JP2006314337A - Method for fixing minute object - Google Patents

Method for fixing minute object Download PDF

Info

Publication number
JP2006314337A
JP2006314337A JP2006237267A JP2006237267A JP2006314337A JP 2006314337 A JP2006314337 A JP 2006314337A JP 2006237267 A JP2006237267 A JP 2006237267A JP 2006237267 A JP2006237267 A JP 2006237267A JP 2006314337 A JP2006314337 A JP 2006314337A
Authority
JP
Japan
Prior art keywords
medium
photocurable resin
fixing
micro object
minute object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006237267A
Other languages
Japanese (ja)
Other versions
JP4446486B2 (en
Inventor
Fumito Arai
史人 新井
Hisamine Maruyama
央峰 丸山
Toshio Fukuda
敏男 福田
Tooru Katsuragi
徹 桂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006237267A priority Critical patent/JP4446486B2/en
Publication of JP2006314337A publication Critical patent/JP2006314337A/en
Application granted granted Critical
Publication of JP4446486B2 publication Critical patent/JP4446486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fix, recover or observe a specific minute object such as a DNA molecule, a cell or a microorganism from a mixture with the other minute objects. <P>SOLUTION: The method for fixing a minute object of the present invention comprises steps of: fixing the minute object together with a gelled medium on a support material by locally gelling the medium in the circumference of the minute object to be fixed in a system comprising the medium capable of reversibly carrying out sol-gel phase transition, the support material and the minute object; adding a photocurable resin to this system; and irradiating the circumference of the gelled medium with light effective for curing the photocurable resin. Furthermore, after fixing the minute object by the method, the gelled medium containing the minute object is collected from the cured photocurable resin or the minute object is collected from the photocurable resin by making the medium in the cured photocurable resin into sol. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、多数の微小物体の中から特定の微小物体を固定、回収又は観察する方法に関し、より詳細には、DNA分子や細胞や微生物等の特定の微小物体をその他の微小物体と混在する中から固定、回収又は観察する方法に関する。   The present invention relates to a method for fixing, collecting, or observing a specific minute object from a large number of minute objects, and more specifically, a specific minute object such as a DNA molecule, a cell, or a microorganism is mixed with other minute objects. It relates to a method for fixing, collecting or observing from inside.

従来、DNA分子や細胞や微生物等の特定の微小物体をその他の微小物体と混在する中から回収する方法として、マイクロピペットを用いてシャーレ等に入ったターゲットを光学顕微鏡下で観察しながら取り出したり、セルソーターを用いる方法などがとられていた(非特許文献1)。しかし、マイクロピペットを用いる方法では、顕微鏡下で微小な試料を高純度で選別し回収するためにはその作業に熟練した技術を要し、その実施に膨大な時間と費用を要している。また、セルソーターによる方法では、大きさが数十μm前後の対象物には有効性が示されているものの、数μm程度の微生物等の対象物への適用は難しく、サンプルを一列に整列させてシーケンシャルな分離作業を行うため、ランダムに分散したサンプルから任意に選ばれたターゲットを高速に取り出すことは不可能であった。   Conventionally, as a method of recovering specific micro objects such as DNA molecules, cells, and microorganisms from other micro objects, a target that has entered a petri dish using a micropipette can be removed while observing under an optical microscope. A method using a cell sorter has been used (Non-patent Document 1). However, in the method using a micropipette, in order to select and collect a minute sample with high purity under a microscope, a technique skilled in the operation is required, and enormous time and cost are required for its implementation. Although the method using the cell sorter has been shown to be effective for an object having a size of about several tens of μm, it is difficult to apply to an object such as a microorganism of about several μm, and the samples are aligned in a row. Since a sequential separation operation is performed, it is impossible to take out an arbitrarily selected target from a randomly dispersed sample at high speed.

また、発明者らはマイクロ流体回路内でレーザートラップ、誘電泳動、マイクロキャピラリーフローを複合的に利用して分離を行う非接触式マニピレーション手法を用いた高速分離システムを考案した(特許文献1〜3)。しかし、直接レーザートラップで微生物を搬送するため、微生物に損傷を与える危惧があり、これを避けるために、マイクロツールをレーザートラップして、微生物を押したり引いたりすることで、間接的に搬送する方法も考案したが、実際は操作が難しい等の問題があった。
このような問題を解決するために、出願人らはゾルとゲルの相転移を可逆的に引き起こす相転移温度等を有する媒体を用いて、これを局所的にゲル化して微小物体をこのゲル化した媒体に固定し、所望の微小物体を回収する方法を提案した(特願2002-131656)。
In addition, the inventors have devised a high-speed separation system using a non-contact manipulation method in which separation is performed by utilizing laser trap, dielectrophoresis, and microcapillary flow in a microfluidic circuit (Patent Documents 1 to 3). 3). However, since microorganisms are transported directly with a laser trap, there is a risk of damaging the microorganisms. To avoid this, the micro tool is laser trapped and transported indirectly by pushing or pulling the microorganisms. Although a method was devised, there were problems such as difficulty in operation.
In order to solve such a problem, the applicants use a medium having a phase transition temperature that reversibly induces a sol-gel phase transition, and locally gelates this to form a micro object into a gel. A method for recovering a desired minute object was proposed (Japanese Patent Application 2002-131656).

特開平11-346756JP 11-346756 A 特開2001-095558JP2001-095558 特開2001-145478JP2001-145478 日本機会学会論文集 67巻635号C編146-153(平成13年1月)、Electrophoresis 2001, 22, 283-288Proceedings of the Opportunities Society of Japan Vol. 67, No. 635, C, 146-153 (January 2001), Electrophoresis 2001, 22, 283-288

出願人らが提案した方法(特願2002-131656)では、温度変化でゾルゲル相転移をする熱ゲル水溶液等を用いて目標細胞を固定することで、細胞等の微小物体の分離を試みた。しかし、加熱によりゲル化する材料を用いた場合には温度が下がると微小物体を保持できなくなることや、いくつかのゲル化材料(メチルセルロースやポリNイソプロピルアクリルアミドなど)を用いると、付着力が弱いためマイクロ流路内で大きな外乱が作用するとしっかり固定ができない等の問題点があった。   In the method proposed by the applicants (Japanese Patent Application No. 2002-131656), an attempt was made to separate minute objects such as cells by fixing target cells using a thermal gel aqueous solution that undergoes a sol-gel phase transition with a temperature change. However, if a material that gels by heating is used, it will not be possible to hold minute objects when the temperature drops, and if some gelled materials (such as methylcellulose and poly-N-isopropylacrylamide) are used, the adhesion is weak. Therefore, there is a problem that it cannot be fixed firmly when a large disturbance is applied in the microchannel.

そこで、光硬化樹脂を用いて微小物体を固定したり、更に、これに温度変化でゾルゲル相転移をする熱ゲル水溶液等を組み合わせることにより、微小物体の固定や回収が容易に行えることを見出し、本発明を完成させるに至った。
ここで固定とは、対象となる微小物体を空間的に移動できない状態にすることをいい、必ずしも微小物体を支持体等に接着、固着することに限定されない。このように固定した後に、適宜、固定された微小物体を回収したり観察することができる。
Therefore, by fixing a micro object using a photo-curing resin, and further combining it with a hot gel aqueous solution that undergoes a sol-gel phase transition with a temperature change, it is found that the micro object can be fixed and recovered easily. The present invention has been completed.
The term “fixed” as used herein means that the target minute object cannot be moved spatially, and is not necessarily limited to bonding and fixing the minute object to a support or the like. After fixing in this way, the fixed micro object can be collected or observed as appropriate.

即ち、本発明は、ゾルとゲルの相転移を可逆的に引き起こす媒体、支持体、及び微小物体から成る系で固定しようとする微小物体の周辺の媒体を局所的にゲル化して該微小物体をこのゲル化した媒体と共に該支持体に固定する段階(A段階)、この系に光硬化樹脂を加える段階(B段階)、及びゲル化した媒体周辺に該光硬化樹脂の硬化に有効な光を照射する段階から成る微小物体の固定方法である。
又更に、本発明は、この方法により微小物体を固定した後、硬化した光硬化樹脂の中から微小物体を含むゲル化した媒体又は硬化した光硬化樹脂の中の該媒体をゾル化して光硬化樹脂の中から微小物体を回収する段階から成る微小物体の回収方法である。
なお更に、本発明は、上記A段階の後に、支持体上に固定されていない媒体及び微小物体を除去する段階を行い、上記B段階として、光硬化樹脂を含む媒体を系に注入する段階を行う上記の方法である。
That is, the present invention locally gels a medium around a minute object to be fixed by a system consisting of a medium, a support, and a minute object that reversibly cause a sol-gel phase transition, and Fixing to the support together with the gelled medium (stage A), adding a photocurable resin to the system (stage B), and light effective for curing the photocurable resin around the gelled medium This is a method of fixing a minute object including an irradiation stage.
Still further, in the present invention, after fixing a micro object by this method, a gelled medium containing the micro object or a medium in the cured photo-curing resin is solated from the cured photo-curing resin to be photo-cured. A method of collecting a minute object comprising a step of collecting a minute object from resin.
Still further, the present invention includes a step of removing the medium and minute objects not fixed on the support after the step A, and a step of injecting a medium containing a photocurable resin into the system as the step B. It is the above method to perform.

また、本発明は、光硬化樹脂、支持体、及び微小物体から成る系において固定しようとする微小物体の周辺の媒体に該光硬化樹脂の硬化に有効な光を照射して該微小物体をこの媒体と共に該支持体に固定する段階(C段階)、この系にゾルとゲルの相転移を可逆的に引き起こす媒体を加える段階(D段階)、及び微小物体の周辺の媒体を局所的にゲル化する段階から成る微小物体の固定方法である。
更に、本発明は、上記C段階の後に、支持体上に固定されていない媒体及び微小物体を除去する段階を行い、上記D段階として、ゾルとゲルの相転移を可逆的に引き起こす媒体を系に注入する段階を行う上記の方法である。
Further, the present invention irradiates a medium around a micro object to be fixed in a system composed of a photo-curing resin, a support, and a micro object with light effective for curing the photo-curing resin. Fixing to the support together with the medium (stage C), adding to the system a medium that reversibly induces a sol-gel phase transition (stage D), and locally gelling the medium around the micro object This is a method for fixing a minute object comprising the steps of:
Furthermore, the present invention performs a step of removing the medium and minute objects not fixed on the support after the step C, and a medium that reversibly causes a sol-gel phase transition as the step D. The method of performing the step of injecting into the above.

従来微生物など細胞の特性調査は、個々の細胞を直接観察しながら活性生体分子を観察することが困難であったため、集団細胞実験を用いて行われてきた。提案手法では分散した微小物体の中から目標物をランダムに選択して生きたまま固定化すること可能であり、個々の細胞を直接観察しながらの特性調査を行うことができる。また、固定位置の情報は保存されるので電動ステージを制御することで複数の細胞の観察を自動化することができる。   Conventionally, characterization of cells such as microorganisms has been performed using population cell experiments because it has been difficult to observe active biomolecules while directly observing individual cells. In the proposed method, it is possible to randomly select a target from dispersed micro objects and fix it alive, and to perform characteristic investigation while directly observing individual cells. In addition, since information on the fixed position is stored, observation of a plurality of cells can be automated by controlling the electric stage.

本発明の方法で用いる光硬化樹脂として、光重合系(不飽和ポリエステル系、アクリレート、ナイロン系(光重合オリゴマー+ポリマー)、Ene付加反応系、カチオン重合系等)、光架橋型(金属イオン重クロム酸型感光性樹脂(重クロム酸塩+ポリマー)、光二量化型感光性樹脂(シンナメート系ポリマー)等)及び光分解型(光分解架橋型(アジド系化合物+ポリマー)、光分解不溶型(ジアゾ系化合物+ポリマー)等)等が挙げられるが、ポリエチレングリコールやポリプロピレングリコールを含んだプレポリマー(例えば、ENTG-3800(関西ペイント))が好ましい。
このような樹脂を硬化させる光の波長は樹脂にもよるが好ましくは290nm〜800nm、より好ましくは320nm〜800nmであり、特に320nm〜400nmの光はDNAの損傷がほとんどなく、加えて可視光で固まらないものを選択すれば可視光による観察が可能であるため好ましい。
この光の照射手段としては、水銀ランプ、ケミカルランプ(波長300〜400nm)、He-Cdレーザー(325nm)、Nd:YAG レーザーの 3 倍波(355nm)等が挙げられる。これらに適宜波長制御のためのフィルターや集光するためのレンズ等をかませてもよい。
また、この場合、媒体は光硬化樹脂のみでもよいし、これを適当な溶媒等に溶解させたものでもよい。
Examples of the photocurable resin used in the method of the present invention include photopolymerization systems (unsaturated polyester systems, acrylates, nylon systems (photopolymerization oligomers + polymers), En addition reaction systems, cationic polymerization systems, etc.), photocrosslinking types (metal ion heavy). Chromic acid type photosensitive resin (bichromate + polymer), photodimerization type photosensitive resin (cinnamate polymer), etc.) and photodegradable type (photodegradable crosslinked type (azide compound + polymer), photodegradable insoluble type ( Diazo compounds + polymers) and the like, and prepolymers containing polyethylene glycol or polypropylene glycol (for example, ENTG-3800 (Kansai Paint)) are preferred.
Although the wavelength of light for curing such a resin depends on the resin, it is preferably 290 nm to 800 nm, more preferably 320 nm to 800 nm. Particularly, the light of 320 nm to 400 nm is hardly damaged by DNA, and in addition to visible light. It is preferable to select one that does not harden because observation with visible light is possible.
Examples of the light irradiation means include a mercury lamp, a chemical lamp (wavelength 300 to 400 nm), a He-Cd laser (325 nm), and a Nd: YAG laser triple wave (355 nm). A filter for wavelength control, a lens for condensing light, and the like may be appropriately put on these.
In this case, the medium may be only a photo-curing resin, or may be one in which this is dissolved in an appropriate solvent or the like.

支持体は目標物を固定し、不要物を除去する際に目標物を固定しておくためのものであるので、このような目的にかなうのもであれば特に制限はない。通常は微小物体と媒体を入れておく容器であるが、容器とは別に、棒状、板状、網状あるいは格子状などの形状をした支持体を用いてもよい。支持体の材質には特に制限はない。但し、支持体が透明であると、その支持体を通して光を当てたり、目標物を観察したりすることが可能となり、更に、透過照明法により観察するタイプの顕微鏡を利用することができるため、好ましい。
媒体は、温度によりゾルとゲルの相転移を起こすものであり、この媒体が加熱出来るものであれば好都合である。例えば、支持体が透明電極(ITO)であれば、これに赤外レーザー光を照射して局部加熱することも出来るし、通電により全体又は部分を加熱することも出来るため特に好ましい。
本発明の方法の対象である微小物体として、ゲル化した媒体に取り込まれるものであればいかなるものでも対象とできるが、特にサイズが数nm〜約200μm、好ましくは数nm〜約30μmのものが適している。本発明の方法は、特に、DNA分子、細胞又は微生物等の微小物体を分離回収することに適している。このような微小物体は、通常、試料の形、大きさ、色、蛍光反応などを目視又は顕微鏡を通して目視で識別することができるが、この微小物体が何らかのマーカーを有することにより、これにより識別してもよい。本発明においては、このような選択は必ずしも目視で行われることを必要とせず、CCDカメラなどを用いた自動識別装置や蛍光反応を自動的に感知する装置などを用いて自動化してもよい。
Since the support is for fixing the target and fixing the target when removing the unnecessary objects, there is no particular limitation as long as it can serve such a purpose. Usually, it is a container in which a minute object and a medium are placed, but a support body having a bar shape, a plate shape, a net shape, or a lattice shape may be used separately from the container. There is no restriction | limiting in particular in the material of a support body. However, if the support is transparent, it is possible to shine light through the support or to observe the target, and furthermore, since a microscope of the type observed by the transmission illumination method can be used, preferable.
The medium causes a sol-gel phase transition depending on the temperature, and it is convenient if the medium can be heated. For example, if the support is a transparent electrode (ITO), it can be irradiated with an infrared laser beam to be locally heated, or the whole or part can be heated by energization, which is particularly preferable.
As the micro object that is the object of the method of the present invention, any object can be used as long as it is incorporated into a gelled medium, and in particular, the size is several nm to about 200 μm, preferably several nm to about 30 μm. Is suitable. The method of the present invention is particularly suitable for separating and recovering micro objects such as DNA molecules, cells or microorganisms. Such a minute object can usually be identified visually or through a microscope, such as the shape, size, color, fluorescence reaction, etc. of the sample. May be. In the present invention, such selection does not necessarily need to be made visually, and may be automated using an automatic identification device using a CCD camera or the like, a device that automatically senses a fluorescent reaction, or the like.

ゾルとゲルの相転移を可逆的に引き起こす媒体は、ゾルとゲルの相転移を可逆的に引き起こすものであれば如何なるものでもよい。その中で特に温度によりこのような相転移を起こすものを用いるのが簡便である。即ち、この媒体は、ゾルとゲルの相転移温度を有し、該相転移温度以上に加熱されることによりゲル化し、該相転移温度以下に冷却されることによりゾル化することが好ましい。この相転移温度は、本発明の対象である微小物体の性質にもよるが、好ましくは室温〜90℃、より好ましくは20〜85℃、更に好ましくは30〜60℃、である。特に微生物を分離回収するためにはこの相転移温度は30〜50℃が好ましい。またこの場合、媒体は、水溶性のセルロース誘導体又はその溶液であることが好ましく、このセルロース誘導体としてはメチルセルロースがより好ましく、例えば、信越化学工業社製メトローズSM、SH、SE等が挙げられる。更に、媒体として、ポリNイソプロピルアクリルアミドとポリエチレングリコール誘導体の重合物等を用いてもよい。この重合物は、例えば、メビオールジェル(登録商標、株式会社池田理化、転移温度22℃)として市販されているが、分子設計により転換温度を30〜32℃に設定することも可能である。
例えば、メチルセルロース(メトローズSM)は、通常2%溶液で約55℃に加熱すると、白濁してゲル化し、冷却することで再びゾル化する。この変化は温度変化に対して可逆性があり、メチルセルロースは繊維であるため生体、人体に無害である。さらに、NaClやNaOHなどを混入することでゲル化温度が低下する。例えば、この2%溶液にNaCl 5%を加えるとゲル化温度が約40℃に低下する。
The medium that reversibly causes the sol-gel phase transition may be any medium that reversibly causes the sol-gel phase transition. Among them, it is easy to use one that causes such a phase transition depending on the temperature. That is, this medium preferably has a sol-gel phase transition temperature, is gelled by being heated above the phase transition temperature, and is solified by being cooled below the phase transition temperature. This phase transition temperature is preferably from room temperature to 90 ° C., more preferably from 20 to 85 ° C., and even more preferably from 30 to 60 ° C., although it depends on the properties of the micro object that is the subject of the present invention. In particular, in order to separate and recover microorganisms, the phase transition temperature is preferably 30 to 50 ° C. In this case, the medium is preferably a water-soluble cellulose derivative or a solution thereof. As the cellulose derivative, methyl cellulose is more preferable, and examples thereof include Metrows SM, SH, and SE manufactured by Shin-Etsu Chemical Co., Ltd. Furthermore, a polymer of poly N isopropyl acrylamide and a polyethylene glycol derivative or the like may be used as the medium. This polymer is commercially available, for example, as meviol gel (registered trademark, Rika Ikeda, transition temperature 22 ° C.), but the conversion temperature can be set to 30 to 32 ° C. by molecular design.
For example, methyl cellulose (Metroze SM) is usually clouded when heated to about 55 ° C. with a 2% solution, and becomes sol again by cooling. This change is reversible with respect to the temperature change, and methylcellulose is a fiber and is harmless to the living body and human body. Furthermore, gelation temperature falls by mixing NaCl, NaOH, etc. For example, adding 5% NaCl to this 2% solution reduces the gelation temperature to about 40 ° C.

本発明において、ゲルとゾルの相転移を可逆的に引き起こす手段は、ゲルとゾルの相転移を可逆的に引き起こす物質の性質によって適宜選択すればよいが、温度によりゲルとゾルの相転移を可逆的に引き起こす物質を用いるのが簡便である。
局所加熱の方法としては特に制限はないが、微小電極を微細加工により形成し、抵抗線加熱を行ったり、赤外線照射装置により局所的に加熱してもよい。
加熱電極等の抵抗線加熱を行う場合であって、対象物が微生物等の場合には、抵抗線を絶縁体で被覆して、これらが通電により死滅しないような配慮をすることが好ましい。絶縁体としては、酸化シリコン、窒化シリコン、ポリイミド樹脂等が挙げられる。
この局所加熱方法としては、特に、赤外線の照射により媒体を相転移温度以上に加熱し、この照射を止めることにより媒体を相転移温度以下に冷却することが好ましい。赤外線照射装置は公知のものを用いることできるが、赤外レーザーを用いることがよい。レーザーは対象物にそのまま照射してもよいし、レンズ等を用いて対象物に集光するように照射してもよい。赤外レーザーとしては、YAGレーザー(Nd−YAGレーザー)、Nd:YVOレーザー、COレーザー、ルビーレーザーなどいかなるものを用いてもよいが、YAGレーザー又はNd:YVOレーザーを用いるのが簡便である。
また、加熱方法として、注入ポートから湯を注いでもよい。
In the present invention, the means for reversibly causing the phase transition between the gel and the sol may be appropriately selected depending on the property of the substance that causes the phase transition between the gel and the sol, but the phase transition between the gel and the sol is reversible depending on the temperature. It is convenient to use a substance that causes it.
Although there is no restriction | limiting in particular as the method of local heating, A microelectrode may be formed by microfabrication and resistance wire heating may be performed or it may heat locally with an infrared irradiation apparatus.
When resistance wire heating of a heating electrode or the like is performed, and the object is a microorganism or the like, it is preferable that the resistance wire is covered with an insulator so that they are not killed by energization. Examples of the insulator include silicon oxide, silicon nitride, and polyimide resin.
As this local heating method, it is particularly preferable to heat the medium to the phase transition temperature or higher by infrared irradiation and to cool the medium to the phase transition temperature or lower by stopping the irradiation. A known infrared irradiation device can be used, but an infrared laser is preferably used. The laser may be irradiated to the object as it is, or may be irradiated so as to be focused on the object using a lens or the like. Any infrared laser such as a YAG laser (Nd-YAG laser), Nd: YVO 4 laser, CO 2 laser, or ruby laser may be used, but it is convenient to use a YAG laser or Nd: YVO 4 laser. It is.
Moreover, you may pour hot water from an injection | pouring port as a heating method.

以下、本発明の実施形態等を示すが本発明を限定することを意図するものではない。
まず、目標物を光硬化樹脂と共に固定して、目標物を分離、回収又は観察する方法を示す。
図1に示すような微細な流路をもったマイクロチップを製作し、顕微鏡ステージ上にセットする。マイクロチップとしては、この他に様々な形のものが考えられるが、図2に示すようなものも実際使い易い。
微小流路は微細加工により型を製作する。例えばPDMS(ポリジメチルシロキサン)により型取りすることでマイクロ流体チップを製作してもよいし、ガラスを用いて製作してもよい。また、バルブの開閉はマイクロ流体チップに接続しているチューブを変形させることや、マイクロチップ内にマイクロ小形バルブを作ってそれを制御することで行ってもよい。
サンプル投入ポートからサンプル細胞、微生物などを含む液体を注入する。分離部では光ピンセットあるいは熱ゲルの加熱冷却に基づいて選別したい目標細胞を補足する。光硬化樹脂投入ポートから光硬化樹脂を含む水溶液を投入する。このとき、試薬投入ポートのバルブは閉めておく。
2本の微小流路の合流点以降を倒立顕微鏡で観察し、試料の形、大きさ、色、蛍光反応などに基づいて目標物を選択する。目標物周辺に硬化する波長の光を局所的に照射して光硬化性樹脂を硬化させて目標物を固定する。
図3に光硬化性樹脂内に目標物を固定する例を示す。この例では目標物の位置が正確に固定できるメリットがあるが、包括的に固定しているため目標物の運動や試薬を流した際の基質の移動を阻害する可能性がある。
Hereinafter, although embodiment etc. of this invention are shown, it does not intend limiting this invention.
First, a method for fixing a target object together with a photo-curing resin and separating, collecting or observing the target object will be described.
A microchip having a fine flow path as shown in FIG. 1 is manufactured and set on a microscope stage. Various other microchips are conceivable, but the one shown in FIG. 2 is actually easy to use.
The microchannel is manufactured by micromachining. For example, the microfluidic chip may be manufactured by molding with PDMS (polydimethylsiloxane), or may be manufactured using glass. The opening and closing of the valve may be performed by deforming a tube connected to the microfluidic chip or by making a micro small valve in the microchip and controlling it.
A liquid containing sample cells, microorganisms, etc. is injected from the sample input port. The separation unit supplements target cells to be selected based on heating and cooling of optical tweezers or thermal gel. An aqueous solution containing a photocurable resin is charged from the photocurable resin charging port. At this time, the valve of the reagent introduction port is closed.
The point after the confluence of the two microchannels is observed with an inverted microscope, and the target is selected based on the shape, size, color, fluorescence reaction, etc. of the sample. The target is fixed by locally irradiating light having a wavelength that cures around the target to cure the photocurable resin.
FIG. 3 shows an example in which a target is fixed in the photocurable resin. In this example, there is a merit that the position of the target can be accurately fixed. However, since the target is fixed comprehensively, there is a possibility that the movement of the target and the movement of the substrate when the reagent is flowed may be hindered.

次に、目標物の周囲の光硬化樹脂を硬化して目標物を分離、回収又は観察する方法を示す。
上記と同じ装置と手順で行う。硬化手順を図4〜6に示す。
この例では、硬化する波長の光を目標物には照射せずに、その周辺を囲むように照射し、ポケットあるいは環状に光硬化性樹脂を硬化させ形成した空間内に目標物を固定する。
図4は目標物の周囲を半分だけ硬化させる例を示すが、空間内への固定であるため目標物の位置を精密に固定できないが、目標物の運動や基質の移動を阻害しにくいメリットがある。
以上の手順を繰り返し必要数の目標物を固定した後、試薬投入ポートから培養液や蛍光試薬等の試薬を流して、同時に不純物を除去する。試薬投入後は例えばバルブを全て閉じて閉環境にして反応を観察したり試薬を定期的あるいは連続的に循環させながら観察したりすることができる。
図5は更に目標物の周囲を筒状に全部硬化させる例を示す。この例では、目標物が固定されていないので、上部から目標物を容易に取り出すことができる。
更に目標物を光硬化樹脂で囲み、細胞が出入りできる穴を開けておくこともできる。その例を図6に示す。図6では円筒の光硬化樹脂で目標物を取り囲み、上部の開口部を熱ゲルの温度制御によって開けたり閉めたりする。熱ゲルは温度制御によりゾルゲル相転移を起すため、入り口の開閉制御が可能となる。
Next, a method of separating, collecting or observing the target by curing the photo-curing resin around the target will be described.
Use the same equipment and procedure as above. The curing procedure is shown in FIGS.
In this example, the target is not irradiated with light having a wavelength to be cured, but is irradiated so as to surround the periphery of the target, and the target is fixed in a space formed by curing the photocurable resin in a pocket or an annular shape.
Figure 4 shows an example in which the periphery of the target is cured by half. However, the position of the target cannot be precisely fixed because it is fixed in space, but there is an advantage that the movement of the target and the movement of the substrate are difficult to hinder. is there.
The above procedure is repeated to fix the required number of targets, and then a reagent such as a culture solution or a fluorescent reagent is flowed from the reagent charging port to remove impurities at the same time. After the reagent is charged, for example, all the valves can be closed and the reaction can be observed in a closed environment, or the reagent can be observed periodically or continuously circulated.
FIG. 5 further shows an example in which the periphery of the target is completely cured in a cylindrical shape. In this example, since the target is not fixed, the target can be easily taken out from the upper part.
Furthermore, the target can be surrounded by a photo-curing resin, and a hole through which cells can enter and exit can be made. An example is shown in FIG. In FIG. 6, the target is surrounded by a cylindrical photo-curing resin, and the upper opening is opened or closed by controlling the temperature of the thermal gel. Since the thermal gel causes a sol-gel phase transition by temperature control, the opening and closing of the entrance can be controlled.

本発明の実施形態として、一旦目標物を温度感受性ゲルで固定し、その周囲の光硬化樹脂を硬化することにより目標物を分離、回収又は観察する方法を示す。
この例では光硬化性樹脂と温度感受性ゾル/ゲルを併用する。その例を図7に示す。
まず、投入ポートから温度感受性ゲルを溶かした溶液に微小物体を分散した溶液を微小流路に投入する。このとき光硬化性樹脂投入ポートおよび試薬投入ポートのバルブは閉じておく。光硬化性樹脂との合流点以降の領域で倒立顕微鏡により観察し、試料の形、大きさ、色、蛍光反応などに基づいて目標物を選択する。選択した目標周辺に溶液が吸収する波長のレーザを照射し局所的に加熱しゲル化させる(a)。
次に光硬化性樹脂を微小流路内に投入する(b)。このとき投入ポートおよび試薬投入ポートのバルブは閉じておく。ゲル化して目標物を固定した場所に光硬化性樹脂が硬化する波長の光を局所的に照射しゲル化部分を覆うように硬化させる(c)。硬化後ゲル化を解除することで硬化した光硬化性樹脂により形成したドーム上の空間内に目標物が固定される(d)。
この手順を繰り返して必要数の目標物を固定した後試薬投入ポートから試薬を微小流路に投入し反応を観察する。
上記図4の例では固定した空間内に光硬化性樹脂が残り、特に疎水性の光硬化性樹脂を使用する場合、水中では液滴が生じ観察を疎外する可能性がある。しかし、この例では温度感受性ゲルで予め空間を固定しておいてその周りを光硬化性樹脂で覆っているため、疎水性の光硬化性樹脂でも液滴が空間内には生じず観察を疎外しないメリットがある。尚、他の例と同様にバルブの開閉はマイクロ流体チップに接続しているチューブを変形させることや、マイクロチップ内にマイクロ小形バルブを作ってそれを制御することで行ってもよい。
As an embodiment of the present invention, a method of separating, collecting or observing a target by fixing the target with a temperature-sensitive gel once and curing a photo-curing resin around the target is shown.
In this example, a photocurable resin and a temperature sensitive sol / gel are used in combination. An example is shown in FIG.
First, a solution in which a minute object is dispersed in a solution in which a temperature sensitive gel is dissolved is introduced into a minute channel from an introduction port. At this time, the valves of the photocurable resin charging port and the reagent charging port are closed. The target object is selected based on the shape, size, color, fluorescence reaction, etc. of the sample while observing with an inverted microscope in the region after the confluence with the photocurable resin. The selected target is irradiated with a laser having a wavelength that is absorbed by the solution and locally heated to be gelled (a).
Next, a photocurable resin is introduced into the microchannel (b). At this time, the valves of the charging port and the reagent charging port are closed. A light having a wavelength at which the photocurable resin is cured is locally irradiated to a place where the target is fixed by gelation, and is cured so as to cover the gelled part (c). The target object is fixed in the space on the dome formed by the photocurable resin cured by releasing the gelation after curing (d).
This procedure is repeated to fix the required number of targets, and then the reagent is introduced into the microchannel from the reagent introduction port and the reaction is observed.
In the example of FIG. 4 described above, the photocurable resin remains in the fixed space. In particular, when a hydrophobic photocurable resin is used, there is a possibility that droplets are generated in water and the observation is excluded. However, in this example, the space is fixed in advance with a temperature-sensitive gel, and the surrounding area is covered with a photocurable resin. Therefore, even with a hydrophobic photocurable resin, droplets are not generated in the space, and the observation is excluded. There is no merit. As in the other examples, the opening and closing of the valve may be performed by deforming a tube connected to the microfluidic chip or by making a micro-small valve in the microchip and controlling it.

流路をもったマイクロチップの一例を示す図(平面図)である。It is a figure (plan view) showing an example of a microchip having a flow path. マイクロチップの別の一例を示す図である。It is a figure which shows another example of a microchip. 光硬化性樹脂内に目標物を固定する例を示す図(断面図)である。It is a figure (sectional drawing) which shows the example which fixes a target object in photocurable resin. 目標物の周囲(半分)の光硬化樹脂を硬化する手順を示す図である。上図は平面図、下図は断面図である。It is a figure which shows the procedure which hardens | cures the photocurable resin around the target object (half). The upper figure is a plan view and the lower figure is a sectional view. 目標物の周囲(残り半分)の光硬化樹脂を硬化する手順を示す図である。上図は平面図、下図は断面図である。It is a figure which shows the procedure which hardens | cures the photocurable resin around the target object (the remaining half). The upper figure is a plan view and the lower figure is a sectional view. 目標物の周囲を筒状に全部硬化させる例を示す図である。上図は平面図、下図は断面図である。It is a figure which shows the example which hardens | cures all the circumference | surroundings of a target object in a cylinder shape. The upper figure is a plan view and the lower figure is a sectional view. 光硬化性樹脂と温度感受性ゾル/ゲルを併用した例を示す図である。すベて断面図である。It is a figure which shows the example which used together photocurable resin and temperature sensitive sol / gel. It is all sectional drawing.

Claims (5)

ゾルとゲルの相転移を可逆的に引き起こす媒体、支持体、及び微小物体から成る系において固定しようとする微小物体の周辺の媒体を局所的にゲル化して該微小物体をこのゲル化した媒体と共に該支持体に固定する段階(A段階)、この系に光硬化樹脂を加える段階(B段階)、及びゲル化した媒体周辺に該光硬化樹脂の硬化に有効な光を照射する段階から成る微小物体の固定方法。 In a system consisting of a medium, a support, and a micro object reversibly causing a sol-gel phase transition, the medium around the micro object to be fixed is gelled locally and the micro object is combined with the gelled medium. A step comprising fixing to the support (step A), adding a photocurable resin to the system (step B), and irradiating the periphery of the gelated medium with light effective for curing the photocurable resin. How to fix an object. 請求項1に記載の方法により微小物体を固定した後、硬化した光硬化樹脂の中から微小物体を含むゲル化した媒体を回収するか又は硬化した光硬化樹脂の中の該媒体をゾル化して光硬化樹脂の中から微小物体を回収する段階から成る微小物体の回収方法。 After fixing the micro object by the method according to claim 1, the gelled medium containing the micro object is recovered from the cured photo-curing resin, or the medium in the cured photo-curing resin is solated. A method for collecting a micro object comprising a step of recovering a micro object from a photo-curing resin. 前記A段階の後に、支持体上に固定されていない媒体及び微小物体を除去する段階を行い、前記B段階として、光硬化樹脂を含む媒体を系に注入する段階を行う請求項1又は2に記載の方法。 3. The method according to claim 1, wherein after the step A, a step of removing a medium and minute objects that are not fixed on a support is performed, and as the step B, a step of injecting a medium containing a photocurable resin into the system is performed. The method described. 光硬化樹脂、支持体、及び微小物体から成る系において固定しようとする微小物体の周辺の媒体に該光硬化樹脂の硬化に有効な光を照射して該微小物体をこの媒体と共に該支持体に固定する段階(C段階)、この系にゾルとゲルの相転移を可逆的に引き起こす媒体を加える段階(D段階)、及び微小物体の周辺の媒体を局所的にゲル化する段階から成る微小物体の固定方法。 In a system composed of a photo-curing resin, a support, and a micro object, a medium around the micro object to be fixed is irradiated with light effective for curing the photo-curing resin, and the micro object is applied to the support together with the medium. A micro object comprising a fixing step (C step), a step of adding a medium that reversibly causes a sol-gel phase transition to the system (D step), and a step of locally gelling the medium around the micro object. Fixing method. 前記C段階の後に、支持体上に固定されていない媒体及び微小物体を除去する段階を行い、前記D段階として、ゾルとゲルの相転移を可逆的に引き起こす媒体を系に注入する段階を行う請求項4に記載の方法。
After the step C, a step of removing the medium and fine objects not fixed on the support is performed, and as the step D, a step of injecting a medium that reversibly causes a sol-gel phase transition into the system is performed. The method of claim 4.
JP2006237267A 2006-09-01 2006-09-01 Fixing method of minute objects Expired - Fee Related JP4446486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237267A JP4446486B2 (en) 2006-09-01 2006-09-01 Fixing method of minute objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237267A JP4446486B2 (en) 2006-09-01 2006-09-01 Fixing method of minute objects

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003326655A Division JP3877164B2 (en) 2003-09-18 2003-09-18 Fixing method of minute objects

Publications (2)

Publication Number Publication Date
JP2006314337A true JP2006314337A (en) 2006-11-24
JP4446486B2 JP4446486B2 (en) 2010-04-07

Family

ID=37535570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237267A Expired - Fee Related JP4446486B2 (en) 2006-09-01 2006-09-01 Fixing method of minute objects

Country Status (1)

Country Link
JP (1) JP4446486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154759A (en) * 2014-02-21 2015-08-27 富山県 Microbody encapsulation and recovery method and encapsulation liquid used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154759A (en) * 2014-02-21 2015-08-27 富山県 Microbody encapsulation and recovery method and encapsulation liquid used for the same

Also Published As

Publication number Publication date
JP4446486B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US10591404B1 (en) Cell capture system and method of use
US10221443B2 (en) System and method for laser lysis
JP4171775B2 (en) Nucleic acid analyzer
US20090093374A1 (en) Method of arraying cells at single-cell level inside microfluidic channel and method of analysing cells using the same, and cell analysis chip used for carrying out the same
JP4228114B2 (en) Method and apparatus for collecting minute objects
KR101831531B1 (en) Method for selective analysis of biospecimen
JP2024036647A (en) Particle confirmation method, particle capturing chip, and particle analysis system
Maruyama et al. Immobilization of individual cells by local photo-polymerization on a chip
JP4446486B2 (en) Fixing method of minute objects
JP3877164B2 (en) Fixing method of minute objects
JP4216018B2 (en) Nucleic acid recovery chip and nucleic acid recovery device
Ichikawa et al. Single cell trap on a chip using in-situ microfabrication with photo-crosslinkable resin and thermal gelation
Arai et al. On-chip robotics for biomedical innovation: Manipulation of single virus on a chip
DE102006053451A1 (en) Platform for e.g. tempering fluid substance, has thin cover with specific thickness directly contacting heat and cooling elements, and lower part or base plate comprised of structures e.g. container and reaction receptacle
Oana et al. Isolation of genomic DNA molecule from a single cell and control its higher order structure using optical tweezers
Arai et al. In-situ microfabrication of permeation membrane with photo-crosslinkable resin for isolation and culture of individual cells
Hirano et al. Novel DNA manipulation based on local temperature control: transportation and scission
Breunig et al. Femtosecond-laser induced membrane optoporation for transfection and cell reprogramming
Ikuta et al. Development of new biochemical IC chip-set for real-time PCR
Maruyama et al. Microfabrication of functional microtool using photo-crosslinkable resin
Maruyama et al. Laser Manipulation and Fabrication of Functional Microtool Using Photo-crosslinkable Resin
Helmerson et al. Optical manipulation of nanocontainers for biotechnology
HANADA et al. Nano-aquarium fabrication by femtosecond laser direct writing for microscopic observation of aquatic microorganisms
JP2010172270A (en) Microreaction vessel, and polymerase chain reaction by using the same
Hosokawa et al. Fabrication and application of protein crystal microarrays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees