JP2006316174A - Method for producing fluorine-containing copolymer by fluorination treatment - Google Patents

Method for producing fluorine-containing copolymer by fluorination treatment Download PDF

Info

Publication number
JP2006316174A
JP2006316174A JP2005140597A JP2005140597A JP2006316174A JP 2006316174 A JP2006316174 A JP 2006316174A JP 2005140597 A JP2005140597 A JP 2005140597A JP 2005140597 A JP2005140597 A JP 2005140597A JP 2006316174 A JP2006316174 A JP 2006316174A
Authority
JP
Japan
Prior art keywords
fluorinated
copolymer
fluorine
temperature
perfluoro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005140597A
Other languages
Japanese (ja)
Other versions
JP2006316174A5 (en
Inventor
Daisuke Fujiwara
大輔 藤原
Atsushi Kanega
淳 金賀
Sunao Ikeda
直 池田
Takashi Enokida
貴司 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimatec Co Ltd
Original Assignee
Unimatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimatec Co Ltd filed Critical Unimatec Co Ltd
Priority to JP2005140597A priority Critical patent/JP2006316174A/en
Publication of JP2006316174A publication Critical patent/JP2006316174A/en
Publication of JP2006316174A5 publication Critical patent/JP2006316174A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing fluorine-containing copolymer that can stabilize the thermally unstable chain terminal structure and enables the polymer to be melt formed at a forming temperature of lower than 320°C, preferably lower than 300°C and more preferably lower than 280°C. <P>SOLUTION: An amorphous fluorine-including copolymer having substantially perfluoro structure is subjected to the fluorination treatment with fluorine gas under the temperature condition, at 0 to 50°C, preferably in this range and higher than the glass transition point Tg of the copolymer to produce the fluorination-treated, fluorine-containing copolymer. Thereby the produced fluorinated fluorine-containing copolymer is thermally stabilized at the part of thermally unstable chain-terminal structure and the existence ratio of the unstable chain terminal is decreased less than 0.20, preferably less than 0.10 and the melt formation can be carried out at a relatively low temperature as stated above. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フッ素化処理含フッ素共重合体の製造法に関する。さらに詳しくは、熱的不安定末端構造を安定化させ、しかも成形温度が320℃以下、好ましくは300℃以下、さらに好ましくは280℃以下という比較的低温での溶融成形を可能とさせる含フッ素共重合体を形成し得るフッ素化処理含フッ素共重合体の製造法に関する。   The present invention relates to a method for producing a fluorinated fluorinated copolymer. More specifically, the fluorine-containing copolymer which stabilizes the thermally unstable terminal structure and enables melt molding at a relatively low temperature of 320 ° C. or less, preferably 300 ° C. or less, more preferably 280 ° C. or less. The present invention relates to a method for producing a fluorinated fluorinated copolymer capable of forming a polymer.

含フッ素共重合体、中でもパーフルオロ構造を有するものは、卓越した耐化学薬品性や良好な耐熱性を有するため、チューブ、パイプ、継手、容器、コーティング、ライニング、フィルム、シート、丸棒等の成形材料として使用されている。ここで、パーフルオロ構造を有する含フッ素共重合体としては、特にテトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体〔PFA〕やテトラフルオロエチレン-ヘキサフルオロプロペン〔FEP〕等が広く使用されている。   Fluorine-containing copolymers, especially those with a perfluoro structure, have excellent chemical resistance and good heat resistance, so tubes, pipes, joints, containers, coatings, linings, films, sheets, round bars, etc. It is used as a molding material. Here, as the fluorine-containing copolymer having a perfluoro structure, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer [PFA], tetrafluoroethylene-hexafluoropropene [FEP] and the like are widely used. Yes.

一般に、PFAやFEPの溶融成形には300℃以上の成形温度を必要としており、下記特許文献1および2に記載される如き非晶質フルオロポリマーや3元共重合体は、その溶融成形温度が低く、このことは成形装置に高度かつ高価な耐食性処理を必要とはせずあるいは簡素化が可能であることを意味している。また、耐熱温度の低い汎用重合体と比較的低温で、共押出成形や融着・圧着処理を可能としている。
特表2001−500906号公報 特開2003−246823号公報
In general, melt molding of PFA and FEP requires a molding temperature of 300 ° C. or higher, and amorphous fluoropolymers and terpolymers as described in Patent Documents 1 and 2 below have a melt molding temperature of This means that the molding apparatus does not require a sophisticated and expensive corrosion resistance treatment or can be simplified. In addition, it is possible to perform coextrusion molding and fusion / compression treatment at a relatively low temperature with a general-purpose polymer having a low heat-resistant temperature.
Special table 2001-500906 JP 2003-246823 A

しかるに、溶融成形、中でもチューブ、パイプ、フィルム、シート、ロッド等の押出成形では、押出成形品表面にメルトフラクチャー、フローマーク、ストリーク、ダイライン、バンクマーク等と称せられる現象が発生し易く、このため成形温度を上げることなく、すなわち低温溶融成形性のメリットを最大限享受できるよう、溶融成形品の表面平滑性の改善が求められている。   However, in melt molding, especially extrusion molding of tubes, pipes, films, sheets, rods, etc., phenomena called melt fracture, flow mark, streak, die line, bank mark, etc. are likely to occur on the surface of the extruded product. Improvement in the surface smoothness of melt-molded products is demanded so that the merits of low-temperature melt moldability can be fully enjoyed without raising the molding temperature.

一般に、PFAは共重合反応の際に使用される重合開始剤や連鎖移動剤に起因する末端基として-COOH-、-CH2OH、-COOCH3等の基が存在し、これらの末端基は熱的に不安定で、加熱溶融成形の際加熱分解し、発泡や着色の原因ともなるばかりではなく、レオロジーに対しても影響があり、溶融粘度を増加させ、成形性を低下させるなどの不利益な作用をする。 Generally, PFA has groups such as -COOH-, -CH 2 OH, and -COOCH 3 as terminal groups derived from the polymerization initiator and chain transfer agent used in the copolymerization reaction. It is thermally unstable and heat decomposes during hot melt molding, causing not only foaming and coloration, but also affects rheology, increasing melt viscosity and lowering moldability. It has a beneficial effect.

PFAにみられるこのような末端基の不安定性を改善するために、PFAをフッ素ガスで処理することが提案されている。
特公昭62−104822号公報 特許第2,921,026号公報 特開平11−116710号公報 特開2004−161921号公報
In order to improve the instability of the end groups found in PFA, it has been proposed to treat PFA with fluorine gas.
Japanese Patent Publication No.62-104822 Japanese Patent No. 2,921,026 Japanese Patent Laid-Open No. 11-116710 JP 2004-161921 A

しかしながら、これらのフッ素化処理は、いずれも150〜200℃という高温温度条件下で行われており、また特許文献6でフッ素化処理されているテトラフルオロエチレン-パーフルオロ(エチルビニルエーテル)共重合体は、パーフルオロ(エチルビニルエーテル)の共重合割合は6.7〜12.6重量%(製造例1〜3)とされており、これらは下記特許文献7の記載、すなわち共重合体組成と結晶融点、融解熱量ΔHとの関係からみて、結晶融点を有する含フッ素共重合体であるといえる。
特表2002−509557号公報
However, all of these fluorination treatments are performed under high temperature conditions of 150 to 200 ° C., and the tetrafluoroethylene-perfluoro (ethyl vinyl ether) copolymer that has been fluorinated in Patent Document 6 Has a copolymerization ratio of perfluoro (ethyl vinyl ether) of 6.7 to 12.6% by weight (Production Examples 1 to 3), which are described in Patent Document 7 below, that is, the copolymer composition, crystal melting point, and heat of fusion. From the relationship with ΔH, it can be said that it is a fluorine-containing copolymer having a crystalline melting point.
Special table 2002-509557 gazette

本発明の目的は、熱的不安定末端構造を安定化させ、しかも成形温度が320℃以下、好ましくは300℃以下、さらに好ましくは280℃以下という比較的低温での溶融成形を可能とさせる含フッ素共重合体の製造法を提供することにある。   It is an object of the present invention to stabilize the thermally unstable terminal structure and to enable melt molding at a relatively low temperature of 320 ° C. or less, preferably 300 ° C. or less, more preferably 280 ° C. or less. It is providing the manufacturing method of a fluorine copolymer.

かかる本発明の目的は、実質的にパーフルオロ構造を有する非晶質含フッ素共重合体を0〜50℃、好ましくはこの範囲内の温度でかつ含フッ素共重合体のガラス転移温度Tg以上の温度条件下でフッ素ガスによるフッ素化処理を行い、フッ素化処理含フッ素共重合体を製造することによって達成される。   The object of the present invention is to form an amorphous fluorine-containing copolymer having a substantially perfluoro structure at 0 to 50 ° C., preferably at a temperature within this range and at least the glass transition temperature Tg of the fluorine-containing copolymer. This is achieved by performing a fluorination treatment with a fluorine gas under temperature conditions to produce a fluorination-treated fluorine-containing copolymer.

本発明方法によって製造されたフッ素化処理含フッ素共重合体は、熱的不安定末端構造を安定化させ、しかも成形温度が320℃以下、好ましくは300℃以下、さらに好ましくは280℃以下という比較的低温での溶融成形を可能とさせるという効果を奏する。   The fluorinated fluorinated copolymer produced by the method of the present invention stabilizes the thermally unstable terminal structure and has a molding temperature of 320 ° C. or lower, preferably 300 ° C. or lower, more preferably 280 ° C. or lower. There is an effect that enables melt molding at a low temperature.

特に、含フッ素共重合体のガラス転移温度Tg以上のフッ素化反応温度領域では、含フッ素共重合体が非晶質高分子物質であるため、フッ素ガスのガス透過性が結晶性高分子物質よりも格段と大きく、比較的低温でかつ短時間でのフッ素化反応により、熱的不安定末端構造の安定化(IR分析により裏付けられる)が達成されたものと考えられる。   In particular, in the fluorination reaction temperature region above the glass transition temperature Tg of the fluorine-containing copolymer, the fluorine-containing copolymer is an amorphous polymer material, so the gas permeability of fluorine gas is higher than that of a crystalline polymer material. It is considered that the stabilization of the thermally unstable terminal structure (supported by IR analysis) was achieved by the fluorination reaction at a relatively low temperature and in a short time.

また、得られたフッ素化処理含フッ素共重合体は、IRによる不安定末端基存在比が0.20以下、好ましくは0.10以下と小さいため、上記の如き比較的低温での溶融成形を可能としており、例えば溶融押出成形ではメルトフラクチャー等による押出肌荒れが解消されるなど成形性が改善されるばかりではなく、より高温成形領域での発泡、焼け等の改善も顕著である。   In addition, the obtained fluorinated fluorinated copolymer has an abundance ratio of unstable end groups by IR of 0.20 or less, preferably as small as 0.10 or less, and thus enables melt molding at a relatively low temperature as described above. For example, in melt extrusion molding, not only the moldability is improved by eliminating roughening of the extrusion skin due to melt fracture and the like, but improvement of foaming and burning in a higher temperature molding region is also remarkable.

フッ素化処理される非晶質含フッ素共重合体は、実質的にパーフルオロ構造を有する非晶質重合体であり、パーフルオロ構造を有する共重合体は、例えばテトラフルオロエチレン、ヘキサフルオロプロペン、アルキル基がメチル基、エチル基、プロピル基等であるパーフルオロ(アルキルビニルエーテル)、パーフルオロ(アルコキシアルキルビニルエーテル)、パーフルオロ(2,2-ジメチル-1,3-ジオキソール)等の炭素原子、フッ素原子、さらには酸素原子を含み得るモノマー2種以上の相互共重合体であり、ここで実質的にパーフルオロ構造を有するとは、含フッ素共重合体改質のために少量、例えば約1重量%以下の官能性モノマーやポリフルオロモノマーが共重合されることが許容されることを意味する。また、非晶質重合体とは、含フッ素共重合体の示差走査熱分析(DSC)において検出される吸熱ピークから計算される融解熱量ΔHが約3J/g以下、好ましくは約1J/g以下であるものを指してる。   The amorphous fluorine-containing copolymer to be fluorinated is a substantially amorphous polymer having a perfluoro structure. Examples of the copolymer having a perfluoro structure include tetrafluoroethylene, hexafluoropropene, Carbon atoms such as perfluoro (alkyl vinyl ether), perfluoro (alkoxyalkyl vinyl ether), perfluoro (2,2-dimethyl-1,3-dioxole), etc., where the alkyl group is a methyl group, ethyl group, propyl group, fluorine It is a copolymer of two or more types of monomers that can contain atoms, and further oxygen atoms, and has substantially a perfluoro structure, where a small amount, for example, about 1% by weight for modifying the fluorine-containing copolymer. % Or less functional monomer or polyfluoro monomer is allowed to be copolymerized. The amorphous polymer is a heat of fusion ΔH calculated from an endothermic peak detected by differential scanning calorimetry (DSC) of the fluorine-containing copolymer is about 3 J / g or less, preferably about 1 J / g or less. It points to what is.

好ましい実質的にパーフルオロ構造を有する非晶質含フッ素共重合体としては、パーフルオロ(アルキルビニルエーテル)を約20〜50重量%、好ましくは約30〜48重量%共重合させたテトラフルオロエチレンとの共重合体が挙げられ、より好ましくはテトラフルオロエチレン、パーフルオロ(エチルビニルエーテル)およびパーフルオロ(プロピルビニルエーテル)を共重合成分として含有する共重合体が挙げられる。   Preferred amorphous fluorine-containing copolymer having a substantially perfluoro structure is tetrafluoroethylene copolymerized with about 20 to 50% by weight, preferably about 30 to 48% by weight of perfluoro (alkyl vinyl ether). More preferred is a copolymer containing tetrafluoroethylene, perfluoro (ethyl vinyl ether) and perfluoro (propyl vinyl ether) as a copolymerization component.

かかる含フッ素共重合体のフッ素ガスによるフッ素化処理は、0〜50℃、好ましくはこの範囲の温度でかつ含フッ素共重合体のガラス転移温度Tg以上の温度条件下で行われる。   The fluorination treatment of the fluorine-containing copolymer with fluorine gas is performed at a temperature of 0 to 50 ° C., preferably within this range, and at a temperature not lower than the glass transition temperature Tg of the fluorine-containing copolymer.

フッ素化処理される含フッ素共重合体の物理的形状は、粉末状、ペレット状、クラム状のいずれでも可能であるが、気固接触反応の効率化および攪拌効率からは、粉末状またはペレット状であることが好ましい。フッ素化反応温度としては、特にテトラフルオロエチレンとパーフルオロ(アルキルビニルエーテル)との共重合体では室温付近、一般には25℃前後での処理が特に望ましく、工程管理の都合上通年にわたり安定な温度制御を行うために、50℃を上限とする加温を行うこともできる。0〜50℃と規定されたフッ素化反応温度条件より低い温度条件では、時間当り、含フッ素共重合体の単位処理量当りのバッチ効率が低下し、一方これよりも高い温度条件では、含フッ素重合体の分子量低下が生じ、溶融成形体の機械的特性が低下するようになる。   The physical shape of the fluorinated copolymer to be fluorinated can be powder, pellet, or crumb. From the viewpoint of the efficiency of gas-solid contact reaction and the stirring efficiency, it can be powder or pellet. It is preferable that As the fluorination reaction temperature, particularly in the case of a copolymer of tetrafluoroethylene and perfluoro (alkyl vinyl ether), treatment at around room temperature, generally around 25 ° C. is particularly desirable. In order to perform the above, heating up to 50 ° C. can be performed. Under temperature conditions lower than the fluorination reaction temperature condition defined as 0 to 50 ° C., the batch efficiency per unit treatment amount of the fluorinated copolymer is lowered per hour, while at higher temperature conditions, the fluorinated reaction temperature is decreased. The molecular weight of the polymer is lowered, and the mechanical properties of the melt-molded product are lowered.

一方、相対的に高温領域のフッ素化反応では、分子末端の安定化は行われるものの、主鎖切断による低分子量化が生じていることがMFR値が大きくなっていることから推定される。MFRが大きくなると、溶融成形体の機械的特性が著しく悪化するようになり、またより高温でのフッ素化処理では、押出成形体に発泡現象がみられるようになる。   On the other hand, in the fluorination reaction in a relatively high temperature region, although the molecular terminal is stabilized, it is presumed that the lowering of the molecular weight due to the main chain cleavage occurs due to the increased MFR value. When the MFR is increased, the mechanical properties of the melt-molded product are remarkably deteriorated, and in the fluorination treatment at a higher temperature, a foaming phenomenon is observed in the extruded product.

使用されるフッ素ガスは、反応効率およびハンドリングの面から、窒素、ヘリウム等の不活性ガスで約2〜50容量%、好ましくは約10〜30容量%の濃度に希釈して用いることが好ましい。フッ素ガス濃度が低すぎると、時間当り、含フッ素共重合体の単位処理量当りのバッチ効率が低下し、経済性に劣るようになる。一方、フッ素ガス濃度が高すぎると、含フッ素共重合体の分子量低下が生じ、溶融成形体の機械的特性が低下するばかりではなく、反応容器や配管材料等の材質にさらに耐フッ素ガス性を付与するための特別の設計上の費用がかかり、経済性に劣るようになる。   From the viewpoint of reaction efficiency and handling, the fluorine gas used is preferably diluted with an inert gas such as nitrogen or helium to a concentration of about 2 to 50% by volume, preferably about 10 to 30% by volume. If the fluorine gas concentration is too low, the batch efficiency per unit processing amount of the fluorinated copolymer per hour will be lowered, resulting in poor economic efficiency. On the other hand, if the fluorine gas concentration is too high, the molecular weight of the fluorine-containing copolymer is reduced, and not only the mechanical properties of the melt-molded product are reduced, but the material such as the reaction vessel and the piping material is further improved in fluorine gas resistance. There is a special design cost to grant and it becomes less economical.

フッ素ガスの供給は、バッチ式、連続式のいずれもが可能であり、フッ素ガスによる処理時間は、フッ素ガスの供給量、攪拌機構、反応器デザイン等に起因する気固接触効率等の複数の要因があるため一義的には決められないが、汎用的な反応器、攪拌機を使用してフッ素ガスを連続的に供給した場合には、約1〜24時間程度、好ましくは約3〜10時間程度であることが最も効率的である。フッ素化処理時間がこれよりも短いと、溶融成形加工性の改善が十分に達成されず、一方処理時間をこれ以上とすると、含フッ素共重合体の分子量低下や溶融成形体の機械的特性の低下がみられるが、温度条件範囲の上限側を超えた場合と比べてその程度は低く、長い処理時間は主に経済性を損なう要因となる。   The supply of fluorine gas can be either a batch type or a continuous type, and the treatment time with fluorine gas can be a plurality of gas-solid contact efficiency due to fluorine gas supply amount, stirring mechanism, reactor design, etc. Although it cannot be uniquely determined due to factors, when fluorine gas is continuously supplied using a general-purpose reactor or stirrer, about 1 to 24 hours, preferably about 3 to 10 hours It is most efficient to be a degree. If the fluorination treatment time is shorter than this, the melt processability cannot be sufficiently improved. On the other hand, if the treatment time is longer than this, the molecular weight of the fluorinated copolymer is decreased and the mechanical properties of the melt molded product are reduced. Although a decrease is observed, the degree is lower than the case where the upper limit of the temperature condition range is exceeded, and a long treatment time is a factor that impairs the economy.

このようにしてフッ素化処理された含フッ素共重合体は、320℃以下、好ましくは300℃以下、特に好ましくは280℃以下という比較的低い成形温度での溶融成形を可能とするので、圧縮成形、射出成形、トランスファー成形、押出成形、ブロー成形、インフレーション成形等に好適に使用され、特に比較的低温での押出成形によりチューブ、パイプ、フィルム、シート、ロッド等を極めて良好な表面肌で溶融成形することができる。   The fluorinated copolymer thus fluorinated enables compression molding at a relatively low molding temperature of 320 ° C. or less, preferably 300 ° C. or less, particularly preferably 280 ° C. or less. Suitable for injection molding, transfer molding, extrusion molding, blow molding, inflation molding, etc. Especially by extrusion molding at relatively low temperature, melt molding of tubes, pipes, films, sheets, rods, etc. with extremely good surface skin can do.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例1〜4、比較例1〜2
攪拌機を備えた容量100Lのオートクレーブ内に、
イオン交換水 50L
ペンタデカフルオロオクタン酸アンモニウム 100g
リン酸水素2ナトリウム・12水和物 250g
亜硫酸水素ナトリウム 30g
を仕込んだ後、減圧窒素置換を3回くり返した後、
イソプロパノール 10g
テトラフルオロエチレン〔TFE〕 2400g
パーフルオロ(エチルビニルエーテル)〔FEVE〕 2340g
パーフルオロ(プルピルビニルエーテル)〔FPVE〕 2650g
を仕込み、50℃になる迄加熱した。
Examples 1-4, Comparative Examples 1-2
In a 100 L autoclave equipped with a stirrer,
Ion exchange water 50L
100g ammonium pentadecafluorooctanoate
Disodium hydrogen phosphate dodecahydrate 250g
Sodium bisulfite 30g
After charging the vacuum nitrogen replacement three times,
Isopropanol 10g
Tetrafluoroethylene [TFE] 2400g
Perfluoro (ethyl vinyl ether) [FEVE] 2340g
Perfluoro (purpyr vinyl ether) (FPVE) 2650g
And heated to 50 ° C.

内温が50℃、内圧が0.85MPaになったことを確認した後、ペルオキソ2硫酸アンモニウム150gを仕込み、重合反応を開始させた。重合反応が進行し、内圧が0.75MPaに降下した時点で、
TFE/FEVE/FPVE=54/21/25(重量%)
の組成比のモノマー混合物の分添を0.85MPa迄行い、さらに内圧が0.75MPa迄降下した時点で再度同様の分添を行い、重合液の固形分濃度が約30重量%になる迄こうした操作をくり返した。
After confirming that the internal temperature was 50 ° C. and the internal pressure was 0.85 MPa, 150 g of ammonium peroxodisulfate was charged to initiate the polymerization reaction. When the polymerization reaction proceeds and the internal pressure drops to 0.75 MPa,
TFE / FEVE / FPVE = 54/21/25 (wt%)
Addition of the monomer mixture having the composition ratio of up to 0.85 MPa, and when the internal pressure drops to 0.75 MPa, repeat the same addition until the solid content concentration of the polymerization solution reaches about 30% by weight. Repeated.

反応終了後、直ちにオートクレーブ内の未反応モノマーを放出し、回収した水性ラテックスに対し凍結凝析、水洗および乾燥を実施し、共重合組成(IR分析による;特開2003−246823号公報参照)がTFE/FEVE/FPVE=54/21/25(重量%)、Tg(セイコー電子工業製DSC220C使用)15℃、融点(DSC200C使用)および融解熱量ΔH(DSC法による)は観測されず、MFR(ASTM D1238準拠;東洋精機製作所製メルトインデクサー使用)が1.1g/10分(230℃)、IRによる不安定末端基存在比が0.26の粉末状含フッ素共重合体を21kg得た。   Immediately after completion of the reaction, the unreacted monomer in the autoclave is released, and the recovered aqueous latex is subjected to freezing coagulation, washing with water and drying to obtain a copolymer composition (by IR analysis; see JP2003-246823). TFE / FEVE / FPVE = 54/21/25 (weight%), Tg (using Seiko Denshi Kogyo DSC220C) 15 ° C, melting point (using DSC200C) and heat of fusion ΔH (by DSC method) were not observed, MFR (ASTM 21 kg of a powdery fluorinated copolymer having 1.1 g / 10 min (230 ° C.) based on D1238; using a melt indexer manufactured by Toyo Seiki Seisakusho, and having an unstable terminal group abundance ratio of 0.26 by IR was obtained.

ここで、不安定末端基の-COOH基に由来するピーク(3656cm-1)および-CH2OH基(3648cm-1)を含む複数の不安定末端基ピークを包含する「3900〜2760cm-1のブロードな吸収の積分値」を、共重合体骨格の-CF2-基に由来する「2735〜2185cm-1のブロードな吸収の積分値」で除した値を、IRによる不安定末端基存在比とし、この指標の値が小さい程、不安定末端基の存在比が少ないことになる。また、フィルムや押出成形性にすぐれたものとなる。 Here, the unstable terminal group peaks derived from the -COOH group (3656cm -1) and -CH 2 OH group includes a plurality of unstable terminal groups peaks containing (3648cm -1) "of 3900~2760Cm -1 The value obtained by dividing the integral value of broad absorption by the integral value of broad absorption from 2735 to 2185 cm -1 derived from the -CF 2 -group of the copolymer backbone The smaller the value of this index, the smaller the abundance ratio of unstable end groups. In addition, the film and the extrudability are excellent.

得られた含フッ素共重合体粉末を、240、260、280、300、320℃の各成形温度(ダイス温度)で、ダイス間隔0.5mm、ダイス幅120mmで、フィルム厚さが約0.1mmとなるように引取速度を適宜調整して、幅が約120mmのフィルムを押出成形した。得られたフィルム表面を目視で観察し、表面荒れ、寸法精度、発泡、筋、焼け、メルトフラクチャー(MF)等の不具合の程度を△(やや多し)、×(多し)とし、これらの不具合のないものを○として評価した。   The resulting fluorine-containing copolymer powder is formed at 240, 260, 280, 300, and 320 ° C. molding temperatures (die temperatures), with a die spacing of 0.5 mm, a die width of 120 mm, and a film thickness of approximately 0.1 mm. A film having a width of about 120 mm was extruded by appropriately adjusting the take-up speed as described above. Observe the obtained film surface visually, and indicate the degree of defects such as surface roughness, dimensional accuracy, foaming, streaks, burnt, melt fracture (MF) as △ (slightly), × (many). Those without defects were evaluated as ○.

また、含フッ素共重合体粉末90gを、攪拌機能を有し、脱脂した容量400mlのガラス製反応容器内に仕込み、反応容器内を窒素置換した後、所定の反応温度条件となるように反応器を温度制御し、窒素希釈20容量%フッ素ガスを100ml/分の流量で所定時間導入した。反応終了後、反応器内を窒素で置換し、フッ素化含フッ素共重合体を回収し、それについてMFR(230℃)およびIRの不安定末端基存在比を測定した。   In addition, 90 g of the fluorinated copolymer powder has a stirring function and is charged into a degreased 400 ml glass reaction vessel, and after the inside of the reaction vessel is purged with nitrogen, the reactor is set to a predetermined reaction temperature condition. The nitrogen was diluted and 20 volume% fluorine gas diluted with nitrogen was introduced at a flow rate of 100 ml / min for a predetermined time. After completion of the reaction, the inside of the reactor was replaced with nitrogen, and the fluorinated fluorine-containing copolymer was recovered, and the abundance ratio of unstable end groups of MFR (230 ° C.) and IR was measured.

実施例5〜6、比較例3
実施例1において、共重合反応時の分添モノマー混合物として
TFE/FEVE/FPVE=78/15/17(重量%)
の組成比のものを用い、共重合組成が78/15/17(重量%)で、Tgは35℃、融点および融解熱量ΔHは観測されず、MFR 0.5g/10分(260℃)、IRによる不安定末端基存在比が0.21の粉末状含フッ素共重合体を23kg得た。
Examples 5-6, Comparative Example 3
In Example 1, as a monomer mixture added during the copolymerization reaction
TFE / FEVE / FPVE = 78/15/17 (wt%)
The copolymer composition is 78/15/17 (wt%), Tg is 35 ° C., melting point and heat of fusion ΔH are not observed, MFR 0.5 g / 10 min (260 ° C.), IR As a result, 23 kg of a powdery fluorocopolymer having an abundance ratio of unstable terminal groups of 0.21 was obtained.

この含フッ素共重合体粉末を用い、実施例1〜4と同様にフィルムの押出成形およびフッ素化(ただし、実施例6の流量は150ml/分)が行われた。なお、フッ素化物のMFRも、260℃で測定された。   Using this fluorine-containing copolymer powder, film extrusion and fluorination (however, the flow rate in Example 6 was 150 ml / min) were performed in the same manner as in Examples 1 to 4. The MFR of the fluoride was also measured at 260 ° C.

以上の各実施例および比較例で得られた結果は、次の表に示される。

実-1 実-2 実-3 実-4 比-1 比-2 実-5 実-6 比-3
〔フィルム押出成形〕
成形温度 320℃ − − − − − − △ ○ ×
(焼け) (焼け)
300℃ △ ○ △ ○ × × ○ ○ ○
(焼け) (発泡) (発泡)(焼け)
280℃ ○ ○ ○ ○ △ ○ ○ ○ △
(発泡) (MF)
260℃ ○ ○ ○ ○ ○ △ △ ○ ×
(MF) (MF) (MF)
240℃ △ ○ ○ ○ ○ × − − −
(MF) (MF)
〔フィルムフッ素化〕
フッ素化温度 (℃) 0 25 50 50 75 − 25 50 −
フッ素化時間 (hr) 3 3 3 1 1 − 2 2 −
フッ素化フィルム
MFR (g/10分) 1.1 1.2 3.2 2.1 4.8 1.1 0.5 0.6 0.5
IR不安定末端基存在比 0.19 0 0 0.03 0 0.26 0.08 0 0.21
The results obtained in the above examples and comparative examples are shown in the following table.
table
Real-1 Real-2 Real-3 Real-4 Ratio-1 Ratio-2 Real-5 Real-6 Ratio-3
[Film extrusion]
Molding temperature 320 ° C − − − − − − △ ○ ×
(Burn) (Burn)
300 ° C △ ○ △ ○ × × ○ ○ ○
(Burn) (Foam) (Foam) (Burn)
280 ° C ○ ○ ○ ○ △ ○ ○ ○ △
(Foaming) (MF)
260 ° C ○ ○ ○ ○ ○ △ △ ○ ×
(MF) (MF) (MF)
240 ° C △ ○ ○ ○ ○ × − − −
(MF) (MF)
[Film fluorination]
Fluorination temperature (° C) 0 25 50 50 75 − 25 50 −
Fluorination time (hr) 3 3 3 1 1 − 2 2 −
Fluorinated film
MFR (g / 10 min) 1.1 1.2 3.2 2.1 4.8 1.1 0.5 0.6 0.5
IR unstable terminal group abundance ratio 0.19 0 0 0.03 0 0.26 0.08 0 0.21

Claims (9)

実質的にパーフルオロ構造を有する非晶質含フッ素共重合体を0〜50℃の温度でフッ素ガスによるフッ素化処理を行うことを特徴とするフッ素化処理含フッ素共重合体の製造法。   A method for producing a fluorinated fluorinated copolymer, comprising subjecting an amorphous fluorinated copolymer having a substantially perfluoro structure to fluorination treatment with a fluorine gas at a temperature of 0 to 50 ° C. 非晶質含フッ素共重合体がDSC法において検出される融解熱量ΔHが3J/g以下の含フッ素共重合体である請求項1記載のフッ素化処理含フッ素共重合体の製造法。   The method for producing a fluorinated fluorinated copolymer according to claim 1, wherein the amorphous fluorinated copolymer is a fluorinated copolymer having a heat of fusion ΔH detected by DSC of 3 J / g or less. 非晶質含フッ素共重合体がテトラフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)を共重合成分として含有する共重合体である請求項1記載のフッ素化処理含フッ素共重合体の製造法。   The method for producing a fluorinated fluorinated copolymer according to claim 1, wherein the amorphous fluorinated copolymer is a copolymer containing tetrafluoroethylene and perfluoro (alkyl vinyl ether) as a copolymerization component. テトラフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)を含有する共重合体がテトラフルオロエチレン、パーフルオロ(エチルビニルエーテル)およびパーフルオロ(プロピルビニルエーテル)を共重合成分として含有する共重合体である請求項3記載のフッ素化処理含フッ素共重合体の製造法。   4. The copolymer containing tetrafluoroethylene and perfluoro (alkyl vinyl ether) is a copolymer containing tetrafluoroethylene, perfluoro (ethyl vinyl ether) and perfluoro (propyl vinyl ether) as copolymerization components. A process for producing a fluorinated copolymer. フッ素化処理が0〜50℃の範囲内の温度でかつ含フッ素共重合体のガラス転移温度Tg以上の温度条件下で行われる請求項1記載のフッ素化処理含フッ素共重合体の製造法。   The method for producing a fluorinated fluorinated copolymer according to claim 1, wherein the fluorination is carried out at a temperature in the range of 0 to 50 ° C and at a temperature not lower than the glass transition temperature Tg of the fluorinated copolymer. 請求項1、3、4または5記載の方法で製造された、溶融成形可能なフッ素化処理含フッ素共重合体。   A fluorinated fluorinated copolymer which can be melt-molded and produced by the method according to claim 1, 3, 4 or 5. IRによる不安定末端基存在比(3900〜2760cm-1のブロードな吸収の積分値を2735〜2185cm-1のブロードな吸収の積分値で除した値)が0.20以下である請求項6記載の溶融成形可能なフッ素化処理含フッ素共重合体。 Melting of claim 6, wherein the unstable terminal groups existing ratio by IR (divided by the integral value of the broad absorption in the integral value of the broad absorption of 3900~2760cm -1 2735~2185cm -1) is 0.20 or less Moldable fluorinated copolymer. 320℃以下の成形温度で溶融成形が可能な請求項6または7記載のフッ素化処理含フッ素共重合体。   The fluorinated fluorinated copolymer according to claim 6 or 7, which can be melt-molded at a molding temperature of 320 ° C or lower. 請求項6、7または8記載のフッ素化処理含フッ素共重合体から溶融成形された成形体。
A molded article melt-molded from the fluorinated fluorine-containing copolymer according to claim 6, 7 or 8.
JP2005140597A 2005-05-13 2005-05-13 Method for producing fluorine-containing copolymer by fluorination treatment Pending JP2006316174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140597A JP2006316174A (en) 2005-05-13 2005-05-13 Method for producing fluorine-containing copolymer by fluorination treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140597A JP2006316174A (en) 2005-05-13 2005-05-13 Method for producing fluorine-containing copolymer by fluorination treatment

Publications (2)

Publication Number Publication Date
JP2006316174A true JP2006316174A (en) 2006-11-24
JP2006316174A5 JP2006316174A5 (en) 2008-07-03

Family

ID=37537127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140597A Pending JP2006316174A (en) 2005-05-13 2005-05-13 Method for producing fluorine-containing copolymer by fluorination treatment

Country Status (1)

Country Link
JP (1) JP2006316174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143069A1 (en) * 2007-05-16 2008-11-27 Asahi Glass Company, Limited Method for production of fluorine-treated perfluoropolymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240713A (en) * 1984-05-10 1985-11-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Melt-processable tetrafluoroethylene copolymer and manufacture
JPS62104822A (en) * 1985-10-21 1987-05-15 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Stable tetrafluoroethylene copolymer
JPH09309918A (en) * 1996-05-22 1997-12-02 Tokuyama Corp Preparation of fluorinated polymer
JP2001500906A (en) * 1996-09-13 2001-01-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Amorphous fluoropolymer containing perfluoro (ethyl vinyl ether)
JP2003246823A (en) * 2001-12-18 2003-09-05 Yunimatekku Kk Fluorine-containing terpolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240713A (en) * 1984-05-10 1985-11-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Melt-processable tetrafluoroethylene copolymer and manufacture
JPS62104822A (en) * 1985-10-21 1987-05-15 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Stable tetrafluoroethylene copolymer
JPH09309918A (en) * 1996-05-22 1997-12-02 Tokuyama Corp Preparation of fluorinated polymer
JP2001500906A (en) * 1996-09-13 2001-01-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Amorphous fluoropolymer containing perfluoro (ethyl vinyl ether)
JP2003246823A (en) * 2001-12-18 2003-09-05 Yunimatekku Kk Fluorine-containing terpolymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143069A1 (en) * 2007-05-16 2008-11-27 Asahi Glass Company, Limited Method for production of fluorine-treated perfluoropolymer
US8026316B2 (en) 2007-05-16 2011-09-27 Asahi Glass Company, Limited Process for producing fluorination-treated perfluoropolymer
JP5338660B2 (en) * 2007-05-16 2013-11-13 旭硝子株式会社 Method for producing fluorinated perfluoropolymer

Similar Documents

Publication Publication Date Title
JP5212104B2 (en) Method for producing fluorine-containing elastomer
JP5298851B2 (en) Method for producing melt-moldable tetrafluoroethylene copolymer
JPH05405B2 (en)
JP5665800B2 (en) Tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer
JP2004534118A (en) Aqueous emulsion polymerization in the presence of ether as chain transfer agent for producing fluoropolymer
US5461129A (en) Tetrafluoroethylene-perfluorovinylether copolymer
CN106459233A (en) Ethylene/tetrafluoroethylene copolymer, method for producing same, powder coating, and molded article
KR20170101250A (en) Pfa molded body with excellent blister resistance and method of controlling occurrence of blisters in pfa molded body
EP3256501B1 (en) Tetrafluoroethylene/hexafluoropropylene copolymers including perfluoroalkoxyalkyl pendant groups and methods of making and using the same
JP2009256658A (en) Fuel-low-permeable block copolymer
JP5353880B2 (en) Fuel low permeability block copolymer
JP5962188B2 (en) Method for producing fluorine-containing elastomer
CN111057178B (en) Preparation method of low-pressure-change fluorine-containing elastomer
JP2006316174A (en) Method for producing fluorine-containing copolymer by fluorination treatment
JP5046443B2 (en) TFE thermoprocessable copolymer
EP1613677B1 (en) Melt-fabricable tetrafluoroethylene/fluorinated vinyl ether copolymer prepared by suspension polymerization
JP4289877B2 (en) TFE heat-treatable copolymer
JP2013213130A (en) Fluorine-containing elastomer blend and composition thereof
EP3583142B1 (en) Perfluorinated thermoplastic elastomer
JP2002012626A (en) Fluorine-containing copolymer and molding
JP2001040042A (en) Perhalogenated thermally plastic (co)polymer of chlorotrifluoroethylene
JP4341125B2 (en) Chemical liquid permeation inhibitor, chemical liquid permeation inhibiting fluorine-containing resin composition comprising the inhibitor
JP7174306B2 (en) Injection molded article and its manufacturing method
JP2007112916A (en) Amorphous fluorine-containing copolymer
WO2022181243A1 (en) Injection-molded body and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A977 Report on retrieval

Effective date: 20110124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823