JP2006313993A - Ultrawideband load-distributed wireless communication method and system - Google Patents
Ultrawideband load-distributed wireless communication method and system Download PDFInfo
- Publication number
- JP2006313993A JP2006313993A JP2005135405A JP2005135405A JP2006313993A JP 2006313993 A JP2006313993 A JP 2006313993A JP 2005135405 A JP2005135405 A JP 2005135405A JP 2005135405 A JP2005135405 A JP 2005135405A JP 2006313993 A JP2006313993 A JP 2006313993A
- Authority
- JP
- Japan
- Prior art keywords
- radio frequency
- transmission
- radio
- channel
- modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Small-Scale Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本発明は複数の帯域の異なる無線周波数チャネルを用い、無線局間で各無線周波数チャネルに負荷分散をしながら一つの情報信号を伝送する超広帯域負荷分散型の無線通信方法に関し、特にその伝送方法に係る技術である。 The present invention relates to an ultra-wideband load-distributed radio communication method that uses a plurality of radio frequency channels of different bands and transmits one information signal while distributing the load to each radio frequency channel between radio stations. It is a technology concerning.
近年、移動端末が複数の無線インタフェースを持つことは珍しくない。例えば無線LANとセルラー通信のインタフェースを備えている移動端末が、利用シーンの変化に伴って無線LANからシームレスにセルラー通信に切り替える技術が研究されている。このようなハンドオーバを従来のセル間のハンドオーバ(ホリゾンタルハンドオーバ)に対してバーティカルハンドオーバと呼んでいる。 In recent years, it is not uncommon for mobile terminals to have multiple wireless interfaces. For example, a technology has been studied in which a mobile terminal equipped with an interface for wireless LAN and cellular communication is switched from wireless LAN to cellular communication seamlessly as usage scenes change. Such a handover is called a vertical handover with respect to a conventional handover between cells (horizontal handover).
とりわけ、マイクロ波帯以下の周波数帯は電波伝搬特性が良好であり移動通信としても利用勝手の良い周波数帯であるため、十分な法整備により周波数管理下の下、多くのシステムで使用されているが、周波数の逼迫状況が問題となっている。しかしながら、高周波になるにつれて、電波は直進性が高まり遠方まで届かなくなり、また障害物などの遮蔽状況によっては、ある空間(場所)においては利用可能な空き周波数帯が多く発生する。 In particular, the frequency band below the microwave band has good radio wave propagation characteristics and is a convenient frequency band for mobile communications, so it is used in many systems under frequency management with sufficient legal development. However, the frequency tightness is a problem. However, as the frequency becomes higher, the radio wave increases straight and does not reach far away, and depending on the shielding situation such as an obstacle, a lot of available frequency bands are generated in a certain space (location).
そこで、マイクロ波帯からミリ波帯、テラヘルツ波、光周波数帯わたる超広周波数帯域において無線端末が自律的に利用可能な空き周波数帯や、使用中でもスループットが期待できる周波数帯を検知して一時的に利用することが可能と考えられる。
ハンドオーバの場合、いずれかの無線周波数帯チャネルから異なるチャネルへの切り替えを行うが、この方法では元の無線周波数帯チャネルでの通信が引き続き可能であったとしても、基本的には全ての通信が新しいチャネルに切り替えられる。そのため元のチャネルリソースを無駄にする可能性がある。
Therefore, in the ultra wide frequency band from the microwave band to the millimeter wave band, the terahertz wave, and the optical frequency band, a free frequency band that can be used autonomously by the wireless terminal and a frequency band that can be expected to be used even during use are detected temporarily. It is considered possible to use it.
In the case of handover, switching from one of the radio frequency band channels to a different channel is performed. However, even if communication in the original radio frequency band channel is still possible with this method, basically all communication is performed. Switch to a new channel. Therefore, there is a possibility that the original channel resource is wasted.
そこで、ハンドオーバによってチャネルを切り替えるのではなく、超広周波数帯域にわたって、その時その場所で利用可能な複数の無線周波数帯チャネルを使用して、一つの情報信号の送受を行うシステムが考えられる。しかし、このようなシステムにおいては、端末自身の解析によって利用可能と判断された異なる周波数チャネル間は、それぞれ利用可能な周波数帯域、他無線端末による被干渉状況、その伝搬環境などに依存する回線品質状況などが異なるため、異なるチャネル間で発生する伝送品質と伝送可能データレートの差をうまく補完、もしくは平等化するアクセス方式が必要となる。 Therefore, a system is considered in which a single information signal is transmitted and received over a very wide frequency band by using a plurality of radio frequency band channels that can be used at that location, instead of switching channels by handover. However, in such a system, between different frequency channels determined to be usable by the terminal's own analysis, the channel quality depends on the available frequency band, the interference status of other wireless terminals, the propagation environment, etc. Since the situation and the like are different, an access method is required that complements or equalizes the difference between the transmission quality generated between different channels and the transmittable data rate.
従来の技術ではこのようなアクセス方式が提供されていなかったため、効率的に複数の無線周波数帯チャネルを同時に利用することができなかった。
従来の提案されていた方式は複数チャネルを適応的に同時利用しながら、それに対して負荷を分散して送受する方法を提供するものではなく、無線局におけるリソース(通信キャパシティではなく、主に計算や信号処理のためのリソース)をいかに分散制御させるかという点が中心で、例えば特許文献1ではベースバンド信号処理手段における負荷を分散する技術が開示されている。
Since the conventional technique has not provided such an access method, it has been impossible to efficiently use a plurality of radio frequency band channels simultaneously.
The conventional proposed method does not provide a method for transmitting and receiving a load while distributing and simultaneously using multiple channels adaptively, and does not provide a resource (communication capacity, mainly communication capacity) in a radio station. For example, Patent Literature 1 discloses a technique for distributing the load on the baseband signal processing means.
本発明は、上記従来技術の有する問題点に鑑みて創出されたものであり、超広帯域な複数の無線周波数チャネルに負荷を分散させた無線アクセス方式を開発し、無線局及び通信システム全体において効率的なスループットが実現できる超広帯域負荷分散型無線通信システムを提供することを目的とする。 The present invention has been created in view of the above-described problems of the prior art, and has developed a wireless access method in which a load is distributed over a plurality of ultra-wideband radio frequency channels. An object of the present invention is to provide an ultra-wideband load-distributed radio communication system capable of realizing a typical throughput.
本発明は上記課題を解決するため、次のような手段を有する。
すなわち、本発明の無線局はコグニティブレディオのようにその場所において自律的に空き周波数を検索するが、しかし、これを非常に広周波数帯域に渡って無線局の周辺空間に対して行い、各周波数帯の利用状況を検知する機能に加え、これを解析し、送信すべき信号を最適な伝送周波数チャネルに配分(負荷分散)して伝送する。本構成により、その時、その場所に応じた最大のスループットが得られ、ネットワーク社会全体で見た場合でも、最大の単位空間あたりの最大スループットを実現していることになる。
In order to solve the above problems, the present invention has the following means.
That is, the radio station of the present invention autonomously searches for a vacant frequency in the place like a cognitive radio, but this is performed on the peripheral space of the radio station over a very wide frequency band, and each frequency is In addition to the function of detecting the usage status of the band, this is analyzed, and the signal to be transmitted is distributed (load distribution) to the optimal transmission frequency channel for transmission. With this configuration, the maximum throughput according to the location is obtained at that time, and the maximum throughput per unit space is realized even when viewed in the entire network society.
請求項1に記載の発明は、複数の帯域の異なる無線周波数チャネルを用い、無線局間で各無線周波数チャネルに負荷分散をしながら一つの情報信号を伝送する超広帯域負荷分散型の無線通信方法であって、次の各ステップを備える。
(1)無線局の受信手段が、各無線周波数チャネル毎に受信信号を受信して復調する受信ステップ、
(2)無線局のチャネル状況検知解析手段が、利用可能な各無線周波数チャネルの検索と、利用可能と判断したチャネルの状況を受信信号の解析により検知するチャネル状況検知解析ステップ、
(3)無線局の負荷分散手段が、各各周波数チャネルからの受信信号を合成して受信データを出力する一方、該チャネル状況に基づいて送信データを各無線周波数チャネルに配分する割合を決定し、該送信データを各無線周波数チャネル毎における伝送用に分割、配分する負荷分散ステップ、
(4)無線局のデータレート可変変調手段が、異なる無線周波数チャネル間の伝送品質および伝送可能データレートの差を補完する適切な伝送レート可変変調方式を選択して送信信号に変調する伝送レート可変変調ステップ、
(5)無線局の送信手段が、各無線周波数チャネル毎に負荷分散された送信信号に該チャネル状況検知解析手段が検知したチャネル状況データを付加して送信する送信ステップ の各ステップを有することを特徴とする。
The invention according to claim 1 is an ultra-wideband load distribution type radio communication method that uses a plurality of radio frequency channels of different bands and transmits one information signal while distributing the load among the radio frequency channels between radio stations. And the following steps are provided.
(1) A receiving step in which the receiving means of the radio station receives and demodulates the received signal for each radio frequency channel;
(2) A channel status detection analysis step in which the channel status detection / analysis means of the radio station detects each available radio frequency channel and detects the status of the channel determined to be available by analyzing the received signal.
(3) The load distribution means of the radio station synthesizes the received signals from the respective frequency channels and outputs the received data, and determines the ratio of allocating the transmission data to the respective radio frequency channels based on the channel status. , A load distribution step for dividing and distributing the transmission data for transmission in each radio frequency channel;
(4) Variable transmission rate modulation means for selecting a suitable transmission rate variable modulation method for compensating for the difference in transmission quality and transmittable data rate between different radio frequency channels by the variable data rate modulation means of the radio station. Modulation step,
(5) The transmission means of the radio station has each step of a transmission step in which the channel status data detected by the channel status detection analysis means is added to the transmission signal load-distributed for each radio frequency channel and transmitted. Features.
また、請求項2に記載の発明は、前記伝送レート可変変調ステップにおいて、データレート可変変調手段が、各無線周波数チャネルにおいて独立に異なる符号化率の誤り訂正符号化を施す符号化処理の後に変調することを特徴とする。 According to a second aspect of the present invention, in the transmission rate variable modulation step, the data rate variable modulation means performs modulation after encoding processing for performing error correction encoding with different coding rates independently in each radio frequency channel. It is characterized by doing.
請求項3に記載の発明は、前記伝送レート可変変調ステップにおいて、データレート可変変調手段が、所定の符号化処理の後に、各無線周波数チャネルにおいて独立に異なる変調を行うことを特徴とする。 The invention according to claim 3 is characterized in that, in the variable transmission rate modulation step, the variable data rate modulation means performs different modulation independently in each radio frequency channel after a predetermined encoding process.
請求項4に記載の発明は、前記伝送レート可変変調ステップにおいて、データレート可変変調手段が、所定の符号化処理の後に拡散率可変構造を持った、直接拡散型もしくは周波数ホッピング型符号分割多重(VSF-CDM)方式を用い、使用するチャネル状況に応じて該変調方式における拡散率(Spreading Factor)を変化させることを特徴とする。 According to a fourth aspect of the present invention, in the transmission rate variable modulation step, the data rate variable modulation means has a direct spreading type or frequency hopping type code division multiplexing (having a variable spreading factor structure after a predetermined encoding process). A VSF-CDM) method is used, and a spreading factor in the modulation method is changed according to a channel condition to be used.
請求項5に記載の発明は、前記伝送レート可変変調ステップにおいて、データレート可変変調手段が、所定の符号化処理の後に、拡散率可変・直交周波数符号分割多重(VSF-OFCDM)方式を用い、使用するチャネル状況に応じて該変調方式における拡散率(Spreading Factor)を変化させることを特徴とする。 According to a fifth aspect of the present invention, in the variable transmission rate modulation step, the variable data rate modulation means uses a variable spreading factor / orthogonal frequency code division multiplexing (VSF-OFCDM) method after a predetermined encoding process, The method is characterized in that the spreading factor in the modulation scheme is changed according to the channel condition to be used.
本発明の請求項6の発明は、複数の帯域の異なる無線周波数チャネルを用い、無線局間で各無線周波数チャネルに負荷分散をしながら一つの情報信号を伝送する超広帯域負荷分散型の無線通信システムを提供する。
該システムは複数の無線局間が、通信に利用可能な複数の帯域の異なる無線周波数チャネルを空間的に共有しながら任意の無線局間でのピア−ピア通信を実現している。
The invention according to claim 6 of the present invention uses an ultra-wideband load sharing type radio communication that uses a plurality of radio frequency channels of different bands and transmits one information signal while distributing the load among the radio frequency channels between radio stations. Provide a system.
The system realizes peer-peer communication between any wireless stations while spatially sharing a plurality of different radio frequency channels of different bands available for communication among the plurality of wireless stations.
そして、無線局には、各無線周波数チャネル毎に受信信号を受信して復調する受信手段と、利用可能な各無線周波数チャネルの検索と、利用可能と判断したチャネルの状況を受信信号の解析により検知するチャネル状況検知解析手段と、各周波数チャネルからの受信信号を合成して受信データを出力する一方、該チャネル状況に基づいて各無線周波数チャネルにおける伝送量を決定し、送信データを各無線周波数チャネルに配分する負荷分散手段と、異なる無線周波数チャネル間の伝送品質と伝送可能データレートの差を補完する適切な伝送レート可変変調方式を選択して送信信号に変調するデータレート可変変調手段と、各無線周波数チャネル毎に負荷分散された送信信号に該チャネル状況検知解析手段が検知したチャネル状況データを付加して送信する送信手段とを備えたことを特徴とする。 Then, the radio station receives a reception signal for each radio frequency channel and demodulates it, searches for each available radio frequency channel, and analyzes the status of the channel determined to be usable by analyzing the received signal. Channel condition detection and analysis means for detecting and synthesizing received signals from each frequency channel and outputting received data, while determining the amount of transmission in each radio frequency channel based on the channel condition, and transmitting data to each radio frequency Load distribution means for allocating to channels, data rate variable modulation means for selecting an appropriate transmission rate variable modulation method that complements the difference between transmission quality and transmittable data rate between different radio frequency channels, and modulating the transmission signal, The channel status data detected by the channel status detection and analysis means is attached to the transmission signal load-balanced for each radio frequency channel. Characterized by comprising a transmitting means for sending to.
請求項7に記載の発明は、データレート可変変調手段が、各無線周波数チャネルにおいて独立に異なる符号化率の誤り訂正符号化を施す符号化処理の後に変調することを特徴とする。 The invention according to claim 7 is characterized in that the data rate variable modulation means modulates after the encoding processing for performing error correction encoding at different coding rates independently in each radio frequency channel.
請求項8に記載の発明は、前記データレート可変変調手段が、所定の符号化処理の後に、各無線周波数チャネルにおいて独立に異なる変調を行うことを特徴とする。 The invention according to claim 8 is characterized in that the variable data rate modulation means performs different modulation independently in each radio frequency channel after a predetermined encoding process.
請求項9に記載の発明は、前記データレート可変変調手段が、所定の符号化処理の後に拡散率可変構造を持った、直接拡散型もしくは周波数ホッピング型符号分割多重(VSF-CDM)方式を用いるものであって、各無線周波数チャネル毎に独立に異なる拡散率を用いた変調を行うことを特徴とする。 The data rate variable modulation means uses a direct spreading type or frequency hopping type code division multiplexing (VSF-CDM) system having a spreading factor variable structure after a predetermined encoding process. In other words, modulation using a different spreading factor is performed independently for each radio frequency channel.
請求項10に記載の発明は、前記データレート可変変調手段が、所定の符号化処理の後に、拡散率可変・直交周波数符号分割多重(VSF-OFCDM)方式を用い、該変調方式における拡散率(Spreading Factor)を変化させると同時に、伝送に使用するサブキャリア数についても独立に異なる値を用いることを特徴とする。 According to a tenth aspect of the present invention, the variable data rate modulation means uses a spreading factor variable / orthogonal frequency code division multiplexing (VSF-OFCDM) method after a predetermined encoding process, and uses a spreading factor (VSF-OFCDM) in the modulation method. At the same time that the spreading factor is changed, different values are used independently for the number of subcarriers used for transmission.
さらに、請求項11に記載の発明は、上記無線通信システムの無線局を提供することができる。すなわち本発明の無線局は、各無線周波数チャネル毎に受信信号を受信して復調する受信手段と、利用可能な無線周波数チャネルを検索し、利用可能と判断した各無線周波数チャネルの回線状況を受信信号の解析により検知するチャネル状況検知解析手段と、各受信信号を合成して受信データを出力する一方、該チャネル状況に基づいて各無線周波数チャネルにおける伝送量を決定し、送信データを各無線周波数チャネルに配分する負荷分散手段と、異なる無線周波数チャネル間の伝送品質と伝送可能データレートの差を補完する伝送レート可変変調方式を選択して送信信号に変調するデータレート可変変調手段と、各無線周波数チャネル毎に該チャネル状況の情報を送信データに付加した送信信号を送信する送信手段とを備えたことを特徴とする。 The invention according to claim 11 can provide a radio station of the radio communication system. That is, the radio station of the present invention receives a reception means for receiving and demodulating a received signal for each radio frequency channel, searches for available radio frequency channels, and receives the line status of each radio frequency channel determined to be usable. Channel condition detection and analysis means for detecting by signal analysis, and combining each received signal and outputting received data, while determining the transmission amount in each radio frequency channel based on the channel condition and transmitting data to each radio frequency Load distribution means for allocating to channels, variable data rate modulation means for selecting a transmission rate variable modulation method that complements the difference between transmission quality and transmittable data rate between different radio frequency channels, and modulating the transmission signal, and each radio Transmission means for transmitting a transmission signal in which channel state information is added to transmission data for each frequency channel To.
また、上記と同様にデータレート可変変調手段を構成する各実施形態において無線局を提供することもできる。 In addition, a radio station can be provided in each of the embodiments constituting the data rate variable modulation means as described above.
本願は請求項16に記載のように、無線通信システムの無線局において、受信信号を受信して復調する受信手段と、受信に用いた無線周波数チャネルの回線状況を受信信号の解析により検知するチャネル状況検知解析手段と、該チャネル状況に関連して誤り訂正符号化における符号化率を変化させる適応符号化部を備えて送信データ変調を行う符号化変調手段と、送信信号を送信する送信手段とを備えた無線局を提供することもできる。 In the radio station of the radio communication system according to the present application, the receiving means for receiving and demodulating the received signal, and the channel for detecting the channel status of the radio frequency channel used for reception by analyzing the received signal A situation detecting / analyzing means; a coding / modulating means for performing transmission data modulation comprising an adaptive coding section for changing a coding rate in error correction coding in relation to the channel situation; and a sending means for transmitting a transmission signal; It is also possible to provide a radio station equipped with
上記手段により本発明は次の通りの効果を奏する。
すなわち、無線局から見れば、常に使用するチャネルを、単純に最適な無線チャネルに切り替える(ハンドオーバーする)のではなく、負荷分散して単一情報チャネルを送受するため、より高スループットでの通信が実現できると同時、短時間で同一情報量の転送を終了可能となる。
By the above means, the present invention has the following effects.
In other words, from the viewpoint of a wireless station, instead of simply switching (handing over) the channel that is always used to the optimal wireless channel, the load is distributed and a single information channel is sent and received. At the same time, transfer of the same amount of information can be completed in a short time.
また、端末が自律分散的に、空き周波数を探して使用するため、より空間的に高密度に周波数の有効利用が図られる。 In addition, since the terminal searches for and uses a vacant frequency in an autonomous and distributed manner, the frequency can be effectively used more densely in space.
各無線端末を交換機能も持ったアドホック端末とみなし、それらが多く集まることで形成されたアドホックネットワーク(ユビキタスネットワーク)においては、各無線端末はいずれの利用可能な無線チャネルも無駄にすることなく利用しようと自律分散的に働くため、同端末を中継ノードとして利用しようとする端末から見れば、ネットワーク容量が増加し、ネットワーク全体として扱えるトラヒック量が増加する。 In an ad hoc network (ubiquitous network) formed by considering each wireless terminal as an ad hoc terminal having an exchange function, each wireless terminal can use any available wireless channel without wasting it. Since it works in an autonomous and distributed manner, the network capacity increases and the amount of traffic that can be handled by the entire network increases when viewed from a terminal that intends to use the terminal as a relay node.
ネットワーク内に新たな負荷発生端末が生じた場合にも自律分散的に各端末がチャネルに対する負荷分散状況を制御するため、ある最適なネットワーク状態に収束する。その結果、動的に常に最適な通信状態を維持できる無線通信システムに寄与することができる。 Even when a new load generating terminal occurs in the network, each terminal controls the load distribution state for the channel in an autonomous and distributed manner, so that it converges to a certain optimal network state. As a result, it is possible to contribute to a wireless communication system that can always dynamically maintain an optimal communication state.
以下、本発明の実施形態を、図面に示す実施例を基に説明する。なお、実施形態は下記に限定されるものではない。
図1及び図2は、それぞれ本発明に係る超広帯域負荷分散型無線通信システムの態様である。図1のシステムは端末対アクセスポイントの通信であり、両者の間に複数の周波数帯の無線チャネル空間A〜Cが存在する。
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings. The embodiment is not limited to the following.
FIG. 1 and FIG. 2 are aspects of an ultra-wideband load sharing type wireless communication system according to the present invention. The system of FIG. 1 is terminal-to-access point communication, and there are radio channel spaces A to C in a plurality of frequency bands between the two.
また、図2のシステムはユビキタス無線ネットワークにおけるマルチポイント対マルチポイント間の通信で、それぞれの間に複数の周波数帯の無線チャネル空間A〜Cが存在する。
本発明は上記いずれの構成においても有効であり、特に図2の構成ではネットワーク全体のトラヒックの増加を図ることもできる。
2 is multipoint-to-multipoint communication in a ubiquitous wireless network, and there are radio channel spaces A to C in a plurality of frequency bands between them.
The present invention is effective in any of the above-described configurations. In particular, in the configuration of FIG. 2, the traffic of the entire network can be increased.
以下には、無線局において複数の無線通信チャネルを利用する技術を開示する。無線局の解析によって利用可能と判断された異なる周波数チャネル間は、それぞれ利用可能な周波数帯域幅、他無線端末による被干渉状況、更にはその伝搬環境などに依存した回線状況などが異なる。
そのため、伝送したいデータを異なるチャネルに対して負荷分散的に分配して同時に伝送する場合、チャネル間で発生する伝送品質の差を補いつつ、異なる伝送可能レートを同時に扱うことが可能なアクセス方式が必要となる。
Hereinafter, a technique for using a plurality of wireless communication channels in a wireless station will be disclosed. Different frequency channels that are determined to be usable by analysis of the radio station differ in usable frequency bandwidth, interference with other radio terminals, and line conditions depending on the propagation environment.
Therefore, when data to be transmitted is distributed to different channels in a load-sharing manner and simultaneously transmitted, there is an access method that can simultaneously handle different transmittable rates while compensating for the difference in transmission quality that occurs between channels. Necessary.
そのために、本発明では (a)各チャネルの状況検知技術、(b)検知情報に基づいた伝送信号(負荷)の分散技術、(c)分散された信号をチャネルの状況に適切な方式で変調する技術、の3つの技術によって上記アクセス方式を提供する。
すなわち、まず無線局の受信手段が、各無線周波数チャネル毎に受信信号を受信して復調する(受信ステップ)。
Therefore, in the present invention, (a) a state detection technique for each channel, (b) a transmission signal (load) distribution technique based on the detection information, and (c) a distributed signal is modulated by a method suitable for the channel condition. The above access method is provided by three technologies.
That is, first, the receiving means of the radio station receives and demodulates the received signal for each radio frequency channel (receiving step).
そして(a)の技術として、チャネル状況検知解析手段が、利用可能な各無線周波数チャネルの回線状況を受信信号の解析により検知する(チャネル状況検知解析ステップ)。
チャネル状況検知解析手段は、回線状況を検知する公知の手法を用いることができるが、例えばまず、未使用周波数チャネルを検索するのであれば、広帯域に受信した信号を周波数解析することで、受信レベルが検出されない、もしくは最も検出レベルが低いチャネルを未使用チャネルと判断できる。また、使用を想定する周波数チャネルの状況を検知するには、例えば送受信する信号フレームにFCS(フレームチェックシーケンス)を付加しておき、これを元に受信側で誤りをフレーム誤りを検出することで、誤り率を解析することで可能となる。
As a technique of (a), the channel status detection / analysis means detects the channel status of each available radio frequency channel by analyzing the received signal (channel status detection analysis step).
The channel state detection / analysis means can use a known method for detecting the line state. For example, if an unused frequency channel is first searched, the reception level is obtained by analyzing the frequency of a signal received in a wide band. Is detected, or the channel with the lowest detection level can be determined as an unused channel. In order to detect the situation of the frequency channel assumed to be used, for example, FCS (frame check sequence) is added to the signal frame to be transmitted and received, and the error is detected on the receiving side based on this by detecting the frame error. This is possible by analyzing the error rate.
(b)の技術として、上記チャネル状況検知解析ステップに基づいて各使用チャネルの伝送量を決定し、これに基づいた負荷配分を行う(負荷分散ステップ)。伝送量の分配方法については、例えば、データ伝送を無線局を複数の伝送パスと接続されたルーティングノードとみなして、既存のルーティングノード間通信での負荷分散技術に習うのであれば、負荷分散処理の機能を備えるルーティングプロトコルとして公知の技術である、Enhanced Interior Gateway Routing Protocol (EIGRP)を用いて不均等負荷分散を行うためのコスト値計算として、上記チャネル状況検知解析ステップで得たチャネルの誤り率を、このコスト値として考慮する。そして、後述の(c)の技術を組み合わせることで、全てのチャネル伝送における誤り率が最も均等になるように、負荷分散を行う方法などが考えられる。 As a technique of (b), the transmission amount of each used channel is determined based on the channel state detection analysis step, and load distribution based on this is performed (load distribution step). Regarding the method of distributing the amount of transmission, for example, if data transmission is considered as a routing node connected to a plurality of transmission paths and a wireless station is learned from load distribution technology in existing communication between routing nodes, load distribution processing The error rate of the channel obtained in the above-mentioned channel condition detection and analysis step as a cost value calculation for performing non-uniform load distribution using the Enhanced Interior Gateway Routing Protocol (EIGRP), which is a well-known technology as a routing protocol having the function of Is considered as this cost value. Then, by combining the technique (c) described later, a method of performing load distribution or the like so that the error rate in all channel transmissions is the most uniform can be considered.
また、例えば同様に (c)の技術と組み合わせて、誤り状況の悪いチャネルから順次、伝送容量を決定する可変変調パラメータを割り当てることとし、所要のフレームエラー率になるまで可変変調パラメータを減少するよう送信側へフィードバック指示を与える方法などが考えられる。 Similarly, for example, in combination with the technique of (c), variable modulation parameters for determining transmission capacity are sequentially assigned from channels with poor error conditions, and the variable modulation parameters are reduced until the required frame error rate is reached. A method of giving a feedback instruction to the transmission side can be considered.
伝送可能な各チャネルの容量に基づいて送信データを分割・分配した後、これらが同等の品質で宛先端末まで伝送あれることが本発明の特徴であるが、送信データの分割と分配そのものの方法については公知の手法を用いることができる。例えば、レイヤ2のイーサパケットを所望の分配比で分配する方法や、レイヤ3のIPパケットを所望の分配比で分配しても良い。 A feature of the present invention is that the transmission data is divided and distributed based on the capacity of each transmittable channel and then transmitted to the destination terminal with the same quality. A known method can be used for. For example, a layer 2 ether packet may be distributed at a desired distribution ratio, or a layer 3 IP packet may be distributed at a desired distribution ratio.
さらに、(c)の技術として無線局のデータレート可変変調手段が、異なる無線周波数チャネル間の伝送品質と伝送可能データレートの差を補完する伝送レート可変変調方式を選択して送信信号に変調する(伝送レート可変変調ステップ)。補完に当たっては、使用チャネルによって利用可能周波数帯域が異なること、伝搬環境に起因した信号受信レベル減衰などリンクマージンが異なること、被干渉量が異なることなどを考慮する必要がある。
最後に、無線局の送信手段が、各無線周波数チャネル毎に送信信号を送信するが、受信無線局が総合的に各無線チャネルの状況を把握可能とするため、(a)の技術によって提供するチャネル状況検知解析ステップで得たチャネル情報を送信データに付加して送信する(送信ステップ)。
Further, as a technique of (c), the data rate variable modulation means of the radio station selects a transmission rate variable modulation method that complements the difference between the transmission quality between different radio frequency channels and the transmittable data rate, and modulates the transmission signal. (Transmission rate variable modulation step). In complementation, it is necessary to consider that the available frequency band differs depending on the channel used, the link margin such as signal reception level attenuation caused by the propagation environment is different, and the amount of interference is different.
Finally, the transmitting means of the radio station transmits a transmission signal for each radio frequency channel, but the receiving radio station comprehensively understands the status of each radio channel, and is provided by the technique (a). The channel information obtained in the channel status detection analysis step is added to the transmission data and transmitted (transmission step).
以上の概要の通り、本願では上記(a)〜(c)の組み合わせによる無線アクセス方式を実現したこと、特に(c)の技術に特徴があり、以下詳述する。
第1の実施例として、各々異なる伝送周波数チャネル用に負荷分散されたトラヒックに対し、それぞれ独立に、異なる符号化率の誤り訂正符号化(Feed forward error correction)を施して伝送することで、異なるチャネル間の伝送品質と伝送可能データレートの差を補完する方法を提供する。
As described above, the present application has realized the wireless access method by the combination of the above (a) to (c), particularly the technology (c), which will be described in detail below.
As the first embodiment, the traffic distributed for different transmission frequency channels is subjected to error correction coding (Feed forward error correction) at different coding rates and transmitted independently. A method for compensating for the difference in transmission quality between channels and the transmittable data rate is provided.
図3は第1の実施例における無線局の構成図を示す。本構成は、ベースバンド信号に適応的に異なる符号化率の誤り訂正処理を行う無線局である。
本無線局では、複数のチャネル#1(1)〜#N(2)の無線通信チャネル毎に、受信部(3)と送信部(4)を設けている。そして、受信部(3)で受信した受信信号は、復調器(5)に入力して復調される。
FIG. 3 shows a block diagram of the radio station in the first embodiment. This configuration is a radio station that performs error correction processing with different coding rates adaptively to baseband signals.
In this radio station, a receiving unit (3) and a transmitting unit (4) are provided for each of the radio communication channels of a plurality of channels # 1 (1) to #N (2). The received signal received by the receiving unit (3) is input to the demodulator (5) and demodulated.
さらに解析器(6)はFCSを解析して誤り率を解析する。そして信号分配処理器(7)に各チャネル(1)(2)からの受信信号が入力して受信データが出力されると同時に、該FCSの解析結果は該チャネルの送信データに付加されて送信信号として送出される。
また、送信データはまず信号分配処理器(7)に入力されて、各チャネルに分配される。上述したとおり、分配には上記解析器(6)におけるチャネルの誤り情報と、各チャネルから受信した、該チャネルを使用してデータ送信した場合に受信局がこれをどの程度誤って受信しているかを示す、チャネル誤り情報から信号分配処理回路が判断して分配する。なお、分配方法は予め誤り率によって定義し、それに従って分配量を定めてもよいし、全チャネルにおいて等しい誤り率が得られるように(c)における伝送レート可変変調方式を同時に選択することで決定してもよい。なぜなら、本出願においても例示する多くの伝送レート可変変調方式は伝送レートを高レートにするに伴い、伝送路での誤りが増加するというか関係が成り立つ。
Further, the analyzer (6) analyzes the FCS and analyzes the error rate. The received signal from each channel (1) (2) is input to the signal distribution processor (7) and the received data is output. At the same time, the analysis result of the FCS is added to the transmission data of the channel and transmitted. Sent as a signal.
The transmission data is first input to the signal distribution processor (7) and distributed to each channel. As described above, for distribution, error information of the channel in the analyzer (6) and how erroneously the receiving station has received data received from each channel using the channel is received. The signal distribution processing circuit determines from the channel error information and distributes it. The distribution method may be defined in advance by the error rate, and the distribution amount may be determined accordingly, or determined by simultaneously selecting the transmission rate variable modulation method in (c) so that the same error rate is obtained in all channels. May be. This is because many transmission rate variable modulation systems exemplified in the present application are related to whether the number of errors in the transmission path increases as the transmission rate is increased.
分配された送信データは本発明に係る適応符号化器(8)に入力する。本適応符号化器では、送信段階で固定伝送レートとなるように符号化率を制御する。適応符号化器(8)には、例えば、畳み込み符号器におけるPuncturingの制御などが好適である。すなわち、符号化率1/2の畳み込み符号器の場合、相対的に4ビットの入力に対して4ビットの冗長ビットを付加し、合計8ビットの出力を得るが、この出力ビットから所望のビットを間引く(Puncturing)ことで、適切な符号化率の出力を得ることができる。すなわち、このPuncturingを制御すれば、所望の符号化率を得ることができる。 The distributed transmission data is input to the adaptive encoder (8) according to the present invention. In this adaptive encoder, the coding rate is controlled so that the transmission rate becomes a fixed transmission rate. For the adaptive encoder (8), for example, Puncturing control in a convolutional encoder is suitable. In other words, in the case of a convolutional encoder with a coding rate of 1/2, 4 redundant bits are added to a relatively 4-bit input to obtain a total of 8 bits of output. An output with an appropriate coding rate can be obtained by thinning out (Puncturing). That is, by controlling this puncturing, a desired coding rate can be obtained.
その他、適応符号化器には、BCH符号や、誤り訂正能力の高いターボ符号、Woven符号、LDPC符号を用いることもできる。
各チャネルにおいて、これに対応したチャネル状況情報が負荷分散信号処理装置(7)で示すデータを送信データに付加したのち、これを符号化して、変調器(9)で変調され送信部(4)から送信する。
このように本実施例では変復調方式は固定のまま、負荷分散信号処理によって分配された信号が、送信段階で固定伝送レートとなるように、適応符号化器が符号化率を制御して伝送する。
In addition, a BCH code, a turbo code having a high error correction capability, a Woven code, or an LDPC code can be used for the adaptive encoder.
In each channel, the channel status information corresponding thereto is added to the transmission data with the data indicated by the load distribution signal processing device (7), then encoded, modulated by the modulator (9), and transmitted by the transmitter (4). Send from.
As described above, in this embodiment, the modulation / demodulation method is fixed, and the adaptive encoder controls the coding rate so that the signal distributed by the load sharing signal processing becomes a fixed transmission rate at the transmission stage, and is transmitted. .
実施例1の構成によると、ベースバンド領域で負荷分散された信号に対し、アダプティブに異なる符号化率の誤り訂正処理を行う方法は、基本的にRF変復調装置部に対する最小限の改修とし、ベースバンドにおける信号処理部のみの変更で、本方式を適用することが可能である。 According to the configuration of the first embodiment, the method of performing error correction processing of adaptively different coding rates on a signal whose load is distributed in the baseband region is basically a minimum modification to the RF modulation / demodulation unit, and the base This method can be applied by changing only the signal processing unit in the band.
本発明の第2の実施例について次に説述する。本実施例は、各々異なる伝送周波数チャネル用に負荷分散されたトラヒックに対し、それぞれ独立に、異なる変調方式を用いたRFキャリアで伝送することで、異なるチャネル間の伝送品質と伝送可能データレートの差を補完する方法である。
図4に本実施例に係る無線局の構成を示す。上記実施例1と同様の構成要素については同一符号を付し、説明は省略する。
Next, a second embodiment of the present invention will be described. In this embodiment, traffic distributed for different transmission frequency channels is transmitted independently by RF carriers using different modulation schemes, so that transmission quality between different channels and transmittable data rate can be improved. It is a way to compensate for the difference.
FIG. 4 shows the configuration of a radio station according to the present embodiment. Constituent elements similar to those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
本実施例は適応符号化器及び変調器に変えて、適応変調器(10)を用いた構成である。適応変調器(10)では負荷分散信号処理によって分配された信号の伝送レートに適切な変調方式により変調する。なお、図示をしていないが本実施例では信号分配処理機(7)と適応変調器(10)の間には符号化率固定の符号化器を配置する。 In this embodiment, an adaptive modulator (10) is used instead of the adaptive encoder and modulator. The adaptive modulator (10) performs modulation by a modulation method suitable for the transmission rate of the signal distributed by load sharing signal processing. Although not shown, in this embodiment, an encoder with a fixed coding rate is arranged between the signal distribution processor (7) and the adaptive modulator (10).
変調方式の変更には、適応変調器(10)の出力シンボルレート(占有帯域)は同じままBPSK、WPSK、8PSK、16QAM、64QAM、128QAM、256QAM、更には1024QAMなどと適応的に切り替える方法がある。これにより、伝送レートを可変にすると共に、各チャネルでの誤りに対する耐性を制御可能である。 To change the modulation method, there is a method of adaptively switching between BPSK, WPSK, 8PSK, 16QAM, 64QAM, 128QAM, 256QAM, and even 1024QAM while the output symbol rate (occupied band) of the adaptive modulator (10) remains the same. . As a result, the transmission rate can be made variable and the tolerance against errors in each channel can be controlled.
本発明の第3の実施例は、各々異なる伝送周波数チャネル用に負荷分散されたトラヒックに対し、それぞれ独立に、VSF-CDM変調方式を用いたRFキャリアで伝送することとし、拡散率(Spreading Factor)を制御することで異なるチャネル間の伝送品質と伝送可能データレートの差を補完する方法である。 In the third embodiment of the present invention, traffic distributed for different transmission frequency channels is transmitted independently by RF carriers using the VSF-CDM modulation method, and the spreading factor (Spreading Factor) is used. ) To compensate for the difference in transmission quality between different channels and the transmittable data rate.
図5は本実施例における無線局の構成図である。
本構成では1次変調器(11)と2次変調器(12)とを備え、1次変調器(11)において拡散率を変更する。本構成は、固定のチップレートを用いた直接拡散CDM方式をベースとして拡張率を可変にした可変拡散率・符号分割多重変調(VSF-CDM)を用いており、無線リンクに必要な周波数帯域は固定のまま、干渉に対する耐性のみ制御可能である。すなわち、干渉レベルが低く高い伝送容量が期待できるチャネルにあっては拡散率を小さく、逆に低い伝送容量のチャネルにあっては拡散率を大きく設定する。
本方法は、CDM方式であるため、異なる符号系列を用いる干渉信号(受信を想定していない無線局からの信号)の抑圧が期待できる。
FIG. 5 is a configuration diagram of a radio station in the present embodiment.
In this configuration, a primary modulator (11) and a secondary modulator (12) are provided, and the spreading factor is changed in the primary modulator (11). This configuration uses variable spreading factor / code division multiplex modulation (VSF-CDM) with variable expansion rate based on direct spreading CDM method using a fixed chip rate, and the frequency band required for the radio link is Only the resistance to interference can be controlled while being fixed. That is, the spreading factor is set low for a channel with a low interference level and high transmission capacity can be expected, and conversely, the spreading factor is set large for a channel with a low transmission capacity.
Since this method is a CDM system, it can be expected to suppress interference signals using different code sequences (signals from radio stations that are not supposed to be received).
図6は上段に高速な伝送データにおける信号波形を、下段は低速伝送データにおける信号波形を示している。高速なデータ伝送は被干渉信号レベルが小さい時であり、低速なデータ伝送は同レベルが大きい時である。
本図では固定のチップレート、固定の拡散符号を用いて、2倍の異なる伝送レートを実現している様子を示している。変調方式としては簡単のため、BPSK信号のバイポーラ信号を用いた直接拡散を想定している。
FIG. 6 shows the signal waveform in the high-speed transmission data in the upper stage, and the signal waveform in the low-speed transmission data in the lower stage. High-speed data transmission is when the interfered signal level is low, and low-speed data transmission is when the level is high.
This figure shows a state where a double different transmission rate is realized by using a fixed chip rate and a fixed spreading code. Since the modulation method is simple, direct diffusion using a bipolar signal of a BPSK signal is assumed.
図6の上段では、拡散符号あたり2ビット伝送しているのに対して、下段では1ビットしか伝送していないため情報伝送レートは1/2になっている。
しかしながら、干渉抑圧効果は下段の方が2倍に信号を拡散しているので改善される。このようにして、一つの拡散符号系列で伝送するビット数を増減することで、リンクの伝送レートと誤りに対する耐性の制御が可能となる。
In the upper part of FIG. 6, 2 bits are transmitted per spreading code, whereas only 1 bit is transmitted in the lower part, so the information transmission rate is halved.
However, the interference suppression effect is improved because the lower stage spreads the signal twice. In this way, by increasing or decreasing the number of bits transmitted in one spreading code sequence, it is possible to control the link transmission rate and error resistance.
実施例3の別形態として、図7のようにデータレート可変1次変調器(13)とパターン可変周波数ホッピングシンセサイザ(14)を設けた無線局を提供することもできる。固定の周波数範囲内でのパターン可変周波数ホッピングシンセサイザを用いた周波数拡散方式による出力とすることで無線リンクに必要な物理的な伝送帯域は一定のまま、伝送レートと干渉に対する耐性を制御可能な構成をとることが可能である。 As another form of the third embodiment, a radio station provided with a variable data rate primary modulator (13) and a pattern variable frequency hopping synthesizer (14) as shown in FIG. 7 can be provided. A configuration that can control the transmission rate and the tolerance to interference while maintaining the physical transmission band required for the radio link by making the output by the spread spectrum method using the pattern variable frequency hopping synthesizer within a fixed frequency range It is possible to take
この際のデータレート可変1次変調方式は、シンボルレート可変の変復調器よりも、たとえば広帯域OFDM変復調方式を用いて利用するサブキャリア数を適応的に増減させるなどの方法が望ましい。図8には、割り当てられた帯域内で通信を行おうとするリンクの被干渉レベルが大きい場合(上段)と小さい場合(下段)の本発明による無線局の適応状況(スペクトラム)を示す。 In this case, the data rate variable primary modulation scheme is preferably a method of adaptively increasing or decreasing the number of subcarriers to be used, for example, using a wideband OFDM modulation / demodulation scheme, rather than a symbol rate variable modulator / demodulator. FIG. 8 shows the adaptation status (spectrum) of a radio station according to the present invention when the interference level of a link to be communicated within the allocated band is large (upper stage) and small (lower stage).
上段(被干渉レベルが大のリンク)では、伝送レート(使用サブキャリア数)を落とし、これを十分に相対的に広帯域にわたって周波数ホッピング(周波数拡散)することで干渉に対する耐性を強くして信号を伝送できる。
下段(被干渉レベルが小のリンク)では、伝送レート(使用サブキャリア数)を増加させて送信している分、周波数ホッピング(周波数拡散)による拡散率は減少し、耐干渉性は犠牲にされている。
なお、最も極端な場合(非干渉レベル0のリンク)では、拡散率1のリンクとして伝送可能である。すなわち、全く周波数ホッピングを行ず使用可能な全帯域を常に信号伝送として用いる。
In the upper stage (links with a large level of interference), the transmission rate (number of subcarriers used) is reduced, and this is sufficiently frequency-hopped (frequency spread) over a relatively wide band to increase the immunity to interference. Can be transmitted.
In the lower stage (link with a small level of interference), the transmission rate (number of subcarriers used) is increased for transmission, so the spreading factor due to frequency hopping (frequency spreading) decreases and interference resistance is sacrificed. ing.
In the most extreme case (link with non-interference level 0), transmission is possible as a link with a spreading factor of 1. In other words, frequency hopping is not performed at all and all usable bands are always used for signal transmission.
最後に、本発明の実施例4として、各々異なる伝送周波数チャネル用に負荷分散されたトラヒックに対し、それぞれ独立に、VSF-OFCDM変調方式を用いたRFキャリアで伝送することとし、拡張率(Spreading Factor)を制御することで異なるチャネル間の伝送品質と伝送可能データレートの差を補完する方法を説述する。なお、該変調方式で使用するサブキャリア周波数の数を制御することで物理的な占有周波数帯域の制御も可能となる。 Finally, as Example 4 of the present invention, traffic distributed for different transmission frequency channels is transmitted independently by RF carriers using the VSF-OFCDM modulation method, and the expansion rate (Spreading) Describes how to compensate for differences in transmission quality and transmittable data rate between different channels by controlling Factor. Note that it is possible to control the physical occupied frequency band by controlling the number of subcarrier frequencies used in the modulation scheme.
本実施例における無線局の構成図を図9に示す。本無線局にはVSF-OFCDM変調器(15)を備える。
本構成はVSF-OFCDM方式をベースとすることで、各無線チャネルに必要な周波数帯域は一定のまま、大幅に周波数利用効率を改善し、干渉状況や電波伝搬状況等に対応させて、回線マージンのみ適応可能な特徴がある。
FIG. 9 shows a configuration diagram of a radio station in the present embodiment. This radio station includes a VSF-OFCDM modulator (15).
Since this configuration is based on the VSF-OFCDM system, the frequency band required for each radio channel remains constant, and the frequency utilization efficiency is greatly improved. There are only features that can be adapted.
具体的には負荷分散処理で分配された信号を、VSF-OFCDM変調器を用いて変調して伝送する。そして、高い伝送容量のチャネルにあっては拡散率(スプレッディングファクター)を小さく、逆に低い伝送容量のチャネルにあっては拡散率を大きく設定する。また、CDM方式であるため、異なる符号系列を用いる干渉信号(受信を想定していない無線局からの信号)の抑圧が期待できると同時に、OFDM方式でもあるため、容易にサブキャリアごとの変調方式を変更にすることで回線マージンの変更が可能となる。また使用サブキャリア数の変更による使用周波数帯域幅の変更も容易である。 Specifically, the signal distributed by the load distribution process is modulated using a VSF-OFCDM modulator and transmitted. For a channel with a high transmission capacity, the spreading factor (spreading factor) is set to a small value. Conversely, for a channel with a low transmission capacity, the spreading factor is set to a large value. In addition, because it is a CDM system, it can be expected to suppress interference signals (signals from radio stations that are not supposed to be received) using different code sequences, and at the same time, it is an OFDM system. The line margin can be changed by changing. It is also easy to change the used frequency bandwidth by changing the number of used subcarriers.
図10は上記VSF-OFCDM変調器の構成図、図12は同復調器である。該VSF-OFCDMの変復調器については公知であるが、図10におけるVariable SF controller(拡散率調整部)(20)を有し、解析器(6)からの制御により拡散率を調整する。この時、図11に示すSpreading Factor(周波数領域、時間領域)を制御することで、伝送レートと干渉に対する耐性を任意に設定可能である。 FIG. 10 is a block diagram of the VSF-OFCDM modulator, and FIG. 12 is the demodulator. Although the modulator / demodulator of the VSF-OFCDM is known, it has the Variable SF controller (spreading rate adjusting unit) (20) in FIG. 10, and adjusts the spreading rate by the control from the analyzer (6). At this time, by controlling the Spreading Factor (frequency domain, time domain) shown in FIG. 11, it is possible to arbitrarily set the transmission rate and the tolerance to interference.
VSF-OFCDM変調器と復調器の基本構成および動作については、既に公知であるが簡単に概説する。入力データはChannel encoderによって適切な符号化がなされた後、Data Modulatorによって適切に変調されたデータストリームに変換される。これが直列/並列変換回路で複数のデータ系列に変換された後、インタリーバによりインタリーブされる。ここで得られたデータ系列をIFFTによって変換して並列/直列変換した後、ガードインターバルを付加すれば、通常のOFDM信号となるが、VSF-OFDMでは、IFFT変換以前の各データ系列を所望の周波数方向拡散率分だけコピーしたデータを用意した後、更に拡散符号ジェネレータからのコード系列を乗積してコード多重する。なおこのときの周波数拡散方向でのコピー数を制御することで周波数拡散率を制御できる。また、コードジェネレータ出力を制御することで時間拡散率も制御できる。復調器の動作については主に、OFDM復調器の動作に基づいた、上記変調器の逆動作であり省略する。 The basic configuration and operation of the VSF-OFCDM modulator and demodulator are already well known but will be briefly outlined. Input data is appropriately encoded by a channel encoder and then converted to a data stream appropriately modulated by a data modulator. This is converted into a plurality of data series by a serial / parallel conversion circuit and then interleaved by an interleaver. If the data sequence obtained here is converted by IFFT and parallel / serial converted, and a guard interval is added, it becomes a normal OFDM signal. However, in VSF-OFDM, each data sequence before IFFT conversion is processed as desired. After preparing data copied by the spreading factor in the frequency direction, the code sequence from the spreading code generator is further multiplied and code-multiplexed. The frequency spreading factor can be controlled by controlling the number of copies in the frequency spreading direction at this time. Also, the time spreading factor can be controlled by controlling the code generator output. The operation of the demodulator is omitted because it is mainly the reverse operation of the modulator based on the operation of the OFDM demodulator.
本方法によると、新たな干渉局発生時も自律分散的に各無線局が伝送データレート可変変調のためのパラメータを制御することで、周波数資源を無駄にしない最良なネットワーク状態に収束させることが可能である。
また、実施例2〜4の方法は、これをRF変調方式と組み合わせた負荷分散伝送処理によって実行するため、高速、低遅延処理に寄与し、幅広い伝送効率パラメータ選択が可能である。
According to this method, even when a new interference station is generated, each wireless station can control parameters for variable transmission data rate modulation in an autonomous and distributed manner so that it can converge to the best network state that does not waste frequency resources. Is possible.
Further, since the methods of Embodiments 2 to 4 are executed by load sharing transmission processing combined with the RF modulation method, it contributes to high-speed and low-delay processing, and a wide range of transmission efficiency parameters can be selected.
1 受信信号
2 送信信号
3 受信部
4 送信部
5 復調器
6 解析器
7 信号分配処理器
8 適応符号化器
DESCRIPTION OF SYMBOLS 1 Received signal 2 Transmitted signal 3 Receiver 4 Transmitter 5 Demodulator 6 Analyzer 7 Signal distribution processor 8 Adaptive encoder
Claims (16)
無線局の受信手段が、各無線周波数チャネル毎に受信信号を受信して復調する受信ステップ、
無線局のチャネル状況検知解析手段が、利用可能な各無線周波数チャネルの検索と、利用可能と判断したチャネルの状況を受信信号の解析により検知するチャネル状況検知解析ステップ、
無線局の負荷分散手段が、各各周波数チャネルからの受信信号を合成して受信データを出力する一方、該チャネル状況に基づいて送信データを各無線周波数チャネルに配分する割合を決定し、該送信データを各無線周波数チャネル毎における伝送用に分割、配分する負荷分散ステップ、
無線局のデータレート可変変調手段が、異なる無線周波数チャネル間の伝送品質および伝送可能データレートの差を補完する適切な伝送レート可変変調方式を選択して送信信号に変調する伝送レート可変変調ステップ、
無線局の送信手段が、各無線周波数チャネル毎に負荷分散された送信信号に該チャネル状況検知解析手段が検知したチャネル状況データを付加して送信する送信ステップ
の各ステップを有することを特徴とする超広帯域負荷分散型無線通信方法。 A wireless communication method of an ultra-wideband load sharing type using a plurality of radio frequency channels of different bands and transmitting one information signal while distributing the load to each radio frequency channel between radio stations,
A receiving step in which the receiving means of the radio station receives and demodulates the received signal for each radio frequency channel;
A channel status detection analysis step in which the channel status detection analysis means of the radio station detects each available radio frequency channel and detects the status of the channel determined to be available by analyzing the received signal;
The load distribution means of the radio station synthesizes the received signals from the respective frequency channels and outputs the received data, while determining the ratio of allocating the transmission data to the respective radio frequency channels based on the channel status, A load distribution step for dividing and allocating data for transmission in each radio frequency channel;
A transmission rate variable modulation step in which the data rate variable modulation means of the radio station selects an appropriate transmission rate variable modulation method that complements the difference in transmission quality and transmittable data rate between different radio frequency channels and modulates the transmission signal.
The transmission means of the radio station includes each step of a transmission step of adding the channel status data detected by the channel status detection analysis means to the transmission signal load-distributed for each radio frequency channel and transmitting it. Ultra-wideband load sharing wireless communication method.
請求項1に記載の超広帯域負荷分散型無線通信方法。 2. The ultra-wideband load distribution according to claim 1, wherein in the transmission rate variable modulation step, the data rate variable modulation means performs modulation after encoding processing for performing error correction encoding at different coding rates independently in each radio frequency channel. Type wireless communication method.
請求項1に記載の超広帯域負荷分散型無線通信方法。 The ultra-wideband load-distributed radio communication method according to claim 1, wherein in the variable transmission rate modulation step, the variable data rate modulation means performs different modulation independently for each radio frequency channel after a predetermined encoding process.
請求項1に記載の超広帯域負荷分散型無線通信方法。 In the transmission rate variable modulation step, the data rate variable modulation means uses a direct spreading type or frequency hopping type code division multiplexing (VSF-CDM) system having a spreading factor variable structure after a predetermined encoding process. The ultra-wideband load sharing type radio communication method according to claim 1, wherein modulation is performed using a different spreading factor independently for each radio frequency channel.
請求項1に記載の超広帯域負荷分散型無線通信方法。 In the transmission rate variable modulation step, the data rate variable modulation means uses a variable spreading factor / orthogonal frequency code division multiplexing (VSF-OFCDM) method after a predetermined encoding process, and in each radio frequency channel The ultra-wideband load-distributed radio communication method according to claim 1, wherein different spreading factors are used independently, and modulation is performed using different values for the number of subcarriers used for transmission.
複数の無線局が、通信に利用可能な伝搬状況および帯域の異なる複数の無線周波数チャネルを共有しており、
該無線局には、
各無線周波数チャネル毎に受信信号を受信して復調する受信手段と、
利用可能な各無線周波数チャネルの検索と、利用可能と判断したチャネルの状況を受信信号の解析により検知するチャネル状況検知解析手段と、
各周波数チャネルからの受信信号を合成して受信データを出力する一方、該チャネル状況に基づいて各無線周波数チャネルにおける伝送量を決定し、送信データを各無線周波数チャネルに配分する負荷分散手段と、
異なる無線周波数チャネル間の伝送品質と伝送可能データレートの差を補完する適切な伝送レート可変変調方式を選択して送信信号に変調するデータレート可変変調手段と、
各無線周波数チャネル毎に負荷分散された送信信号に該チャネル状況検知解析手段が検知したチャネル状況データを付加して送信する送信手段と
を備えたことを特徴とする超広帯域負荷分散型無線通信システム。 An ultra-wideband load sharing type radio communication system that uses a plurality of radio frequency channels of different bands and transmits one information signal while distributing the load among radio frequency channels between radio stations,
Multiple radio stations share multiple radio frequency channels with different propagation conditions and bands available for communication,
The radio station
Receiving means for receiving and demodulating the received signal for each radio frequency channel;
Channel status detection analysis means for detecting each available radio frequency channel and detecting the status of the channel determined to be usable by analyzing the received signal;
Load distribution means for combining the received signals from each frequency channel and outputting the received data, determining the transmission amount in each radio frequency channel based on the channel status, and allocating the transmission data to each radio frequency channel;
Data rate variable modulation means for selecting an appropriate transmission rate variable modulation method that complements the difference between transmission quality and transmittable data rate between different radio frequency channels and modulating the transmission signal,
An ultra-wideband load-distributed radio communication system comprising: a transmission means for adding the channel status data detected by the channel status detection analysis means to a transmission signal load-distributed for each radio frequency channel; .
請求項6に記載の超広帯域負荷分散型無線通信システム。 The ultra-wideband load-distributed radio communication system according to claim 6, wherein the data rate variable modulation means performs modulation after encoding processing for performing error correction encoding at different coding rates independently in each radio frequency channel.
請求項6に記載の超広帯域負荷分散型無線通信システム。 The ultra-wideband load-distributed radio communication system according to claim 6, wherein the data rate variable modulation means performs different modulation independently in each radio frequency channel after a predetermined encoding process.
請求項6に記載の超広帯域負荷分散型無線通信システム。 The data rate variable modulation means uses a direct spreading type or frequency hopping type code division multiplexing (VSF-CDM) system having a variable spreading factor structure after a predetermined encoding process, and each radio frequency channel The ultra-wideband load-distributed radio communication system according to claim 6, wherein modulation using a different spreading factor is performed independently for each.
請求項6に記載の超広帯域負荷分散型無線通信システム。 The variable data rate modulation means uses a variable spreading factor / orthogonal frequency code division multiplexing (VSF-OFCDM) method after a predetermined encoding process, and uses a different spreading factor for each radio frequency channel independently. At the same time, the ultra-wideband load-distributed radio communication system according to claim 6, wherein modulation is performed using different values independently for the number of subcarriers used for transmission.
各無線周波数チャネル毎に受信信号を受信して復調する受信手段と、
利用可能な各無線周波数チャネルの検索と、利用可能と判断したチャネルの状況を受信信号の解析により検知するチャネル状況検知解析手段と、
各周波数チャネルからの受信信号を合成して受信データを出力する一方、該チャネル状況に基づいて各無線周波数チャネルにおける伝送量を決定し、送信データを各無線周波数チャネルに配分する負荷分散手段と、
異なる無線周波数チャネル間の伝送品質と伝送可能データレートの差を補完する適切な伝送レート可変変調方式を選択して送信信号に変調するデータレート可変変調手段と、
各無線周波数チャネル毎に負荷分散された送信信号に該チャネル状況検知解析手段が検知したチャネル状況データを付加して送信する送信手段と
を備えたことを特徴とする超広帯域負荷分散型無線通信システムの無線局。 A radio station of an ultra-wideband load distribution type radio communication system that uses a plurality of radio frequency channels of different bands and transmits one information signal while distributing the load to each radio frequency channel between radio stations,
Receiving means for receiving and demodulating the received signal for each radio frequency channel;
Channel status detection and analysis means for detecting each available radio frequency channel and detecting the status of the channel determined to be usable by analyzing the received signal;
Load distribution means for combining received signals from each frequency channel and outputting received data, determining a transmission amount in each radio frequency channel based on the channel status, and allocating transmission data to each radio frequency channel;
Data rate variable modulation means for selecting an appropriate transmission rate variable modulation method that complements the difference between transmission quality and transmittable data rate between different radio frequency channels and modulating the transmission signal,
An ultra-wideband load-distributed radio communication system comprising: a transmission means for adding the channel status data detected by the channel status detection analysis means to a transmission signal load-distributed for each radio frequency channel; Radio stations.
請求項11に記載の超広帯域負荷分散型無線通信システムの無線局。 The radio station of the ultra-wideband load-distributed radio communication system according to claim 11, wherein the data rate variable modulation means performs modulation after encoding processing for performing error correction encoding at different coding rates independently in each radio frequency channel. .
請求項11に記載の超広帯域負荷分散型無線通信システムの無線局。 The radio station of the ultra-wideband load distribution type radio communication system according to claim 11, wherein the data rate variable modulation means performs different modulation independently in each radio frequency channel after a predetermined encoding process.
請求項11に記載の超広帯域負荷分散型無線通信システムの無線局。 The data rate variable modulation means uses a direct spreading type or frequency hopping type code division multiplexing (VSF-CDM) system having a variable spreading factor structure after a predetermined encoding process, and each radio frequency channel The radio station of the ultra-wideband load distribution type radio communication system according to claim 11, wherein modulation using a different spreading factor is performed independently for each.
請求項11に記載の超広帯域負荷分散型無線通信システムの無線局。 The variable data rate modulation means uses a variable spreading factor / orthogonal frequency code division multiplexing (VSF-OFCDM) method after a predetermined encoding process, and uses a different spreading factor for each radio frequency channel independently. The radio station of the ultra-wideband load-distributed radio communication system according to claim 11, wherein at the same time, modulation using different values is independently performed for the number of subcarriers used for transmission.
受信信号を受信して復調する受信手段と、
受信に用いた無線周波数チャネルの回線状況を受信信号の解析により検知するチャネル状況検知解析手段と、
該チャネル状況に関連して誤り訂正符号化における符号化率を変化させる適応符号化部を備えて送信データ変調を行う符号化変調手段と、
送信信号を送信する送信手段と
を備えたことを特徴とする無線通信システムの無線局。
In a radio station of a radio communication system,
Receiving means for receiving and demodulating the received signal;
Channel status detection and analysis means for detecting the channel status of the radio frequency channel used for reception by analyzing the received signal;
Coding modulation means for performing transmission data modulation comprising an adaptive coding section for changing a coding rate in error correction coding in relation to the channel situation;
A radio station of a radio communication system, comprising: a transmission means for transmitting a transmission signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005135405A JP4581108B2 (en) | 2005-05-06 | 2005-05-06 | Ultra-wideband load sharing wireless communication method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005135405A JP4581108B2 (en) | 2005-05-06 | 2005-05-06 | Ultra-wideband load sharing wireless communication method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006313993A true JP2006313993A (en) | 2006-11-16 |
JP4581108B2 JP4581108B2 (en) | 2010-11-17 |
Family
ID=37535308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005135405A Expired - Fee Related JP4581108B2 (en) | 2005-05-06 | 2005-05-06 | Ultra-wideband load sharing wireless communication method and system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4581108B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035076A1 (en) * | 2007-09-12 | 2009-03-19 | Sharp Kabushiki Kaisha | Radio communication method, radio communication system, and radio transmission device |
JP2009105812A (en) * | 2007-10-25 | 2009-05-14 | Panasonic Corp | Communication apparatus and communication system |
KR100972297B1 (en) | 2007-08-28 | 2010-07-23 | 한국전자통신연구원 | Method for applying amplitude use to digital amplyfier with variable bit resolution or clock frequency and apparatus for excuting the method |
WO2014065002A1 (en) * | 2012-10-26 | 2014-05-01 | 株式会社日立国際電気 | Multichannel wireless communication system, base station, and method for using channel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003348047A (en) * | 2002-05-24 | 2003-12-05 | Mitsubishi Electric Corp | Radio transmitter |
WO2005013525A1 (en) * | 2003-07-31 | 2005-02-10 | Matsushita Electric Industrial Co., Ltd. | Radio transmitter apparatus and modulation scheme selecting method |
WO2005020488A1 (en) * | 2003-08-20 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd. | Radio communication apparatus and subcarrier assignment method |
WO2006092856A1 (en) * | 2005-03-02 | 2006-09-08 | Fujitsu Limited | Multi-carrier communication method and base station and mobile station used for the same |
-
2005
- 2005-05-06 JP JP2005135405A patent/JP4581108B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003348047A (en) * | 2002-05-24 | 2003-12-05 | Mitsubishi Electric Corp | Radio transmitter |
WO2005013525A1 (en) * | 2003-07-31 | 2005-02-10 | Matsushita Electric Industrial Co., Ltd. | Radio transmitter apparatus and modulation scheme selecting method |
WO2005020488A1 (en) * | 2003-08-20 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd. | Radio communication apparatus and subcarrier assignment method |
WO2006092856A1 (en) * | 2005-03-02 | 2006-09-08 | Fujitsu Limited | Multi-carrier communication method and base station and mobile station used for the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100972297B1 (en) | 2007-08-28 | 2010-07-23 | 한국전자통신연구원 | Method for applying amplitude use to digital amplyfier with variable bit resolution or clock frequency and apparatus for excuting the method |
WO2009035076A1 (en) * | 2007-09-12 | 2009-03-19 | Sharp Kabushiki Kaisha | Radio communication method, radio communication system, and radio transmission device |
US8654751B2 (en) | 2007-09-12 | 2014-02-18 | Sharp Kabushiki Kaisha | Radio communication method, radio communication system, and radio transmission apparatus |
US8681688B2 (en) | 2007-09-12 | 2014-03-25 | Sharp Kabushiki Kaisha | Radio communication method, radio communication system, and radio transmission apparatus |
JP2009105812A (en) * | 2007-10-25 | 2009-05-14 | Panasonic Corp | Communication apparatus and communication system |
US8442130B2 (en) | 2007-10-25 | 2013-05-14 | Panasonic Corporation | Communication apparatus, communication method and integrated circuit |
WO2014065002A1 (en) * | 2012-10-26 | 2014-05-01 | 株式会社日立国際電気 | Multichannel wireless communication system, base station, and method for using channel |
JP5898331B2 (en) * | 2012-10-26 | 2016-04-06 | 株式会社日立国際電気 | Multi-channel wireless communication system, base station, channel utilization method |
JPWO2014065002A1 (en) * | 2012-10-26 | 2016-09-08 | 株式会社日立国際電気 | Multi-channel wireless communication system, base station, channel utilization method |
US9781719B2 (en) | 2012-10-26 | 2017-10-03 | Hitachi Kokusai Electric Inc. | Multichannel wireless communication system, base station, and method for using channel |
Also Published As
Publication number | Publication date |
---|---|
JP4581108B2 (en) | 2010-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7760699B1 (en) | System and method for efficient transmission of electronic information | |
KR101215346B1 (en) | Mobile station base station and method | |
US10084585B2 (en) | Wireless communication apparatus and wireless communication method | |
JP5318922B2 (en) | Forward link variable rate coding | |
KR101116975B1 (en) | Wireless resource allocation methods and apparatus | |
EP1878145B1 (en) | Transmission method and apparatus combining pulse position modulation and hierarchical modulation | |
EP1992121B1 (en) | Ofdma resource allocation in multi-hop wireless mesh networks | |
KR100991019B1 (en) | Radio resource control in FDMA system | |
JP2006287664A (en) | Physical channel wireless resource assignment method in upward link and transmitter for mobile unit | |
JP2006311465A (en) | Transmitting apparatus and radio resource allocation method | |
JP2010502124A (en) | Broadcast and multicast services in wireless communication systems | |
JP5424886B2 (en) | Data packet transmission method using various frequency reuse factors | |
JP2008072733A (en) | Radio communications apparatus and radio communication method | |
JP2010508692A5 (en) | ||
JP4133531B2 (en) | Wireless communication apparatus and wireless communication system | |
CN112888085A (en) | Broadband wireless ad hoc network radio station and broadband wireless ad hoc network system | |
KR101539521B1 (en) | Method and apparatus for a spectrally compliant cellular communication system | |
JP4581108B2 (en) | Ultra-wideband load sharing wireless communication method and system | |
JP4581107B2 (en) | FIXED WIRELESS ACCESS NETWORK SYSTEM AND FIXED BASE STATION | |
JP2008042861A (en) | Communication system, terminal device, base station, and communication method | |
JP4509872B2 (en) | Base station, mobile station and method | |
KR100477471B1 (en) | Method for multiple access of high speed wireless communication | |
JP2009278658A (en) | Mobile station, base station, and method | |
JP5053335B2 (en) | Receiving apparatus and receiving method | |
Lu et al. | On the beyond 3G evolution of CDMA2000 wireless cellular networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080501 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100809 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |