-up 2 It is configured by fixing in the middle.

したがって、立抗2の上部から流入される取水した水3は、仕切壁9に衝突し、その後、中央の通孔9aを通って流下し、水面に流れ落ちる。このため、水面に貫入する水脈の速度を仕切壁9によって遅くすることが可能となり、これにより水脈の貫入深さを小さくすることができ、流水に混入する空気4を少なくすることが可能となる。   Therefore, the water 3 taken in from the upper part of the stand 2 collides with the partition wall 9, then flows down through the central through hole 9a, and flows down to the water surface. For this reason, it becomes possible to slow down the speed of the water vein penetrating into the water surface by the partition wall 9, thereby making it possible to reduce the depth of penetration of the water vein and to reduce the air 4 mixed in the running water. .

図2(c)に示される減勢機構は、立抗内の水面に浮遊するフロート10によって構成されている。即ち、立抗内の水面上に立抗2の内壁よりも径の小さい球状のフロート10を浮遊させ、上方から流下する水をこのフロート10に当てるようにしている。   The de-energizing mechanism shown in FIG. 2 (c) is constituted by a float 10 that floats on the water surface in the stance. That is, a spherical float 10 having a diameter smaller than the inner wall of the resist 2 is floated on the water surface in the resist, and water flowing down from above is applied to the float 10.

このような構成においては、フロート10を人為的に固定しなくても、「ベルヌーイの定理」により、フロート10を水流の真下に自動的に置くことができるので、流下した水3は、このフロート10に衝突して水面に流れ落ちることになる。このため、水面に貫入する水脈の速度をフロート10によって遅くすることが可能となり、これにより水脈の貫
入深さを小さくすることができ、流水に混入する空気4を少なくすることが可能となる。
In such a configuration, even if the float 10 is not artificially fixed, the float 10 can be automatically placed directly under the water flow according to “Bernoulli's theorem”. 10 hits the water surface. For this reason, the speed of the water vein penetrating into the water surface can be slowed by the float 10, whereby the penetration depth of the water vein can be reduced, and the air 4 mixed in the running water can be reduced.

図2(d)に示される減勢機構は、立抗2の内壁に取水した水を螺旋状に流下させる手段を設けて構成されている。この螺旋状に流下させる手段は、立抗2の内壁に螺旋状のガイドを設けておき、この螺旋状のガイドに渓流取水を導くようにするものであっても、立抗2の流入口を立抗の接線方向に略水平に設け、内壁に沿って渓流取水を勢いよく噴出させるようにするものであってもよい。   The de-energizing mechanism shown in FIG. 2 (d) is configured by providing means for spirally flowing water taken up on the inner wall of the resist 2. Even if the means for flowing down the spiral is to provide a spiral guide on the inner wall of the stand 2 and guide the stream water intake to the spiral guide, the inlet of the stand 2 is provided. It may be provided so as to be substantially horizontal in the tangential direction of the ridge and to expel the stream water intake along the inner wall.

したがって、このような構成においては、立抗2の上部から流入される取水した水3は、立抗2の内壁を沿って螺旋状に流下して水面に到達するので、水面に貫入する水脈の速度を遅くすることが可能となり、これにより水脈の貫入深さを小さくすることができ、流水に混入する空気4を少なくすることが可能となる。   Therefore, in such a configuration, the water 3 taken from the upper part of the resister 2 flows down spirally along the inner wall of the resister 2 and reaches the water surface, so that the water veins penetrating the water surface It becomes possible to reduce the speed, thereby making it possible to reduce the depth of penetration of the water vein, and to reduce the air 4 mixed into the running water.

尚、図2(a)に示される突出体8や図2(b)に示される仕切壁9は、立抗2の内壁に固定されたものであっても、渓流取水の流入量の変動に伴う水面の変動に対応するため、常に水面の上方に位置させるように水面の変動に伴って上下動させるようにしてもよい。また、上述した導水路内の施策と立抗に設けた減勢機構を組み合わせて用いるようにしてもよい。   Note that the protrusion 8 shown in FIG. 2A and the partition wall 9 shown in FIG. 2B are fixed to the inner wall of the stand 2, even if the inflow amount of the mountain stream water intake varies. In order to cope with the accompanying fluctuations in the water surface, it may be moved up and down with the fluctuations in the water surface so that it is always positioned above the water surface. Moreover, you may make it use combining the measure in the water guide channel mentioned above, and the de-energizing mechanism provided in response.

図1は、圧力導水路に立抗が立設された合流構造物の導水路内の構造を改良した構成例を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration example in which a structure in a water conduit of a merged structure in which a standing structure is provided in a pressure water conduit is improved. 図2は、圧力導水路に立抗が立設された合流構造物の立抗内に設けられた減勢機構を示す図であり、図2(a)は立抗の内壁に突出体を設けた構成例を示す断面図、図2(b)は立抗内に仕切壁を設けた構成例を示す断面図、図2(c)は立抗内にフロートを浮遊させた構成例を示す断面図、図2(d)は立抗の内壁に取水を螺旋状に流下させる構成例を示す断面図である。FIG. 2 is a view showing a de-energizing mechanism provided in the rectification of the merged structure in which the rectification is erected in the pressure conduit, and FIG. 2 (a) is provided with a protrusion on the inner wall of the rectification. 2B is a cross-sectional view showing a configuration example in which a partition wall is provided in the stand, and FIG. 2C is a cross-section showing a configuration example in which a float is suspended in the stand. Fig. 2 (d) is a cross-sectional view showing a configuration example in which intake water flows down spirally on the inner wall of the resist. 図3は、圧力導水路に設けられる合流構造物の一例として本水路をバイパスする支水路に立抗を設けた構成例を示す構成図であり、図3(a)はその平断面図、図3(b)は、図3(a)のA−A線で切断した断面図である。FIG. 3 is a configuration diagram showing a configuration example in which a waterway that bypasses the main water channel is provided as an example of a merging structure provided in the pressure conduit, and FIG. 3 (b) is a cross-sectional view taken along line AA in FIG. 3 (a). 図4は、図3で示す合流構造物の従来の構成例を示す斜視図である。FIG. 4 is a perspective view showing an example of a conventional configuration of the merge structure shown in FIG. 図5は、図4で示される立抗に取水が注入されている状態の概略を示す断面図である。FIG. 5 is a cross-sectional view showing an outline of a state in which water intake is injected into the resistance shown in FIG.

符号の説明Explanation of symbols

1 導水路
2 立抗
5 障壁
6 排気管
7 突起部
8 突出体
9 仕切壁
9a 通孔
10 フロート
DESCRIPTION OF SYMBOLS 1 Water guide path 2 Resistance 5 Barrier 6 Exhaust pipe 7 Projection part 8 Projection body 9 Partition wall 9a Through-hole 10 Float

Claims (6)

導水路に対して取水した水を落差をもって注入する立抗が接続された合流構造物に設けられる導水路における混入空気防除装置であって、
前記立抗が接続された部位より下流側に位置する前記導水路の少なくとも上部に障壁を設けると共に前記立抗と前記障壁との間に位置する前記導水路の上部に排気管を接続し、さらに前記立抗の直下又はその近傍に位置する前記導水路の下部に該導水路内へ突出する突出部を設けたことを特徴とする導水路における混入空気防除装置。
A mixed air control device in a water channel provided in a confluence structure connected to a structure that injects water taken into the water channel with a head,
A barrier is provided on at least the upper part of the water conduit located downstream from the site where the resist is connected, and an exhaust pipe is connected to the upper part of the conduit that is located between the resist and the barrier; The mixed air control apparatus in a water conduit characterized by providing the protrusion part which protrudes in the said water conduit at the lower part of the said water conduit located in the direct vicinity or the vicinity of the said resist.
導水路に対して取水した水を落差をもって注入する立抗が接続された合流構造物に設けられる導水路における混入空気防除装置であって、
前記立抗に、注入される水の貫入深さを小さくする減勢機構を設けたことを特徴とする導水路における混入空気防除装置。
A mixed air control device in a water channel provided in a confluence structure connected to a structure that injects water taken into the water channel with a head,
The mixed air control apparatus in a water conduit characterized by providing a depressing mechanism for reducing the penetration depth of water to be injected against the resist.
前記減勢機構は、立抗内へ突出して水脈を受ける複数の突出体を立抗の上下にずらして複数設けて構成したことを特徴とする請求項2記載の導水路における混入空気防除装置。 3. The mixed air control apparatus for a water conduit according to claim 2, wherein the depressurization mechanism is configured by providing a plurality of projecting bodies that project into the basin and receive the water veins by shifting up and down the basin. 前記減勢機構は、立抗内を上下に仕切る仕切壁を設け、この仕切壁に通孔を設けて構成したことを特徴とする請求項2記載の導水路における混入空気防除装置。 3. The mixed air control apparatus for a water conduit according to claim 2, wherein the depressurization mechanism is configured by providing a partition wall for vertically partitioning the inside of the stand and by providing a through hole in the partition wall. 前記減勢機構は、立抗内の水面に浮遊するフロートによって構成されていることを特徴とする請求項2記載の導水路における混入空気防除装置。 The mixed air control apparatus for a water conduit according to claim 2, wherein the de-energizing mechanism is configured by a float that floats on a water surface in a basin. 前記減勢機構は、立抗の内壁に取水した水を螺旋状に流下させる手段を設けて構成したことを特徴とする請求項2記載の導水路における混入空気防除装置。 3. The mixed air control apparatus in a water conduit according to claim 2, wherein the depressing mechanism is provided with means for spirally flowing water taken up on the inner wall of the standing wall.
JP2005139413A 2005-05-12 2005-05-12 Entrained-air control system for headrace Pending JP2006316487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139413A JP2006316487A (en) 2005-05-12 2005-05-12 Entrained-air control system for headrace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139413A JP2006316487A (en) 2005-05-12 2005-05-12 Entrained-air control system for headrace

Publications (1)

Publication Number Publication Date
JP2006316487A true JP2006316487A (en) 2006-11-24

Family

ID=37537403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139413A Pending JP2006316487A (en) 2005-05-12 2005-05-12 Entrained-air control system for headrace

Country Status (1)

Country Link
JP (1) JP2006316487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175374A (en) * 2007-01-22 2008-07-31 Chugoku Electric Power Co Inc:The Air-entrainment inhibiting device
JP2009014104A (en) * 2007-07-04 2009-01-22 Chugoku Electric Power Co Inc:The Air-contamination prevention device
JP2009155966A (en) * 2007-12-27 2009-07-16 Chugoku Electric Power Co Inc:The Air entrainment inhibiting device
CN101565941A (en) * 2009-04-04 2009-10-28 温贵程 Pressure fluctuation elimination method of hydroelectric power generation water conduit
CN102409646A (en) * 2011-08-18 2012-04-11 水利部交通运输部国家能源局南京水利科学研究院 Method for eliminating acoustic vibration of working gate of water-filling gallery of constructed project

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175374A (en) * 2007-01-22 2008-07-31 Chugoku Electric Power Co Inc:The Air-entrainment inhibiting device
JP2009014104A (en) * 2007-07-04 2009-01-22 Chugoku Electric Power Co Inc:The Air-contamination prevention device
JP2009155966A (en) * 2007-12-27 2009-07-16 Chugoku Electric Power Co Inc:The Air entrainment inhibiting device
CN101565941A (en) * 2009-04-04 2009-10-28 温贵程 Pressure fluctuation elimination method of hydroelectric power generation water conduit
CN102409646A (en) * 2011-08-18 2012-04-11 水利部交通运输部国家能源局南京水利科学研究院 Method for eliminating acoustic vibration of working gate of water-filling gallery of constructed project
CN102409646B (en) * 2011-08-18 2014-07-23 水利部交通运输部国家能源局南京水利科学研究院 Method for eliminating acoustic vibration of working gate of water-filling gallery of constructed project

Similar Documents

Publication Publication Date Title
JP2007278297A (en) Kinetic hydropower generation from slow-moving water flow
JP2006316487A (en) Entrained-air control system for headrace
KR20100044505A (en) Waterway structure for prevention of foam formation at the discharge channel of the power plant
Qian et al. Hydraulic performance of ski-jump-step energy dissipater
CN102966082A (en) Aeration facility with downward-bent base slab
CN107881994A (en) A kind of special-shaped guiding device for flood discharging groove of turning
CN110145011A (en) A kind of vertical shaft and deep tunnel connected structure
US20140191509A1 (en) Stauffer submerged electricity generator
Hattersley Hydraulic design of pump intakes
CN110080176A (en) A kind of cyclone shaft formula energy-dissipating structure
CN106087851B (en) A kind of deep-water basin integrally makes stream method
CN218373712U (en) Flood discharge tunnel of wall-separating water flow vertical shaft
CN113063050B (en) Tap water pipeline capable of separating gas
Chanson Energy dissipation and drop structures in ancient times: the Roman dropshafts
JPH05126026A (en) Small head hydraulic power generation method utilizing downstream flow velocity
CN209482272U (en) A kind of fish transporting something containerized fish system
KR20130090067A (en) Laminar flow induction device of join pont of river and its tributary
JP3648156B2 (en) Destructor
CN212670793U (en) Gas purification equipment for underground engineering construction
CN206220066U (en) Passed the flood period the choosing of the breach flow, down stream energy-dissipating structure for gravity dam bank
JP6721953B2 (en) Water turbine duct
KR100578497B1 (en) The establishment construction of bottom block for reduction of river water speed
JP2007192236A (en) Hydraulic power generation by swirl stream
JP4721909B2 (en) Air mixing prevention device
CN105714746B (en) Pressure slope formula ventilation shaft for high water head flood discharging tunnel mid-gate chamber