JP2006314211A - Analyzer - Google Patents

Analyzer Download PDF

Info

Publication number
JP2006314211A
JP2006314211A JP2005137693A JP2005137693A JP2006314211A JP 2006314211 A JP2006314211 A JP 2006314211A JP 2005137693 A JP2005137693 A JP 2005137693A JP 2005137693 A JP2005137693 A JP 2005137693A JP 2006314211 A JP2006314211 A JP 2006314211A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
enzyme
immobilized
kaolinite
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005137693A
Other languages
Japanese (ja)
Inventor
Yoko Nanjo
陽子 南條
Ryuzo Hayashi
隆造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2005137693A priority Critical patent/JP2006314211A/en
Publication of JP2006314211A publication Critical patent/JP2006314211A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzer enabling hydrogen peroxide in a sample to be removed easily and ensuring hydrogen peroxide formed by the subsequent enzyme reaction to be detected in high accuracy. <P>SOLUTION: The analyzer includes a mechanism functioning to feed an aqueous solution at a constant flow and a mechanism functioning to inject the aqueous solution with a given amount of a substance to be assayed. In this analyzer, downstream of the injection mechanism, there is provided an enzyme-immobilized form functioning to form hydrogen peroxide by catalyzing a redox reaction of the substance in the aqueous solution in the vicinity of a hydrogen peroxide electrode and its upstream side. This analyzer works to calculate the concentration of the substance by detecting the concentration change of hydrogen peroxide in association with enzyme reaction at the hydrogen peroxide electrode, wherein a column packed with kaolinite-based ceramics subjected to baking or sintering treatment after undergoing hydrothermal treatment is inserted in between the injection mechanism and the enzyme-immobilized form. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、過酸化水素を検知することにより物質濃度を定量する機構を備えたフロー方式分析装置において、簡単かつ安価に妨害成分の除去を実現し、高精度分析を可能とする装置を開示するものである。   The present invention discloses a flow type analyzer having a mechanism for quantifying the concentration of a substance by detecting hydrogen peroxide, which can easily and inexpensively remove interference components and enables high precision analysis. Is.

電気化学的検出器を利用した分析装置は、装置構成が単純であり、高感度かつ高精度分析が可能であることから多用されている。特に白金、カーボン、金などの固体電極をアノーディックに分極して、試料中の過酸化水素を分析する方法は、小型化が容易である、応答速度が速い、非常に高感度が得られるなどの利点がある。そこで過酸化水素を生成する反応を触媒する酵素固定化体と組み合わせて、酵素の特異性を利用したバイオセンサが数多く提案されている。   Analytical apparatuses using electrochemical detectors are frequently used because the apparatus configuration is simple and high sensitivity and high accuracy analysis is possible. In particular, the method of analyzing hydrogen peroxide in a sample by anodic polarization of a solid electrode such as platinum, carbon, gold, etc. is easy to downsize, has a fast response speed, and provides very high sensitivity. There are advantages. Thus, many biosensors utilizing the specificity of the enzyme have been proposed in combination with an enzyme-immobilized body that catalyzes a reaction that generates hydrogen peroxide.

しかし、過酸化水素は生体内の活性酸素の不均化反応や、還元性物質の酸化に伴って生成する可能性があり、微量の過酸化水素が正の誤差を生じる問題がある。   However, hydrogen peroxide may be generated along with the disproportionation reaction of active oxygen in the living body and oxidation of the reducing substance, and there is a problem that a trace amount of hydrogen peroxide causes a positive error.

従来、不必要な過酸化水素をカタラーゼ等の酵素反応により除去することが知られているが、この方法は酵素の使用による分析コストの上昇をまねき、かつ時間がかかるという欠点があった。   Conventionally, it is known that unnecessary hydrogen peroxide is removed by an enzyme reaction such as catalase, but this method has a drawback that it causes an increase in analysis cost due to the use of the enzyme and takes time.

また、酵素反応を介さない過酸化水素電極と、酵素反応で生成した過酸化水素を検知する電極を組み合わせて使用し、過酸化水素単独の応答を演算処理により除くことも提案されているが、装置構成が複雑になるとともに、微量の物質定量を行う際に誤差を大きくする問題点があった。   In addition, it has been proposed to use a combination of a hydrogen peroxide electrode that does not involve an enzyme reaction and an electrode that detects hydrogen peroxide generated by the enzyme reaction, and to eliminate the response of hydrogen peroxide alone by arithmetic processing. As the apparatus configuration becomes complicated, there is a problem that an error is increased when a minute amount of substance is quantified.

従来の技術において、過酸化水素検出により物質を定量する場合、試料中に含まれる過酸化水素自体が妨害成分となるが、それを簡単に除き、その後の酵素反応により生成した過酸化水素を高精度で検出することが困難であった。本発明はこの問題点を解決するものである。   In the conventional technique, when a substance is quantified by hydrogen peroxide detection, the hydrogen peroxide contained in the sample itself becomes an interfering component, but this is easily removed and the hydrogen peroxide generated by the subsequent enzymatic reaction is increased. It was difficult to detect with accuracy. The present invention solves this problem.

本発明は、水溶液を一定流量で送液する機構と、前記水溶液中に一定量の測定対象物質を注入する機構を備え、該注入機構の下流に、過酸化水素電極と過酸化水素電極近傍に水溶液中に含まれる物質の酸化還元反応を触媒し、過酸化水素を生成する酵素固定化体を備え、酵素反応に伴う過酸化水素の濃度変化を前記過酸化水素電極で検出することにより前記測定対象物質の濃度を算出する装置において、前記注入機構と過酸化水素生成酵素固定化体の間に、水熱処理後に焼成もしくは焼結処理を加えたカオリナイト系セラミックスを充填したカラムを挿入したことを特徴とする分析装置を開示する。   The present invention includes a mechanism for feeding an aqueous solution at a constant flow rate and a mechanism for injecting a certain amount of a substance to be measured into the aqueous solution, and a hydrogen peroxide electrode and a hydrogen peroxide electrode in the vicinity of the injection mechanism. An enzyme-immobilized body that catalyzes the oxidation-reduction reaction of substances contained in an aqueous solution and generates hydrogen peroxide. The measurement is performed by detecting the change in the hydrogen peroxide concentration accompanying the enzyme reaction with the hydrogen peroxide electrode. In the apparatus for calculating the concentration of the target substance, a column filled with kaolinite-based ceramics that has been subjected to baking or sintering treatment after hydrothermal treatment is inserted between the injection mechanism and the hydrogen peroxide-producing enzyme-immobilized body. A featured analytical device is disclosed.

また、カオリナイト系セラミックスに過酸化水素生成反応に関与しない酵素を固定化し、該固定化体の下流に過酸化水素生成酵素固定化体を配置することが望ましい。   Moreover, it is desirable to fix an enzyme that does not participate in the hydrogen peroxide generation reaction to the kaolinite-based ceramics, and to dispose the hydrogen peroxide-producing enzyme immobilized body downstream of the immobilized body.

過酸化水素を分解するカオリナイト系セラミックスは、カオリナイト系セラミックス原料を水熱処理後に焼成もしくは焼結処理を行うことにより製造することができる。   The kaolinite-based ceramic that decomposes hydrogen peroxide can be produced by subjecting the kaolinite-based ceramic raw material to baking or sintering after hydrothermal treatment.

さらに本発明は、カオリナイト系セラミックスの過酸化水素生成反応に関与しない酵素を固定化するための担体としての使用を開示する。   The present invention further discloses the use of kaolinite ceramics as a carrier for immobilizing enzymes that are not involved in the hydrogen peroxide production reaction.

カオリナイト系セラミックスを過酸化水素生成反応に関与する固定化酵素の上流に配置することで、サンプル中に含まれる過酸化水素を除去することができる。   By disposing the kaolinite ceramics upstream of the immobilized enzyme involved in the hydrogen peroxide production reaction, hydrogen peroxide contained in the sample can be removed.

本発明によれば、試料中に含まれる過酸化水素を簡単に除き、その後の酵素反応により生成した過酸化水素を高精度で検出することができる。   According to the present invention, hydrogen peroxide contained in a sample can be easily removed, and hydrogen peroxide generated by a subsequent enzyme reaction can be detected with high accuracy.

試料中の過酸化水素を除く方法の中で、迅速かつ再現性の良い方法を検討した結果、水熱反応後、焼成もしくは焼結したカオリナイト系セラミックスと試料を接触させることにより課題を解決できることを発見し、本発明を完成するに至った。   As a result of investigating a rapid and reproducible method for removing hydrogen peroxide in the sample, the problem can be solved by bringing the sample into contact with the calcined ceramic after firing or sintering after the hydrothermal reaction. As a result, the present invention has been completed.

粘土鉱物類を化学処理することにより、比表面積を増大させるなどの加工は古くから行われている。近年、水を高圧化で加熱し、臨界状態付近の水中で各種の反応を行わせることにより、さらに表面性状を改変する、いわゆる水熱反応処理も多用されるようになった。   Processing such as increasing the specific surface area by chemically treating clay minerals has long been performed. In recent years, so-called hydrothermal reaction treatment, in which surface properties are further modified by heating water at high pressure to cause various reactions in water near the critical state, has come to be used frequently.

カオリナイト系セラミックスの製造原料としては、天然カオリン、カオリナイト、ディッカイト、ナクライト、ハロイ石、耐火レンガなどが挙げられる。   Examples of raw materials for producing kaolinite ceramics include natural kaolin, kaolinite, dickite, nacrite, halloyite, and refractory bricks.

天然カオリンなどの原料を酸性条件下で水熱反応処理すると一般的に比表面積が増大する。さらに水熱反応後、造粒を行い、焼結もしくは焼成を行ったものをカオリナイト系セラミックスという。比表面積を増大させることにより、酵素など生体触媒の固定化に利用できることは知られているが、カオリナイト系セラミックスが過酸化水素を効率よく分解できることは知られていない。
カオリナイト系セラミックスへの過酸化水素生成反応に関与しない酵素の固定化方法、或いは過酸化水素を生成する酵素のカオリナイト系セラミックス以外の担体への酵素の固定化方法としては、物理吸着法、イオン結合法、包括法、共有結合法などタンパク質の固定化方法として公知の方法を利用できるが、中でも共有結合法が長期安定性に優れ望ましい。タンパク質を共有結合させる方法としては、ホルムアルデヒド、グリオキザール、グルタルアルデヒドなどのアルデヒド基を有する化合物を用いるか、多官能基性アシル化剤を利用する方法、スルフヒドリル基を架橋させる方法など各種の方法を利用できる。
When a raw material such as natural kaolin is subjected to a hydrothermal reaction treatment under acidic conditions, the specific surface area is generally increased. Furthermore, the granulated, sintered or fired product after hydrothermal reaction is called kaolinite ceramics. It is known that by increasing the specific surface area, it can be used to immobilize biocatalysts such as enzymes, but it is not known that kaolinite-based ceramics can efficiently decompose hydrogen peroxide.
As a method for immobilizing an enzyme that is not involved in the hydrogen peroxide production reaction to kaolinite-based ceramics, or as a method for immobilizing an enzyme to a carrier other than kaolinite-based ceramics that produces hydrogen peroxide, a physical adsorption method, Known methods for immobilizing proteins such as ionic bond method, inclusion method, and covalent bond method can be used. Among them, the covalent bond method is preferable because of its long-term stability. As a method for covalently binding a protein, various methods such as a method using a compound having an aldehyde group such as formaldehyde, glyoxal, and glutaraldehyde, a method using a polyfunctional acylating agent, a method of crosslinking a sulfhydryl group, and the like are used. it can.

カオリナイト系セラミックス表面にはシラノール基が露出しているので、該シラノール基にシランカップリング剤を反応させ、その末端にアミノ基を導入すると、多官能基性アルデヒドを用いて容易に酵素などの生体触媒を固定化できる。   Since the silanol group is exposed on the surface of the kaolinite-based ceramics, when a silanic group is reacted with the silane coupling agent and an amino group is introduced at the terminal, an enzyme or the like can be easily obtained using a polyfunctional aldehyde. A biocatalyst can be immobilized.

過酸化水素生成酵素固定化体の形状としては、膜状に固定化し白金、金、カーボン等からなる電極上にのせることもできるし、セルロース、アガロース、キチン、カラギーナン、ポリアクリルアミド等の高分子有機材料、一般的な多孔質ガラス、セラミックス質等の無機材料等の公知の不溶性担体に固定化し、担体をカラムリアクターに充填して用いることもできる。   The hydrogen peroxide-producing enzyme-immobilized body can be immobilized in a film shape and placed on an electrode made of platinum, gold, carbon, etc., or a polymer such as cellulose, agarose, chitin, carrageenan, polyacrylamide, etc. It can also be used by immobilizing on a known insoluble carrier such as organic material, general porous glass, inorganic material such as ceramics, etc., and filling the column reactor with the carrier.

過酸化水素生成酵素固定化体に使用しうる酵素は、過酸化水素を生成する酵素であればよく、グルコースオキシダーゼやフルクトシルアミノ酸オキシダーゼ等の過酸化水素を生成する酸化還元酵素が例示できる。   The enzyme that can be used for the immobilized hydrogen peroxide-producing enzyme may be any enzyme that generates hydrogen peroxide, and examples thereof include oxidoreductases that generate hydrogen peroxide such as glucose oxidase and fructosyl amino acid oxidase.

酵素固定化担体としてのカオリナイト系セラミックスの例として、トヨナイト200(東洋電化工業社製)が例示でき、過酸化水素生成反応に関与しない酵素を固定化したトヨナイト200をカラムリアクターに充填して用いることができる。   As an example of kaolinite ceramics as an enzyme immobilization carrier, Toyonite 200 (manufactured by Toyo Denka Kogyo Co., Ltd.) can be exemplified, and Toyonite 200 immobilized with an enzyme not involved in the hydrogen peroxide production reaction is packed into a column reactor and used. be able to.

カオリナイト系セラミックス固定化体に使用しうる酵素は、過酸化水素生成反応に関与しない酵素であればよく、パパインやプロテイナーゼK等のタンパク質分解酵素、マルトースホスホリラーゼやインベルターゼ、β−ガラクトシダーゼ等過酸化水素生成反応に関与しない酵素が例示できる。これらの酵素は1種類でも良いし、2種類以上を組み合わせて固定化しても良い。   Enzymes that can be used for the kaolinite-based ceramic immobilized body may be enzymes that do not participate in the hydrogen peroxide production reaction. Proteolytic enzymes such as papain and proteinase K, hydrogen peroxide such as maltose phosphorylase, invertase, and β-galactosidase. An enzyme that does not participate in the production reaction can be exemplified. These enzymes may be used alone or in combination of two or more.

目的とする物質の検知に適当な酵素の組み合わせを選択し、これらの酵素固定化体を例えば図1の測定装置に組み込めばよい。緩衝液槽(1)より緩衝液をポンプ(2)により送液する。試料(5)にニードル(6)を挿入し、バルブ(9)を閉じ、バルブ(10)を開けて、シリンジポンプ(11)を引くことにより検体を計量バルブ(3)の計量ループ(4)に引き込む。次に計量バルブ(3)を切り替え、緩衝液によりループ(4)内に溜まった検体を押し出す。過剰の検体は一旦バルブ(9)を開けてバルブ(10)を閉じ、洗浄液(8)をシリンジポンプ(11)に引き込んだ後、バルブ(9)を閉じバルブ(10)を開けて洗浄液を押し出すことにより、廃棄ポット(7)に押し出され、廃液ボトル(20)に貯留される。注入された試料は緩衝液の流れにのって恒温槽(12)内に設置された混合用配管(13)を通り、温度調整と緩衝液との混合が行われ、カオリナイト系セラミックス酵素固定化カラム(25)、過酸化水素生成酵素固定化カラム(14)を順に通り、そこで生成した過酸化水素が過酸化水素電極(15)で検知される。さらに背圧コイル(18)をとおり廃液は廃液ボトル(19)に溜まる。   A combination of enzymes suitable for detection of the target substance is selected, and these enzyme-immobilized bodies may be incorporated into the measuring apparatus of FIG. The buffer solution is sent from the buffer solution tank (1) by the pump (2). Insert the needle (6) into the sample (5), close the valve (9), open the valve (10), and pull the syringe pump (11) to pull the sample into the metering loop (4) of the metering valve (3). Pull in. Next, the metering valve (3) is switched, and the specimen accumulated in the loop (4) is pushed out by the buffer solution. Excess specimen once opens the valve (9) and closes the valve (10), draws the cleaning liquid (8) into the syringe pump (11), then closes the valve (9) and opens the valve (10) to push out the cleaning liquid. As a result, it is pushed out to the waste pot (7) and stored in the waste liquid bottle (20). The injected sample follows the flow of the buffer solution, passes through the mixing pipe (13) installed in the thermostatic chamber (12), is mixed with the temperature adjustment and the buffer solution, and fixed with kaolinite ceramic enzyme. The hydrogen peroxide is detected by the hydrogen peroxide electrode (15). Further, the waste liquid passes through the back pressure coil (18) and accumulates in the waste liquid bottle (19).

2種以上の固定化酵素を使用する場合、緩衝液槽(1)は2種類以上の酵素反応に最適なpHを有する緩衝液を使用する。緩衝液としてはリン酸、酢酸、クエン酸等で酵素反応に最適なpHに合わせればよい。緩衝液に各種塩類や制菌剤を加えても良い。   When two or more kinds of immobilized enzymes are used, the buffer tank (1) uses a buffer having an optimum pH for two or more kinds of enzyme reactions. As the buffer solution, phosphoric acid, acetic acid, citric acid and the like may be adjusted to the optimum pH for the enzyme reaction. Various salts and antibacterial agents may be added to the buffer solution.

カオリナイト系セラミックス酵素固定化カラム(25)と過酸化水素生成酵素固定化カラム(14)は恒温槽中に設置し、酵素反応に最適な温度で酵素反応を行わせても良い。   The kaolinite-based ceramic enzyme-immobilized column (25) and the hydrogen peroxide-producing enzyme-immobilized column (14) may be installed in a thermostatic bath, and the enzyme reaction may be performed at a temperature optimal for the enzyme reaction.

カオリナイト系セラミックス酵素固定化カラム(25)と過酸化水素生成酵素固定化カラム(14)に使用する酵素の組み合わせを選択することで、様々な物質の検出が可能になる。
・ 乳糖の測定
カオリナイト系セラミックス酵素固定化カラム(25)にβ−ガラクトシダーゼを固定化し、過酸化水素生成酵素固定化カラム(14)にグルコースオキシダーゼを固定化する。図1の測定装置に固定化体を組み込んで試料を注入すると、試料中の乳糖はβ−ガラクトシダーゼによりグルコースに変換され、グルコースオキシダーゼにより生成したグルコースを過酸化水素に変換して検出すればよい。
・ スクロースの測定
カオリナイト系セラミックス酵素固定化カラム(25)にインベルターゼとムタロターゼを固定化し、過酸化水素生成酵素固定化カラム(14)にグルコースオキシダーゼを固定化する。(1)と同様に試料中のスクロースを過酸化水素に変換して検出すればよい。
・ 糖化タンパク質中の糖化アミノ酸の測定
カオリナイト系セラミックス酵素固定化カラム(25)にタンパク分解酵素を固定化し、過酸化水素生成酵素固定化カラム(14)に糖化アミノ酸を過酸化水素に変換できるフルクトシルアミノ酸オキシダーゼを固定化する。これらの固定化体カラムを(1)と同様に組み込んで、試料をタンパク分解酵素でアミノ酸及び糖化アミノ酸に分解した後に、生成した糖化アミノ酸をフルクトシルアミノ酸オキシダーゼで過酸化水素に変換して検出すればよい。
By selecting a combination of enzymes used for the kaolinite-based ceramic enzyme immobilization column (25) and the hydrogen peroxide-producing enzyme immobilization column (14), various substances can be detected.
Measurement of lactose β-galactosidase is immobilized on the kaolinite ceramic enzyme immobilization column (25), and glucose oxidase is immobilized on the hydrogen peroxide-producing enzyme immobilization column (14). When the sample is injected by incorporating the immobilized body into the measurement apparatus of FIG. 1, lactose in the sample is converted to glucose by β-galactosidase, and the glucose produced by glucose oxidase is converted to hydrogen peroxide and detected.
Measurement of sucrose Invertase and mutarotase are immobilized on the kaolinite ceramic enzyme immobilization column (25), and glucose oxidase is immobilized on the hydrogen peroxide-producing enzyme immobilization column (14). Similar to (1), sucrose in the sample may be converted to hydrogen peroxide and detected.
・ Measurement of glycated amino acid in glycated protein Fruc that can immobilize proteolytic enzyme in kaolinite ceramic enzyme immobilization column (25) and convert glycated amino acid to hydrogen peroxide in hydrogen peroxide producing enzyme immobilization column (14) Tosyl amino acid oxidase is immobilized. These immobilized columns are incorporated in the same manner as in (1), and after the sample is decomposed into amino acids and glycated amino acids by proteolytic enzymes, the generated glycated amino acids are converted to hydrogen peroxide by fructosyl amino acid oxidase and detected. That's fine.

糖化タンパク質の中でも特に糖化ヘモグロビンは、糖尿病患者の長期間の血糖コントロールの指標に広く用いられている。糖化ヘモグロビンとはヘモグロビンに糖が非酵素的に結合した糖化タンパク質の一種で、中でも特にHbA1cと呼ばれる画分 はヘモグロビンAのβ鎖N末端のバリン残基にグルコースがシッフ塩基を形成してアルジミン(不安定型)となり、さらにアマドリ転移を受けてケトアミン化合物を生成したものである。糖化ヘモグロビンの測定方法は多種多様であるが、酵素法は前記のように糖化タンパク質から糖化アミノ酸を何らかの手法で切り出した後、生じた糖化アミノ酸量を糖化アミノ酸オキシダーゼ等の酵素を用いて検出するものである。     Among glycated proteins, glycated hemoglobin is widely used as an indicator for long-term blood glucose control in diabetic patients. Glycated hemoglobin is a type of glycated protein in which sugar is non-enzymatically bound to hemoglobin. Among them, a fraction called HbA1c is an aldimine (HbA1c) in which glucose forms a Schiff base at the N-terminal valine residue of hemoglobin A. Instability type) and further undergoes Amadori transition to produce a ketoamine compound. There are a variety of methods for measuring glycated hemoglobin. As described above, the enzymatic method is to detect the amount of glycated amino acid generated using a glycated amino acid oxidase or the like after the glycated amino acid has been cut out from the glycated protein by some technique. It is.

糖化ヘモグロビン中の糖化アミノ酸を測定する際には、試料が血球や全血などであるので、生体内の活性酸素の不均化反応や還元性物質の酸化に伴って過酸化水素を生成する可能性があり、固定化酵素反応に由来しない微量の過酸化水素が正の誤差を生じることが問題となる。そこで、カオリナイト系セラミックス担体と試料を接触させることによって微量の過酸化水素を分解すると、より高精度で糖化アミノ酸を測定することができる。     When measuring glycated amino acids in glycated hemoglobin, the sample is blood cells, whole blood, etc., so hydrogen peroxide can be generated with the disproportionation of active oxygen in the living body and oxidation of reducing substances There is a problem that a small amount of hydrogen peroxide that does not originate from the immobilized enzyme reaction causes a positive error. Accordingly, when a trace amount of hydrogen peroxide is decomposed by bringing the sample into contact with the kaolinite ceramic carrier, the glycated amino acid can be measured with higher accuracy.

また、糖化ヘモグロビン中の糖化アミノ酸の測定において、試料が血球や全血等のように過酸化水素電極を汚染して著しく感度が低下するものである場合には、注入機構(3,4,6)と過酸化水素生成酵素固定化体(14)の間に半透膜等の分離機構を組み込み、連続的に汚染を防ぐのが好ましい。     Further, in the measurement of glycated amino acid in glycated hemoglobin, when the sample is contaminated with a hydrogen peroxide electrode, such as blood cells or whole blood, the sensitivity is significantly reduced. ) And a hydrogen peroxide-producing enzyme-immobilized body (14), it is preferable to incorporate a separation mechanism such as a semipermeable membrane to prevent contamination continuously.

このような機構を組み込んだ分析装置として図2の分析装置が考えられる。緩衝液槽(21)より緩衝液Bをポンプ(22)により送液し、試料(5)にニードル(6)を挿入し、バルブ(9)を閉じ、バルブ(10)を開けて、シリンジポンプ(11)を引くことにより検体を計量バルブ(3)の計量ループ(4)に引き込む。次に計量バルブ(3)を切り替え、緩衝液によりループ(4)内に溜まった検体を押し出す。過剰の検体は一旦バルブ(9)を開けてバルブ(10)を閉じ、洗浄液(8)をシリンジポンプ(11)に引き込んだ後、バルブ(9)を閉じバルブ(10)を開けて洗浄液を押し出すことにより、廃棄ポット(7)に押し出され、廃液ボトル(20)に貯留される。注入された試料は緩衝液Bの流れにのって恒温槽(12)内に配置されたタンパク分解酵素のカオリナイト系セラミックス酵素固定化カラム(25)を通り、試料中のタンパク質からフルクトシルアミノ酸を生成する。プロテアーゼの作用した試料はさらに下流に設置された透析モジュール(26)に運ばれ、膜厚さ20μm、分子量分画12000〜14000の再生セルロース膜で試料中の低分子成分のみがフルクトシルアミノ酸検出機構(14,15,16,17)に導かれる。なお、フルクトシルアミノ酸検出機構は(14,15)のみで構成されていてもよく(例えば、フルクトシルアミノ酸と過酸化水素電極の組み合わせ)、(16,17)は任意である。   As an analyzer incorporating such a mechanism, the analyzer shown in FIG. 2 can be considered. Buffer B is sent from the buffer tank (21) by the pump (22), the needle (6) is inserted into the sample (5), the valve (9) is closed, the valve (10) is opened, and the syringe pump By pulling (11), the specimen is drawn into the metering loop (4) of the metering valve (3). Next, the metering valve (3) is switched, and the specimen accumulated in the loop (4) is pushed out by the buffer solution. Excess specimen once opens the valve (9) and closes the valve (10), draws the cleaning liquid (8) into the syringe pump (11), then closes the valve (9) and opens the valve (10) to push out the cleaning liquid. As a result, it is pushed out to the waste pot (7) and stored in the waste liquid bottle (20). The injected sample passes through the kaolinite ceramic enzyme immobilization column (25) of the proteolytic enzyme arranged in the thermostatic bath (12) along the flow of the buffer B, and from the protein in the sample to the fructosyl amino acid. Is generated. The sample on which the protease has acted is transported to a dialysis module (26) installed further downstream, where only a low molecular component in the sample is detected in a regenerated cellulose membrane having a film thickness of 20 μm and a molecular weight fraction of 12000 to 14000. (14, 15, 16, 17). The fructosyl amino acid detection mechanism may be composed of only (14, 15) (for example, a combination of fructosyl amino acid and hydrogen peroxide electrode), and (16, 17) is arbitrary.

緩衝液槽(1)より緩衝液Aがポンプ(2)により送液されているので、透析モジュール(26)で透析された試料中の低分子成分は第1の過酸化水素生成固定化酵素カラム(14)、過酸化水素電極(15)を通過し、第1の固定化酵素で生成した過酸化水素のみが検知される。さらに第2の過酸化水素生成固定化酵素カラム(16)、過酸化水素電極(17)を通過し、第2の固定化酵素で生成した過酸化水素のみが検知される。透析モジュール(26)の透析膜を通過しなかった試料中の高分子成分は廃液ボトル(19)に溜まる。   Since the buffer A is sent from the buffer tank (1) by the pump (2), the low molecular component in the sample dialyzed by the dialysis module (26) is the first hydrogen peroxide generation immobilized enzyme column. (14) Only hydrogen peroxide generated by the first immobilized enzyme after passing through the hydrogen peroxide electrode (15) is detected. Furthermore, only the hydrogen peroxide produced by the second immobilized enzyme is detected after passing through the second hydrogen peroxide producing / immobilizing enzyme column (16) and the hydrogen peroxide electrode (17). The polymer component in the sample that has not passed through the dialysis membrane of the dialysis module (26) accumulates in the waste liquid bottle (19).

糖化タンパク質の中でも糖化ヘモグロビンの糖化アミノ酸、特にヘモグロビンβ鎖N末端のフルクトシルバリンを測定する場合、カオリナイト系セラミックス酵素固定化カラム(25)には、糖化ヘモグロビンまたはそのフラグメントからN末端の糖化アミノ酸を生じる作用が大きいプロテアーゼを固定化するのがよく、アスペルギルス属のプロテアーゼが例示でき、アスペルギルス オリゼ由来のアルカリ性プロテアーゼがより好ましい。アスペルギルス オリゼ由来のアルカリ性プロテアーゼの固定化量は1〜20mg/カラム、より好ましく5〜10mg/カラムである。過酸化水素生成酵素固定化カラム(14、16)には、血清中に含まれるアルブミンが糖化されたものから、ε-アミノ基が糖化されたリジンが遊離してくる場合や、ヘモグロビンに含まれるリジン糖化物が妨害となる可能性があるので、ε-アミノ基が糖化された糖化アミノ酸には作用せず、α-アミノ基が糖化された糖化アミノ酸に作用するフルクトシルアミノ酸オキシダーゼが好ましい。このような作用を有する酵素として、コリネバクテリウム(Corynebacterium)由来のフルクトシルアミノ酸オキシダーゼが例示できる。   Among glycated proteins, when measuring glycated amino acids of glycated hemoglobin, especially fructosyl valine at the N-terminus of hemoglobin β chain, the kaolinite ceramic enzyme immobilization column (25) is glycated at the N terminus from glycated hemoglobin or a fragment thereof. It is preferable to immobilize a protease having a large action of generating an amino acid, and examples include Aspergillus proteases, and alkaline protease derived from Aspergillus oryzae is more preferable. The amount of alkaline protease derived from Aspergillus oryzae is 1 to 20 mg / column, more preferably 5 to 10 mg / column. The hydrogen peroxide-producing enzyme-immobilized column (14, 16) is contained in hemoglobin when lysine in which ε-amino group is glycated is liberated from glycated albumin contained in serum or in hemoglobin. Since lysine saccharification products may interfere, fructosyl amino acid oxidase that does not act on glycated amino acids in which the ε-amino group is glycated but acts on glycated amino acids in which the α-amino group is glycated is preferable. As an enzyme having such an action, a fructosyl amino acid oxidase derived from Corynebacterium can be exemplified.

第1と第2の過酸化水素生成酵素としては、フルクトシルアミノ酸オキシダーゼとアミノ酸オキシダーゼ(プロテアーゼの作用によりフルクトシルアミノ酸とともに生成する任意のアミノ酸のオキシダーゼ)の組み合わせが例示される。   Examples of the first and second hydrogen peroxide producing enzymes include a combination of fructosyl amino acid oxidase and amino acid oxidase (oxidase of any amino acid produced together with fructosyl amino acid by the action of protease).

タンパク質であるヘモグロビンはカオリナイト系セラミックス酵素固定化体のタンパク質分解酵素で分解されて、糖化アミノ酸を生成するとともに、試料中の妨害となる過酸化水素が分解される。生成した糖化アミノ酸を過酸化水素生成固定化体上のフルクトシルアミノ酸オキシダーゼで過酸化水素を生成させ、アンペロメトリー等の電気化学的手法で過酸化水素を検知すればよい。   Hemoglobin, which is a protein, is decomposed by the proteolytic enzyme of the kaolinite-based ceramic enzyme immobilized body to generate glycated amino acids, and hydrogen peroxide that is an obstacle in the sample is decomposed. The generated glycated amino acid may be generated by fructosyl amino acid oxidase on a hydrogen peroxide-producing immobilized body, and hydrogen peroxide may be detected by an electrochemical method such as amperometry.

プロテアーゼ分解後の試料中の低分子成分分離機構(26)で用いる半透膜は、プロテアーゼ分解の過程で共存すると考えられるペンタペプチドやヘキサペプチドやさらに大きなペプチド類が透過し難いもしくは透過せず、フルクトシルバリン及びアミノ酸が透過できるものであれば良い。用いる膜としては、再生セルロース製、アセチルセルロース製、ポリフッ化ビニリデン製などの透析膜が例示できる。透析膜の分子量分画は平衡透析を行った際に透過する最小分子量で表示される。一方分析用途に利用する場合は、透析の初速度の差で分離する場合が多く、必ずしも分画を希望する分子量と透析膜の性能表示が一致するとは限らない。本発明の目的には分画分子量300以上50万以下のものが利用できる。より好ましくは1000以上10万以下、さらに望ましくは1万以上2万以下のものが良い。   The semipermeable membrane used in the low molecular component separation mechanism (26) in the sample after protease degradation is difficult or non-permeable for pentapeptides, hexapeptides and larger peptides that are thought to coexist in the process of protease degradation. What is necessary is just to be able to permeate fructosyl valine and amino acids. Examples of the membrane used include dialysis membranes made of regenerated cellulose, acetyl cellulose, polyvinylidene fluoride, and the like. The molecular weight fraction of the dialysis membrane is displayed as the minimum molecular weight that permeates when equilibrium dialysis is performed. On the other hand, when used for analytical purposes, separation is often based on the difference in the initial rate of dialysis, and the molecular weight desired for fractionation does not always match the performance display of the dialysis membrane. For the purpose of the present invention, those having a fractional molecular weight of 300 to 500,000 can be used. More preferably, it is 1,000 or more and 100,000 or less, and more preferably 10,000 or more and 20,000 or less.

糖化ヘモグロビンを含む検体を処理する際に、検体を界面活性剤含有緩衝液と混合し、その混合された検体をアスペルギルス属タンパク質分解酵素が固定化された担体と接触させ、緩衝液流とともに分解処理された試料を得ることが望ましい形態である。   When processing a sample containing glycated hemoglobin, the sample is mixed with a surfactant-containing buffer, the mixed sample is brought into contact with a carrier on which Aspergillus proteolytic enzymes are immobilized, and the sample is decomposed together with the buffer solution. It is a desirable form to obtain a processed sample.

界面活性剤には、ヘモグロビンをプロテアーゼでアミノ酸及び糖化アミノ酸に分解する際に、2つの働きがある。溶血作用とヘモグロビン分子構造を変化させる作用である。ヘモグロビンは赤血球内に大部分が存在し、適切な濃度の界面活性剤存在下ではヘモグロビンが赤血球外に出てくる。また、ヘモグロビンは通常折りたたまれた状態で存在するが、適切な濃度の界面活性剤中では緩んだ状態で存在し、プロテアーゼによる分解が容易になると推測される。界面活性剤としては、非イオン系のポリオキシエチレンアルキルエーテル類[例えばポリオキシエチレン(10)オクチルフェニルエーテル(トリトンX-100)、ポリオキシエチレン(23)ラウリルエーテル等]やポリオキシエチレンソルビタン脂肪酸エステル類[例えばポリオキシエチレンソルビタンモノラウレート(ツイーン20)、ポリオキシエチレンソルビタンモノパルミテート(ツイーン40)等]、陰イオン系のポリオキシエチレンアルキルエーテル類やアルキル硫酸塩[ドデシル硫酸ナトリウム(SDS)等)]、陽イオン系、両性イオン系があるが、陰イオン系界面活性剤が先に述べた2つの効果が高く、望ましい。その濃度は0.01〜10%、好ましくは0.05〜5%である。   A surfactant has two functions when hemoglobin is decomposed into an amino acid and a glycated amino acid by a protease. Hemolysis and hemoglobin molecular structure change. Most of hemoglobin is present in erythrocytes, and hemoglobin comes out of erythrocytes in the presence of an appropriate concentration of surfactant. In addition, hemoglobin is usually present in a folded state, but is present in a relaxed state in an appropriate concentration of surfactant, and it is presumed that degradation by a protease is facilitated. Surfactants include nonionic polyoxyethylene alkyl ethers [for example, polyoxyethylene (10) octylphenyl ether (Triton X-100), polyoxyethylene (23) lauryl ether, etc.] and polyoxyethylene sorbitan fatty acids Esters [eg, polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene sorbitan monopalmitate (Tween 40), etc.], anionic polyoxyethylene alkyl ethers and alkyl sulfates [sodium dodecyl sulfate (SDS ) Etc.]], cationic and zwitterionic, but anionic surfactants are desirable because they have the two effects described above. The concentration is 0.01 to 10%, preferably 0.05 to 5%.

以下に実施例を挙げて、本発明の内容をさらに詳細に説明するが、もちろん本発明はこれらに限定されるものではない。
実施例1
(1)フルクトシルアミノ酸オキシダーゼ固定化カラムの製造
耐火レンガ(80〜100メッシュ)150mgをよく乾燥し、10%γ−アミノプロピルトリエトキシシランの無水トルエン溶液に1時間浸漬した後、よくトルエンで洗浄し、乾燥する。こうしてアミノシラン化処理した担体を5%グルタルアルデヒドに1時間浸漬した後、よく蒸留水で洗浄し、最後にpH7.0、100mMのリン酸ナトリウム緩衝液で置き換え、この緩衝液をできるだけ除いておく。このホルミル化した耐火レンガにpH7.0、100mMリン酸ナトリウム緩衝液にフルクトシルアミノ酸オキシダーゼ(キッコーマン製)を18ユニット/mlの濃度で溶解した溶液400μlを接触させ、0〜4℃で1日放置し固定化する。この酵素固定化担体を内径3.5mm、長さ30mmのカラムに充填しフルクトシルアミノ酸オキシダーゼ固定化カラムとする。
(2)ウマミザイムG固定化カラム(トヨナイト)の製造
カオリナイト系セラミックス製の担体であるトヨナイト200(平均粒径170μm、多孔質、東洋電化工業製)300mgを(1)と同様にしてアミノシラン化、ホルミル化する。このホルミル化したトヨナイトにpH7.0、100mMリン酸ナトリウム緩衝液にウマミザイムG(アマノエンザイム製)を100mg/mlの濃度で溶解した溶液800μlを接触させ、0〜4℃で1日放置し固定化する。この酵素固定化担体を内径3.5mm、長さ30mmのカラムに充填しウマミザイムG固定化カラム(トヨナイト)とする。
(3)過酸化水素電極の製造
直径2mmの白金線の側面を熱収縮テフロン(登録商標)で被覆し、その線の一端をやすりおよび1500番のエメリー紙で平滑に仕上げる。この白金線を作用極、1cm角型白金板を対極、飽和カロメル電極を参照極として、0.1M硫酸中、+2.0Vで10分間の電解処理を行う。その後白金線をよく水洗した後、40℃で10分間乾燥し、10%γ−アミノプロピルトリエトキシシランの無水トルエン溶液に1時間浸漬後、洗浄する。牛血清アルブミン(シグマ社製、Fraction V)20mgを蒸留水1mlに溶解し、その中にグルタルアルデヒドを0.2%になるように加える。この混合液を手早く先に用意した白金線上に5μlのせ、40℃で15分間乾燥硬化する。これを過酸化水素電極とする。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is of course not limited thereto.
Example 1
(1) Manufacture of fructosyl amino acid oxidase-immobilized column 150 mg of refractory brick (80-100 mesh) was thoroughly dried, immersed in an anhydrous toluene solution of 10% γ-aminopropyltriethoxysilane for 1 hour, and then thoroughly washed with toluene. And dry. The carrier thus treated with aminosilanization is immersed in 5% glutaraldehyde for 1 hour, then thoroughly washed with distilled water, and finally replaced with 100 mM sodium phosphate buffer at pH 7.0, and this buffer is removed as much as possible. 400 μl of a solution prepared by dissolving fructosyl amino acid oxidase (manufactured by Kikkoman) at a concentration of 18 units / ml in a pH 7.0, 100 mM sodium phosphate buffer solution was brought into contact with this formylated refractory brick and left at 0 to 4 ° C. for 1 day. And fix. This enzyme-immobilized carrier is packed in a column having an inner diameter of 3.5 mm and a length of 30 mm to obtain a fructosyl amino acid oxidase-immobilized column.
(2) Production of Umamizyme G immobilized column (Toyonite) 300 mg of Toyonite 200 (average particle size 170 μm, porous, manufactured by Toyo Denka Kogyo Co., Ltd.), a carrier made of kaolinite ceramics, was aminosilanized in the same manner as in (1). Formylize. This formylated toyonite is brought into contact with 800 μl of a solution prepared by dissolving Umamizyme G (manufactured by Amano Enzyme) at a concentration of 100 mg / ml in a pH 7.0, 100 mM sodium phosphate buffer, and allowed to stand at 0 to 4 ° C. for 1 day for immobilization. To do. This enzyme-immobilized carrier is packed in a column having an inner diameter of 3.5 mm and a length of 30 mm to form an equinezyme G-immobilized column (toyonite).
(3) Production of hydrogen peroxide electrode The side surface of a platinum wire having a diameter of 2 mm is covered with heat-shrinkable Teflon (registered trademark), and one end of the wire is smoothly finished with a file and No. 1500 emery paper. Using this platinum wire as a working electrode, a 1 cm square platinum plate as a counter electrode, and a saturated calomel electrode as a reference electrode, electrolytic treatment is performed in 0.1 M sulfuric acid at +2.0 V for 10 minutes. Thereafter, the platinum wire is thoroughly washed with water, dried at 40 ° C. for 10 minutes, immersed in an anhydrous toluene solution of 10% γ-aminopropyltriethoxysilane for 1 hour, and then washed. 20 mg of bovine serum albumin (manufactured by Sigma, Fraction V) is dissolved in 1 ml of distilled water, and glutaraldehyde is added to 0.2% therein. This mixed solution is quickly put on 5 μl of the previously prepared platinum wire and dried and cured at 40 ° C. for 15 minutes. This is a hydrogen peroxide electrode.

また参照電極としてはAg/AgCl参照電極を用い、対極には導電性の配管を用いた。
(4)測定装置
図2はウマミザイムG固定化カラムと透析モジュールを組み込んだフロー型のフルクトシルアミノ酸測定装置である。図2のカオリナイト系セラミックス酵素固定化カラム(25)としてウマミザイムG固定化カラム(トヨナイト)を、第1の過酸化水素生成酵素固定化カラム(14)としてフルクトシルアミノ酸オキシダーゼ固定化カラムを各々配置した。本実施例では第2の過酸化水素生成固定化酵素カラム(16)と過酸化水素電極(17)は配置しない。緩衝液槽(21)より緩衝液Bをポンプ(22)により送液し、計量バルブ(3)を用いて試料100μlを注入する。注入された試料は緩衝液Bの流れにのって恒温槽(12)内に配置されたウマミザイムG固定化カラム(トヨナイト)(25)に運ばれて、ウマミザイムGの作用により糖化アミノ酸を生成する。ウマミザイムGが作用した試料は緩衝液Bの流れによってさらに下流に設置された透析モジュール(26)に運ばれ、膜厚さ20μm、分子量分画12000〜14000の再生セルロース膜で試料中の低分子成分のみがフルクトシルアミノ酸検出機構(14,15)に導かれる。緩衝液槽(1)より緩衝液Aがポンプ(2)により送液されているので、透析モジュール(26)で透析された試料中の低分子成分はフルクトシルアミノ酸オキシダーゼ固定化カラム(14)と過酸化水素電極(15)を通過し、試料中のフルクトシルアミノ酸から生成した過酸化水素を検知する。
An Ag / AgCl reference electrode was used as the reference electrode, and a conductive pipe was used as the counter electrode.
(4) Measuring apparatus FIG. 2 is a flow type fructosyl amino acid measuring apparatus incorporating an equinezyme G immobilized column and a dialysis module. The kaolinite-based ceramic enzyme-immobilized column (25) of FIG. 2 is arranged with an equinezyme G-immobilized column (toyonite), and a first hydrogen peroxide-producing enzyme-immobilized column (14) with a fructosyl amino acid oxidase-immobilized column. did. In the present embodiment, the second hydrogen peroxide production-immobilized enzyme column (16) and the hydrogen peroxide electrode (17) are not arranged. Buffer B is sent from the buffer tank (21) by the pump (22), and 100 μl of sample is injected using the metering valve (3). The injected sample is carried along the flow of the buffer B to the equinezyme G-immobilized column (toyonite) (25) arranged in the thermostatic bath (12), and glycated amino acid is generated by the action of equinezyme G. . The sample on which the Umamizyme G acted is transported to the dialysis module (26) installed further downstream by the flow of the buffer B, and the low molecular component in the sample is formed with a regenerated cellulose membrane having a thickness of 20 μm and a molecular weight fraction of 12000 to 14000 Only leads to the fructosyl amino acid detection mechanism (14, 15). Since the buffer A is sent from the buffer tank (1) by the pump (2), the low molecular components in the sample dialyzed by the dialysis module (26) are the fructosyl amino acid oxidase immobilized column (14) and Hydrogen peroxide generated from fructosyl amino acids in the sample is detected after passing through the hydrogen peroxide electrode (15).

この装置に流す緩衝液は、緩衝液Aが100mMのリン酸、50mMの塩化カリウム、1mMのアジ化ナトリウムを含み、pHが8.0で流速が0.8ml/分である。緩衝液Bは50mMのリン酸、0.1%のドデシル硫酸ナトリウムを含み、pHが8.0で流速が0.8ml/分である。
恒温槽の温度は37℃であった。
(5)ウマミザイムG固定化カラム(トヨナイト)の過酸化水素に対する応答
(4)の測定装置で、2、5、10μMの過酸化水素と20、50、100μMのフルクトシルグリシンの溶液を各100μl注入し、検出値を得た。
The buffer solution to be flowed to the apparatus has a buffer A containing 100 mM phosphoric acid, 50 mM potassium chloride, 1 mM sodium azide, pH 8.0, and a flow rate of 0.8 ml / min. Buffer B contains 50 mM phosphate, 0.1% sodium dodecyl sulfate, has a pH of 8.0 and a flow rate of 0.8 ml / min.
The temperature of the thermostatic bath was 37 ° C.
(5) Response of equine zyme G-immobilized column (toyonite) to hydrogen peroxide 100 μl of each solution of 2, 5, 10 μM hydrogen peroxide and 20, 50, 100 μM fructosylglycine was injected with the measuring device of (4). The detected value was obtained.

得られた検量線を図3に示し、次式の検量線が得られた。ただし、Yは検出値(nA)、Xは試料中の濃度(μM)である。またrは相関係数である。   The obtained calibration curve is shown in FIG. 3, and a calibration curve of the following formula was obtained. However, Y is a detected value (nA) and X is a concentration (μM) in a sample. R is a correlation coefficient.

過酸化水素検量線 Y=0.000X+0.000
フルクトシルグリシン検量線 Y=0.190X+0.004 r=0.9999
フルクトシルグリシンに対しては良好な直線性が得られたが、過酸化水素に対する応答は全く得られなかった。トヨナイトは過酸化水素を分解することができる。
比較例1
(1)フルクトシルアミノ酸オキシダーゼ固定化カラムの製造
実施例1と同様にフルクトシルアミノ酸オキシダーゼ(キッコーマン製)固定化カラムを作製した。
(2)ウマミザイムG固定化カラム(耐火レンガ)の製造
(1)と同様にして耐火レンガ150mgをホルミル化する。このホルミル化した耐火レンガにpH7.0、100mMリン酸ナトリウム緩衝液にウマミザイムG(アマノエンザイム製)を30mg/mlの濃度で溶解した溶液350μlを接触させ、0〜4℃で1日放置し固定化する。この酵素固定化担体を内径3.5mm、長さ30mmのカラムに充填しウマミザイムG固定化カラム(耐火レンガ)(25)とする。
(3)過酸化水素電極の製造方法
実施例1と同様に過酸化水素電極を作製した。
(4)測定装置
実施例1と同様の測定装置でウマミザイムG固定化カラム(トヨナイト)に(2)で作製したウマミザイムG固定化カラム(耐火レンガ)を組み込んだ。
(5)ウマミザイムG固定化カラム(耐火レンガ)の過酸化水素に対する応答
(4)の測定装置で、2、5、10μMの過酸化水素と20、50、100μMのフルクトシルグリシンの溶液を各100μl注入し、検出値を得た。
Hydrogen peroxide calibration curve Y = 0.000X + 0.000
Fructosylglycine calibration curve Y = 0.190X + 0.004 r = 0.9999
Good linearity was obtained for fructosylglycine, but no response to hydrogen peroxide was obtained. Toyonite can decompose hydrogen peroxide.
Comparative Example 1
(1) Production of fructosyl amino acid oxidase-immobilized column A fructosyl amino acid oxidase (manufactured by Kikkoman) immobilized column was produced in the same manner as in Example 1.
(2) Manufacture of Umamizyme G immobilized column (refractory brick) In the same manner as in (1), 150 mg of refractory brick is formylated. This formylated refractory brick was brought into contact with 350 μl of a solution prepared by dissolving Umamizyme G (manufactured by Amano Enzyme) at a concentration of 30 mg / ml in a pH 7.0, 100 mM sodium phosphate buffer, and left at 0 to 4 ° C. for 1 day to fix. Turn into. This enzyme-immobilized carrier is packed in a column having an inner diameter of 3.5 mm and a length of 30 mm to form an equinezyme G-immobilized column (refractory brick) (25).
(3) Method for Producing Hydrogen Peroxide Electrode A hydrogen peroxide electrode was produced in the same manner as in Example 1.
(4) Measuring device The same measuring device as in Example 1 was used, and the equinezyme G immobilized column (refractory brick) prepared in (2) was incorporated into the equinezyme G immobilized column (toyonite).
(5) Response of equinezyme G-immobilized column (refractory brick) to hydrogen peroxide 100 μl each of solutions of 2, 5, 10 μM hydrogen peroxide and 20, 50, 100 μM fructosylglycine with the measuring device of (4) The detection value was obtained by injection.

得られた検量線を図4に示し、次式の検量線が得られた。ただし、Yは検出値(nA)、Xは試料中の濃度(μM)である。またrは相関係数である。   The obtained calibration curve is shown in FIG. 4, and a calibration curve of the following formula was obtained. However, Y is a detected value (nA) and X is a concentration (μM) in a sample. R is a correlation coefficient.

過酸化水素検量線 Y=0.115X−0.030 r=0.9997
フルクトシルグリシン検量線 Y=0.167X−0.045 r=0.9997
直線性は良好であり、トヨナイトとは異なり、過酸化水素に対して応答が得られた。
実施例2
(1)フルクトシルアミノ酸オキシダーゼ固定化カラムの製造
実施例1と同様にフルクトシルアミノ酸オキシダーゼ(キッコーマン製)固定化カラムを作製した。
(2)ウマミザイムG固定化カラム(トヨナイト)の製造
実施例1と同様にウマミザイムG(アマノエンザイム製)をトヨナイトに固定化し、ウマミザイムG固定化カラム(トヨナイト)を作製した。
(3)過酸化水素電極の製造方法
実施例1と同様に過酸化水素電極を作製した。
(4)測定装置
図2の測定装置を使用し、第2の過酸化水素生成固定化酵素カラム(16)、過酸化水素電極(17)は配置せず、カオリナイト系セラミックス酵素固定化カラム(25)にウマミザイムG固定化カラム(トヨナイト)、第1の過酸化水素生成固定化酵素カラム(14)にフルクトシルアミノ酸オキシダーゼ固定化カラム、過酸化水素電極(15)を配置した。
(5)プロテアーゼ固定化カラム(トヨナイト)による糖化ヘモグロビンの測定
実施例1でカオリナイト系セラミックス(トヨナイト)が過酸化水素を分解できることが示され、比較例2にヘモグロビンを分解した際に試料中に正の妨害を与える過酸化水素が存在することが示されているので、糖化ヘモグロビンの測定にトヨナイトを適用する。
Hydrogen peroxide calibration curve Y = 0.115X-0.030 r = 0.9997
Fructosylglycine calibration curve Y = 0.167X-0.045 r = 0.9997
The linearity was good and, unlike toyonite, a response to hydrogen peroxide was obtained.
Example 2
(1) Production of fructosyl amino acid oxidase-immobilized column A fructosyl amino acid oxidase (manufactured by Kikkoman) immobilized column was prepared in the same manner as in Example 1.
(2) Manufacture of equinezyme G-immobilized column (toyonite) In the same manner as in Example 1, equinezyme G (manufactured by Amano Enzyme) was immobilized on toyonite to produce an equinezyme G-immobilized column (toyonite).
(3) Method for Producing Hydrogen Peroxide Electrode A hydrogen peroxide electrode was produced in the same manner as in Example 1.
(4) Measuring device Using the measuring device shown in FIG. 2, the second hydrogen peroxide production-immobilized enzyme column (16) and the hydrogen peroxide electrode (17) are not arranged, and the kaolinite ceramic enzyme-immobilized column ( 25), an equinezyme G-immobilized column (toyonite), a fructosyl amino acid oxidase-immobilized column, and a hydrogen peroxide electrode (15) were disposed on the first hydrogen peroxide-producing / immobilized enzyme column (14).
(5) Measurement of glycated hemoglobin using a protease-immobilized column (toyonite) It was shown in Example 1 that kaolinite-based ceramics (toyonite) can decompose hydrogen peroxide, and Comparative Example 2 shows that in the sample when hemoglobin is decomposed. Toyonite is applied to measure glycated hemoglobin because it has been shown that hydrogen peroxide presents positive interference.

(4)の測定装置のカオリナイト系セラミックス固定化酵素カラム(25)にウマミザイムG固定化カラム(トヨナイト)を組み込み、ヘモグロビンの溶血液を100μl注入する。ヘモグロビンはプロテアーゼカラム(25)でフルクトシルアミノ酸及びアミノ酸にまで分解されるとともに、溶血液中の過酸化水素がトヨナイトで分解される。生成したフルクトシルアミノ酸及びアミノ酸等の低分子成分は、半透膜を介して検出系に導かれる。透析されたフルクトシルL−バリンはフルクトシルアミノ酸オキシダーゼ固定カラム(14)で過酸化水素を生成し、生成した過酸化水素を過酸化水素電極(15)で検出する。   An equinezyme G-immobilized column (toyonite) is incorporated into the kaolinite-based ceramics-immobilized enzyme column (25) of the measuring device of (4), and 100 μl of hemoglobin hemolyzed blood is injected. Hemoglobin is decomposed to fructosyl amino acids and amino acids by the protease column (25), and hydrogen peroxide in the hemolyzed blood is decomposed by toyonite. The generated low molecular components such as fructosyl amino acids and amino acids are guided to a detection system through a semipermeable membrane. The dialyzed fructosyl L-valine generates hydrogen peroxide with a fructosyl amino acid oxidase fixed column (14), and the generated hydrogen peroxide is detected with a hydrogen peroxide electrode (15).

ヘモグロビン溶液は、ヒトヘモグロビン(シグマ社製)をヘモグロビン濃度が30mg/mlとなるように所定量を秤量し、ドデシル硫酸ナトリウム2%を含む20mMリン酸緩衝液pH8.0に溶解して調製した。   The hemoglobin solution was prepared by weighing a predetermined amount of human hemoglobin (manufactured by Sigma) so that the hemoglobin concentration was 30 mg / ml and dissolving it in 20 mM phosphate buffer pH 8.0 containing 2% sodium dodecyl sulfate.

30mg/mlのヒトヘモグロビン溶液中のフルクトシルバリン濃度を(4)の測定装置で測定すると、フルクトシルバリンは15.1μMであった。   When the fructosyl valine concentration in the 30 mg / ml human hemoglobin solution was measured with the measuring device of (4), the fructosyl valine was 15.1 μM.

プロテアーゼ固定化担体にトヨナイトを適用することによって試料中の過酸化水素及び電極活物質の妨害を除き、試料中のフルクトシルアミノ酸濃度を正確に測定できた。
比較例2
(1)フルクトシルアミノ酸オキシダーゼ固定化カラムの製造
実施例1と同様にフルクトシルアミノ酸オキシダーゼ(キッコーマン製)固定化カラムを作製した。
(2)過酸化水素電極の製造方法
実施例1と同様に過酸化水素電極を作製した。
(3)測定装置
図2の測定装置を使用し、カオリナイト系セラミックス酵素固定化カラム(25)と第1の過酸化水素固定化酵素カラム(14)は配置せず第2の過酸化水素生成酵素固定化カラム(16)にフルクトシルアミノ酸オキシダーゼ固定化カラムと過酸化水素電極(15,17)を配置した。
(4)標準ヘモグロビンプロテアーゼ処理液から生成する過酸化物
ヒトヘモグロビン溶液をプロテアーゼで一定温度、所定時間処理し、(3)の測定装置でプロテアーゼ処理液100μlを注入する。プロテアーゼ処理液中の低分子成分は半透膜を介して検出系に導かれ、試料中の過酸化水素は第1チャンネルの過酸化水素電極(15)で、フルクトシルアミノ酸は第2チャンネルのフルクトシルアミノ酸オキシダーゼ固定化カラム(16)と過酸化水素電極(17)で検出される。
By applying toyonite to the protease-immobilized carrier, the concentration of fructosyl amino acid in the sample could be accurately measured, excluding the interference of hydrogen peroxide and electrode active material in the sample.
Comparative Example 2
(1) Production of fructosyl amino acid oxidase-immobilized column A fructosyl amino acid oxidase (manufactured by Kikkoman) immobilized column was prepared in the same manner as in Example 1.
(2) Method for Producing Hydrogen Peroxide Electrode A hydrogen peroxide electrode was produced in the same manner as in Example 1.
(3) Measuring device Using the measuring device shown in FIG. 2, the kaolinite-based ceramic enzyme-immobilized column (25) and the first hydrogen peroxide-immobilized enzyme column (14) are not arranged, and the second hydrogen peroxide is generated. A fructosyl amino acid oxidase immobilization column and a hydrogen peroxide electrode (15, 17) were arranged on the enzyme immobilization column (16).
(4) Peroxide generated from standard hemoglobin protease treatment solution Human hemoglobin solution is treated with protease at a constant temperature for a predetermined time, and 100 μl of protease treatment solution is injected with the measuring device of (3). The low-molecular components in the protease treatment solution are guided to the detection system through the semipermeable membrane, the hydrogen peroxide in the sample is the hydrogen peroxide electrode (15) of the first channel, and the fructosyl amino acid is the fructose of the second channel. It is detected with a tosylamino acid oxidase immobilization column (16) and a hydrogen peroxide electrode (17).

ヒトヘモグロビンのプロテアーゼ処理液は、実施例2と同様にしてヒトヘモグロビン(シグマ社製)をヘモグロビン濃度が30mg/mlとなるように調製した後、プロテアーゼであるウマミザイムG(天野エンザイム製)を1mg/mlとなるように添加し、37℃で所定時間反応させる。   A human hemoglobin protease treatment solution was prepared by preparing human hemoglobin (manufactured by Sigma) so as to have a hemoglobin concentration of 30 mg / ml in the same manner as in Example 2, followed by 1 mg / ml of the protease Umamizyme G (manufactured by Amano Enzyme). Add to ml and react at 37 ° C. for a predetermined time.

8、17、25、33、42、51分間反応後、(4)の測定装置で試料中の過酸化水素とフルクトシルアミノ酸を検出した。結果を図5に示した。いずれの反応時間でも1μM程度の過酸化水素が検出でき、フルクトシルアミノ酸の検出に過酸化水素電極を用いる場合にはヘモグロビンの溶血液やプロテアーゼから生成する過酸化水素が妨害となることがわかった。   After reacting for 8, 17, 25, 33, 42, and 51 minutes, hydrogen peroxide and fructosyl amino acids in the sample were detected with the measuring device of (4). The results are shown in FIG. It was found that hydrogen peroxide of about 1 μM can be detected at any reaction time, and hydrogen peroxide generated from hemolyzed hemoglobin and protease is obstructed when a hydrogen peroxide electrode is used to detect fructosyl amino acids. .

測定装置の概略図Schematic diagram of measuring device 透析を行う測定装置の概略図Schematic diagram of a measuring device for dialysis 実施例1で得られた検量線Calibration curve obtained in Example 1 比較例1で得られた検量線Calibration curve obtained in Comparative Example 1 比較例2の過酸化水素とフルクトシルアミノ酸の検出結果Detection results of hydrogen peroxide and fructosyl amino acid in Comparative Example 2

符号の説明Explanation of symbols

1 緩衝液槽
2 緩衝液送液ポンプ
3 計量バルブ
4 計量ループ
5 試料管
6 試料吸引ニードル
7 廃棄ポット
8 洗浄液槽
9 バルブ
10 バルブ
11 シリンジポンプ
12 恒温槽
13 混合用配管
14 第1の固定化酵素カラム
15 過酸化水素電極
16 第2の固定化酵素カラム
17 過酸化水素電極
18 背圧コイル
19 廃液ボトル
20 廃液ボトル
21 緩衝液槽
22 緩衝液送液ポンプ
23 ダンパー
24 恒温化用配管
25 カオリナイト系セラミックス酵素固定化カラム
26 透析モジュール
DESCRIPTION OF SYMBOLS 1 Buffer tank 2 Buffer solution pump 3 Metering valve 4 Metering loop 5 Sample tube 6 Sample suction needle 7 Waste pot 8 Washing solution tank
9 Valve 10 Valve 11 Syringe pump 12 Thermostatic bath 13 Mixing pipe 14 First immobilized enzyme column 15 Hydrogen peroxide electrode 16 Second immobilized enzyme column 17 Hydrogen peroxide electrode 18 Back pressure coil 19 Waste liquid bottle 20 Waste liquid bottle 21 Buffer Tank 22 Buffer Solution Pump 23 Damper 24 Constant Temperature Pipe 25 Kaolinite Ceramic Enzyme Immobilized Column 26 Dialysis Module

Claims (5)

水溶液を一定流量で送液する機構と、前記水溶液中に一定量の測定対象物質を注入する機構を備え、該注入機構の下流に、過酸化水素電極と過酸化水素電極近傍に水溶液中に含まれる物質の酸化還元反応を触媒し、過酸化水素を生成する酵素固定化体を備え、酵素反応に伴う過酸化水素の濃度変化を前記過酸化水素電極で検出することにより前記測定対象物質の濃度を算出する装置において、前記注入機構と過酸化水素生成酵素固定化体の間に、水熱処理後に焼成もしくは焼結処理を加えたカオリナイト系セラミックスを充填したカラムを挿入したことを特徴とする分析装置。 Provided with a mechanism for feeding an aqueous solution at a constant flow rate and a mechanism for injecting a constant amount of a substance to be measured into the aqueous solution. The hydrogen peroxide electrode and the hydrogen peroxide electrode are included in the aqueous solution downstream of the injection mechanism. An enzyme-immobilized body that catalyzes the oxidation-reduction reaction of the substance to be produced and generates hydrogen peroxide, and the concentration of the substance to be measured is detected by detecting the change in the concentration of hydrogen peroxide accompanying the enzyme reaction with the hydrogen peroxide electrode. In the apparatus for calculating the analysis, an analysis is characterized in that a column filled with kaolinite ceramics which has been subjected to baking or sintering treatment after hydrothermal treatment is inserted between the injection mechanism and the hydrogen peroxide-producing enzyme immobilization body. apparatus. カオリナイト系セラミックスに過酸化水素生成反応に関与しない酵素を固定化し、該固定化体の下流に過酸化水素生成酵素固定化体を配置したことを特徴とする請求項1記載の分析装置。 2. The analyzer according to claim 1, wherein an enzyme that does not participate in the hydrogen peroxide generation reaction is immobilized on the kaolinite-based ceramics, and the hydrogen peroxide-producing enzyme immobilized body is disposed downstream of the immobilized body. カオリナイト系セラミックス原料を水熱処理後に焼成もしくは焼結処理を行うことを特徴とする過酸化水素を分解するカオリナイト系セラミックスの製造方法。 A method for producing kaolinite-based ceramics for decomposing hydrogen peroxide, comprising calcining or sintering a kaolinite-based ceramic raw material after hydrothermal treatment. カオリナイト系セラミックスの過酸化水素生成反応に関与しない酵素を固定化するための担体としての使用 Use of kaolinite ceramics as a carrier to immobilize enzymes that are not involved in the hydrogen peroxide formation reaction カオリナイト系セラミックスを過酸化水素生成反応に関与する固定化酵素の上流に配置することを特徴とする、サンプル中に含まれる過酸化水素を除去する方法。 A method for removing hydrogen peroxide contained in a sample, comprising arranging kaolinite ceramics upstream of an immobilized enzyme involved in a hydrogen peroxide production reaction.
JP2005137693A 2005-05-10 2005-05-10 Analyzer Withdrawn JP2006314211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137693A JP2006314211A (en) 2005-05-10 2005-05-10 Analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137693A JP2006314211A (en) 2005-05-10 2005-05-10 Analyzer

Publications (1)

Publication Number Publication Date
JP2006314211A true JP2006314211A (en) 2006-11-24

Family

ID=37535459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137693A Withdrawn JP2006314211A (en) 2005-05-10 2005-05-10 Analyzer

Country Status (1)

Country Link
JP (1) JP2006314211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079809A (en) * 2011-09-30 2013-05-02 Oji Keisoku Kiki Kk Device and method for analyzing glycated protein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079809A (en) * 2011-09-30 2013-05-02 Oji Keisoku Kiki Kk Device and method for analyzing glycated protein

Similar Documents

Publication Publication Date Title
Mascini et al. Glucose electrochemical probe with extended linearity for whole blood
US6706160B2 (en) Chemical sensor and use thereof
JP4465452B2 (en) Endotoxin concentration measurement method and endotoxin concentration measurement kit
WO2006118306A1 (en) Analysis apparatus and analysis method for glycosylated hemoglobin
US5306413A (en) Assay apparatus and assay method
JP4622836B2 (en) Analysis equipment
JP6128578B2 (en) Endotoxin concentration measuring method and endotoxin concentration measuring apparatus
JPS61145447A (en) Immobilized enzyme membrane
JP2690053B2 (en) Biosensor
JPS60185153A (en) Immobilized enzyme membrane
JP2006314211A (en) Analyzer
Zhang et al. Simultaneous determination of glucose and sucrose by a dual‐working electrode multienzyme sensor flow‐injection system
Krysteva et al. Optical enzyme sensor for urea determination via immobilized pH indicator and urease onto transparent membranes
Campanella et al. Enzyme-entrapping membranes for enzyme sensors
JP4622820B2 (en) Method and apparatus for analyzing glycated protein
Kimura et al. Evaluation of an albumin-based, spin-coated, enzyme-immobilized membrane for an ISFET glucose sensor by computer simulation
JP2648361B2 (en) Permselective membrane and electrode using the same
Matuszewski et al. Elimination of interferences in flow‐injection amperometric determination of glucose in blood serum using immobilized glucose oxidase
JP4003053B2 (en) L-glutamine concentration measuring apparatus and measuring method using the same
JP5742639B2 (en) Glycated protein analyzer and analysis method
Kriz et al. Sire-technology. Part III. Glucose monitoring during fermentation of a lignocellulosic hydrolysate by Saccharomyces cerevisiae employing a differential amperometric biosensor
JP3319008B2 (en) Measuring device and measuring method
JPH1038844A (en) Online biosensor
EP0405583A1 (en) Method and apparatus for flow analysis with enzyme electrode
JP3104445B2 (en) Lactic acid measuring device and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090615