JP2006313648A - Porous heat dissipation material - Google Patents

Porous heat dissipation material Download PDF

Info

Publication number
JP2006313648A
JP2006313648A JP2005134699A JP2005134699A JP2006313648A JP 2006313648 A JP2006313648 A JP 2006313648A JP 2005134699 A JP2005134699 A JP 2005134699A JP 2005134699 A JP2005134699 A JP 2005134699A JP 2006313648 A JP2006313648 A JP 2006313648A
Authority
JP
Japan
Prior art keywords
porous
less
liquid
porous body
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005134699A
Other languages
Japanese (ja)
Other versions
JP2006313648A5 (en
JP4957982B2 (en
Inventor
Kenji Date
賢治 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005134699A priority Critical patent/JP4957982B2/en
Publication of JP2006313648A publication Critical patent/JP2006313648A/en
Publication of JP2006313648A5 publication Critical patent/JP2006313648A5/ja
Application granted granted Critical
Publication of JP4957982B2 publication Critical patent/JP4957982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous heat dissipation material which has a strong absorptive power by capillary attraction of liquid and also can evaporate liquid efficiently, eliminating an evaporation heat and has an excellent heat dissipation property. <P>SOLUTION: This material is made of a porous sintered material having a frame with porosities around which metal powders are sintered. Preferably, the frame shall have an average capillary diameter of 200 μm or less and an average pore diameter 3000 μm or less and a percentage of voids of the whole porous material shall be 60% or more and 95% or less in volume rate. This material can be used, for instance, for cooling a membrane electrode junction of a direct methanol type fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水等の液体に対し吸収力を有し、さらにその液体が蒸発する時の吸熱反応により、冷却対象から熱を効率良く伝達して、熱を奪うことが可能な多孔質放熱部材に関する。   The present invention is a porous heat radiating member that has an absorptive power with respect to a liquid such as water, and that can efficiently transfer heat from the object to be cooled by an endothermic reaction when the liquid evaporates, thereby removing heat. About.

半導体関連では、熱伝導の高い金属やセラミックスのプレートが放熱部材として使われている。また、直接メタノール型燃料電池(以下、DMFCと略す。)においても冷却の問題があり、膜電極接合体(以下、MEAと略す。)の空気極のような、水分の排出と通気性が同時に必要とされる部位においては、必要に応じた大きさや間隔でスリットや孔をあけた金属プレートが、集電板を兼ねて使用される場合がある。しかし、高出力で使用する場合、空気極に多量の水が生成すると、通気用のスリットまたは孔を塞ぎ、空気極への空気の供給を阻害して出力が落ちるという問題がある。そして、冷却が不充分なため加熱し、モバイル機器に適用した場合の火傷や、ノートパソコンの液晶ディスプレイの背面にMEAを配した場合だと、液晶ディスプレイが加熱され、画像の変色等の不具合の発生が予想される。   In the semiconductor industry, metal or ceramic plates with high thermal conductivity are used as heat dissipation members. In addition, there is a problem of cooling in a direct methanol fuel cell (hereinafter abbreviated as DMFC), and moisture discharge and air permeability such as an air electrode of a membrane electrode assembly (hereinafter abbreviated as MEA) are simultaneously performed. In a required part, a metal plate having slits or holes with a size or interval as required may be used also as a current collector plate. However, when used at a high output, if a large amount of water is generated in the air electrode, there is a problem that the air slits or holes are blocked, and the supply of air to the air electrode is obstructed to reduce the output. And if it is heated due to insufficient cooling and burned when applied to a mobile device, or if MEA is placed on the back of the liquid crystal display of a notebook computer, the liquid crystal display will be heated and problems such as discoloration of images will occur. Occurrence is expected.

上記の生成水の回収については、スポンジや繊維基材等の多孔質体を用いる提案がなされている(例えば、特許文献1参照)。
特開2003−36866号公報
As for the recovery of the generated water, a proposal has been made to use a porous body such as a sponge or a fiber base material (for example, see Patent Document 1).
JP 2003-368866 A

スポンジや繊維基材等の多孔質体は、液体に接触させると毛管現象により、空気極上の生成水の回収は可能である。しかし、吸収後の多孔質体内部の水を蒸発させるには、MEAで発生する熱を利用するところ、それを伝えるための多孔質体自体の熱伝導特性が不充分であり、返って熱容量の大きな水を多孔質体内に蓄積することにより、冷却能が悪くなる可能性がある。また、それ自体も強度が低いために膨潤し、通気性も阻害して、発電効率が落ちることになる。   When a porous body such as a sponge or a fiber base material is brought into contact with a liquid, the generated water on the air electrode can be recovered by capillary action. However, in order to evaporate the water inside the porous body after absorption, the heat generated by the MEA is used. However, the heat conduction characteristics of the porous body itself for transmitting the heat are insufficient, Accumulation of large water in the porous body may deteriorate the cooling capacity. Moreover, since the strength itself is low, it swells and impairs air permeability, resulting in a decrease in power generation efficiency.

上述した通り、例えばDMFCの場合、従来の金属板による熱拡散のみでの冷却ではMEAの冷却が十分では無く、持ち運びや周辺機器への障害の問題がある。さらに、空気極上での水の生成により、通気性が阻害されるという問題がある。   As described above, in the case of DMFC, for example, cooling by only heat diffusion using a conventional metal plate does not sufficiently cool the MEA, and there is a problem of carrying around and obstacles to peripheral devices. Furthermore, there is a problem that air permeability is hindered by the generation of water on the air electrode.

本発明の目的は、液体に対して毛管現象による強い吸収力をもち、同時に、吸収した液体を効率よく蒸発させて、蒸発時の周囲からの抜熱を利用することにより、より強力な冷却能をもつ多孔質放熱部材を提供することである。   It is an object of the present invention to have a strong absorption capacity for liquid by capillary action, and at the same time, by efficiently evaporating the absorbed liquid and utilizing heat removal from the surroundings at the time of evaporation, more powerful cooling ability. It is providing the porous heat radiating member which has this.

本発明者は、多孔質体を検討した結果、単純な焼結構造ではなく、空孔の周囲に金属粉末が焼結した骨格を有する金属多孔質焼結体により、上記の課題を解決するに至った。   As a result of studying the porous body, the present inventor has solved the above problem with a metal porous sintered body having a skeleton in which metal powder is sintered around the pores, not a simple sintered structure. It came.

すなわち本発明は、空孔の周囲に金属粉末が焼結した骨格を有する多孔質焼結体からなる多孔質放熱部材である。好ましくは、骨格部は、平均細孔径が200μm以下の細孔を有し、平均空孔径は3000μm以下であり、また、多孔質体全体の空隙率は、60体積%以上、95体積%以下とする。   That is, the present invention is a porous heat dissipating member comprising a porous sintered body having a skeleton obtained by sintering metal powder around the pores. Preferably, the skeleton has pores having an average pore diameter of 200 μm or less, the average pore diameter is 3000 μm or less, and the porosity of the entire porous body is 60% by volume or more and 95% by volume or less. To do.

本発明により、毛管現象による液体の吸収力を持つと同時に、冷却の対象物から多孔質体の骨格に伝わってきた熱により、多孔質体内の液体を効率的に蒸発させることができるから、高い冷却能をもつ多孔質放熱部材の提供が可能である。また、その結果として、周囲の液体を揮発除去することもできる。   According to the present invention, the liquid in the porous body can be efficiently evaporated by the heat transferred from the object to be cooled to the skeleton of the porous body at the same time as it has the ability to absorb liquid by capillary action. It is possible to provide a porous heat radiating member having cooling ability. As a result, the surrounding liquid can be removed by volatilization.

本発明の重要な特徴は、液体の吸収、蒸発のために、空孔の周囲に金属粉末が焼結した骨格を有する焼結多孔質体を適用した点にある。すなわち、空孔の周りを金属粉末による焼結部が取り囲む構造とすることで、細孔を有した焼結部が近傍の液体を吸上げるとともに熱伝達をも担うことから、液体を効率よく気化し、高い冷却能を得ようというものである。   An important feature of the present invention is that a sintered porous body having a framework in which metal powder is sintered around pores is applied for absorption and evaporation of liquid. In other words, by forming a structure in which the sintered portion surrounded by the metal powder surrounds the pores, the sintered portion having the pores absorbs the nearby liquid and also bears heat transfer. To achieve high cooling capacity.

つまり、空孔の周囲に金属粉末が焼結した骨格を形成することで、まず骨格部の細孔による毛管現象にて液体が吸収され、多孔質体中に広げられる。これにより、骨格と液体の接触面積を大きく確保できることに加えて、多孔質体内の空孔により確保された空間により、その液体の蒸発効率に大きく作用する外気との界面も大きくすることができる。そして、骨格は金属製であることから熱伝導率が高く、冷却対象(例えば、MEA)から骨格内に広がった液体へと熱を効率良く伝達することでき、また、上記空孔により、液体と外気との界面、すなわち蒸発サイトの面積も大きいため、効率的に液体を蒸発させることが可能である。液体が気化する時は、周囲より気化熱を奪うために、多孔質体は冷却され、冷却対象から熱を奪うというものである。   That is, by forming a skeleton obtained by sintering metal powder around the pores, the liquid is first absorbed by the capillary phenomenon due to the pores of the skeleton and spread in the porous body. Thereby, in addition to ensuring a large contact area between the skeleton and the liquid, the space secured by the pores in the porous body can also increase the interface with the outside air that greatly affects the evaporation efficiency of the liquid. Since the skeleton is made of metal, the heat conductivity is high, and heat can be efficiently transferred from the object to be cooled (for example, MEA) to the liquid spreading in the skeleton. Since the interface with the outside air, that is, the area of the evaporation site is large, it is possible to efficiently evaporate the liquid. When the liquid vaporizes, the porous body is cooled in order to take heat of vaporization from the surroundings, and heat is taken away from the object to be cooled.

本発明の多孔質放熱部材は、特には、モバイル用、車載用等のDMFCの空気極の放熱部材を想定していることから、耐振動性、耐衝撃性の向上のため金属製の骨格とし、原料に金属粉末を採用する。また、金属材料は、一般に液体との濡れ性が良く、熱伝導性も高いため、気化熱を利用した放熱部材として好適と考えられるが、その金属種は、対応する環境ごとに、影響を受け難い材質を選択することが有効である。しかも、金属の導電性を利用して、集電板や電極としての機能を同時に持たせることも可能である。   The porous heat dissipating member of the present invention is assumed to be a heat dissipating member for the DMFC air electrode, particularly for mobile use and in-vehicle use. Therefore, the porous heat dissipating member has a metal skeleton for improving vibration resistance and impact resistance. Adopt metal powder as raw material. In addition, metal materials generally have good wettability with liquids and high thermal conductivity, so it is considered suitable as a heat dissipation member using heat of vaporization, but the metal species are affected by the corresponding environment. It is effective to select difficult materials. In addition, it is possible to have the functions of a current collector plate and electrodes at the same time by utilizing the conductivity of metal.

なお、本発明の多孔質放熱部材をDMFCへ使用する場合、上述の空気極以外には、燃料極への燃料輸送・供給材として使っても、樹脂製のスポンジ状の多孔質体や繊維より伝熱性が高いため、MEAの熱を燃料極側から筐体へ効率よく逃すことが期待できる。したがって、MEAの空気極と燃料極の両極に、本発明の多孔質部材を配置することで、より高い冷却能が得られる。また、優れた導電性を利用することで、両極の集電体として同時に機能させることも可能である。   In addition, when the porous heat dissipation member of the present invention is used for DMFC, it can be used as a fuel transport / supply material to the fuel electrode other than the air electrode described above from a sponge-like porous body or fiber made of resin. Since heat conductivity is high, it can be expected that the heat of the MEA is efficiently released from the fuel electrode side to the housing. Therefore, higher cooling ability can be obtained by disposing the porous member of the present invention on both the air electrode and the fuel electrode of the MEA. In addition, by using excellent conductivity, it is possible to simultaneously function as a current collector for both electrodes.

そして、本発明の多孔質放熱部材は、骨格部の平均細孔径が200μm以下であることが好ましい。これは、骨格部の毛管現象による十分な液体の吸上げ力を確保するためである。また、上記の骨格部が囲んで形成する空孔の平均直径は、3000μm以下であることが好ましい。この空孔は、上述の通気および蒸発サイトとして作用するところ、その径があまり大きくなると、冷却対象と接触させた場合に、冷却(つまり、液体の吸上げ気化)に寄与しない大きな空孔が接触部に疎らに存在するため、均一な冷却が難しくなるという問題があるためである。   And it is preferable that the porous heat radiating member of this invention is 200 micrometers or less in the average pore diameter of a frame | skeleton part. This is to ensure a sufficient liquid suction force due to the capillary action of the skeleton. Moreover, it is preferable that the average diameter of the void | holes which the said frame | skeleton part surrounds and forms is 3000 micrometers or less. These vacancies act as the ventilation and evaporation sites described above. When the diameter becomes too large, large vacancies that do not contribute to cooling (that is, liquid suction and vaporization) are brought into contact with the object to be cooled. This is because there is a problem that uniform cooling is difficult because of the sparseness in the part.

多孔質体全体の空隙率は、体積率で60%以上、95%以下が好ましい。これは、液体が気化した後の、ガスの放出経路を確保するためであり、空孔を増やして空隙率を高くした方が、多孔質体内の通気性がよくなり、液体の蒸発が促されるためである。また、例えばDMFCの空気極側に用いれば、骨格部が生成水を吸収した状態でも、反応に必要な十分量の空気を供給するために、空孔の連通性をある程度上げて、外部からの空気をMEAの空気極へ導く経路を確保する必要がある。このためには、多孔質全体の空隙率を60%以上とすることが好ましい。しかしながら、多孔質体自身の強度確保および、十分な液体の吸収力と熱伝導性を確保するためには、骨格部の体積率も確保しておく必要があり、多孔質全体の空隙率は95%以下にすることが好ましい。   The porosity of the entire porous body is preferably 60% or more and 95% or less by volume. This is to secure a gas release path after the liquid is vaporized. Increasing the porosity and increasing the porosity improves air permeability in the porous body and promotes evaporation of the liquid. Because. For example, when used on the air electrode side of a DMFC, even in a state where the skeleton part absorbs generated water, in order to supply a sufficient amount of air necessary for the reaction, the connectivity of the holes is increased to some extent, It is necessary to secure a path for guiding air to the air electrode of the MEA. For this purpose, it is preferable that the porosity of the entire porous body is 60% or more. However, in order to ensure the strength of the porous body itself and sufficient liquid absorption and thermal conductivity, it is also necessary to ensure the volume ratio of the skeleton, and the porosity of the entire porous body is 95. % Or less is preferable.

本発明の多孔質放熱部材に、より好ましい形態としては、骨格を形成する焼結体は平均粒径100μm以下の粉末の焼結骨格とし、骨格の有する細孔径は5〜50μm、骨格が囲んで形成する空孔部分の径は100〜2000μm、そして、多孔質体全体の空隙率は70〜90体積%とすることが好ましい。   In a more preferable form of the porous heat radiating member of the present invention, the sintered body forming the skeleton is a sintered skeleton of powder having an average particle size of 100 μm or less, the pore diameter of the skeleton is 5 to 50 μm, and the skeleton surrounds. It is preferable that the diameter of the pore part to be formed is 100 to 2000 μm, and the porosity of the whole porous body is 70 to 90% by volume.

本発明に適用する多孔質体の製造方法としては、例えば次の方法が適用できる。
まず、金属粉末を準備する。金属粉末は、できるだけ熱伝導の高いものが良いが、使用時に接触する液体によっては、耐食性に優れるステンレスやチタンおよび、チタン合金等が有効である。金属粉末の粒径としては、平均粒径200μm以下、更には100μm以下が好ましい。
As a method for producing a porous body applied to the present invention, for example, the following method can be applied.
First, metal powder is prepared. The metal powder preferably has a heat conductivity as high as possible, but stainless steel, titanium, a titanium alloy, and the like that are excellent in corrosion resistance are effective depending on the liquid that contacts in use. The particle size of the metal powder is preferably an average particle size of 200 μm or less, more preferably 100 μm or less.

次に、この金属粉末に樹脂粒とバインダを混合して、混練し、混練体を作製する。樹脂粒は、空孔を確保するために、平均粒径100〜3000μmのものが好ましい。バインダは、樹脂を用いることもできるが、次工程である、溶剤で樹脂粒を除去するという効果的な方法を適用する場合は、溶剤に解け合わない、例えばメチルセルロースと水を主成分とするバインダを使用することが有効である。   Next, resin particles and a binder are mixed with the metal powder and kneaded to prepare a kneaded body. The resin particles preferably have an average particle size of 100 to 3000 μm in order to secure pores. Resin can be used as the binder, but when applying an effective method of removing resin particles with a solvent, which is the next step, the binder does not dissolve in the solvent, for example, a binder mainly composed of methylcellulose and water. It is effective to use

次いで、上記の混練体を成形して、成形体を作製し、加熱脱脂、焼結する。バインダに水を入れる場合には、成形後に乾燥工程を入れることが好ましく、樹脂粒を溶剤で除去する場合は、加熱脱脂の前に、溶剤による樹脂粒の抽出と、乾燥の工程を付与することが好ましい。また、液体吸収後も多孔質体に高い通気性を確保するためには、成形体中に占める樹脂粒の体積率を、その樹脂粒のタップ密度以上に設定し、成形時に樹脂粒が潰れない範囲で加圧して、樹脂粒同士の接触頻度、接触面積を確保することが好ましい。   Next, the kneaded body is molded to produce a molded body, which is heated and degreased and sintered. When water is put into the binder, it is preferable to put a drying step after molding, and when removing resin particles with a solvent, a step of extracting the resin particles with a solvent and drying step is given before heat degreasing. Is preferred. In addition, in order to ensure high air permeability to the porous body even after liquid absorption, the volume ratio of the resin particles in the molded body is set to be equal to or higher than the tap density of the resin grains so that the resin grains are not crushed during molding. It is preferable to press within the range to ensure the contact frequency and contact area between the resin particles.

(多孔質放熱部材の作製)
平均粒径60μmのSUS316L水アトマイズ粉末、市販のメチルセルロース、および樹脂粒として、球状の平均粒径1000μmと180μmの、2種のパラフィンワックス粒を混合し、水、可塑剤を加えて混合・混練し、混練体を作製した。なお、樹脂粒の混合量は、金属粉末と樹脂粒を合わせた体積を100%とした時の、平均粒径1000μmと180μmの2種の樹脂粒の、それぞれ体積率が、80%および10%になるように設定した。
(Preparation of porous heat dissipation member)
SUS316L water atomized powder with an average particle size of 60 μm, commercially available methylcellulose, and resin particles, spherical paraffin wax particles with an average particle size of 1000 μm and 180 μm are mixed, and water and a plasticizer are added and mixed and kneaded. A kneaded body was prepared. The mixing amount of the resin particles is 80% and 10% respectively for the volume ratios of the two types of resin particles having an average particle size of 1000 μm and 180 μm when the total volume of the metal powder and the resin particles is 100%. Was set to be.

その後、混練体をプレス成形機(荷重0.7MPa)によりφ180mm×4mm厚さの円盤状に成形した後、この成形体を50℃で乾燥した。次に、この成形体中のパラフィンワックス粒を、溶剤にて抽出し、70℃で乾燥を行なった。続いて、脱脂炉にて、窒素雰囲気中、40℃/hで昇温し、600℃で2時間保持して、残留したパラフィンワックスおよびバインダの分解気散を行なった。そして、焼結炉にて、水素雰囲気中、1200℃で2h保持して、焼結を行い、厚さ3mmの多孔質焼結体の円盤を得た。   Thereafter, the kneaded body was formed into a disk shape of φ180 mm × 4 mm thickness by a press molding machine (load 0.7 MPa), and then the molded body was dried at 50 ° C. Next, the paraffin wax particles in the molded body were extracted with a solvent and dried at 70 ° C. Subsequently, in a degreasing furnace, the temperature was raised at 40 ° C./h in a nitrogen atmosphere and held at 600 ° C. for 2 hours to disperse the remaining paraffin wax and binder. Then, in a sintering furnace, it was held at 1200 ° C. for 2 hours in a hydrogen atmosphere to perform sintering, thereby obtaining a disk of a porous sintered body having a thickness of 3 mm.

得られた多孔質焼結体の断面ミクロ写真を図1に示す。白色部が骨格を成す金属部分であり、暗色部は空孔および骨格部の細孔を形成する空隙である。水銀圧入法により骨格部の平均細孔径を測定したところ65.7μmであった。また、平均粒径1000μmのパラフィンワックス粒により導入された空孔の平均空孔径は、断面ミクロ写真より650μmであった。また、多孔質体全体の空隙率は、86.7%であった。さらに、断面ミクロ写真より、これらの空孔は連通していることが確認でき、また、多孔質体を透かし見た場合でも、光を透過する微細な孔が確認されることから、十分な通気性が確保されていることもわかる。   A cross-sectional microphotograph of the obtained porous sintered body is shown in FIG. The white portion is a metal portion forming a skeleton, and the dark portion is a void that forms pores and pores of the skeleton portion. When the average pore diameter of the skeleton was measured by mercury porosimetry, it was 65.7 μm. In addition, the average pore diameter of the pores introduced by the paraffin wax particles having an average particle diameter of 1000 μm was 650 μm from the cross-sectional microphotograph. Moreover, the porosity of the whole porous body was 86.7%. Furthermore, from the cross-sectional microphotograph, it can be confirmed that these pores communicate with each other, and even when the porous body is seen through, fine pores that transmit light are confirmed. It can also be seen that the sex is secured.

(多孔質放熱部材の評価)
(1)液体吸収能力
作製した円盤から105×20×3(mm)の多孔質体を用意して、エタノールで10分間超音波洗浄後、乾燥させた。次に、図2に示す電子秤に吊るして、その多孔質体の下端10mmを純水中に浸漬させた。そして、浸漬後の電子秤から得られる多孔質体の質量の増加分を、その多孔質体が吸収した純水量と定義した。なお、吊るした多孔質体は、それからの水の蒸発の影響を排除するため、ケースで覆われている。
(Evaluation of porous heat dissipation member)
(1) Liquid absorption capacity A porous body of 105 × 20 × 3 (mm) was prepared from the prepared disk, ultrasonically washed with ethanol for 10 minutes, and then dried. Next, it was hung on the electronic balance shown in FIG. 2, and the lower end 10 mm of the porous body was immersed in pure water. And the increase in the mass of the porous body obtained from the electronic balance after immersion was defined as the amount of pure water absorbed by the porous body. The suspended porous body is covered with a case in order to eliminate the influence of water evaporation from the suspended porous body.

図3に、浸漬時からの経過時間に対する、多孔質体の単位断面積当たりの純水の吸収量の推移を示す。浸漬時からの時間の経過に従って、純水が多孔質体に吸収されていく様子がわかり、本実施例では、約3.3(g/cm)の純水吸収能力を示した。 FIG. 3 shows the transition of the amount of pure water absorbed per unit cross-sectional area of the porous body with respect to the elapsed time from the immersion. It can be seen that pure water is absorbed by the porous body as time passes from the time of immersion, and in this example, pure water absorption ability of about 3.3 (g / cm 2 ) was shown.

(2)放熱(冷却)能力
図4に示す通りの、端部にスポット溶接で熱電対を点接した40×40×1(mm)のSUS304の板を2枚用意し、電熱器の上に置いた。そのうちの1枚は標準体として上には何も載せず、もう1枚を試験体とすることで、その上には表1の各条件の物質(作製した多孔質体)を載せた。条件4の場合は、水滴を直接、試験体に載せた(図5)。そして、この標準体と試験体を電熱器で同時に加熱して、標準体の温度に対する試験体の温度降下から、各条件における冷却能を評価した。
(2) Heat dissipation (cooling) capacity As shown in FIG. 4, two 40 × 40 × 1 (mm) SUS304 plates with spot-welded thermocouples at the end are prepared and placed on the electric heater. placed. One of them was used as a standard body and nothing was placed thereon, and the other was used as a test body, on which substances of the respective conditions shown in Table 1 (prepared porous bodies) were placed. In the case of condition 4, water droplets were directly placed on the specimen (FIG. 5). And this standard body and a test body were heated simultaneously with the electric heater, and the cooling capacity in each condition was evaluated from the temperature drop of the test body with respect to the temperature of a standard body.

本試験においては、試験体の上には何も載せない状態で予備試験を行って、試験体と標準体との温度差が1℃以内におさまるように、電熱器上の試験体と標準体の位置関係や昇温速度の調整を行い済みである。そして、昇温速度は、各条件で得られる標準体の平均昇温速度で、いずれも約9℃/minである。そして、本試験は、試験体の温度が純水の沸点以下である95℃に達するまでは、試験体と標準体の測温を行い、試験体の温度が96℃に達した時点で直ぐに、条件1〜3では多孔質体中に残留する水分量、条件4では水滴の質量の測定を行った。そして、試験前後の水分の質量差から、水分の蒸発量を求めた。   In this test, a preliminary test is performed with nothing placed on the specimen, and the specimen on the electric heater and the specimen are placed so that the temperature difference between the specimen and the specimen is within 1 ° C. The positional relationship and the heating rate have been adjusted. The heating rate is the average heating rate of the standard obtained under each condition, and is about 9 ° C./min. And until the temperature of the test body reaches 95 ° C., which is lower than the boiling point of pure water, the test body and the standard body are measured, and as soon as the temperature of the test body reaches 96 ° C., In conditions 1-3, the amount of water remaining in the porous body was measured, and in condition 4, the mass of water droplets was measured. And the evaporation amount of the water | moisture content was calculated | required from the mass difference of the water | moisture content before and behind a test.

各条件における、標準体の温度に対する試験体の温度降下の変化を図6に、また試験前後の水分量および蒸発量を表2に示す。   FIG. 6 shows changes in the temperature drop of the test specimen with respect to the temperature of the standard specimen under each condition, and Table 2 shows the amount of water and the amount of evaporation before and after the test.

乾燥した多孔質体による条件1の場合、標準体に対する温度降下はおよそ1℃以下であり、冷却効果は殆ど見られない。しかし、多孔質体に純水を染み込ませることにより、条件2、条件3の順で染み込ませた純水量が多い程、標準体に対する温度降下が大きく、冷却能力の向上が認められる。そして、この冷却能力の向上は、水分の蒸発量を比較した場合に、条件3のそれが条件2のそれより多いことから、水分の蒸発する時の抜熱が大きく影響していることがわかる。   In the case of the condition 1 with the dried porous body, the temperature drop with respect to the standard body is about 1 ° C. or less, and the cooling effect is hardly seen. However, by impregnating the porous body with pure water, the larger the amount of pure water soaked in the order of condition 2 and condition 3, the greater the temperature drop with respect to the standard body, and the improvement of the cooling capacity is recognized. And this improvement in cooling capacity shows that heat removal when water evaporates has a large influence because the amount of water evaporation is greater than that of condition 3 when compared with the amount of water evaporation. .

また、条件4と同量の純水を、多孔質体に染み込ませた状態で試験体に載せた条件3の冷却能力を評価すると、それは条件4に比較して標準体に対する温度降下が大きく、冷却能力が高いことがわかる。さらに、水分の蒸発量を比較した場合、条件4の0.37gに対して、本発明である条件3のそれは0.62gと多く、多孔質体を介した方が水分の蒸発が促進され、冷却能が向上することがわかる。これは、水滴が冷却対象に直接接触する場合に比べ、多孔質体中では水分がその骨格表面に広げられ、空孔内部または多孔質体表面の大気との界面である蒸発サイトの面積が広がったことから、骨格を伝わる熱が効率よく水分へ伝達され、蒸発が起こるためと考えられる。   In addition, when the cooling capacity of Condition 3 placed on the test specimen in the state in which the same amount of pure water as that in Condition 4 was infiltrated into the porous body was evaluated, the temperature drop relative to the standard body was larger than that in Condition 4, It can be seen that the cooling capacity is high. Furthermore, when the amount of water evaporation is compared with 0.37 g of condition 4, that of condition 3 of the present invention is as large as 0.62 g, and the evaporation of water is promoted through the porous body, It can be seen that the cooling capacity is improved. This is because, compared with the case where water droplets are in direct contact with the object to be cooled, moisture is spread on the surface of the skeleton in the porous body, and the area of the evaporation site that is the interface between the pores or the atmosphere of the porous body is expanded. Therefore, it is considered that the heat transmitted through the skeleton is efficiently transferred to moisture and evaporation occurs.

本発明の多孔質放熱部材の断面ミクロ写真の一例である。It is an example of the cross-sectional microphotograph of the porous heat radiating member of this invention. 液体吸収性の評価試験の図である。It is a figure of the liquid absorptive evaluation test. 液体吸収性の評価結果を示したグラフである。It is the graph which showed the liquid absorptivity evaluation result. 冷却能の評価試験の図である。It is a figure of the evaluation test of cooling ability. 冷却能の評価試験の図である。It is a figure of the evaluation test of cooling ability. 冷却能の評価結果を示したグラフである。It is the graph which showed the evaluation result of cooling capacity.

Claims (2)

空孔の周囲に金属粉末が焼結した骨格を有する多孔質焼結体からなることを特徴とする多孔質放熱部材。 A porous heat radiating member comprising a porous sintered body having a skeleton obtained by sintering metal powder around pores. 骨格部は、平均細孔径が200μm以下の細孔を有し、平均空孔径は3000μm以下であり、また、多孔質体全体の空隙率が60体積%以上、95体積%以下であることを特徴とする請求項1に記載の多孔質放熱部材。 The skeleton has pores with an average pore diameter of 200 μm or less, an average pore diameter of 3000 μm or less, and a porosity of the entire porous body of 60% by volume or more and 95% by volume or less. The porous heat radiating member according to claim 1.
JP2005134699A 2005-05-06 2005-05-06 Porous heat radiating member and manufacturing method thereof Expired - Fee Related JP4957982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134699A JP4957982B2 (en) 2005-05-06 2005-05-06 Porous heat radiating member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134699A JP4957982B2 (en) 2005-05-06 2005-05-06 Porous heat radiating member and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2006313648A true JP2006313648A (en) 2006-11-16
JP2006313648A5 JP2006313648A5 (en) 2008-05-29
JP4957982B2 JP4957982B2 (en) 2012-06-20

Family

ID=37535053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134699A Expired - Fee Related JP4957982B2 (en) 2005-05-06 2005-05-06 Porous heat radiating member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4957982B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067635A1 (en) * 2008-12-08 2010-06-17 トヨタ車体 株式会社 Power generation cell for fuel battery
WO2016158663A1 (en) * 2015-03-27 2016-10-06 三菱マテリアル株式会社 Porous metal body
WO2016158662A1 (en) * 2015-03-27 2016-10-06 三菱マテリアル株式会社 Collector for electrochemical cells, lithium ion secondary battery, electric double layer capacitor, and lithium ion capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183055A (en) * 2002-12-04 2004-07-02 Hitachi Metals Ltd Porous liquid absorbing-holding member, and alcohol absorbing-holding member
JP2005029806A (en) * 2003-05-12 2005-02-03 Mitsubishi Materials Corp Composite metallic porous body and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183055A (en) * 2002-12-04 2004-07-02 Hitachi Metals Ltd Porous liquid absorbing-holding member, and alcohol absorbing-holding member
JP2005029806A (en) * 2003-05-12 2005-02-03 Mitsubishi Materials Corp Composite metallic porous body and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067635A1 (en) * 2008-12-08 2010-06-17 トヨタ車体 株式会社 Power generation cell for fuel battery
WO2016158663A1 (en) * 2015-03-27 2016-10-06 三菱マテリアル株式会社 Porous metal body
WO2016158662A1 (en) * 2015-03-27 2016-10-06 三菱マテリアル株式会社 Collector for electrochemical cells, lithium ion secondary battery, electric double layer capacitor, and lithium ion capacitor

Also Published As

Publication number Publication date
JP4957982B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Tang et al. Synthesis of nitrogen‐doped mesoporous carbon spheres with extra‐large pores through assembly of diblock copolymer micelles
Chun et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells
JP5573110B2 (en) Sintered metal sheet material for electrochemical member and method for producing sintered metal sheet material for electrochemical member
JP2008200728A (en) Solder joining material, its manufacturing method, and power module substrate utilizing the solder joining material
CN110330943B (en) Preparation method of liquid metal high-thermal-conductivity composite material
CN1961443A (en) Nickel foam and felt-based anode for solid oxide fuel cells
WO2023060977A1 (en) Porous carbon heating body and preparation method therefor, electrically heated atomization core, and electronic cigarette
JP2009510266A (en) High porosity metal dual pore porous foam
JP4957982B2 (en) Porous heat radiating member and manufacturing method thereof
CN215936305U (en) Porous carbon heating element, electric heating atomizing core and electron cigarette
Wang et al. “One stone two birds” or “you can't have your cake and eat it too”? Effects of device dimensions and position of the thermoelectric module on simultaneous solar-driven water evaporation and thermoelectric generation
Xin et al. Development of sintered Ni-Cu wicks for loop heat pipes
Cao et al. Fabrication and capillary performance of bi-porous Ti3AlC2 wicks with controllable pore size proportion using dissolvable pore formers
CN105789633B (en) A kind of base metal stephanoporate framework gas-diffusion electrode and its preparation and application
CN104404289B (en) Controlled three-dimensional through-hole foam molybdenum of high hole and preparation method thereof
JP2009252399A (en) Metallic porous separator for fuel, cell and manufacturing method therefor
JP4511911B2 (en) Electrode for polymer electrolyte fuel cell
CN105814684A (en) Electronic device
JP4781016B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
JP2009092344A (en) Vapor chamber with superior heat transport characteristic
JP2021131214A (en) Heat conducting member and manufacturing method therefor
JP2006253111A (en) Porous liquid absorbing-and-holding member and alcohol absorbing-and-holding member
TWI412415B (en) A composite copper powder for making the capillary structure of the inner wall of the heat pipe and a heat pipe made
JP4520815B2 (en) Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell
CN107180910B (en) A kind of preparation method of Nano silver grain load aluminic acid magnesium material and material obtained

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees