JP2006316025A - Method for purifying and producing sugar alcohol anhydride composition and purified product - Google Patents

Method for purifying and producing sugar alcohol anhydride composition and purified product Download PDF

Info

Publication number
JP2006316025A
JP2006316025A JP2005142794A JP2005142794A JP2006316025A JP 2006316025 A JP2006316025 A JP 2006316025A JP 2005142794 A JP2005142794 A JP 2005142794A JP 2005142794 A JP2005142794 A JP 2005142794A JP 2006316025 A JP2006316025 A JP 2006316025A
Authority
JP
Japan
Prior art keywords
sugar alcohol
anhydrous sugar
alcohol composition
impurities
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005142794A
Other languages
Japanese (ja)
Other versions
JP4370280B2 (en
Inventor
Norimasa Fujihana
典正 藤花
Yoshiharu Tategami
義治 立上
Masao Mihashi
正雄 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Kagaku Kogyo KK
Sanko Chemical Industry Co Ltd
Original Assignee
Sanko Kagaku Kogyo KK
Sanko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Kagaku Kogyo KK, Sanko Chemical Industry Co Ltd filed Critical Sanko Kagaku Kogyo KK
Priority to JP2005142794A priority Critical patent/JP4370280B2/en
Publication of JP2006316025A publication Critical patent/JP2006316025A/en
Application granted granted Critical
Publication of JP4370280B2 publication Critical patent/JP4370280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing an isosorbide composition having excellent stability. <P>SOLUTION: A crude isosorbide composition is prepared by dehydrating sorbitol using a dehydration catalyst comprising isosorbide as a main ingredient and containing impurities. The crude isosorbide composition is distilled in the absence of a solvent to obtain a distillate. The distillate is treated to be decolored using activated carbon to obtain a decolored product. The decolored product is heated in the absence of a solvent and the isosorbide composition reduced in the content of 1, 4-sorbitan is obtained by chemically reacting 1, 4-sorbitan which is an impurity having higher boiling point than that of isosorbide among impurities distilled during the distillation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は一般に無水糖アルコール組成物の精製方法および製造方法に関するものであり、より特定的には、加工中に、許容できない程度の発色・着色などの問題を引き起こす不純物を除去することができるように改良された無水糖アルコール組成物の精製方法および製造方法に関する。この発明は、そのような方法で得られた無水糖アルコール組成物および、それより誘導された製品に関する。   The present invention relates generally to methods for purifying and producing anhydrous sugar alcohol compositions, and more particularly to allow removal of impurities that cause unacceptable color development and coloring problems during processing. The present invention relates to a method for purifying and producing an improved sugar-free alcohol composition. The present invention relates to an anhydrous sugar alcohol composition obtained by such a method, and a product derived therefrom.

無水糖アルコール、特にマンニトール、イジトールおよびソルビトールの誘導体は、治療用および食用として知られている。これらのうち、イソソルバイド、すなわち1,4:3,6−ジアンヒドロソルビトールは、コーンスターチおよびカサバ(タピオカ)を含む種々の天然資源から誘導することができるソルビトールの誘導体なので、再生可能な天然資源として、医薬品、医薬品原料、およびポリマー(特にポリエステル)およびコポリマーの製造に用いられるモノマー(鎖延長剤を含む)として有用である。   Anhydrosugar alcohols, especially mannitol, iditol and sorbitol derivatives are known for therapeutic and edible purposes. Of these, isosorbide, ie 1,4: 3,6-dianhydrosorbitol, is a derivative of sorbitol that can be derived from various natural resources including corn starch and cassava (tapioca), so as a renewable natural resource, It is useful as a monomer (including chain extender) used in the manufacture of pharmaceuticals, pharmaceutical raw materials, and polymers (especially polyesters) and copolymers.

無水糖アルコールは、種々の脱水触媒、特に強酸触媒の作用で対応する糖アルコール(または無水ヒドロ糖アルコール)を脱水すること(以下、内部脱水反応という)により生成することが知られている。これらの触媒の例として、種々の鉱酸、例えば硫酸、塩酸、燐酸やスルホン化ポリスチレンが挙げられる。これらの脱水反応は、一般には、溶媒の存在下で行われる。例えば、水、およびキシレンやトルエンのような有機溶媒が有用であることが知られている(例えば特許文献1参照)。   It is known that the anhydrous sugar alcohol is produced by dehydrating the corresponding sugar alcohol (or anhydrous hydrosugar alcohol) by the action of various dehydration catalysts, particularly a strong acid catalyst (hereinafter referred to as internal dehydration reaction). Examples of these catalysts include various mineral acids such as sulfuric acid, hydrochloric acid, phosphoric acid and sulfonated polystyrene. These dehydration reactions are generally performed in the presence of a solvent. For example, water and organic solvents such as xylene and toluene are known to be useful (see, for example, Patent Document 1).

無水糖アルコールの使用に際しての純度に対する要求は、目的とする用途に応じて異なる。例えば医薬品や食品の用途では、1つの要求は、無水糖アルコールを含有する物質に、有機体または個体への害を引き起こす不純物が存在しないことである。ポリマー用途では、特に包装用ポリマーのような光学的透明度が要求される用途では、合成中および/または加工中に生成するポリマーが、許容されない程度の発色・着色を引き起こす不純物を含有しないことである。また、ポリマーの合成時に分子量の増大を阻害する不純物を含有しないことである。食品および薬品用途に用いられる無水糖アルコールにおいては許容できる不純物が、ポリマーの合成または加工中に許容できない色レベルの発色を引き起こすために、ポリマー用途では実際上、受け入れられないこともあり得る。   The requirement for purity when using anhydrosugar alcohol varies depending on the intended use. For example, in pharmaceutical and food applications, one requirement is that substances containing anhydrous sugar alcohols be free of impurities that cause harm to organisms or individuals. In polymer applications, especially in applications where optical transparency is required, such as packaging polymers, the polymer produced during synthesis and / or processing does not contain impurities that cause unacceptable color development or coloration. . Further, it does not contain impurities that hinder the increase in molecular weight during the synthesis of the polymer. It may be practically unacceptable in polymer applications because impurities that are acceptable in anhydrosugar alcohols used in food and pharmaceutical applications cause unacceptable color levels of color development during polymer synthesis or processing.

無水糖アルコールの精製方法としては、いくつかの方法が知られている。例えば、ソルビトールなどの内部脱水反応で生成した無水糖アルコールを蒸留し、得られた蒸留品を有機溶媒から再結晶する方法である(特許文献2,3参照)。しかし、この方法で精製した無水糖アルコールを使用した場合は、残存する有機溶媒が連鎖移動剤となり、ポリマーの合成時に分子量が増大しないという問題点があった。また、この方法では、加工中に許容できない程度の発色・着色の原因となる不純物が十分に除去されないなどの問題点があった。   Several methods are known as methods for purifying anhydrous sugar alcohols. For example, an anhydrous sugar alcohol produced by an internal dehydration reaction such as sorbitol is distilled, and the obtained distilled product is recrystallized from an organic solvent (see Patent Documents 2 and 3). However, when the anhydrous sugar alcohol purified by this method is used, the remaining organic solvent becomes a chain transfer agent, and there is a problem that the molecular weight does not increase during the synthesis of the polymer. In addition, this method has a problem that impurities that cause unacceptable coloring and coloring during processing cannot be sufficiently removed.

水から再結晶する精製方法についても、公知である。しかしながら、この方法で得られた生成物は純度が低く、さらに無水糖アルコールが吸湿性を有するので、水を溶媒として用いることは好ましくない。   A purification method for recrystallization from water is also known. However, since the product obtained by this method has low purity and the anhydrous sugar alcohol has hygroscopicity, it is not preferable to use water as a solvent.

上述のような状況にあって、簡素でコスト効率がよく、極めて純度の高い無水糖アルコールの精製法が望まれている。さらに、特にポリマー製造に使用するために、非常に純粋な無水糖アルコールが望まれている。   Under the circumstances as described above, there is a demand for a method for purifying anhydrosugar alcohol that is simple, cost-effective, and extremely high in purity. Furthermore, very pure anhydrous sugar alcohols are desired, especially for use in polymer production.

英国特許613,444号British patent 613,444

特表2002−534486号公報Special Table 2002-534486

特表2003−535866号公報Special table 2003-535866 gazette

無水糖アルコールの精製を困難にしているのは、ソルビトールなどの内部脱水反応で生成した無水糖アルコールの蒸留品(黒色)は、後述する種々の不純物を含む組成物として構成されている(以下無水糖アルコール組成物という)ためであると考えられる。そのため、単なる蒸留・冷却の操作では、精製の点で十分な結果を得ることが出来ないという特徴を示すのである。また、留出品を活性炭で処理するのみでは、色調の点では改善された組成物を得ることができるが、純度の点では全く改善されないという特徴を示すのである。   It is difficult to purify the anhydrous sugar alcohol. The distilled sugar alcohol (black) produced by the internal dehydration reaction such as sorbitol is composed as a composition containing various impurities described below (hereinafter, anhydrous). This is considered to be because of the sugar alcohol composition. For this reason, a simple distillation / cooling operation cannot provide sufficient results in terms of purification. Further, only by treating the union with activated charcoal, a composition improved in terms of color tone can be obtained, but it does not improve at all in terms of purity.

この発明はこのような特徴を有する無水糖アルコール組成物に鑑みてなされたもので、極めて純度が高い無水糖アルコール組成物が得られるように改良された無水糖アルコール組成物の精製方法を提供することを目的とする。   The present invention has been made in view of an anhydrous sugar alcohol composition having such characteristics, and provides an improved method of purifying an anhydrous sugar alcohol composition so that an anhydrous sugar alcohol composition having extremely high purity can be obtained. For the purpose.

この発明の他の目的は、優れた安定性を有する無水糖アルコール組成物を得る方法を提供することにある。   Another object of the present invention is to provide a method for obtaining an anhydrous sugar alcohol composition having excellent stability.

この発明の他の目的は、ポリマー製造に使用できる非常に純粋な無水糖アルコール組成物を得る方法を提供することにある。   Another object of the present invention is to provide a method for obtaining a very pure anhydrous sugar alcohol composition which can be used for polymer production.

この発明の他の目的は、純度が高く、かつ優れた安定性を有するヘキシトール等の内部脱水生成物を、溶媒・溶質からの再結晶をさせるという工程を行わないで、得る方法を提供することにある。   Another object of the present invention is to provide a method for obtaining an internal dehydration product such as hexitol having high purity and excellent stability without performing a step of recrystallization from a solvent / solute. It is in.

この発明の他の目的は、99%以上の純度を有し、白色粉末または無色溶液であり、優れた安定性を有する無水糖アルコール組成物を、簡素にかつコスト効率よく得る方法を提供することにある。   Another object of the present invention is to provide a simple and cost-effective method for obtaining an anhydrous sugar alcohol composition having a purity of 99% or more, a white powder or a colorless solution, and having excellent stability. It is in.

この発明のさらに他の目的は、そのような方法で得られた無水糖アルコール組成物を提供することにある。   Still another object of the present invention is to provide an anhydrous sugar alcohol composition obtained by such a method.

この発明のさらに他の目的は、そのような無水糖アルコール組成物を用いた製品を提供することにある。   Still another object of the present invention is to provide a product using such an anhydrous sugar alcohol composition.

この発明に従う無水糖アルコール組成物の精製方法においては、まず、1種類の無水糖アルコールを主成分とし不純物を含有する無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る(第1工程)。上記蒸留物を脱色手段で脱色処理し、脱色処理物を得る(第2工程)。これにより、蛍光物質が除去される。この脱色処理は、上記蒸留物を溶媒に再溶解して行ってもよいし、再溶解せずに行ってもよい。次に、上記脱色処理物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、上記蒸留時に共に留出した不純物のうちの、上記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る(第3工程)。溶媒非存在下で行うことにより、副反応が生じない。   In the method for purifying an anhydrous sugar alcohol composition according to the present invention, first, an anhydrous sugar alcohol composition containing one kind of anhydrous sugar alcohol as a main component and containing impurities is distilled in the absence of a solvent to obtain a distillate ( First step). The distillate is decolorized by a decoloring means to obtain a decolorized product (second step). Thereby, the fluorescent material is removed. This decolorization treatment may be performed by redissolving the distillate in a solvent or without redissolving. Next, the decolorized product is heated in the absence of a solvent to cause a thermal reaction, whereby impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation An anhydrous sugar alcohol composition having a reduced content of is obtained (third step). By performing the reaction in the absence of a solvent, no side reaction occurs.

上記第3工程における上記熱反応は、減圧下で行うのが好ましい。   The thermal reaction in the third step is preferably performed under reduced pressure.

さらに好ましくは、上記第2工程の後、上記第3工程に先立ち、上記脱色処理された上記蒸留物をイオン交換手段で処理する。これにより、上記脱色手段中に含まれていた酸性成分であって、上記脱色処理物内に移行した酸性成分が除去される。   More preferably, after the second step, prior to the third step, the decolored distillate is treated by ion exchange means. As a result, the acidic component contained in the decoloring means and transferred to the decolorized product is removed.

この方法によって得られた無水糖アルコール組成物は、純度が高く、ポリマー用途に好ましく用いられる。連鎖移動剤になる有機溶媒を含まないので、分子量が増大する。得られたポリマーは、繊維、光学ディスク、容器、シートおよびフィルムなどの製品を与える。   The anhydrous sugar alcohol composition obtained by this method has high purity and is preferably used for polymer applications. Since the organic solvent which becomes a chain transfer agent is not included, the molecular weight increases. The resulting polymer gives products such as fibers, optical discs, containers, sheets and films.

この発明の他の局面に従う無水糖アルコール組成物の精製方法においては、まず、1種類の無水糖アルコールを主成分とし不純物を含有する無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る。上記蒸留物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、上記蒸留時に共に留出した不純物のうちの、上記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る。引き続き、上記無水糖アルコール組成物を脱色手段で脱色処理する。この脱色処理は、上記無水糖アルコール組成物を溶媒に再溶解して行ってもよいし、再溶解せずに行ってもよい。   In the method for purifying an anhydrous sugar alcohol composition according to another aspect of the present invention, first, an anhydrous sugar alcohol composition containing one kind of anhydrous sugar alcohol as a main component and containing impurities is distilled in the absence of a solvent, and distilled. Get things. The distillate is heated in the absence of a solvent to cause a thermal reaction, whereby the content of impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation is increased. A reduced anhydrous sugar alcohol composition is obtained. Subsequently, the anhydrous sugar alcohol composition is decolorized by a decoloring means. This decolorization treatment may be performed by redissolving the anhydrous sugar alcohol composition in a solvent or without redissolving.

この方法においても、上記脱色処理された無水糖アルコール組成物をイオン交換手段で処理する工程をさらに備えるのが好ましい。   Also in this method, it is preferable to further include a step of treating the decolorized anhydrosugar alcohol composition with an ion exchange means.

この方法によって得られた無水糖アルコール組成物は、微量の有機溶媒も含まない。微量の有機溶媒も含まないので、医薬品として利用する場合でも人体に害を及ぼすことがない。それゆえ、得られた無水糖アルコール組成物は医薬品、または該医薬品から製造された製品に好ましく利用される。   The anhydrous sugar alcohol composition obtained by this method does not contain a trace amount of organic solvent. Since it does not contain trace amounts of organic solvents, it does not harm the human body even when used as a pharmaceutical. Therefore, the obtained anhydrous sugar alcohol composition is preferably used for a pharmaceutical product or a product produced from the pharmaceutical product.

上記脱色手段として、活性炭を用いるのが好ましく、より好ましくは粒状形態の活性炭を用いる。   Activated carbon is preferably used as the decolorizing means, and granular activated carbon is more preferably used.

上記イオン交換手段として、少なくとも1種類のアニオン樹脂、好ましくは強アニオン樹枝と、少なくとも1種類のカチオン樹脂、好ましくは強カチオン樹脂を含むものを用いる。   As the ion exchange means, one containing at least one kind of anion resin, preferably a strong anion dendrite, and at least one kind of cation resin, preferably a strong cation resin is used.

一般的に上記組成物は、内部脱水反応で生成した無水糖アルコールのいくつかの混合物を含むが、そのうちの1つが主成分(最も多く存在する成分)となる。本発明による精製方法の第1の目的は、これらの組成物の安定性や色調を改善し、ポリマー合成の際の鎖延長剤を含むコモノマーとしての適性を付与することである。   In general, the composition contains a mixture of several anhydrous sugar alcohols produced by an internal dehydration reaction, one of which is the main component (the most abundant component). The first purpose of the purification method according to the present invention is to improve the stability and color tone of these compositions and to impart suitability as a comonomer containing a chain extender during polymer synthesis.

本発明に従う精製方法によって得られた組成物は、イソへキシド組成物、すなわち、その由来、その性質、その提供形態およびその組成によらず、主成分たる1種類のイソヘキシドと1種類以上の別のイソヘキシドとの混合物となる。イソヘキシドは、好ましくは、イソソルバイド(1,4−3,6−ジアンヒドロソルビトール)、イソマンニド(1,4−3,6ジアンヒドロマンニトール)、イソイジド(1,4−3,6−ジアンヒドロイジトール)、イソイタイドまたはイソガラクチドであり、より好ましくは、イソソルバイドである。   The composition obtained by the purification method according to the present invention is an isohexide composition, that is, one isohexide as a main component and one or more different ones regardless of its origin, nature, provision form and composition. It becomes a mixture with isohexide. The isohexide is preferably isosorbide (1,4-3,6-dianhydrosorbitol), isomannide (1,4-3,4-dianhydromannitol), isoidide (1,4-3,4-dianhydroiditol). , Isoitide or isogalactide, more preferably isosorbide.

本発明にかかる方法によると、上記イソソルバイドまたは上記イソマンニドの純度が少なくとも98.5%であり、好ましくは99.0%以上であり、遊離および/または塩の形態での蟻酸の含有量が最大で0.01%である無水糖アルコール組成物が得られる。   According to the method of the present invention, the purity of the isosorbide or isomannide is at least 98.5%, preferably 99.0% or more, and the content of formic acid in the form of free and / or salt is maximum. An anhydrous sugar alcohol composition of 0.01% is obtained.

条件を選ぶと、上記イソソルバイドまたは上記イソマンニドの純度は、99.5%、好ましくは99.6%以上になる。   When the conditions are selected, the purity of the isosorbide or isomannide is 99.5%, preferably 99.6% or more.

このようなイソソルバイドまたはイソマンニド等の無水糖アルコール組成物は、液体、固体または粉体で得られる。その純度、安定性および/または色相の特性から、これらの組成物は、化学、製薬、化粧品および食品工業を目的とする中間体、鎖延長剤を含むコモノマー、溶剤、可塑剤,潤滑剤、造核剤、充填剤、甘味料、香料および/または活性成分としての、生成物または混合物の調製に用いられる。   Such an anhydrous sugar alcohol composition such as isosorbide or isomannide is obtained in a liquid, solid or powder form. Due to their purity, stability and / or hue characteristics, these compositions are intermediates for the chemical, pharmaceutical, cosmetic and food industries, comonomers including chain extenders, solvents, plasticizers, lubricants, constructions. Used in the preparation of products or mixtures as nucleating agents, fillers, sweeteners, perfumes and / or active ingredients.

この発明の他の局面に従う無水糖アルコール組成物の製造方法においては、まず糖アルコール(ブドウ糖や果糖などのアルデヒド基(-CHO)を持つ糖を還元し、末端をアルコール(-CH2OH)に変化させた化合物の総称)を脱水触媒を用いて脱水し、1種類の無水糖アルコールを主成分とし不純物を含有する粗無水糖アルコール組成物を形成する。上記粗無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る。上記蒸留物を脱色手段で脱色処理し、脱色処理物を得る。上記脱色処理物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、上記蒸留時に共に留出した不純物のうちの、上記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る。 In the method for producing an anhydrosugar alcohol composition according to another aspect of the present invention, first, a sugar alcohol (a sugar having an aldehyde group (—CHO) such as glucose or fructose is reduced and the terminal is changed to an alcohol (—CH 2 OH)). A generic name of the changed compound) is dehydrated using a dehydration catalyst to form a crude anhydrous sugar alcohol composition containing one kind of anhydrous sugar alcohol as a main component and impurities. The crude anhydrous sugar alcohol composition is distilled in the absence of a solvent to obtain a distillate. The distillate is decolorized by a decoloring means to obtain a decolorized product. The content of impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation by heating the decolorized product in the absence of a solvent to cause a thermal reaction. An anhydrosugar alcohol composition having a reduced content is obtained.

この発明のさらに他の局面に従う無水糖アルコール組成物の製造方法においては、まず糖アルコールを脱水触媒を用いて脱水し、1種類の無水糖アルコールを主成分とし不純物を含有する粗無水糖アルコール組成物を形成する。上記粗無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る。上記蒸留物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、上記蒸留時に共に留出した不純物のうちの、上記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る。引き続き、上記無水糖アルコール組成物を脱色手段で脱色処理する。   In the method for producing an anhydrous sugar alcohol composition according to still another aspect of the present invention, first, a sugar alcohol is dehydrated using a dehydration catalyst, and a crude anhydrous sugar alcohol composition containing one kind of anhydrous sugar alcohol as a main component and containing impurities. Form things. The crude anhydrous sugar alcohol composition is distilled in the absence of a solvent to obtain a distillate. The distillate is heated in the absence of a solvent to cause a thermal reaction, whereby the content of impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation is increased. A reduced anhydrous sugar alcohol composition is obtained. Subsequently, the anhydrous sugar alcohol composition is decolorized by a decoloring means.

本発明によれば、不安定性の原因となる不純物が除去されるので、安定性の点で改善された無水糖アルコール組成物が得られる。   According to the present invention, impurities that cause instability are removed, so that an anhydrous sugar alcohol composition improved in terms of stability can be obtained.

本発明にかかる精製方法は、減圧蒸留、脱色処理および/またはイオン交換手段による処理、ついで熱処理(熱反応処理)という組み合わせ、または減圧蒸留、熱処理、次いで脱色処理および/またはイオン交換手段による処理という組み合わせによって、不純物を除去し、安定性の点で改善された組成物を得るというものである。ここに安定性とは、特に、得られた組成物のpHの変化と色相の変化が少なく、経時的不純物(蟻酸等の酸化生成物など)の生成がないことを意味する。   The purification method according to the present invention is a combination of distillation under reduced pressure, decolorization treatment and / or ion exchange means, followed by heat treatment (thermal reaction treatment), or distillation under reduced pressure, heat treatment, then decolorization treatment and / or treatment by ion exchange means. By the combination, impurities are removed and a composition improved in terms of stability is obtained. Here, the stability means that there is little change in pH and hue of the obtained composition, and there is no generation of impurities over time (oxidation products such as formic acid).

熱反応処理することによって、無水糖アルコール組成物の安定性が改善される理由について説明する。図1に示すように、例えば、ソルビトールを酸触媒で内部脱水反応させるとピークNo.1−9の留分(ピークNo.が大きい数字ほど高沸点留分)を含む粗イソソルバイド組成物が得られる。安定性を悪くしているのは、自動酸化しやすいグリコール構造を有する1,4−ソルビタンであると推定される。1,4−ソルビタンは、粗イソソルバイド組成物中に0.5〜1.0%存在する。減圧下で熱反応処理することによって1,4−ソルビタンが、イソソルバイドより低沸点で、酸化に対して安定性を有する化合物に変化し、1,4−ソルビタンの含有量が減少し、これにより、安定性が改善されたものと考えている。なお、図1中、ピークNo.3,4,7,9の物質は、構造が未だ推定されていない。   The reason why the stability of the anhydrous sugar alcohol composition is improved by the thermal reaction treatment will be described. As shown in FIG. 1, for example, when sorbitol is subjected to an internal dehydration reaction with an acid catalyst, peak No. 1 is obtained. A crude isosorbide composition containing a fraction of 1-9 (the higher the peak No., the higher the boiling point fraction) is obtained. It is estimated that 1,4-sorbitan having a glycol structure that easily undergoes auto-oxidation is deteriorating the stability. 1,4-sorbitan is present in the crude isosorbide composition at 0.5-1.0%. By carrying out a thermal reaction treatment under reduced pressure, 1,4-sorbitan is changed to a compound having a lower boiling point than isosorbide and having stability against oxidation, and the content of 1,4-sorbitan is reduced. We believe that stability has been improved. In FIG. The structures of 3, 4, 7, and 9 have not been estimated yet.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

イソソルバイドおよび他の無水糖アルコールの含有量は、ガスクロマトグラフィー(GC)によって測定した。蟻酸等の不純物の含量は、高性能液体クロマトグラフィー(HPLC)またはガスクロマトグラフィー/質量分析法(GC/MS)によって測定した。   The content of isosorbide and other anhydrous sugar alcohols was measured by gas chromatography (GC). The content of impurities such as formic acid was measured by high performance liquid chromatography (HPLC) or gas chromatography / mass spectrometry (GC / MS).

一連の精製実験を、無水糖アルコールとしてイソソルバイドを使用して行った。   A series of purification experiments were performed using isosorbide as the anhydrous sugar alcohol.

(イソソルバイドの製造)   (Manufacture of isosorbide)

容量2lのガラス製の攪拌機つきの減圧反応器にソルビトールの70%水溶液(ソルビット(登録商標)D−70,東和化成工業株式会社製)1930grを仕込み、40torrの減圧下で、120℃まで加熱し、水580grを留出した。次いで、98%濃硫酸32grを添加して、減圧下で24時間反応させ、水262grを留出した。この反応液を80℃まで冷却し、40%苛性ソーダ水溶液でpH7.2(1%水溶液)まで中和した。この反応液を、減圧下で再度130℃まで加熱した。水16grを留出させて除去し、黒色粘稠な粗イソソルバイド組成物1076grを得た。分析結果、1,4−ソルビタンを0.65%含有していた。   Into a vacuum reactor with a capacity of 2 liters equipped with a stirrer was charged 1930 g of a 70% aqueous solution of sorbitol (Sorbit (registered trademark) D-70, manufactured by Towa Kasei Kogyo Co., Ltd.) and heated to 120 ° C. under a reduced pressure of 40 torr. 580 gr of water was distilled off. Next, 32 g of 98% concentrated sulfuric acid was added and reacted under reduced pressure for 24 hours to distill 262 g of water. The reaction solution was cooled to 80 ° C. and neutralized with a 40% aqueous sodium hydroxide solution to pH 7.2 (1% aqueous solution). The reaction was heated again to 130 ° C. under reduced pressure. 16 g of water was distilled off to obtain 1076 gr of a black viscous crude isosorbide composition. As a result of analysis, it contained 0.65% of 1,4-sorbitan.

(イソソルバイド組成物の精製)   (Purification of isosorbide composition)

粗イソソルバイド組成物538grを減圧蒸留器(1l)に仕込み、9torrまでの減圧下でバス温度210℃まで加熱し、約3時間かけて、黄緑蛍光色の留出物394grを得た(以下物理的蒸留という。これについては後述する)。イソソルバイド含有量は、99.1%であった。釜残留物として、148grのピッチ状物(イソソルバイド含有率2.0%)を抜き出した。   The crude isosorbide composition (538 g) was charged into a vacuum distiller (1 l), heated to a bath temperature of 210 ° C. under a reduced pressure of 9 torr, and a yellow-green fluorescent distillate (394 g) was obtained over a period of about 3 hours (hereinafter physical). (This will be described later). The isosorbide content was 99.1%. As the kettle residue, 148 gr of pitch-like material (isosorbide content 2.0%) was extracted.

精製水380grを上記留出物390grに添加し、希釈、溶解した。次いで、粉末状の活性炭73grを添加し、60℃、6時間攪拌した後、活性炭をろ過して、無色透明な水溶液717grを得た。この水溶液を減圧蒸留器(1l)に仕込み、130℃、50torrで水を留出(357gr)した後、9torrまでの減圧下で、徐々に温度を上げていき、すなわち6時間かけて、バス温度190℃まで加熱し、白色の固体留出物367gr(融点64℃)を得た(以下化学的蒸留という。これについては、後述する)。化学的蒸留は、上記物理的蒸留よりも、バス温度は低温で、徐々に温度を上げながら、上記物理的蒸留よりも、長い時間をかけて行うのが特徴である。すなわち、蒸留速度を遅くして行う。   380 gr of purified water was added to 390 gr of the distillate, diluted and dissolved. Subsequently, powdered activated carbon 73gr was added and stirred at 60 ° C. for 6 hours, and then the activated carbon was filtered to obtain a colorless and transparent aqueous solution 717gr. This aqueous solution was charged into a vacuum distiller (1 liter), water was distilled at 130 ° C. and 50 torr (357 gr), and the temperature was gradually increased under reduced pressure up to 9 torr, that is, the bath temperature was increased over 6 hours. The mixture was heated to 190 ° C. to obtain 367 gr (melting point: 64 ° C.) of a white solid distillate (hereinafter referred to as chemical distillation, which will be described later). The chemical distillation is characterized in that the bath temperature is lower than that in the physical distillation, and is performed over a longer time than the physical distillation while gradually raising the temperature. That is, the distillation is performed at a slow rate.

イソソルバイド含有率は99.5%であった。このイソソルバイド組成物の組成は、表1の通りであった。したがって、このイソソルバイド組成物中のイソソルバイドの純度は、99.2/99.5×100=99.7%であった。

Figure 2006316025
The isosorbide content was 99.5%. The composition of this isosorbide composition was as shown in Table 1. Therefore, the purity of isosorbide in this isosorbide composition was 99.2 / 99.5 × 100 = 99.7%.
Figure 2006316025

このイソソルバイド組成物10grを共栓付き三角フラスコに仕込み、70℃のオーブン中に7日間放置した後、イソソルバイド純度を測定した結果、99.1%であった。また、蟻酸濃度は、0.0005%以下で増大を認めなかった。pHは6.5であった。   10 grams of this isosorbide composition was charged into a conical stoppered Erlenmeyer flask, left in an oven at 70 ° C. for 7 days, and then the purity of isosorbide was measured. As a result, it was 99.1%. The formic acid concentration was 0.0005% or less and no increase was observed. The pH was 6.5.

こうして得られたイソソルバイド(イソソルビド)は、環状五員環を有する2価のアルコールであり、比重(30℃)1.32,融点61〜64℃,沸点155〜165℃/3mmHgで、水、メタノールに極めてよく溶け、エタノールに溶けやすくエーテルには溶けにくい、淡黄色の結晶または塊でわずかに特異臭(糖臭)を示し、味は苦く、吸湿性があり、非イオン系界面活性剤の製造原料、ポリマーの原料、化粧品の保湿剤、医薬品としての飲用、ニトロ化を行って循環器医薬として使用される有用な物質である。   Isosorbide (isosorbide) thus obtained is a divalent alcohol having a cyclic five-membered ring and has a specific gravity (30 ° C.) of 1.32, a melting point of 61 to 64 ° C., a boiling point of 155 to 165 ° C./3 mmHg, water, methanol It is very soluble in water, is easily soluble in ethanol, is not soluble in ether, has a slightly yellowish odor (sugary odor) with light yellow crystals or lumps, has a bitter taste, is hygroscopic, and produces nonionic surfactants. It is a useful substance that is used as a cardiovascular medicine by performing raw materials, polymer raw materials, cosmetic moisturizers, drinking as pharmaceuticals, and nitration.

実施例1で得られた粗イソソルバイド組成物を、実施例1を変形した方法によって精製した。すなわち、粗イソソルバイド組成物539grを容量1lのガラス製の攪拌機付きの減圧蒸留器に仕込み、9torrの減圧下で、約3時間かけて、バス温度210℃まで加熱し、黄緑蛍光色の留出物394grを得た。イソソルバイド含有量は、99.6%であった。   The crude isosorbide composition obtained in Example 1 was purified by a modified method of Example 1. That is, 539 gr of a crude isosorbide composition was charged into a vacuum distillation apparatus with a glass stirrer having a capacity of 1 liter, heated to a bath temperature of 210 ° C. under a reduced pressure of 9 torr over about 3 hours, and a yellow-green fluorescent color was distilled off. 394 gr of product was obtained. The isosorbide content was 99.6%.

精製水384grを上記留出物384grに添加し、希釈、溶解した。次いで、粉末状の活性炭73grを添加し、55℃、6時間攪拌した後、活性炭をろ過して、無色透明な水溶液715grを得た。この水溶液を、強カチオン樹脂で処理し、ついで強アニオン交換樹脂で処理した後、再度、上記の減圧蒸留器(1l)に仕込み、130℃、50torrで水を留出(357gr)したのち、9torrまでの減圧下で、徐々に温度を上げていき、すなわち10時間かけて、バス温度190℃まで加熱し、白色固体の留出物358gr(融点64℃)を得た。イソソルバイド含有率は99.8%であった。   Purified water 384gr was added to the distillate 384gr, diluted and dissolved. Next, 73 g of powdered activated carbon was added and stirred at 55 ° C. for 6 hours, and then the activated carbon was filtered to obtain 715 gr of a colorless and transparent aqueous solution. This aqueous solution was treated with a strong cation resin and then with a strong anion exchange resin, and then charged again into the vacuum distillation apparatus (1 l) described above, and after distilling water (357 gr) at 130 ° C. and 50 torr, 9 torr. The temperature was gradually raised under reduced pressure until the temperature reached, that is, the bath temperature was heated to 190 ° C. over 10 hours to obtain 358 gr of a white solid distillate (melting point 64 ° C.). The isosorbide content was 99.8%.

(比較例)   (Comparative example)

実施例2で得られた黄緑蛍光色の留出物を、本発明によらない別の変形方法でそれぞれ精製した。   The yellowish green fluorescent distillate obtained in Example 2 was purified by another modification method not according to the present invention.

比較例1   Comparative Example 1

実施例2で得られた黄緑蛍光色の留出物を活性炭で処理しただけで、水を留去して白色固体を得た。   Just by treating the yellowish green fluorescent distillate obtained in Example 2 with activated carbon, water was distilled off to obtain a white solid.

比較例2   Comparative Example 2

実施例2で得られた黄緑蛍光色の留出物を強カチオン交換樹脂で処理し、次いで、強アニオン交換樹脂で処理しただけで、水を留去して白色固体を得た。   The yellowish green fluorescent distillate obtained in Example 2 was treated with a strong cation exchange resin and then treated with a strong anion exchange resin, and water was distilled off to obtain a white solid.

比較例3   Comparative Example 3

実施例2で得られた黄緑蛍光色の留出物を活性炭で処理した後、次いで強カチオン交換樹脂で処理し、さらに、強アニオン交換樹脂で処理しただけで、水を留去して白色固体を得た。   The yellowish green fluorescent distillate obtained in Example 2 was treated with activated carbon, then with a strong cation exchange resin, and further treated with a strong anion exchange resin. A solid was obtained.

これらの方法で得られたイソソルバイド組成物を実施例1と同じ貯蔵条件で放置した結果、実施例1の場合よりも著しい蟻酸の発生が認められた。表2に結果を示す。

Figure 2006316025
As a result of leaving the isosorbide composition obtained by these methods under the same storage conditions as in Example 1, generation of formic acid more markedly than that in Example 1 was observed. Table 2 shows the results.
Figure 2006316025

内部脱水反応を行い、その後物理的蒸留し、その後イオン交換樹脂処理/活性炭処理したものは、処理直後は、蟻酸濃度が5ppm以下であった。しかし、表2から明らかなように、経時変化(60℃×48hr)後は、蟻酸は200〜800ppmに増大する。これは、蟻酸を生成する化合物が存在し、蒸留やイオン交換樹脂処理/活性炭処理することによっては、それを除去できないことを示している。   Those subjected to internal dehydration reaction, then physical distillation, and then ion exchange resin treatment / activated carbon treatment had a formic acid concentration of 5 ppm or less immediately after the treatment. However, as is clear from Table 2, formic acid increases to 200 to 800 ppm after aging (60 ° C. × 48 hours). This indicates that a compound that generates formic acid exists and cannot be removed by distillation or ion exchange resin treatment / activated carbon treatment.

蟻酸を生成する反応式は、次のように考えられる。すなわち、ピークNo.9のイソソルビタンのジオール部分が酸化されて、グリコール開裂が起こり、ホルムアルデヒドが生成し、さらに酸化されて蟻酸が生じたものと考えられる。

Figure 2006316025
The reaction formula for producing formic acid is considered as follows. That is, the peak No. It is thought that the diol portion of 9 isosorbitan was oxidized to cause glycol cleavage to generate formaldehyde, which was further oxidized to form formic acid.
Figure 2006316025

本実施例は、物理的蒸留を終えた粗イソソルバイド組成物を、図2に示すように、さらに3回化学的蒸留した。化学的蒸留1,2,3は、実施例1,2と同様に、減圧下で、時間をかけて、徐々に温度を上げていく方法で行った。それぞれの工程におけるイソソルバイド組成物の分析結果を表3に示す。

Figure 2006316025
In this example, the crude isosorbide composition after physical distillation was further chemically distilled three times as shown in FIG. The chemical distillations 1, 2, and 3 were performed in the same manner as in Examples 1 and 2, by gradually raising the temperature over time under reduced pressure. The analysis results of the isosorbide composition in each step are shown in Table 3.
Figure 2006316025

分析結果から明らかなように、化学的蒸留回数が増えるに従って、ピークNo.8の1,4−ソルビタンの量は減少し、ピークNo.2などの、イソソルバイドより低沸点の、酸化に対して安定性の有する化合物(イソソルバイドを含む)の量が増大する傾向にあることが認められた。これは、図3に示す化学反応により、減圧下で、時間をかけて、徐々に温度を上げていく方法による化学的蒸留は、沸点の差をもとに分離精製するという単なる物理的蒸留ではなく、熱反応によって、1,4−ソルビタン(ピークNo.8の物質)が、イソソルバイド(ピークNo.5の物質)およびイソソルバイドより低沸点の化合物(ピークNo.2,3,4の物質)に変化するという化学反応を伴なう蒸留であるということを示している。なお、表3のピークNo.は、図1のピークNo.にそれぞれ対応する。   As is apparent from the analysis results, as the number of chemical distillation increases, the peak No. 8, the amount of 1,4-sorbitan decreased. It has been observed that the amount of compounds (including isosorbide) having a boiling point lower than that of isosorbide, such as 2, which is stable to oxidation, tends to increase. This is because chemical distillation by the method of gradually raising the temperature over time under reduced pressure by the chemical reaction shown in FIG. 3 is simply physical distillation in which separation and purification are performed based on the difference in boiling points. However, by thermal reaction, 1,4-sorbitan (substance of peak No. 8) is converted to isosorbide (substance of peak No. 5) and a compound having a boiling point lower than isosorbide (substance of peak No. 2, 3, 4). It indicates that the distillation involves a chemical reaction that changes. The peak No. in Table 3 Is the peak No. in FIG. Correspond to each.

引き続き、上記化学的蒸留を行った後のイソソルバイド組成物を活性炭で脱色処理し、蛍光物質を除去し、次いで強カチオン交換樹脂で処理し、さらに、強アニオン交換樹脂で処理し、活性炭中に含まれていた酸性成分を除去した。得られた無水糖アルコール組成物は、微量の有機溶媒も含まない。微量の有機溶媒も含まないので、医薬品として利用する場合でも人体に害を及ぼすことがない。医薬品、または該医薬品から製造された製品に利用するには十分の純度を有していた。   Subsequently, the isosorbide composition after the above chemical distillation is decolorized with activated carbon, the fluorescent material is removed, then treated with a strong cation exchange resin, further treated with a strong anion exchange resin, and contained in the activated carbon. The acidic component that had been removed was removed. The obtained anhydrous sugar alcohol composition does not contain a trace amount of organic solvent. Since it does not contain trace amounts of organic solvents, it does not harm the human body even when used as a pharmaceutical. It had sufficient purity to be used for a medicine or a product manufactured from the medicine.

攪拌機付きステンレス製反応槽(0.5l)に窒素気流下で、テレフタル酸ジメチル107gr、実施例2で得られたイソソルバイド組成物58gr、エチレングリコール49gr、酢酸マンガン(II)47.6grを仕込む。この反応槽を230℃、3時間、次いで240℃、1時間、さらに264℃、1時間加熱しながら、生成するメタノールを留去する。温度が284℃に到達した後、ポリ燐酸(P:40mg)を添加する。ついで、酸化ゲルマニウム(IV)触媒47gr(エチレングリコール溶液)を添加する。反応槽内を1mmHgまで下げ、285℃、3時間保持する。反応生成物を水浴中に押し出し、透明な樹脂を得た。切断してペレット化した後、オーブンに入れて乾燥させた。オルソクロロフェノール1%溶液、25℃での固有粘度は、0.45dL/grであった。イソソルバイド残基含有率は13%(nmr測定)であった。   A stainless steel reaction vessel (0.5 l) equipped with a stirrer is charged with 107 g of dimethyl terephthalate, 58 g of the isosorbide composition obtained in Example 2, 49 g of ethylene glycol, and 47.6 g of manganese (II) acetate under a nitrogen stream. The methanol produced is distilled off while heating the reaction vessel at 230 ° C. for 3 hours, then at 240 ° C. for 1 hour, and further at 264 ° C. for 1 hour. After the temperature reaches 284 ° C., polyphosphoric acid (P: 40 mg) is added. Then, 47 gr (ethylene glycol solution) of germanium (IV) oxide catalyst is added. The reaction vessel is lowered to 1 mmHg and held at 285 ° C. for 3 hours. The reaction product was extruded into a water bath to obtain a transparent resin. After cutting and pelletizing, it was put in an oven and dried. The intrinsic viscosity at 25 ° C. of a 1% orthochlorophenol solution was 0.45 dL / gr. The isosorbide residue content was 13% (nmr measurement).

実施例2で得られたイソソルバイド組成物200grに水20grを添加し、混練機で練り合わせた後、60℃で乾燥後、12メッシュと16メッシュの篩で製粒した。得られた顆粒にカーボポール(登録商標)97IP(BF Goodrich社製)2grとステアリン酸マグネシウム2grを添加し、顆粒剤を得た。本剤は適当量ずつに分包したものを水等に懸濁し服用できる。   20 g of water was added to 200 g of the isosorbide composition obtained in Example 2, kneaded with a kneader, dried at 60 ° C., and granulated with a 12-mesh and 16-mesh sieve. To the obtained granules, 2 gr of Carbopol (registered trademark) 97IP (manufactured by BF Goodrich) and 2 gr of magnesium stearate were added to obtain granules. This medicine can be taken after suspending it in water etc.

実施例2で得られたイソソルバイド組成物400grを混練機に入れ、攪拌しながら湿潤剤(エタノール:水=80:20)60grを除々に加えて練り合わせる。得られた練合物をミニマイザーにより処理した後、循環式熱風乾燥機で乾燥(60℃×3時間)した。乾燥後、32メッシュのステンレス製篩で分別した。用事には、溶解してドライシロップ剤として服用できる。   400 gr of the isosorbide composition obtained in Example 2 is put in a kneader, and 60 g of a wetting agent (ethanol: water = 80: 20) is gradually added and kneaded while stirring. The resulting kneaded material was treated with a minimizer and then dried (60 ° C. × 3 hours) with a circulating hot air dryer. After drying, it was fractionated with a 32 mesh stainless steel sieve. For errands, it can be dissolved and taken as a dry syrup.

今回開示された実施例はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明によって得られる無水糖アルコール組成物は、化学、製薬、化粧品、および食品工業を目的とする中間体、鎖延長剤を含むコモノマー、溶剤、可塑剤、潤滑剤、造核剤、充填剤、甘味料、香料および/または活性成分としての、生成物または混合物の調整に利用することができる。   Anhydrosugar alcohol composition obtained by the present invention comprises an intermediate for chemical, pharmaceutical, cosmetic and food industries, a comonomer containing a chain extender, a solvent, a plasticizer, a lubricant, a nucleating agent, a filler, It can be used to prepare products or mixtures as sweetening, flavoring and / or active ingredients.

ソルビトールを酸触媒で内部脱水反応させて得られる粗イソソルバイド組成物の物理的蒸留品の、ガスクロマトグラフィー成分を示す図である。It is a figure which shows the gas chromatography component of the physical distillation product of the crude isosorbide composition obtained by carrying out internal dehydration reaction of sorbitol with an acid catalyst. 実施例3の化学蒸留の工程を示すブロック図である。6 is a block diagram illustrating a process of chemical distillation of Example 3. FIG. 熱反応の様子を示す図である。It is a figure which shows the mode of a thermal reaction.

Claims (21)

1種類の無水糖アルコールを主成分とし不純物を含有する無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る第1工程と、
前記蒸留物を脱色手段で脱色処理し、脱色処理物を得る第2工程と、
前記脱色処理物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、前記蒸留時に共に留出した不純物のうちの、前記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る第3工程とを備えた無水糖アルコール組成物の精製方法。
A first step of distilling an anhydrous sugar alcohol composition containing an impurity as a main component and containing impurities, in the absence of a solvent, to obtain a distillate;
A second step of decolorizing the distillate with a decoloring means to obtain a decolorized product;
The content of impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation by heating the decolorized product in the absence of a solvent to cause a thermal reaction. And a third step of obtaining an anhydrous sugar alcohol composition having a reduced content.
前記第3工程における前記熱反応を減圧下で行う請求項1に記載の無水糖アルコール組成物の精製方法。   The method for purifying an anhydrous sugar alcohol composition according to claim 1, wherein the thermal reaction in the third step is performed under reduced pressure. 前記第2工程の後、前記第3工程に先立ち、前記脱色処理された前記蒸留物をイオン交換手段で処理する請求項1または2に記載の無水糖アルコール組成物の精製方法。   3. The method for purifying an anhydrous sugar alcohol composition according to claim 1, wherein, after the second step, prior to the third step, the decolorized distillate is treated by an ion exchange means. 1種類の無水糖アルコールを主成分とし不純物を含有する無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る第1工程と、
前記蒸留物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、前記蒸留時に共に留出した不純物のうちの、前記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る第2工程と、
引き続き、前記無水糖アルコール組成物を脱色手段で脱色処理する第3工程とを備えた無水糖アルコール組成物の精製方法。
A first step of distilling an anhydrous sugar alcohol composition containing an impurity as a main component and containing impurities, in the absence of a solvent, to obtain a distillate;
The distillate is heated in the absence of a solvent to cause a thermal reaction, whereby the content of impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation is increased. A second step of obtaining a reduced anhydrous sugar alcohol composition;
And a third step of decolorizing the anhydrous sugar alcohol composition with a decoloring means.
前記第2工程における前記熱反応を減圧下で行う請求項4に記載の無水糖アルコール組成物の精製方法。   The method for purifying an anhydrous sugar alcohol composition according to claim 4, wherein the thermal reaction in the second step is performed under reduced pressure. 前記脱色処理された無水糖アルコール組成物をイオン交換手段で処理する工程をさらに備える請求項4または5に記載の無水糖アルコール組成物の精製方法。   The method for purifying the anhydrous sugar alcohol composition according to claim 4, further comprising a step of treating the decolorized anhydrous sugar alcohol composition with an ion exchange means. 前記脱色手段として、活性炭を用いる、請求項1から6のいずれか1項に記載の無水糖アルコール組成物の精製方法。   The method for purifying an anhydrous sugar alcohol composition according to any one of claims 1 to 6, wherein activated carbon is used as the decoloring means. 前記活性炭として、粒状形態の活性炭を用いる、請求項7に記載の無水糖アルコール組成物の精製方法。   The method for purifying an anhydrous sugar alcohol composition according to claim 7, wherein activated carbon in a granular form is used as the activated carbon. 前記イオン交換手段として、少なくとも1種類のアニオン樹脂と少なくとも1種類のカチオン樹脂を含むものを用いる請求項3または6に記載の無水糖アルコール組成物の精製方法。   The method for purifying an anhydrous sugar alcohol composition according to claim 3 or 6, wherein the ion exchange means includes at least one kind of anion resin and at least one kind of cation resin. 前記無水糖アルコールは、イソソルバイド、イソマンニド、イソイタイドおよびイソガラクチドからなる群より選ばれるイソへキシドを含む請求項1から9のいずれか1項に記載の無水糖アルコール組成物の精製方法。   The method for purifying the anhydrous sugar alcohol composition according to any one of claims 1 to 9, wherein the anhydrous sugar alcohol contains an isohexide selected from the group consisting of isosorbide, isomannide, isoitide, and isogalactide. 請求項10に記載の方法によって得られた無水糖アルコール組成物であって、
前記イソソルバイドまたは前記イソマンニドの純度が少なくとも98.5%であり、遊離および/または塩の形態での蟻酸の含有量が最大で0.01%である無水糖アルコール組成物。
An anhydrous sugar alcohol composition obtained by the method according to claim 10,
An anhydrous sugar alcohol composition wherein the purity of the isosorbide or isomannide is at least 98.5% and the content of formic acid in free and / or salt form is at most 0.01%.
前記イソソルバイドまたは前記イソマンニドの純度が少なくとも99.5%である請求項11に記載の無水糖アルコール組成物。   The anhydrous sugar alcohol composition of claim 11, wherein the isosorbide or isomannide has a purity of at least 99.5%. 微量の有機溶媒も含まない請求項11または12に記載の無水糖アルコール組成物。   The anhydrous sugar alcohol composition according to claim 11 or 12, which does not contain a trace amount of an organic solvent. 請求項11に記載された無水糖アルコール組成物を含んでなる医薬品。   A pharmaceutical comprising the anhydrous sugar alcohol composition according to claim 11. 請求項14に記載の医薬品から製造された製品。   15. A product manufactured from the pharmaceutical product of claim 14. 請求項11に記載された無水糖アルコール組成物を含んでなるポリマー。   A polymer comprising the anhydrous sugar alcohol composition according to claim 11. 請求項16に記載のポリマーから製造された製品。   A product made from the polymer of claim 16. 繊維、光学ディスク、容器、シートおよびフィルムからなる群より選ばれる請求項17に記載の製品。   The product of claim 17 selected from the group consisting of fibers, optical discs, containers, sheets and films. 化学、製薬、化粧品および食品工業を目的とする中間体、鎖延長剤を含むコモノマー、溶剤、可塑剤,潤滑剤、造核剤、充填剤、甘味料、香料および/または活性成分としての、生成物または混合物の調製に用いられる、請求項1から10のいずれか1項に記載の方法によって得られた無水糖アルコール組成物または請求項11から13のいずれか1項に記載の無水糖アルコール組成物。   Intermediates for chemical, pharmaceutical, cosmetic and food industries, comonomers including chain extenders, solvents, plasticizers, lubricants, nucleating agents, fillers, sweeteners, fragrances and / or active ingredients An anhydrous sugar alcohol composition obtained by the method according to any one of claims 1 to 10 or an anhydrous sugar alcohol composition according to any one of claims 11 to 13, which is used for preparing a product or a mixture. object. 糖アルコールを脱水触媒を用いて脱水し、1種類の無水糖アルコールを主成分とし不純物を含有する粗無水糖アルコール組成物を形成する工程と、
前記粗無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る工程と、
前記蒸留物を脱色手段で脱色処理し、脱色処理物を得る工程と、
前記脱色処理物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、前記蒸留時に共に留出した不純物のうちの、前記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る工程とを備えた無水糖アルコール組成物の製造方法。
Dehydrating the sugar alcohol using a dehydration catalyst to form a crude anhydrous sugar alcohol composition containing one type of anhydrous sugar alcohol as a main component and impurities;
Distilling the crude anhydrous sugar alcohol composition in the absence of a solvent to obtain a distillate;
Decolorizing the distillate with a decoloring means to obtain a decolorized product;
The content of impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation by heating the decolorized product in the absence of a solvent to cause a thermal reaction. A method for producing an anhydrous sugar alcohol composition comprising the step of obtaining an anhydrous sugar alcohol composition with reduced sucrose.
糖アルコールを脱水触媒を用いて脱水し、1種類の無水糖アルコールを主成分とし不純物を含有する粗無水糖アルコール組成物を形成する工程と、
前記粗無水糖アルコール組成物を、溶媒非存在下で蒸留し、蒸留物を得る工程と、
前記蒸留物を溶媒非存在下で加熱して熱反応を起こさせ、それによって、前記蒸留時に共に留出した不純物のうちの、前記1種類の無水糖アルコールよりも沸点の高い不純物の含有量を減少させた無水糖アルコール組成物を得る工程と、
引き続き、前記無水糖アルコール組成物を脱色手段で脱色処理する工程とを備えた無水糖アルコール組成物の製造方法。

Dehydrating the sugar alcohol using a dehydration catalyst to form a crude anhydrous sugar alcohol composition containing one type of anhydrous sugar alcohol as a main component and impurities;
Distilling the crude anhydrous sugar alcohol composition in the absence of a solvent to obtain a distillate;
The distillate is heated in the absence of a solvent to cause a thermal reaction, whereby the content of impurities having a boiling point higher than that of the one kind of anhydrous sugar alcohol among the impurities distilled together during the distillation is increased. Obtaining a reduced anhydrous sugar alcohol composition;
And a step of decolorizing the anhydrous sugar alcohol composition by a decoloring means.

JP2005142794A 2005-05-16 2005-05-16 Purification method and production method of anhydrosugar alcohol composition Expired - Fee Related JP4370280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142794A JP4370280B2 (en) 2005-05-16 2005-05-16 Purification method and production method of anhydrosugar alcohol composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142794A JP4370280B2 (en) 2005-05-16 2005-05-16 Purification method and production method of anhydrosugar alcohol composition

Publications (2)

Publication Number Publication Date
JP2006316025A true JP2006316025A (en) 2006-11-24
JP4370280B2 JP4370280B2 (en) 2009-11-25

Family

ID=37537008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142794A Expired - Fee Related JP4370280B2 (en) 2005-05-16 2005-05-16 Purification method and production method of anhydrosugar alcohol composition

Country Status (1)

Country Link
JP (1) JP4370280B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051905A (en) * 2009-08-31 2011-03-17 Ueno Fine Chem Ind Ltd Method for purifying anhydrous sugar alcohol
JP2011111439A (en) * 2009-11-30 2011-06-09 Ueno Fine Chem Ind Ltd Purification method for anhydrosugar alcohol
KR101079518B1 (en) 2009-12-29 2011-11-03 주식회사 삼양제넥스 A method for preparation of anhydrosugar alcohols
WO2012081785A1 (en) * 2010-12-15 2012-06-21 Samyang Genex Corporation Methods for distilling and manufacturing anhydrosugar alcohols
KR101167629B1 (en) 2011-10-05 2012-07-23 윤강훈 Method on purification of 1,4-3,6-dianhydro-alcohol of high purity, clear color and stability
CN104781223A (en) * 2012-11-08 2015-07-15 株式会社三养吉尼克斯 Method for preparing high-purity anhydrosugar alcohol having improved yield by using waste from crystallization step
JP2015520749A (en) * 2012-05-11 2015-07-23 サムヤン ジェネックス コーポレイション Method for producing anhydrosugar alcohol with significantly reduced ion content and improved color characteristics
WO2016021079A1 (en) * 2014-08-08 2016-02-11 第一工業製薬株式会社 Anhydrosugar alcohol purification method, anhydrosugar alcohol, and resin
WO2016137833A1 (en) 2015-02-24 2016-09-01 Archer Daniel Midland Company Isoidide manufacture and purification
KR101701254B1 (en) * 2015-12-28 2017-02-03 주식회사 삼양사 Solid anhydrosugar alcohol composition with improved storage stability and method for improving solid anhydrosugar alcohol
CN111233689A (en) * 2020-03-20 2020-06-05 北京华亘安邦科技有限公司 13Purification method and preparation method of C-methaoxetine
CN111721844A (en) * 2019-03-20 2020-09-29 鲁南制药集团股份有限公司 Quality control method of isosorbide mononitrate
WO2023006250A1 (en) * 2021-07-28 2023-02-02 Roquette Freres Oxidation-stable dianhydrohexitol composition containing gallic acid ester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435640B1 (en) * 2012-11-08 2014-08-29 주식회사 삼양제넥스 Method for producing highly pure anhydrosugar alcohols by using a sequential combination of wiped film distillation and short path distillation

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051905A (en) * 2009-08-31 2011-03-17 Ueno Fine Chem Ind Ltd Method for purifying anhydrous sugar alcohol
JP2011111439A (en) * 2009-11-30 2011-06-09 Ueno Fine Chem Ind Ltd Purification method for anhydrosugar alcohol
KR101079518B1 (en) 2009-12-29 2011-11-03 주식회사 삼양제넥스 A method for preparation of anhydrosugar alcohols
WO2012081785A1 (en) * 2010-12-15 2012-06-21 Samyang Genex Corporation Methods for distilling and manufacturing anhydrosugar alcohols
KR101167629B1 (en) 2011-10-05 2012-07-23 윤강훈 Method on purification of 1,4-3,6-dianhydro-alcohol of high purity, clear color and stability
JP2015520749A (en) * 2012-05-11 2015-07-23 サムヤン ジェネックス コーポレイション Method for producing anhydrosugar alcohol with significantly reduced ion content and improved color characteristics
CN104781223A (en) * 2012-11-08 2015-07-15 株式会社三养吉尼克斯 Method for preparing high-purity anhydrosugar alcohol having improved yield by using waste from crystallization step
CN104781223B (en) * 2012-11-08 2017-04-12 株式会社三养社 Method for preparing high-purity anhydrosugar alcohol having improved yield by using waste from crystallization step
KR20160028403A (en) 2014-08-08 2016-03-11 다이이치 고교 세이야쿠 가부시키가이샤 Method for purifying anhydrous sugar alcohol, anhydrous sugar alcohol and resin
JP2016037481A (en) * 2014-08-08 2016-03-22 第一工業製薬株式会社 Method for purifying anhydrosugar alcohol, anhydrous sugar alcohol and resin
CN105612161A (en) * 2014-08-08 2016-05-25 第一工业制药株式会社 Anhydrosugar alcohol purification method, anhydrosugar alcohol, and resin
WO2016021079A1 (en) * 2014-08-08 2016-02-11 第一工業製薬株式会社 Anhydrosugar alcohol purification method, anhydrosugar alcohol, and resin
WO2016137833A1 (en) 2015-02-24 2016-09-01 Archer Daniel Midland Company Isoidide manufacture and purification
KR101701254B1 (en) * 2015-12-28 2017-02-03 주식회사 삼양사 Solid anhydrosugar alcohol composition with improved storage stability and method for improving solid anhydrosugar alcohol
CN111721844A (en) * 2019-03-20 2020-09-29 鲁南制药集团股份有限公司 Quality control method of isosorbide mononitrate
CN111233689A (en) * 2020-03-20 2020-06-05 北京华亘安邦科技有限公司 13Purification method and preparation method of C-methaoxetine
CN111233689B (en) * 2020-03-20 2022-07-26 北京华亘安邦科技有限公司 13 Purification method and preparation method of C-methacetin
WO2023006250A1 (en) * 2021-07-28 2023-02-02 Roquette Freres Oxidation-stable dianhydrohexitol composition containing gallic acid ester
FR3125684A1 (en) * 2021-07-28 2023-02-03 Roquette Freres COMPOSITION OF OXIDATION-STABLE DINAHYDROHEXITOLS AND CONTAINING A GALLIC ACID ESTER

Also Published As

Publication number Publication date
JP4370280B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4370280B2 (en) Purification method and production method of anhydrosugar alcohol composition
KR101079518B1 (en) A method for preparation of anhydrosugar alcohols
JP5618983B2 (en) Method for producing dianhydrosugar
US7439352B2 (en) Process for the production of anhydrosugar alcohols
EP1999134A2 (en) Process for the production of anhydrosugar alcohols
JP6097406B2 (en) Method for producing anhydrous sugar alcohol using hydrol
KR100772255B1 (en) Method for Purifying a Composition Containing at least an Internal Dehydration Product for a Hydrogenated Sugar
WO2007089527A2 (en) Method of forming a dianhydrosugar alcohol
JP6122504B2 (en) Method for producing high-purity anhydrous sugar alcohol using a combination of thin-film distillation and short-path distillation in order
JPH06504762A (en) Lactide production method by dehydration of aqueous lactic acid raw material
KR101388676B1 (en) Method for producing highly pure anhydrosugar alcohols by thin film evaporation
WO2012015616A1 (en) Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof
KR20140105185A (en) Method for preparation of anhydrosugar alcohols with reduced formation of polymeric reaction byproducts
US3454603A (en) Method of preparing 1,4-3,6-dianhydroiditol and 1,4-3,6-dianhydroglucitol
JP2017512823A (en) Phosphonic acid catalyst in dehydration cyclization of 5 and 6 carbon polyols with improved color and product accountability
CN103209951A (en) Ketocarboxylic acids, ketocarboxylic esters, methods of manufacture and uses thereof
JP6293333B2 (en) Process for producing 5-hydroxymethyl-2-furfural
US9029578B2 (en) Method for preparation of anhydrosugar alcohols
WRIGHT et al. Catalytic Isomerization of the Hexitols; D-Glucitol, D-Mannitol, L-Iditol, and Galactitol
KR20170065055A (en) Improved method for preparation of ester of anhydrosugar alcohol
KR102082545B1 (en) Control of color-body formation in isohexide esterification
WO2013061802A1 (en) Method for producing composition containing glyceryl glucoside
JP2022116210A (en) Method for producing dianhydrohexitol with step of distillation on thin-film evaporator
KR101970853B1 (en) Preparation of 5-hydroxymethylfurfural (hmf) from hexose solutions in the presence of steam
KR102025601B1 (en) A method for preparation of anhydrosugar alcohols usint a catalyst that is heteropoly aci salt substituted with ammonium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees