JP2006313325A - Method of manufacturing particle for display medium, particle for display medium and information display device - Google Patents

Method of manufacturing particle for display medium, particle for display medium and information display device Download PDF

Info

Publication number
JP2006313325A
JP2006313325A JP2006102924A JP2006102924A JP2006313325A JP 2006313325 A JP2006313325 A JP 2006313325A JP 2006102924 A JP2006102924 A JP 2006102924A JP 2006102924 A JP2006102924 A JP 2006102924A JP 2006313325 A JP2006313325 A JP 2006313325A
Authority
JP
Japan
Prior art keywords
particles
particle
display medium
resin
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006102924A
Other languages
Japanese (ja)
Inventor
Kazuya Murata
和也 村田
Manabu Yakushiji
薬師寺  学
Norihiko Kaga
紀彦 加賀
So Kitano
創 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006102924A priority Critical patent/JP2006313325A/en
Publication of JP2006313325A publication Critical patent/JP2006313325A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stably manufacturing particles for a display medium having low driving voltage and hardly incurring display defect. <P>SOLUTION: With the use of a suspension polymerization method in which a particle raw material containing a copolymer of an (acrylic and methacrylic) resin-a hydrocarbon based resin or a copolymer of an (acrylic and methacrylic) resin-an (acrylic and methacrylic) resin having a hydrocarbon or a fluoro hydrocarbon in their side chains, in the particle raw material containing a multifunctional monomer having a plurality of polymerization reaction groups in one molecule, is suspended in a suspension medium containing one or more surfactants, and then the particle raw material is polymerized to obtain generally spherical particles, the particle raw material is suspended in the suspension medium into an oil drop diameter equal to or greater than a prescribed oil drop diameter, then a substance being decomposed at ≤75°C 10-h half-life temperature and having an effect for initiating or promoting polymerization is added to the suspension medium, then suspension of the particle raw material into the prescribed oil drop diameter and dispersion of the substance are simultaneously performed and then polymerization is performed to obtain the particles for the display medium uniformly having minute uneveness on the surfaces of the particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表示媒体用粒子の製造方法、表示媒体用粒子および情報表示装置に関するものであり、特に、電界による力やクーロン力等によって表示媒体を移動させることで画像等の情報表示を繰り返し行うことができる可逆性情報表示装置に用いる表示媒体を構成する表示媒体用粒子の製造方法、その製造方法によって作製された表示媒体用粒子および、その表示媒体用粒子を用いた情報表示装置に関するものである。   The present invention relates to a display medium particle manufacturing method, a display medium particle, and an information display device, and in particular, information display such as an image is repeatedly performed by moving the display medium by a force due to an electric field or a Coulomb force. The present invention relates to a method for producing display medium particles constituting a display medium used in a reversible information display device, display medium particles produced by the production method, and an information display device using the display medium particles. is there.

従来より、液晶(LCD)に代わる情報表示装置として、電気泳動方式、トナー(粒子)移動方式、エレクトロクロミック方式、サーマル方式、2色粒子回転方式等の技術を用いた情報表示装置が提案されている。   2. Description of the Related Art Conventionally, information display devices that use technologies such as electrophoresis, toner (particle) transfer, electrochromic, thermal, and two-color particle rotation have been proposed as information displays that replace liquid crystal (LCD). Yes.

これら従来技術は、LCDと比較すると、通常の印刷物に近い広い視野角が得られる、消費電力が小さい、メモリ機能を有している等のメリットがあることから、次世代の安価な情報表示装置に使用可能な技術として考えられており、携帯端末用情報表示、電子ペーパー等への展開が期待されている。特に、最近では、分散粒子と着色溶液とから成る分散液をマイクロカプセル化し、これを対向する基板間に配置して成る電気泳動方式(例えば、非特許文献1参照)が提案され、期待が寄せられている。   Compared to LCDs, these conventional technologies have advantages such as a wide viewing angle close to that of ordinary printed materials, low power consumption, and a memory function. It is considered as a technology that can be used for mobile phones, and is expected to expand to information display for mobile terminals, electronic paper, and the like. In particular, recently, an electrophoretic method (for example, see Non-Patent Document 1) in which a dispersion liquid composed of dispersion particles and a colored solution is microencapsulated and disposed between opposing substrates has been proposed and expected. It has been.

しかしながら、電気泳動方式では、液中を粒子が泳動するために液の粘性抵抗により応答速度が遅くなるという問題がある。さらに、低比重の溶液中に酸化チタン等の高比重の粒子を分散させているため沈降しやすくなっており、分散状態の安定性維持が難しく、情報表示の繰り返し安定性に欠けるという問題を抱えている。また、マイクロカプセル化にしても、セルサイズをマイクロカプセルレベルにして、見かけ上、上述した欠点が現れにくくしているだけであって、本質的な問題は何ら解決されていない。   However, the electrophoresis method has a problem that the response speed becomes slow due to the viscous resistance of the liquid because the particles migrate in the liquid. In addition, since particles with high specific gravity such as titanium oxide are dispersed in a solution with low specific gravity, it is easy to settle, and it is difficult to maintain the stability of the dispersed state, and there is a problem that the stability of repeated information display is lacking. ing. Even when microencapsulation is performed, the cell size is set to the microcapsule level, and the above-described drawbacks are hardly made to appear, and the essential problems are not solved at all.

一方、溶液中での挙動を利用する電気泳動方式に対し、溶液を使わず、導電性粒子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めている(例えば、非特許文献1参照)。しかし、この方式は、電荷輸送層、さらには電荷発生層を配置するために構造が複雑化するとともに、導電性粒子に電荷を一定に注入することは難しいため、安定性に欠けるという問題もある。   On the other hand, a method in which conductive particles and a charge transport layer are incorporated into a part of a substrate without using a solution is proposed instead of an electrophoresis method using behavior in a solution (see, for example, Non-Patent Document 1). ). However, this method has a problem that the structure is complicated because the charge transport layer and further the charge generation layer are arranged, and that it is difficult to inject the charges into the conductive particles, so that the stability is lacking. .

上述した種々の問題を解決するために、少なくとも一方が透明な2枚の基板間に表示媒体を封入し、表示媒体に電界を付与することによって表示媒体を移動させて情報を表示する情報表示装置が知られている。このような電界により表示媒体を移動させて情報を表示するタイプの情報表示装置に用いる表示媒体を構成する表示媒体用粒子の製造方法としては、工程の簡素化、低消費エネルギー化のために、あるいは、目的の粒子径を直接得るために、粉砕法よりも懸濁重合法を用いる方法が効果的である。
懸濁重合法は、界面活性剤等の懸濁安定剤を10wt%以下含有した水等の懸濁媒に、モノマー、着色剤等を含んだ粒子原料を機械的に懸濁させた後、加熱、UV、電子線等により重合させる方法であり、重合の制御により懸濁状態で硬化させ、固体として取り出せば、粒子が得られる。重合に際しては、効率良く重合させる為に重合開始剤を用いる場合が一般的である。また、一般に懸濁重合法により作製された粒子は、表面が平滑な真球状粒子となる。
In order to solve the various problems described above, an information display device for displaying information by enclosing a display medium between two substrates, at least one of which is transparent, and applying an electric field to the display medium to move the display medium It has been known. As a method for producing particles for a display medium that constitutes a display medium used in an information display device of a type that displays information by moving the display medium by such an electric field, in order to simplify the process and reduce energy consumption, Alternatively, a method using a suspension polymerization method is more effective than a pulverization method in order to directly obtain a target particle size.
In the suspension polymerization method, a particle raw material containing a monomer, a colorant and the like is mechanically suspended in a suspension medium such as water containing 10 wt% or less of a suspension stabilizer such as a surfactant, and then heated. , UV, electron beam, etc., and particles can be obtained by curing in a suspended state under the control of polymerization and taking it out as a solid. In the polymerization, a polymerization initiator is generally used for efficient polymerization. In general, particles produced by suspension polymerization are true spherical particles with a smooth surface.

上記のような電界により表示媒体を移動させて情報を表示するタイプの情報表示装置では、表示媒体(言い換えると表示媒体を構成する粒子)を移動させることが可能な粒子径範囲として、表示媒体を構成する表示媒体用粒子の粒子径は、0.5〜50μm程度が好適である。粒子径が0.5μm未満になる粒子を、上記情報表示装置で用いると、粒子−粒子間、粒子−基板間の物理的付着力が増大してしまい、これらを分離して基板内空間を移動させるために必要なエネルギーが大きくなってしまうため、粒子を移動させる(駆動する)のに必要な電界を得るために印加する電圧が高くなってしまう。また、粒子径が50μmを越える、大きすぎる粒子を上記情報表示装置で用いると、基板間距離を大きく取らなければならず、粒子を移動させる(駆動する)のに大きな電界(言い換えれば印加電圧)が必要になってしまう。さらに、粒子径が0.5〜50μmの範囲にある粒子であっても、表面平滑な粒子を、上記情報表示装置で用いると、粒子−粒子間、粒子−基板間の物理的付着力が増大してしまい、これらを分離して基板内空間を移動させるために必要なエネルギーが大きくなってしまうため、粒子を移動させる(駆動する)のに必要な電界を得るために印加する電圧が高くなってしまう。   In the information display device of the type that displays information by moving the display medium by the electric field as described above, the display medium is set as a particle diameter range in which the display medium (in other words, particles constituting the display medium) can be moved. The particle diameter of the display medium particles to be configured is preferably about 0.5 to 50 μm. When particles with a particle size of less than 0.5 μm are used in the above information display device, the physical adhesion between the particles and between the particles and the substrate increases, and these are separated and moved in the substrate space. Therefore, the energy required to increase the voltage increases the voltage applied to obtain the electric field required to move (drive) the particles. Further, when particles having a particle diameter exceeding 50 μm are used in the information display device, the distance between the substrates must be increased, and a large electric field (in other words, applied voltage) is required to move (drive) the particles. Will be needed. Furthermore, even if the particle diameter is in the range of 0.5 to 50 μm, if the surface smooth particle is used in the information display device, the physical adhesion between the particles and between the particles and the substrate increases. As a result, the energy required to move them apart and move through the substrate space increases, and the voltage applied to obtain the electric field necessary to move (drive) the particles increases. End up.

趙 国来、外3名、“新しいトナーディスプレイデバイス(I)”、1999年7月21日、日本画像学会年次大会(通算83回)“Japan Hardcopy’99”、p.249-252趙 Kuniori and three others, “New Toner Display Device (I)”, July 21, 1999, Annual Meeting of the Imaging Society of Japan (83 times in total) “Japan Hardcopy’99”, p.249-252

上記問題を解決する方法として、最も簡便に行われている方法が、粒子表面に金属酸化物微粒子等(外添剤)を付着させて粒子表面を凹凸化し、付着力を下げる方法であるが、この方法を用いて上記情報表示装置で用いる表示媒体用粒子を作製した場合、粒子−粒子間、粒子−基板間での外添剤の移行や、粒子表面、基板表面への外添剤の固着等の影響により、表示不良を発生してしまうおそれがある。また、懸濁重合させる粒子原料中に、反応不活性な溶剤等を添加して重合した後、加熱や抽出等によって溶剤等を抜き去りポーラスな粒子を作製して、表面を凹凸化する方法もあるが、溶剤等を除去するための工程および設備が必要となり、効率的ではない。   As a method for solving the above problem, the method that is most simply performed is a method in which metal oxide fine particles or the like (external additive) are attached to the particle surface to make the particle surface uneven and reduce the adhesion force. When particles for display media used in the above information display device are prepared using this method, transfer of external additives between particles and between particles and substrates, and adhesion of external additives to particle surfaces and substrate surfaces There is a possibility that display defects may occur due to the influence of the above. There is also a method in which a reaction-inert solvent or the like is added to the particle raw material to be subjected to suspension polymerization and then polymerized, and then the solvent is removed by heating or extraction to produce porous particles to make the surface uneven. However, it is not efficient because it requires a process and equipment for removing the solvent and the like.

そこで、粒子原料中に、(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーもしくは(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマーを含有し、モノマーの一部もしくは全部が1分子中に重合反応基を複数持つ多官能性モノマーである粒子原料を懸濁重合することにより、粒子表面に微小な凹凸を一様に形成した表示媒体用粒子を得る製造方法を見出した。   Therefore, (acrylic and methacrylic) resin-hydrocarbon resin copolymer or (acrylic and methacrylic) resin- (acrylic and methacrylic having hydrocarbon or fluorohydrocarbon in the side chain) in the particle raw material Resin copolymerization of particles, which is a polyfunctional monomer with some or all of the monomers having multiple polymerization reactive groups in one molecule, makes minute irregularities uniform on the particle surface. The manufacturing method which obtains the particle | grains for display media formed in this was discovered.

しかしながら、上記製造方法において懸濁重合を行う際には、通常、粒子原料中に10時間半減期温度が40〜75℃で分解して重合を開始もしくは促進させる効果を持つ物質(重合開始剤)を含ませ、該物質を含んだ粒子原料を懸濁媒に懸濁させた後、重合して粒子を得るという方法を用いるのであるが、そのような方法を用いた場合には、重合開始剤を含んだ粒子原料を放置すると重合が徐々に進行してしまい、重合の進行の度合によって異なった性能の粒子が作製されてしまうという問題が生じる。   However, when suspension polymerization is performed in the above production method, a substance having an effect of decomposing at a 10-hour half-life temperature of 40 to 75 ° C. in a particle raw material to initiate or accelerate polymerization (polymerization initiator) A particle raw material containing the substance is suspended in a suspension medium and then polymerized to obtain particles. When such a method is used, a polymerization initiator is used. If the particle raw material containing is left untreated, the polymerization proceeds gradually, and there arises a problem that particles having different performances are produced depending on the degree of the progress of the polymerization.

本発明は、懸濁重合時に粒子表面に微小な凹凸を一様に形成することにより、駆動に必要な電圧が低く、かつ、表示不良を起こし難い表示媒体用粒子を安定して得ることができる表示媒体用粒子の製造方法を提供することを目的とする。   In the present invention, by forming minute irregularities uniformly on the particle surface during suspension polymerization, it is possible to stably obtain particles for a display medium having a low voltage required for driving and hardly causing display defects. It aims at providing the manufacturing method of the particle | grains for display media.

上記目的を達成するため、本発明の情報表示用パネルの製造方法は、少なくとも一方が透明な2枚の基板間に表示媒体を封入し、表示媒体に電界を付与することによって表示媒体を移動させて情報を表示する情報表示装置に用いる表示媒体を構成する表示媒体用粒子の製造方法において、前記製造方法は、モノマーを含み、該モノマーの一部もしくは全部が1分子中に重合反応基を複数持つ多官能性モノマーである粒子原料であり、かつ、該粒子原料中に(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーもしくは(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマーを含有する粒子原料を、少なくとも1種以上の界面活性剤を含有した懸濁媒に懸濁させた後、粒子原料を重合させて概球形粒子を得る懸濁重合法であり、かつ、懸濁媒に粒子原料を所定油滴径以上の油滴径に懸濁させた後、10時間半減期温度が75℃以下で分解して重合を開始もしくは促進させる効果を持つ物質を懸濁媒に添加し、その後、粒子原料の所定油滴径への懸濁と前記物質の分散とを同時に行い、さらにその後重合して粒子表面に微小な凹凸を一様に有する表示媒体用粒子を得ることを特徴とする。   In order to achieve the above object, the method for manufacturing an information display panel according to the present invention includes moving a display medium by enclosing the display medium between two substrates, at least one of which is transparent, and applying an electric field to the display medium. In the method for producing particles for a display medium constituting a display medium used for an information display device for displaying information, the production method includes a monomer, and a part or all of the monomer includes a plurality of polymerization reactive groups in one molecule. A particle raw material which is a multifunctional monomer having, and (acrylic and methacrylic) resin-hydrocarbon resin copolymer or (acrylic and methacrylic) resin in the particle raw material (hydrocarbon in the side chain or Particle raw materials containing copolymers with fluorinated hydrocarbon acrylic and methacrylic resins, containing at least one surfactant. It is a suspension polymerization method in which the particle raw material is polymerized by suspending in a suspension medium to obtain roughly spherical particles, and the particle raw material is suspended in a suspension medium to an oil droplet diameter greater than a predetermined oil droplet diameter. After that, a substance having the effect of decomposing at a 10-hour half-life temperature of 75 ° C. or less to start or accelerate polymerization is added to the suspension medium, and then the suspension of the particle raw material to a predetermined oil droplet diameter and the substance are added. Are dispersed at the same time and then polymerized to obtain particles for a display medium having uniform fine irregularities on the surface of the particles.

本発明の表示媒体用粒子の製造方法の好適例としては、前記物質を懸濁媒に投入する際の懸濁媒の温度が10時間半減期温度以下であること、および、前記所定油滴径が0.5〜50μmであり、該油滴を重合させて粒子径0.5〜50μmの範囲の粒子を得ること、がある。   As a preferred example of the method for producing particles for display medium of the present invention, the temperature of the suspension medium when the substance is introduced into the suspension medium is 10 hours half-life temperature or less, and the predetermined oil droplet diameter. Is 0.5 to 50 μm, and the oil droplets may be polymerized to obtain particles having a particle size in the range of 0.5 to 50 μm.

本発明の表示媒体用粒子は、上記本発明の表示媒体用粒子の製造方法およびその好適例のいずれかの製造方法で作製したものである。
本発明の表示媒体用粒子の好適例としては、前記微小な凹凸が、直径相当径0.01〜0.5μmの凸部もしくは凹部であること、前記(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーの炭化水素系樹脂がスチレン系樹脂であること、前記重合を開始もしくは促進させる効果を持つ物質がアシル系過酸化物であること、前記重合を開始もしくは促進させる効果を持つ物質が1分子内の炭素数が10以上のアゾ系物質であること、および、前記粒子の色が、白色、赤色および黒色の内のそれぞれ選択された1種類であること、がある。
本発明の情報表示装置は、上記本発明の表示媒体用粒子その好適例のいずれかの表示媒体用粒子を用いて構成される。
The display medium particles of the present invention are produced by any one of the manufacturing methods of the display medium particles of the present invention and its preferred examples.
As a suitable example of the particles for display medium of the present invention, the minute unevenness is a protrusion or recess having an equivalent diameter of 0.01 to 0.5 μm, and the (acrylic and methacrylic) resin-hydrocarbon. The hydrocarbon resin of the olefin resin copolymer is a styrene resin, the substance having an effect of initiating or promoting the polymerization is an acyl peroxide, and the substance having an effect of initiating or accelerating the polymerization is 1 There may be an azo-based substance having 10 or more carbon atoms in the molecule, and the color of the particles may be one selected from white, red and black.
The information display device of the present invention is configured by using the display medium particles according to any of the above-described display medium particles of the present invention.

上記本発明の表示媒体用粒子の製造方法によれば、少なくとも一方が透明な2枚の基板間に表示媒体を封入し、表示媒体に電界を付与することによって表示媒体を移動させて情報を表示する情報表示装置に用いる表示媒体を構成する表示媒体用粒子の製造方法は、モノマーを含み、該モノマーの一部もしくは全部が1分子中に重合反応基を複数持つ多官能性モノマーである粒子原料であり、かつ、該粒子原料中に(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーもしくは(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマーを含有する粒子原料を、少なくとも1種以上の界面活性剤を含有した懸濁媒に懸濁させた後、粒子原料を重合させて概球形粒子を得る懸濁重合法であり、かつ、懸濁媒に粒子原料を所定油滴径以上の油滴径に懸濁させた後、10時間半減期温度が75℃以下で分解して重合を開始もしくは促進させる効果を持つ物質を懸濁媒に添加し、その後、粒子原料の所定油滴径への懸濁と前記物質の分散とを同時に行い、さらにその後重合して粒子表面に微小な凹凸を一様に有する表示媒体用粒子を得るから、所定の温度が掛かるまで重合が開始されることはないため、上述した重合開始剤を含んだ粒子原料を放置した場合のような重合の進行の度合による粒子の性能変化は生じず、安定した性能の粒子が得られる。したがって、上記製造方法を用いた場合、溶剤等の揮散や抽出等の工程無しに、脱落等の無い固定化した凹凸が懸濁重合時に形成されるので、表示媒体の駆動に必要な電圧が低く、かつ、表示不良を起こし難い表示媒体用粒子を、安定して作製することができる。   According to the method for producing particles for display medium of the present invention, information is displayed by moving the display medium by enclosing the display medium between two substrates, at least one of which is transparent, and applying an electric field to the display medium. A method for producing particles for a display medium constituting a display medium used for an information display device, comprising: a monomer, wherein a part or all of the monomer is a polyfunctional monomer having a plurality of polymerization reactive groups in one molecule And (acrylic and methacrylic) resin-hydrocarbon resin copolymer or (acrylic and methacrylic) resin- (acrylic having hydrocarbon or fluorohydrocarbon in the side chain) and After suspending a particle raw material containing a copolymer with a (methacrylic) resin in a suspension medium containing at least one surfactant, the particle raw material is polymerized. In this suspension polymerization method, roughly spherical particles are obtained, and the particle raw material is suspended in an oil droplet diameter larger than a predetermined oil droplet diameter in a suspension medium, and then decomposed at a 10-hour half-life temperature of 75 ° C. or lower. Then, a substance having an effect of initiating or promoting polymerization is added to the suspension medium, and then the suspension of the particle raw material to a predetermined oil droplet diameter and the dispersion of the substance are performed at the same time, and then the polymerization is performed to form a particle surface. In order to obtain particles for a display medium having uniformly fine irregularities on the surface, polymerization does not start until a predetermined temperature is applied. Therefore, as in the case where the particle raw material containing the polymerization initiator is left as it is. There is no change in the performance of the particles due to the degree of polymerization, and stable performance particles can be obtained. Therefore, when the above manufacturing method is used, fixed irregularities that do not drop off are formed during suspension polymerization without steps such as volatilization or extraction of solvents, etc., so that the voltage required for driving the display medium is low. And the particle | grains for display media which are hard to raise | generate a display defect can be produced stably.

以下、本発明を実施するための最良の形態を図面に基づき詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

まず、本発明の情報表示用パネルの構成について説明する。本発明の情報表示用パネルでは、対向する2枚の基板間に封入した表示媒体に電界が付与される。付与された電界方向に沿って、帯電した表示媒体が電界による力やクーロン力などによって引き寄せられ、表示媒体が電界方向の変化によって移動方向を変えることにより、画像等の情報表示がなされる。従って、表示媒体が、均一に移動し、かつ、繰り返し表示情報を書き換える時あるいは表示情報を継続して表示する時の安定性を維持できるように、情報表示用パネルを設計する必要がある。ここで、表示媒体を構成する粒子にかかる力は、粒子同士のクーロン力により引き付けあう力の他に、電極や基板との電気鏡像力、分子間力、液架橋力、重力などが考えられる。   First, the configuration of the information display panel of the present invention will be described. In the information display panel of the present invention, an electric field is applied to a display medium sealed between two opposing substrates. Along the applied electric field direction, the charged display medium is attracted by the force of the electric field or the Coulomb force, and the display medium changes the moving direction according to the change of the electric field direction, thereby displaying information such as an image. Therefore, it is necessary to design the information display panel so that the display medium can move uniformly and maintain the stability when the display information is rewritten or when the display information is continuously displayed. Here, as the force applied to the particles constituting the display medium, in addition to the force attracting each other by the Coulomb force between the particles, the electric mirror image force between the electrode and the substrate, the intermolecular force, the liquid cross-linking force, gravity and the like can be considered.

本発明の情報表示装置に適用可能な情報表示用パネルの例を、図1(a),(b)〜図3(a),(b)に基づき説明する。
図1(a),(b)に示す例では、少なくとも1種以上の粒子から構成される光学的反射率および帯電特性の異なる少なくとも2種以上の表示媒体3(ここでは白色表示媒体用粒子3Waの粒子群からなる白色表示媒体3Wと黒色表示媒体用粒子3Baの粒子群からなる黒色表示媒体3Bを示す)を、基板1、2の外部から加えられる電界に応じて、基板1、2と垂直に移動させ、黒色表示媒体3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色表示媒体3Wを観察者に視認させて白色の表示を行っている。なお、図1(b)に示す例では、図1(a)に示す例に加えて、基板1、2の間に例えば格子状に隔壁4を設けセルを形成している。また、図1(b)において、手前にある隔壁は省略している。
図2(a),(b)に示す例では、少なくとも1種以上の粒子から構成される光学的反射率および帯電特性の異なる少なくとも2種以上の表示媒体3(ここでは白色表示媒体用粒子3Waの粒子群からなる白色表示媒体3Wと黒色表示媒体用粒子3Baの粒子群からなる黒色表示媒体3Bを示す)を、基板1に設けた電極5と基板2に設けた電極6との間に電圧を印加することにより発生する電界に応じて、基板1、2と垂直に移動させ、黒色表示媒体3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色表示媒体3Wを観察者に視認させて白色の表示を行っている。なお、図2(b)に示す例では、図2(a)に示す例に加えて、基板1、2の間に例えば格子状に隔壁4を設けセルを形成している。また、図2(b)において、手前にある隔壁は省略している。
図3(a),(b)に示す例では、少なくとも1種以上の粒子から構成される光学的反射率および帯電性を有する1種の表示媒体3(ここでは白色表示媒体用粒子3Waの粒子群からなる白色表示媒体3Wを示す)を、基板1に設けた電極5と基板2に設けた電極6との間に電圧を印加することにより発生する電界に応じて、基板1、2と平行方向に移動させ、白色表示媒体3Wを観察者に視認させて白色の表示を行うか、あるいは、電極6または基板1の色を観察者に視認させて電極6または基板1の色の表示を行っている。なお、図3(b)に示す例では、図3(a)に示す例に加えて、基板1、2の間に例えば格子状の隔壁4を設けセルを形成している。また、図3(b)において、手前にある隔壁は省略している。
An example of an information display panel applicable to the information display device of the present invention will be described with reference to FIGS. 1 (a) and (b) to FIGS. 3 (a) and 3 (b).
In the example shown in FIGS. 1A and 1B, at least two kinds of display media 3 (here, white display medium particles 3Wa) having at least one kind of particles and having different optical reflectance and charging characteristics. A white display medium 3W composed of a group of particles and a black display medium 3B composed of a group of particles 3Ba for black display medium) are perpendicular to the substrates 1 and 2 according to the electric field applied from the outside of the substrates 1 and 2. The black display medium 3B is visually recognized by the observer and black display is performed, or the white display medium 3W is visually recognized by the observer and white display is performed. In the example shown in FIG. 1B, in addition to the example shown in FIG. 1A, a partition 4 is provided between the substrates 1 and 2 to form a cell, for example. In addition, in FIG. 1B, the partition in front is omitted.
In the example shown in FIGS. 2A and 2B, at least two kinds of display media 3 (here, white display medium particles 3Wa) having at least one kind of particles and having different optical reflectance and charging characteristics. Between the electrode 5 provided on the substrate 1 and the electrode 6 provided on the substrate 2 is a voltage between the electrode 5 provided on the substrate 1 and the electrode 6 provided on the substrate 2. In accordance with the electric field generated by applying, the substrate is moved perpendicularly to the substrates 1 and 2 so that the black display medium 3B is visually recognized by the observer and black display is performed, or the white display medium 3W is provided to the observer. The white display is made visible. In the example shown in FIG. 2 (b), in addition to the example shown in FIG. 2 (a), a partition 4 is provided between the substrates 1 and 2 to form cells, for example. Further, in FIG. 2 (b), the front partition is omitted.
In the example shown in FIGS. 3A and 3B, one type of display medium 3 (here, particles of white display medium particles 3Wa) having optical reflectivity and chargeability composed of at least one type of particles. A white display medium 3 </ b> W consisting of a group) is parallel to the substrates 1 and 2 according to an electric field generated by applying a voltage between the electrode 5 provided on the substrate 1 and the electrode 6 provided on the substrate 2. The white display medium 3W is visually recognized by the observer and white display is performed, or the color of the electrode 6 or the substrate 1 is visually recognized by the observer and the color of the electrode 6 or the substrate 1 is displayed. ing. In the example shown in FIG. 3B, in addition to the example shown in FIG. 3A, for example, a lattice-shaped partition wall 4 is provided between the substrates 1 and 2 to form a cell. Moreover, in FIG.3 (b), the partition in front is abbreviate | omitted.

以下、本発明の表示媒体用粒子の製造方法について説明する。本発明の表示媒体用粒子の製造方法は、少なくとも一方が透明な2枚の基板間に表示媒体を封入し、表示媒体に電界を付与することによって表示媒体を移動させて情報を表示する情報表示装置に用いる表示媒体を構成する表示媒体用粒子の製造方法であり、該製造方法は、モノマーを含み、該モノマーの一部もしくは全部が1分子中に重合反応基を複数持つ多官能性モノマーである粒子原料であり、かつ、該粒子原料中に(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーもしくは(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマーを含有する粒子原料を、少なくとも1種以上の界面活性剤を含有した懸濁媒に懸濁させた後、粒子原料を重合させて概球形粒子を得る懸濁重合法であり、かつ、懸濁媒に粒子原料を所定油滴径以上の油滴径に懸濁させた後、10時間半減期温度が40〜75℃で分解して重合を開始もしくは促進させる効果を持つ物質(重合開始剤)を懸濁媒に添加し、その後、粒子原料の所定油滴径への懸濁と前記物質の分散とを同時に行い、さらにその後重合して粒子表面に微小な凹凸を一様に有する表示媒体用粒子を得るものである。   Hereinafter, the manufacturing method of the particle | grains for display media of this invention is demonstrated. The display medium particle manufacturing method of the present invention is an information display in which a display medium is sealed between two substrates, at least one of which is transparent, and information is displayed by moving the display medium by applying an electric field to the display medium. A method for producing particles for a display medium constituting a display medium for use in an apparatus, wherein the production method comprises a polyfunctional monomer containing a monomer, wherein a part or all of the monomer has a plurality of polymerization reactive groups in one molecule. It is a particle raw material, and (acrylic and methacrylic) resin-hydrocarbon resin copolymer or (acrylic and methacrylic) resin- (having hydrocarbon or fluorohydrocarbon in the side chain) After suspending a particle raw material containing a copolymer with an acrylic and methacrylic resin in a suspension medium containing at least one surfactant, Is a suspension polymerization method in which approximately spherical particles are obtained by polymerizing and after suspending the particle raw material in an oil droplet diameter equal to or larger than a predetermined oil droplet diameter in a suspension medium, the 10-hour half-life temperature is 40 to 75. A substance (polymerization initiator) having the effect of decomposing at 0 ° C. to start or accelerate polymerization (polymerization initiator) is added to the suspension medium, and then suspension of the particle raw material to a predetermined oil droplet diameter and dispersion of the substance are performed simultaneously. Further, after that, polymerization is performed to obtain particles for a display medium having uniform fine irregularities on the particle surface.

上記において、重合開始剤を懸濁媒に投入する際の懸濁媒の温度が上記10時間半減期温度以下であることが、所定の温度が掛かるまで重合を開始させないようにする上で好ましい。
上記所定油滴径が0.5〜50μmであり、該油滴を重合させて粒子径0.5〜50μmの範囲にある粒子を得ることが好ましい。
上記製造方法で作製した表示媒体用粒子は、粒子表面の微小な凹凸の直径相当径が、0.01〜0.5μmの凸部もしくは凹部であることが好ましい。粒子表面の凸部もしくは凹部の大きさは、小さすぎると充分な付着力低減効果が得られず、また、大きすぎると凸部もしくは凹部の表面自体で付着してしまい、凹凸化の効果がなくなってしまう。
上記(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーの炭化水素系樹脂がスチレン系樹脂であることが、粒子表面に凸部もしくは凹部を作製し易くする上で好ましい。
上記重合開始剤としては、水等の懸濁媒中に溶け出すと乳化重合が進行してしまい、着色されない粒子が大量に作製されてしまい、これを表示媒体に用いると表示品質を低下させるおそれがあるため、これを防止するためにも、油溶性の物質を使用することが望ましい。そのため、重合開始剤としては、アシル系過酸化物、あるいは、1分子内の炭素数が10以上のアゾ系重合開始剤が好適である。
上記粒子の色としては、白色、赤色および黒色の内の少なくとも1種類の色を選択して用いることが好ましい。
In the above, it is preferable that the temperature of the suspension medium when the polymerization initiator is added to the suspension medium is equal to or lower than the 10-hour half-life temperature in order not to start the polymerization until a predetermined temperature is applied.
Preferably, the predetermined oil droplet diameter is 0.5 to 50 μm, and the oil droplets are polymerized to obtain particles having a particle diameter in the range of 0.5 to 50 μm.
The display medium particles produced by the above production method are preferably convex portions or concave portions having a diameter equivalent to the diameter of minute irregularities on the particle surface of 0.01 to 0.5 μm. If the size of the projections or recesses on the particle surface is too small, a sufficient adhesion reduction effect cannot be obtained, and if it is too large, the surface of the projections or recesses will adhere and the effect of unevenness will be lost. End up.
The hydrocarbon resin of the above (acrylic and methacrylic) resin-hydrocarbon resin copolymer is preferably a styrene resin in order to make it easy to produce convex portions or concave portions on the particle surface.
As the polymerization initiator, when it dissolves in a suspension medium such as water, emulsion polymerization proceeds, and a large amount of uncolored particles are produced. If this is used for a display medium, the display quality may be deteriorated. Therefore, it is desirable to use an oil-soluble substance in order to prevent this. Therefore, as the polymerization initiator, an acyl peroxide or an azo polymerization initiator having 10 or more carbon atoms in one molecule is suitable.
As the color of the particles, it is preferable to select and use at least one of white, red and black.

本発明の表示媒体用粒子の製造方法によれば、上記重合開始剤を用いたことによって、所定の温度が掛かるまで重合が開始されることはないため、上述した重合開始剤を含んだ粒子原料を放置した場合のような重合の進行度合による粒子の性能変化は生じず、安定した性能の粒子が得られる。したがって、上記製造方法を用いた場合、溶剤等の揮散や抽出等の工程無しに、脱落等の無い固定化した凹凸が懸濁重合時に形成されるので、表示媒体の駆動に必要な電圧が低く、かつ、表示不良を起こし難い表示媒体用粒子を、安定して作製することが可能になる。   According to the method for producing particles for a display medium of the present invention, since the polymerization is not started until a predetermined temperature is applied by using the polymerization initiator, the particle raw material containing the polymerization initiator described above is used. The performance of the particles does not change due to the degree of progress of the polymerization as in the case of leaving the polymer, and stable performance particles can be obtained. Therefore, when the above manufacturing method is used, fixed irregularities that do not drop off are formed during suspension polymerization without steps such as volatilization or extraction of solvents, etc., so that the voltage required for driving the display medium is low. In addition, it is possible to stably produce display medium particles that are less likely to cause display defects.

図4に本発明の情報表示装置の表示部となる情報表示用パネルに用いる表示媒体用粒子を走査型電子顕微鏡(SEM)で撮像した一例を示す。図4の例では、左側に拡大率3000倍で、右側に拡大率15000倍で、それぞれ粒子表面を拡大した状態を示しており、粒子表面に数十ナノメートルオーダーの微小凹凸が形成されている様子がわかる。   FIG. 4 shows an example in which particles for a display medium used in an information display panel serving as a display unit of the information display device of the present invention are imaged with a scanning electron microscope (SEM). The example of FIG. 4 shows a state where the particle surface is enlarged at an enlargement rate of 3000 times on the left side and an enlargement rate of 15000 times on the right side, and fine irregularities on the order of several tens of nanometers are formed on the particle surface. I can see the situation.

以下、本発明の情報表示用パネルで用いる表示媒体用粒子(単に粒子ともいう)の基本的な構成について説明する。   Hereinafter, a basic configuration of display medium particles (also simply referred to as particles) used in the information display panel of the present invention will be described.

粒子は球形であることが好ましい。粒子には、その主成分となる樹脂に、必要に応じて、従来と同様に、荷電制御剤、着色剤、無機添加剤等を含ますことができる。以下に、樹脂、荷電制御剤、着色剤、その他添加剤を例示する。   The particles are preferably spherical. The particles can contain a charge control agent, a colorant, an inorganic additive, and the like, if necessary, in the resin as the main component, as in the conventional case. Examples of resins, charge control agents, colorants, and other additives will be given below.

本発明の粒子原料の主成分は、(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーもしくは(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマーであるが、このほか、ウレタン樹脂、ウレア樹脂、アクリル樹脂、ポリエステル樹脂、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、アクリルフッ素樹脂、シリコーン樹脂、アクリルシリコーン樹脂、エポキシ樹脂、ポリスチレン樹脂、スチレンアクリル樹脂、ポリオレフィン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリスルフォン樹脂、ポリエーテル樹脂、ポリアミド樹脂等が挙げられる。特に、基板との付着力を制御する観点と、懸濁重合の容易さから、アクリル樹脂、アクリルフッ素樹脂、ポリスチレン樹脂、スチレンアクリル樹脂が好適である。   The main component of the particle raw material of the present invention is (acrylic and methacrylic) resin-hydrocarbon resin copolymer or (acrylic and methacrylic) resin- (acrylic having hydrocarbon or fluorohydrocarbon in the side chain and Copolymers with (methacrylic) resins, but in addition, urethane resins, urea resins, acrylic resins, polyester resins, acrylic urethane resins, acrylic urethane silicone resins, acrylic urethane fluororesins, acrylic fluororesins, silicone resins, acrylic silicone resins , Epoxy resin, polystyrene resin, styrene acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluororesin, polycarbonate resin, polysulfone resin, polyether resin, polyamid Resins. In particular, an acrylic resin, an acrylic fluororesin, a polystyrene resin, and a styrene acrylic resin are suitable from the viewpoint of controlling the adhesive force with the substrate and the ease of suspension polymerization.

荷電制御剤としては、特に制限はないが、負荷電制御剤としては例えば、サリチル酸金属錯体、含金属アゾ染料、含金属(金属イオンや金属原子を含む)の油溶性染料、4級アンモニウム塩系化合物、カリックスアレン化合物、含ホウ素化合物(ベンジル酸ホウ素錯体)、ニトロイミダゾール誘導体、負帯電性官能基を有するスチレンアクリル樹脂等が挙げられる。正荷電制御剤としては例えば、ニグロシン染料、トリフェニルメタン系化合物、4級アンモニウム塩系化合物、ポリアミン樹脂、イミダゾール誘導体、正帯電性官能基を有するスチレンアクリル樹脂等が挙げられる。その他、超微粒子シリカ、超微粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ピリジン等の含窒素環状化合物及びその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含んだ樹脂等も荷電制御剤として用いることもできる。   The charge control agent is not particularly limited. Examples of the negative charge control agent include salicylic acid metal complexes, metal-containing azo dyes, metal-containing oil-soluble dyes (including metal ions and metal atoms), and quaternary ammonium salt systems. Examples thereof include compounds, calixarene compounds, boron-containing compounds (benzyl acid boron complexes), nitroimidazole derivatives, and styrene acrylic resins having negatively chargeable functional groups. Examples of the positive charge control agent include nigrosine dyes, triphenylmethane compounds, quaternary ammonium salt compounds, polyamine resins, imidazole derivatives, and styrene acrylic resins having positively chargeable functional groups. In addition, metal oxides such as ultrafine silica, ultrafine titanium oxide, ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, resins containing fluorine, chlorine, nitrogen, etc. are also charged. It can also be used as a control agent.

着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染料が使用可能である。   As the colorant, various organic or inorganic pigments and dyes as exemplified below can be used.

黒色着色剤としては、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭等がある。
青色着色剤としては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダンスレンブルーBC等がある。
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B、C.I.ピグメントレッド2等がある。
Examples of the black colorant include carbon black, copper oxide, manganese dioxide, aniline black, activated carbon and the like.
Examples of blue colorants include C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15, Bituminous Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chlorides, Fast Sky Blue, Indanthrene Blue BC, and the like.
Examples of red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, risor red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, Alizarin Lake, Brilliant Carmine 3B, C.I. I. Pigment Red 2 etc.

黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファーストイエロー、ニッケルチタンイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ、C.I.ピグメントイエロー12等がある。
緑色着色剤としては、クロムグリーン、酸化クロム、ピグメントグリーンB、C.I.ピグメントグリーン7、マラカイトグリーンレーキ、ファイナルイエローグリーンG等がある。
橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダンスレンブリリアントオレンジRK、ベンジジンオレンジG、インダンスレンブリリアントオレンジGK、C.I.ピグメントオレンジ31等がある。
紫色着色剤としては、マンガン紫、ファーストバイオレットB、メチルバイオレットレーキ等がある。
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等がある。
Yellow colorants include chrome yellow, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, nickel titanium yellow, navel yellow, naphthol yellow S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, C.I. I. Pigment Yellow 12 etc.
Examples of green colorants include chrome green, chromium oxide, pigment green B, C.I. I. Pigment Green 7, Malachite Green Lake, Final Yellow Green G, etc.
Examples of the orange colorant include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, indanthrene brilliant orange RK, benzidine orange G, indanthrene brilliant orange GK, C.I. I. Pigment Orange 31 etc.
Examples of purple colorants include manganese purple, first violet B, and methyl violet lake.
Examples of white colorants include zinc white, titanium oxide, antimony white, and zinc sulfide.

体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料として、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、ウルトラマリンブルー等がある。   Examples of extender pigments include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Examples of various dyes such as basic, acidic, disperse, and direct dyes include nigrosine, methylene blue, rose bengal, quinoline yellow, and ultramarine blue.

無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフェライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。
これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いることができる。このうち特に黒色顔料としてカーボンブラックが、白色顔料として酸化チタンが好ましい。
Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, titanium yellow, Examples include bitumen, ultramarine blue, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder.
These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferable as the black pigment, and titanium oxide is preferable as the white pigment.

また、本発明で用いる粒子は粒子径が、0.5〜50μmの範囲であり、均一で揃っていることが好ましい。粒子径がこの範囲より大きいと表示上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大きくなりすぎるために表示媒体としての移動に支障をきたすようになる。   The particles used in the present invention have a particle diameter in the range of 0.5 to 50 μm and are preferably uniform and uniform. If the particle diameter is larger than this range, the display is not clear. If the particle diameter is smaller than this range, the cohesive force between the particles becomes too large, which hinders movement as a display medium.

更に本発明では、表示媒体用粒子の粒子径分布に関して、下記式に示される粒子径分布Spanを5未満、好ましくは3未満とする。
Span=(d(0.9)−d(0.1))/d(0.5)
(但し、d(0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒子径をμmで表した数値、d(0.1)はこれ以下の粒子の比率が10%である粒子径をμmで表した数値、d(0.9)はこれ以下の粒子が90%である粒子径をμmで表した数値である。)
Spanを5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な表示媒体としての移動が可能となる。
Furthermore, in the present invention, regarding the particle size distribution of the particles for display medium, the particle size distribution Span represented by the following formula is less than 5, preferably less than 3.
Span = (d (0.9) −d (0.1)) / d (0.5)
(However, d (0.5) is a numerical value indicating the particle diameter in μm that 50% of the particles are larger than this, and 50% is smaller than this, and d (0.1) is a particle in which the ratio of the smaller particles is 10%. (Numerical value expressed in μm, and d (0.9) is a numerical value expressed in μm for a particle size of 90% or less.)
By keeping Span within a range of 5 or less, the size of each particle is uniform, and movement as a uniform display medium becomes possible.

さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子のd(0.5)に対する最小径を有する粒子のd(0.5)の比を50以下、好ましくは10以下とすることが肝要である。たとえ粒子径分布Spanを小さくしたとしても、互いに帯電特性の異なる粒子が互いに反対方向に動くので、互いの粒子サイズが近く、互いの粒子が当量ずつ反対方向に容易に移動できるようにするのが好適であり、それがこの範囲となる。   Furthermore, regarding the correlation between the particles, the ratio of the d (0.5) of the particles having the minimum diameter to the d (0.5) of the particles having the maximum diameter among the used particles is set to 50 or less, preferably 10 or less. It is essential. Even if the particle size distribution Span is reduced, particles with different charging characteristics move in opposite directions, so that the particle size is close to each other and each particle can be easily moved in the opposite direction by the equivalent amount. This is within this range.

なお、上記の粒子径分布および粒子径は、レーザー回折/散乱法などから求めることができる。測定対象となる粒子にレーザー光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。
ここで、本発明の粒子における粒子径および粒子径分布は、体積基準分布から得られたものである。具体的には、Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素気流中に粒子を投入し、付属の解析ソフト(Mie理論を用いた体積基準分布を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができる。
The particle size distribution and the particle size can be obtained from a laser diffraction / scattering method or the like. When laser light is irradiated onto particles to be measured, a light intensity distribution pattern of diffracted / scattered light is spatially generated, and this light intensity pattern has a corresponding relationship with the particle diameter, so that the particle diameter and particle diameter distribution can be measured. .
Here, the particle size and particle size distribution in the particles of the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, particles are introduced into a nitrogen stream, and the attached analysis software (software based on volume-based distribution using Mie theory) The diameter and particle size distribution can be measured.

表示媒体用粒子の帯電量は当然その測定条件に依存するが、情報表示用パネルにおける表示媒体用粒子の帯電量はほぼ、初期帯電量、隔壁との接触、基板との接触、経過時間に伴う電荷減衰に依存し、特に表示媒体用粒子の帯電挙動の飽和値が支配因子となっているということが分かった。   The charge amount of the display medium particles naturally depends on the measurement conditions, but the charge amount of the display medium particles in the information display panel is almost the same as the initial charge amount, the contact with the partition walls, the contact with the substrate, and the elapsed time. It was found that depending on the charge decay, the saturation value of the charging behavior of the particles for the display medium is a dominant factor.

本発明者らは鋭意検討の結果、ブローオフ法において同一のキャリア粒子を用いて、表示媒体に用いる粒子の帯電量測定を行うことにより、表示媒体用粒子の適正な帯電特性値の範囲を評価できることを見出した。   As a result of intensive studies, the present inventors have been able to evaluate the range of proper charging characteristics of display medium particles by measuring the charge amount of the particles used in the display medium using the same carrier particles in the blow-off method. I found.

更に、表示媒体用粒子で構成する表示媒体を気中空間で駆動する乾式の情報表示用パネルに適用する場合には、基板間の表示媒体を取り巻く空隙部分の気体の管理が重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体の湿度について、25℃における相対湿度を60%RH以下、好ましくは50%RH以下とすることが重要である。
この空隙部分とは、図1(a)、(b)〜図3(a)、(b)において、対向する基板1、基板2に挟まれる部分から、電極5、6(基板の内側に電極を設けた場合)、表示媒体3の占有部分、隔壁4の占有部分(隔壁を設けた場合)、情報表示用パネルのシール部分を除いた、いわゆる表示媒体が接する気体部分を指すものとする。
空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥空気、乾燥窒素、乾燥アルゴン、乾燥ヘリウム、乾燥二酸化炭素、乾燥メタンなどが好適である。この気体は、その湿度が保持されるように情報表示用パネルに封入することが必要であり、例えば、表示媒体の充填、情報表示用パネルの組み立てなどを所定湿度環境下にて行い、さらに、外からの湿度侵入を防ぐシール材、シール方法を施すことが肝要である。
Furthermore, when a display medium composed of display medium particles is applied to a dry information display panel that is driven in an air space, it is important to manage the gas in the void surrounding the display medium between the substrates. Contributes to improved stability. Specifically, it is important that the relative humidity at 25 ° C. is 60% RH or less, preferably 50% RH or less, with respect to the gas humidity in the void portion.
1A, 1B, 3A, and 3B, the gaps are defined as electrodes 5 and 6 (electrodes on the inner side of the substrate). ), An occupied portion of the display medium 3, an occupied portion of the partition wall 4 (when a partition wall is provided), and a gas portion in contact with a so-called display medium, excluding a seal portion of the information display panel.
The gas in the gap is not limited as long as it is in the humidity region described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane, and the like are preferable. This gas needs to be sealed in an information display panel so that the humidity is maintained, for example, filling a display medium, assembling an information display panel, etc. in a predetermined humidity environment, It is important to apply a sealing material and a sealing method that prevent moisture from entering from the outside.

本発明の対象となる情報表示用パネルにおける基板と基板との間隔は、表示媒体が移動できて、コントラストを維持できればよいが、通常10〜500μm、好ましくは10〜200μmに調整される。
表示媒体を用いる場合、対向する基板間の空間における表示媒体の体積占有率は5〜70%が好ましく、さらに好ましくは5〜60%である。70%を超える場合には表示媒体の移動の支障をきたし、5%未満の場合にはコントラストが不明確となり易い。
The distance between the substrates in the information display panel that is the subject of the present invention is not limited as long as the display medium can be moved and the contrast can be maintained, but is usually adjusted to 10 to 500 μm, preferably 10 to 200 μm.
When the display medium is used, the volume occupation ratio of the display medium in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. When it exceeds 70%, the movement of the display medium is hindered, and when it is less than 5%, the contrast tends to be unclear.

以下、本発明の対象となる情報表示用パネルを構成する各部材について説明する。   Hereinafter, each member which comprises the information display panel used as the object of this invention is demonstrated.

基板については、少なくとも一方の基板は情報表示用パネル外側から表示媒体の色が確認できる透明な基板であり、可視光の透過率が高くかつ耐熱性の良い材料が好適である。もう一方の基板は透明でも不透明でもかまわない。基板材料を例示すると、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイミド、アクリルなどのポリマーシートや、金属シートのように可とう性のあるもの、および、ガラス、石英などの可とう性のない無機シートが挙げられる。基板の厚みは、2〜5000μmが好ましく、さらに5〜2000μmが好適であり、薄すぎると、強度、基板間の間隔均一性を保ちにくくなり、5000μmより厚いと、薄型情報表示用パネルとする場合に不都合がある。   Regarding the substrate, at least one of the substrates is a transparent substrate from which the color of the display medium can be confirmed from the outside of the information display panel, and a material having high visible light transmittance and good heat resistance is preferable. The other substrate may be transparent or opaque. Examples of substrate materials include polymer sheets such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic, flexible materials such as metal sheets, and glass and quartz. An inorganic sheet having no flexibility is mentioned. The thickness of the substrate is preferably from 2 to 5000 μm, more preferably from 5 to 2000 μm. If it is too thin, it will be difficult to maintain the strength and the spacing uniformity between the substrates, and if it is thicker than 5000 μm, it will be a thin information display panel. Is inconvenient.

情報表示用パネルに電極を設ける場合の電極形成材料としては、アルミニウム、銀、ニッケル、銅、金等の金属類や酸化インジウム錫(ITO)、酸化インジウム、導電性酸化錫、アンチモン錫酸化物(ATO)、導電性酸化亜鉛等の導電金属酸化物類、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子類が例示され、適宜選択して用いられる。電極の形成方法としては、上記例示の材料をスパッタリング法、真空蒸着法、CVD(化学蒸着)法、塗布法等で薄膜状に形成する方法や、導電剤を溶媒や合成樹脂バインダーに混合して塗布したりする方法が用いられる。視認側(表示面側)基板に設ける電極は透明である必要があるが、背面側基板に設ける電極は透明である必要がない。いずれの場合もパターン形成可能である導電性である上記材料を好適に用いることができる。なお、電極厚みは、導電性が確保でき光透過性に支障がなければ良く、3〜1000nm、好ましくは5〜400nmが好適である。背面側基板に設ける電極の材質や厚みなどは上述した表示側基板に設ける電極と同様であるが、透明である必要はない。なお、この場合の外部電圧入力は、直流あるいは交流を重畳しても良い。   As an electrode forming material for providing an electrode on an information display panel, metals such as aluminum, silver, nickel, copper, gold, indium tin oxide (ITO), indium oxide, conductive tin oxide, antimony tin oxide ( ATO), conductive metal oxides such as conductive zinc oxide, and conductive polymers such as polyaniline, polypyrrole, and polythiophene are exemplified and appropriately selected and used. As a method for forming an electrode, a method of forming the above-described materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or mixing a conductive agent with a solvent or a synthetic resin binder. The method of apply | coating is used. The electrode provided on the viewing side (display surface side) substrate needs to be transparent, but the electrode provided on the back side substrate does not need to be transparent. In any case, the above-mentioned material that is conductive and capable of pattern formation can be suitably used. Note that the electrode thickness is not particularly limited as long as the conductivity can be secured and the light transmittance is not hindered, and is preferably 3 to 1000 nm, preferably 5 to 400 nm. The material and thickness of the electrode provided on the back side substrate are the same as those of the electrode provided on the display side substrate described above, but need not be transparent. In this case, the external voltage input may be superimposed with direct current or alternating current.

必要に応じて基板に設ける隔壁4については、その形状は表示にかかわる表示媒体の種類により適宜最適設定され、一概には限定されないが、隔壁の幅は2〜100μm、好ましくは3〜50μmに、隔壁の高さは10〜500μm、好ましくは10〜200μmに調整される。これらのリブからなる隔壁により形成されるセルは、図5に示すごとく、基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格子状やハニカム状や網目状が例示される。表示面側から見える隔壁断面部分に相当する部分(セルの枠部の面積)はできるだけ小さくした方が良く、表示状態の鮮明さが増す。   The partition 4 provided on the substrate as needed is optimally set according to the type of display medium involved in the display and is not limited in general, but the width of the partition is 2 to 100 μm, preferably 3 to 50 μm. The height of the partition wall is adjusted to 10 to 500 μm, preferably 10 to 200 μm. As shown in FIG. 5, the cells formed by the partition walls made of these ribs are exemplified by a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the plane of the substrate. And a mesh shape. It is better to make the portion corresponding to the cross section of the partition wall visible from the display surface side (the area of the cell frame) as small as possible, and the display state becomes clearer.

以下、本発明の実施例1〜4および比較例1〜5を示して、本発明をさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。本発明では、下記の方法にて作製した粒子をパネル基板間の空間に湿度50%RH以下の乾燥空気と共に封止した構成の情報表示用パネルを情報表示装置としたものを、下記の基準に従い、評価した。   EXAMPLES Hereinafter, although Examples 1-4 of this invention and Comparative Examples 1-5 are shown and this invention is demonstrated further more concretely, this invention is not limited to the following Example. In the present invention, an information display panel having a structure in which particles produced by the following method are sealed in a space between panel substrates together with dry air having a humidity of 50% RH or less is used as an information display device. ,evaluated.

<実施例1>
正帯電粒子としてメチルメタクリレートモノマー(関東化学試薬)60重量部、及び、1分子中に重合反応基を複数持つ多官能性モノマーとしてエチレングリコールジメタクリレート(和光純薬試薬)40重量部(約25mol%)に、正帯電のモノマー難溶性荷電制御剤としてニグロシン化合物(ボントロンN07:オリエント化学製)3重量部をサンドミルにより分散させ、黒色無機顔料系着色剤として、カーボンブラック(MA100:三菱化学製)40重量部を予めメタクリル樹脂(デルペット560F:旭化成製)60重量部に分散させたマスターバッチ12.5重量部と、(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製、弗化水素成分:C17)5重量を溶解させた液を、分子中にポリオキシアルキレン鎖とスルホン酸塩を含む界面活性剤としてポリオキシエチレンアルキルエーテル硫酸ナトリウム(ラテムルE−118B:花王製)を0.5wt%添加した40℃の精製水に懸濁させ、油滴径約80μmの懸濁液を得た。この懸濁液に、アシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を予め水に分散させた分散液を上記過酸化物が2重量部となるように添加した後、油滴径約10μmになるように再び懸濁を行い、加熱重合させ、濾過、乾燥させた後、分級機(MDS−2:日本ニューマチック工業)を用いて粒子径0.5〜50μmの範囲で平均粒子径9.8μmの粒子1を得た。粒子1の樹脂成分のTgは100℃であった。また、粒子1の表面をSEM観察したところ、直径相当径約100nmの凹凸が確認された。
<Example 1>
60 parts by weight of methyl methacrylate monomer (Kanto Chemical Reagent) as positively charged particles, and 40 parts by weight (about 25 mol%) of ethylene glycol dimethacrylate (Wako Pure Chemical Reagent) as a multifunctional monomer having a plurality of polymerization reactive groups in one molecule ) 3 parts by weight of a nigrosine compound (Bontron N07: manufactured by Orient Chemical Co., Ltd.) as a positively charged monomer poorly soluble charge control agent is dispersed by a sand mill, and carbon black (MA100: manufactured by Mitsubishi Chemical Co.) 40 is used as a black inorganic pigment-based colorant. 12.5 parts by weight of a master batch in which parts by weight are previously dispersed in 60 parts by weight of methacrylic resin (Delpet 560F: manufactured by Asahi Kasei) and (acrylic and methacrylic) resin- (hydrocarbon or fluorohydrocarbon in the side chain) Copolymers with acrylic and methacrylic resins (Modiper) 600: NOF, hydrogen fluoride component: C 8 F 17) 5 was dissolved by weight liquid, polyoxyethylene alkyl ether sulfate as a surfactant comprising a polyoxyalkylene chain and sulfonate in the molecule ( Latemul E-118B (manufactured by Kao) was suspended in purified water at 40 ° C. to which 0.5 wt% was added to obtain a suspension having an oil droplet diameter of about 80 μm. In this suspension, a dispersion obtained by previously dispersing lauryl peroxide (Perroyl L: manufactured by NOF / 10-hour half-life temperature 61.6 ° C.), which is an acyl peroxide, in water is used as the peroxide. After adding so as to be part by weight, the suspension is again suspended so that the oil droplet diameter is about 10 μm, heated and polymerized, filtered and dried, and then used with a classifier (MDS-2: Nippon Pneumatic Industry). Thus, particles 1 having an average particle size of 9.8 μm were obtained in the range of 0.5 to 50 μm. Tg of the resin component of particle 1 was 100 ° C. Moreover, when the surface of the particle | grain 1 was observed by SEM, the unevenness | corrugation with a diameter equivalent diameter of about 100 nm was confirmed.

負帯電粒子としては、スチレンモノマー(関東化学試薬)60重量部、及び、1分子中に重合反応基を複数持つ多官能性モノマーとしてジビニルベンゼン(DVB−960:新日鐵化学製)40重量部(約35mol%)に、負帯電のモノマー難溶性荷電制御剤としてフェノール系縮合物(ボントロンE89:オリエント化学製)5重量部をサンドミルにより分散させ、白色無機顔料系着色剤として、酸化チタン(タイペークCR−50:石原産業製)80重量部を予めメタクリル樹脂(デルペット560F:旭化成製)20重量部に分散させたマスターバッチ25重量部と、(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製、弗化水素成分:C17)5重量を溶解させた液を、分子中にポリオキシアルキレン鎖とスルホン酸塩を含む界面活性剤としてポリオキシエチレンアルキルエーテル硫酸ナトリウム(ラテムルE−118B:花王製)を0.5wt%添加した40℃の精製水に懸濁させ、油滴径約80μmの懸濁液を得た。この懸濁液に、アシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を予め水に分散させた分散液を上記過酸化物が2重量部となるように添加した後、油滴径約10μmになるように再び懸濁を行い、加熱重合させ、濾過、乾燥させた後、分級機(MDS−2:日本ニューマチック工業)を用いて粒子径0.5〜50μmの範囲で平均粒子径9.5μmの粒子2を得た。粒子2の樹脂成分のTgは95℃であった。また、粒子2の表面をSEM観察したところ、直径相当径約150nmの凹凸が確認された。 Negatively charged particles include 60 parts by weight of styrene monomer (Kanto Chemical Reagent) and 40 parts by weight of divinylbenzene (DVB-960: manufactured by Nippon Steel Chemical Co., Ltd.) as a multifunctional monomer having a plurality of polymerization reactive groups in one molecule. (About 35 mol%), 5 parts by weight of a phenol-based condensate (Bontron E89: manufactured by Orient Chemical Co., Ltd.) as a negatively charged monomer hardly soluble charge control agent is dispersed by a sand mill, and a white inorganic pigment-based colorant is titanium oxide (type CR-50: made by Ishihara Sangyo Co., Ltd.) 80 parts by weight of methacrylic resin (Delpet 560F: made by Asahi Kasei Co., Ltd.) previously dispersed in 20 parts by weight of masterbatch 25 parts by weight, (acrylic and methacrylic) resin-(in the side chain) Copolymers (Modifier F600) with acrylic or methacrylic resins having hydrocarbons or fluorinated hydrocarbons NOF Corporation, hydrogen fluoride component: C 8 F 17) 5 was dissolved by weight liquid, polyoxyethylene alkyl ether sulfate as a surfactant comprising a polyoxyalkylene chain and sulfonate in the molecule (Latemul E -118B: manufactured by Kao) was suspended in purified water at 40 ° C. to which 0.5 wt% had been added to obtain a suspension having an oil droplet diameter of about 80 μm. In this suspension, a dispersion obtained by previously dispersing lauryl peroxide (Perroyl L: manufactured by NOF / 10-hour half-life temperature 61.6 ° C.), which is an acyl peroxide, in water is used as the peroxide. After adding so as to be part by weight, the suspension is again suspended so that the oil droplet diameter is about 10 μm, heated and polymerized, filtered and dried, and then used with a classifier (MDS-2: Nippon Pneumatic Industry). Thus, particles 2 having an average particle size of 9.5 μm were obtained in a particle size range of 0.5 to 50 μm. The Tg of the resin component of Particle 2 was 95 ° C. Moreover, when the surface of the particle | grain 2 was observed by SEM, the unevenness | corrugation whose diameter equivalent diameter is about 150 nm was confirmed.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加すると、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、情報表示用パネルは白色に表示された。いずれの場合でも、ITOガラス基板上に表示させたい粒子と別色の粒子の混在は無く、良好な表示品質が得られた。また、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白色表示時反射率と黒色表示時反射率との比が8倍となる電圧を駆動電圧として求めたところ、その電圧は、115Vであった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a DC voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are negatively charged on the low potential electrode side. The particles moved to the high potential electrode side, and the information display panel observed through the glass substrate was displayed in black. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions, and the information display panel was displayed in white. In any case, there was no mixture of particles to be displayed on the ITO glass substrate and particles of different colors, and good display quality was obtained. Further, the voltage was gradually increased, the reflectivity in each display state was measured, and the voltage at which the ratio of the reflectivity during white display and the reflectivity during black display was 8 times was determined as the drive voltage. The voltage was 115V.

<比較例1>
正帯電粒子として粒子1に(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製)を溶解させないこと以外は、実施例1記載の粒子1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.2μmの粒子3を得た。粒子3の樹脂成分のTgは102℃であった。また、粒子3の表面をSEM観察したところ、凹凸は確認されなかった。
<Comparative Example 1>
Do not dissolve (acrylic and methacrylic) resin (acrylic and methacrylic having a hydrocarbon or fluorinated hydrocarbon in the side chain) resin (Modiper F600: manufactured by NOF Corporation) as positively charged particles Except for this, particles 3 having an average particle size of 9.2 μm were obtained in the range of 0.5 to 50 μm in the same manner as the particles 1 described in Example 1. The Tg of the resin component of Particle 3 was 102 ° C. Moreover, when the surface of the particle | grain 3 was observed by SEM, the unevenness | corrugation was not confirmed.

負帯電粒子として粒子2に(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製)を溶解させないこと以外は、実施例1記載の粒子2と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径8.9μmの粒子4を得た。粒子4の樹脂成分のTgは96℃であった。また、粒子4の表面をSEM観察したところ、凹凸は確認されなかった。   Do not dissolve (acrylic and methacrylic) resin- (acrylic and methacrylic having a hydrocarbon or fluorinated hydrocarbon in the side chain) resin (Modiper F600: manufactured by NOF Corporation) in particle 2 as negatively charged particles Except for this, particles 4 having an average particle size of 8.9 μm were obtained in the range of 0.5 to 50 μm in the same manner as the particles 2 described in Example 1. The resin component of the particles 4 had a Tg of 96 ° C. Moreover, when the surface of the particle | grain 4 was observed by SEM, the unevenness | corrugation was not confirmed.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加したところ、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察されるパネルは黒色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、パネルは白色に表示されるのであるが、表示書き換えが不完全で良好な表示品質が得られなかった。電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白色表示時反射率と黒色表示時反射率との比が8倍となる電圧を駆動電圧として求めたところ、その電圧は、280Vであった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a direct current voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, positively charged particles are negatively connected to the low potential electrode side. The charged particles moved to the high potential electrode side, and the panel observed through the glass substrate was displayed in black. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions and the panel was displayed in white, but the display rewriting was incomplete and good display quality could not be obtained. The voltage was gradually increased, the reflectivity in each display state was measured, and the voltage at which the ratio of the reflectivity during white display to the reflectivity during black display was 8 times as the drive voltage. Was 280V.

<比較例2>
正帯電粒子として、粒子1の懸濁媒として前記界面活性剤を添加した精製水を65℃として使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.5μmの粒子5を得た。粒子5の樹脂成分のTgは100℃であった。また、粒子5の表面をSEM観察したところ、直径相当径約100nmの凹凸が確認された。しかし、重合開始剤の反応速度が速すぎたため、所定油滴径への懸濁以前に重合が開始したことにより、モノマーが増粘してしまい、結果として、粒子が概真球状とならず、不定形になってしまっていることが確認された。
<Comparative Example 2>
As positively charged particles, an average of particles having a particle diameter of 0.5 to 50 μm was obtained in exactly the same manner as in Example 1 except that purified water added with the surfactant as a suspension medium for particles 1 was used at 65 ° C. Particles 5 having a particle diameter of 9.5 μm were obtained. Tg of the resin component of the particles 5 was 100 ° C. Further, when the surface of the particle 5 was observed with an SEM, irregularities having an equivalent diameter of about 100 nm were confirmed. However, since the reaction rate of the polymerization initiator was too fast, the polymerization started before suspension to the predetermined oil droplet size, the monomer increased in viscosity, and as a result, the particles did not become nearly spherical, It was confirmed that it had become irregular.

負帯電粒子として、粒子2の懸濁媒として前記界面活性剤を添加した精製水を65℃として使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.1μmの粒子6を得た。粒子6の樹脂成分のTgは95℃であった。また、粒子6の表面をSEM観察したところ、直径相当径約150nmの凹凸が確認された。しかし、重合開始剤の反応速度が速すぎたため、所定油滴径への懸濁以前に重合が開始したことにより、モノマーが増粘してしまい、結果として、粒子が概真球状とならず、不定形になってしまっていることが確認された。   As negatively charged particles, the average particle size in the range of 0.5 to 50 μm was the same as in Example 1 except that purified water added with the surfactant as a suspension medium for particles 2 was used at 65 ° C. Particles 6 having a particle diameter of 9.1 μm were obtained. The Tg of the resin component of the particles 6 was 95 ° C. Further, when the surface of the particle 6 was observed with an SEM, irregularities having an equivalent diameter of about 150 nm were confirmed. However, since the reaction rate of the polymerization initiator was too fast, the polymerization started before suspension to the predetermined oil droplet size, the monomer increased in viscosity, and as a result, the particles did not become nearly spherical, It was confirmed that it had become irregular.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加すると、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、情報表示用パネルは白色に表示された。いずれの場合でも、ITOガラス基板上に表示させたい粒子と別色の粒子の混在は無く、良好な表示品質が得られた。また、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白色表示時反射率と黒色表示時反射率との比が8倍となる電圧を駆動電圧として求めたところ、その電圧は、180Vであった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a DC voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are negatively charged on the low potential electrode side. The particles moved to the high potential electrode side, and the information display panel observed through the glass substrate was displayed in black. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions, and the information display panel was displayed in white. In any case, there was no mixture of particles to be displayed on the ITO glass substrate and particles of different colors, and good display quality was obtained. Further, the voltage was gradually increased, the reflectivity in each display state was measured, and the voltage at which the ratio of the reflectivity during white display and the reflectivity during black display was 8 times was determined as the drive voltage. The voltage was 180V.

<比較例3>
正帯電粒子としてメチルメタクリレートモノマー(関東化学試薬)60重量部、及び、1分子中に重合反応基を複数持つ多官能性モノマーとしてエチレングリコールジメタクリレート(和光純薬試薬)40重量部(約25mol%)に、正帯電のモノマー難溶性荷電制御剤としてニグロシン化合物(ボントロンN07:オリエント化学製)3重量部をサンドミルにより分散させ、黒色無機顔料系着色剤として、カーボンブラック(MA100:三菱化学製)40重量部を予めメタクリル樹脂(デルペット560F:旭化成製)60重量部に分散させたマスターバッチ12.5重量部と、(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製、弗化水素成分:C17)5重量を溶解させた後、さらにアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)2重量部を30分間かけて溶解させた液を、分子中にポリオキシアルキレン鎖とスルホン酸塩を含む界面活性剤としてポリオキシエチレンアルキルエーテル硫酸ナトリウム(ラテムルE−118B:花王製)を0.5wt%添加した40℃の精製水に懸濁、重合させ、濾過、乾燥させた後、分級機(MDS−2:日本ニューマチック工業)を用いて粒子径0.5〜50μmの範囲で平均粒子径9.8μmの粒子7を得た。粒子1の樹脂成分のTgは100℃であった。また、粒子7の表面をSEM観察したところ、直径相当径約100nmの凹凸が確認されたが、概真球ではなく、不定形であった。
<Comparative Example 3>
60 parts by weight of methyl methacrylate monomer (Kanto Chemical Reagent) as positively charged particles, and 40 parts by weight (about 25 mol%) of ethylene glycol dimethacrylate (Wako Pure Chemical Reagent) as a multifunctional monomer having a plurality of polymerization reactive groups in one molecule ) 3 parts by weight of a nigrosine compound (Bontron N07: manufactured by Orient Chemical Co., Ltd.) as a positively charged monomer poorly soluble charge control agent is dispersed by a sand mill, and carbon black (MA100: manufactured by Mitsubishi Chemical Co.) 40 is used as a black inorganic pigment-based colorant. 12.5 parts by weight of a master batch in which parts by weight are previously dispersed in 60 parts by weight of methacrylic resin (Delpet 560F: manufactured by Asahi Kasei) and (acrylic and methacrylic) resin- (hydrocarbon or fluorohydrocarbon in the side chain) Copolymers with acrylic and methacrylic resins (Modiper) 600: NOF, hydrogen fluoride component: C 8 F 17) was dissolved 5 weight, more acyl peroxides in which lauryl peroxide (PEROYL L: product of NOF / 10 hour half-life temperature 61. 6 ° C.) A solution obtained by dissolving 2 parts by weight over 30 minutes was used as a surfactant containing a polyoxyalkylene chain and a sulfonate in the molecule, sodium polyoxyethylene alkyl ether sulfate (Latemul E-118B: manufactured by Kao) Is suspended in 40 ° C. purified water to which 0.5 wt% is added, polymerized, filtered and dried, and then the particle size is in the range of 0.5 to 50 μm using a classifier (MDS-2: Nippon Pneumatic Industry). Thus, particles 7 having an average particle diameter of 9.8 μm were obtained. Tg of the resin component of particle 1 was 100 ° C. Further, when the surface of the particle 7 was observed with an SEM, irregularities having an equivalent diameter of about 100 nm were confirmed, but the surface was not an approximate sphere but an indefinite shape.

負帯電粒子としては、スチレンモノマー(関東化学試薬)60重量部、及び、1分子中に重合反応基を複数持つ多官能性モノマーとしてジビニルベンゼン(DVB−960:新日鐵化学製)40重量部(約35mol%)に、負帯電のモノマー難溶性荷電制御剤としてフェノール系縮合物(ボントロンE89:オリエント化学製)5重量部をサンドミルにより分散させ、白色無機顔料系着色剤として、酸化チタン(タイペークCR−50:石原産業製)80重量部を予めメタクリル樹脂(デルペット560F:旭化成製)20重量部に分散させたマスターバッチ25重量部と、(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製、弗化水素成分:C17)5重量を溶解させた後、さらにアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)2重量部を30分間かけて溶解させた液を、分子中にポリオキシアルキレン鎖とスルホン酸塩を含む界面活性剤としてポリオキシエチレンアルキルエーテル硫酸ナトリウム(ラテムルE−118B:花王製)を0.5wt%添加した40℃の精製水に懸濁、重合させ、濾過、乾燥させた後、分級機(MDS−2:日本ニューマチック工業)を用いて粒子径0.5〜50μmの範囲で平均粒子径9.5μmの粒子8を得た。粒子8の樹脂成分のTgは95℃であった。また、粒子8の表面をSEM観察したところ、直径相当径約150nmの凹凸が確認されたが、概真球ではなく、不定形であった。 Negatively charged particles include 60 parts by weight of styrene monomer (Kanto Chemical Reagent) and 40 parts by weight of divinylbenzene (DVB-960: manufactured by Nippon Steel Chemical Co., Ltd.) as a multifunctional monomer having a plurality of polymerization reactive groups in one molecule. (About 35 mol%), 5 parts by weight of a phenol-based condensate (Bontron E89: manufactured by Orient Chemical Co., Ltd.) as a negatively charged monomer hardly soluble charge control agent is dispersed by a sand mill, and a white inorganic pigment-based colorant is titanium oxide (type CR-50: made by Ishihara Sangyo Co., Ltd.) 80 parts by weight of methacrylic resin (Delpet 560F: made by Asahi Kasei Co., Ltd.) previously dispersed in 20 parts by weight of masterbatch 25 parts by weight, (acrylic and methacrylic) resin-(in the side chain) Copolymers (Modifier F600) with acrylic or methacrylic resins having hydrocarbons or fluorinated hydrocarbons NOF Corporation, hydrogen fluoride component: After C 8 F 17) is dissolved 5 weight, more acyl system lauryl peroxide peroxides (PEROYL L: product of NOF / 10 hour half-life temperature of 61.6 ° C. ) 0% of sodium polyoxyethylene alkyl ether sulfate (Latemul E-118B: manufactured by Kao) was used as a surfactant containing 2 parts by weight of the polymer over 30 minutes and containing a polyoxyalkylene chain and a sulfonate in the molecule. After suspending, polymerizing, filtering and drying in purified water at 40 ° C. added with 5 wt%, the average particle size in the range of 0.5 to 50 μm using a classifier (MDS-2: Nippon Pneumatic Industry) Particles 8 having a particle diameter of 9.5 μm were obtained. The Tg of the resin component of the particles 8 was 95 ° C. Further, when the surface of the particle 8 was observed with an SEM, irregularities having an equivalent diameter of about 150 nm were confirmed, but they were not substantially spherical but irregular.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加すると、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、情報表示用パネルは白色に表示された。いずれの場合でも、ITOガラス基板上に表示させたい粒子と別色の粒子の混在は無く、良好な表示品質が得られた。また、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白色表示時反射率と黒色表示時反射率との比が8倍となる電圧を駆動電圧として求めたところ、その電圧は、170Vであった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a DC voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are negatively charged on the low potential electrode side. The particles moved to the high potential electrode side, and the information display panel observed through the glass substrate was displayed in black. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions, and the information display panel was displayed in white. In any case, there was no mixture of particles to be displayed on the ITO glass substrate and particles of different colors, and good display quality was obtained. Further, the voltage was gradually increased, the reflectivity in each display state was measured, and the voltage at which the ratio of the reflectivity during white display and the reflectivity during black display was 8 times was determined as the drive voltage. The voltage was 170V.

<比較例4>
正帯電粒子として、粒子1にアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を使用せず、代わりにt−ブチルパーオキシイソブチレート(パーブチルIB:日本油脂製/10時間半減期温度77.3℃)を使用した点以外は、実施例1と全く同じ方法で粒子の作製を試みたが、重合開始剤の反応性が遅すぎたため、モノマーが硬化せず、粒子は形成されなかった。
<Comparative example 4>
As the positively charged particles, lauryl peroxide (Perroyl L: manufactured by NOF Corporation / 10 hours half-life temperature 61.6 ° C.), which is an acyl peroxide, is not used for the particles 1, but t-butyl peroxyisobutylate is used instead. Except for using the rate (Perbutyl IB: manufactured by NOF Corporation / 10-hour half-life temperature 77.3 ° C.), production of particles was attempted in exactly the same manner as in Example 1, but the reactivity of the polymerization initiator was slow. As a result, the monomer was not cured and particles were not formed.

負帯電粒子として、粒子2にアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を使用せず、代わりにt−ブチルパーオキシイソブチレート(パーブチルIB:日本油脂製/10時間半減期温度77.3℃)を使用した点以外は、実施例1と全く同じ方法で粒子の作製を試みたが、重合開始剤の反応性が遅すぎたため、モノマーが硬化せず、粒子は形成されなかった。   As a negatively charged particle, lauryl peroxide (Perroyl L: manufactured by NOF Corporation / 10-hour half-life temperature 61.6 ° C.), which is an acyl peroxide, is not used for the particle 2, but t-butyl peroxyisobutylate is used instead. Except for using the rate (Perbutyl IB: manufactured by NOF Corporation / 10-hour half-life temperature 77.3 ° C.), production of particles was attempted in exactly the same manner as in Example 1, but the reactivity of the polymerization initiator was slow. As a result, the monomer was not cured and particles were not formed.

<実施例2>
正帯電粒子として、粒子1にアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を使用せず、代わりに1分子内の炭素数が10以上のアゾ系物質であるアゾビスジメチルバレロニトリル(V−65:和光純薬製/10時間半減期温度51℃)を使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.0μmの粒子9を得た。粒子9の樹脂成分のTgは100℃であった。また、粒子9の表面をSEM観察したところ、直径相当径約200nmの凹凸が確認された。
<Example 2>
As the positively charged particles, the lauryl peroxide (Perroyl L: manufactured by NOF / 10-hour half-life temperature 61.6 ° C.), which is an acyl peroxide, is not used for the particles 1, but the number of carbon atoms in one molecule is used instead. Except for using azobisdimethylvaleronitrile (V-65: manufactured by Wako Pure Chemical Industries, Ltd./10-hour half-life temperature 51 ° C.), which is 10 or more azo substances, the particle size of 0. Particles 9 having an average particle diameter of 9.0 μm were obtained in the range of 5 to 50 μm. Tg of the resin component of the particles 9 was 100 ° C. Further, when the surface of the particle 9 was observed with an SEM, irregularities having an equivalent diameter of about 200 nm were confirmed.

負帯電粒子として、粒子2にアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を使用せず、代わりに1分子内の炭素数が10以上のアゾ系物質であるアゾビスジメチルバレロニトリル(V−65:和光純薬製/10時間半減期温度51℃)を使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.6μmの粒子10を得た。粒子10の樹脂成分のTgは95℃であった。また、粒子10の表面をSEM観察したところ、直径相当径約200nmの凹凸が確認された。   As the negatively charged particles, lauryl peroxide (Perroyl L: manufactured by NOF / 10/10 half-life temperature 61.6 ° C.), which is an acyl peroxide, is not used for the particles 2, but the number of carbon atoms in one molecule is used instead. Except for using azobisdimethylvaleronitrile (V-65: manufactured by Wako Pure Chemical Industries, Ltd./10-hour half-life temperature 51 ° C.), which is 10 or more azo substances, the particle size of 0. Particles 10 having an average particle diameter of 9.6 μm were obtained in the range of 5 to 50 μm. The Tg of the resin component of the particles 10 was 95 ° C. Further, when the surface of the particle 10 was observed with an SEM, irregularities having an equivalent diameter of about 200 nm were confirmed.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加すると、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、情報表示用パネルは白色に表示された。いずれの場合でも、ITOガラス基板上に表示させたい粒子と別色の粒子の混在は無く、良好な表示品質が得られた。また、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白色表示時反射率と黒色表示時反射率との比が8倍となる電圧を駆動電圧として求めたところ、その電圧は、110Vであった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a DC voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are negatively charged on the low potential electrode side. The particles moved to the high potential electrode side, and the information display panel observed through the glass substrate was displayed in black. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions, and the information display panel was displayed in white. In any case, there was no mixture of particles to be displayed on the ITO glass substrate and particles of different colors, and good display quality was obtained. Further, the voltage was gradually increased, the reflectivity in each display state was measured, and the voltage at which the ratio of the reflectivity during white display and the reflectivity during black display was 8 times was determined as the drive voltage. The voltage was 110V.

<比較例5>
正帯電粒子として、粒子1にアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を使用せず、代わりに1分子内の炭素数が10以下のアゾ系物質であるアゾビスイソブチロニトリル(V−60:和光純薬製/10時間半減期温度65℃)を使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.9μmの粒子11を得た。粒子11の樹脂成分のTgは100℃であった。また、粒子11の表面をSEM観察したところ、直径相当径約200nmの凹凸が確認された。また、重合開始剤の疎水性が不十分であるため、乳化重合により副生成された微粒子が分級で分離しきれずに確認された。
<Comparative Example 5>
As the positively charged particles, the lauryl peroxide (Perroyl L: manufactured by NOF / 10-hour half-life temperature 61.6 ° C.), which is an acyl peroxide, is not used for the particles 1, but the number of carbon atoms in one molecule is used instead. A particle size of 0 in the same manner as in Example 1 except that azobisisobutyronitrile (V-60: manufactured by Wako Pure Chemical Industries, Ltd./10 hour half-life temperature 65 ° C.), which is an azo-based material of 10 or less, was used. Particles 11 having an average particle diameter of 9.9 μm were obtained in the range of 0.5 to 50 μm. The Tg of the resin component of the particles 11 was 100 ° C. Moreover, when the surface of the particle | grains 11 was observed by SEM, the unevenness | corrugation whose diameter equivalent diameter is about 200 nm was confirmed. Moreover, since the polymerization initiator was insufficient in hydrophobicity, it was confirmed that fine particles produced as a by-product by emulsion polymerization could not be separated by classification.

負帯電粒子として、粒子2にアシル系過酸化物であるラウリルパーオキサイド(パーロイルL:日本油脂製/10時間半減期温度61.6℃)を使用せず、代わりに1分子内の炭素数が10以下のアゾ系物質であるアゾビスイソブチロニトリル(V−60:和光純薬製/10時間半減期温度65℃)を使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.6μmの粒子12を得た。粒子12の樹脂成分のTgは95℃であった。また、粒子12の表面をSEM観察したところ、直径相当径約200nmの凹凸が確認された。また、重合開始剤の疎水性が不十分であるため、乳化重合により副生成された微粒子が分級で分離しきれずに確認された。   As the negatively charged particles, lauryl peroxide (Perroyl L: manufactured by NOF / 10/10 half-life temperature 61.6 ° C.), which is an acyl peroxide, is not used for the particles 2, but the number of carbon atoms in one molecule is used instead. A particle size of 0 in the same manner as in Example 1 except that azobisisobutyronitrile (V-60: manufactured by Wako Pure Chemical Industries, Ltd./10 hour half-life temperature 65 ° C.), which is an azo-based material of 10 or less, was used. Particles 12 having an average particle size of 9.6 μm were obtained in a range of 0.5 to 50 μm. The Tg of the resin component of the particles 12 was 95 ° C. Moreover, when the surface of the particle | grains 12 was observed by SEM, the unevenness | corrugation with a diameter equivalent diameter of about 200 nm was confirmed. Moreover, since the polymerization initiator was insufficient in hydrophobicity, it was confirmed that fine particles produced as a by-product by emulsion polymerization could not be separated by classification.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加すると、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、情報表示用パネルは白色に表示された。いずれの場合でも、ITOガラス基板上に表示させたい粒子と別色の粒子の混在は無く、良好な表示品質が得られた。また、電圧を徐々に大きくしていき反射率を観察したが、500V以下の電圧では、微粒子によるコントラスト低下のため、白色表示時反射率と黒色表示時反射率との比が8倍となる電圧を見出せなかった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a DC voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are negatively charged on the low potential electrode side. The particles moved to the high potential electrode side, and the information display panel observed through the glass substrate was displayed in black. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions, and the information display panel was displayed in white. In any case, there was no mixture of particles to be displayed on the ITO glass substrate and particles of different colors, and good display quality was obtained. In addition, the reflectance was observed by gradually increasing the voltage. At a voltage of 500 V or less, the voltage at which the ratio of the reflectance during white display to the reflectance during black display is 8 times due to a decrease in contrast due to fine particles. Could not be found.

<実施例3>
正帯電粒子として、粒子1に(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製)を使用せず、代わりに(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーとしてアクリルスチレン樹脂(スタイラックAS−767:旭化成製)を使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.8μmの粒子13を得た。粒子13の樹脂成分のTgは100℃であった。また、粒子13の表面をSEM観察したところ、直径相当径約150nmの凹凸が確認された。
<Example 3>
As the positively charged particles, a copolymer of (acrylic and methacrylic) resin- (acrylic and methacrylic having a hydrocarbon or fluorinated hydrocarbon in the side chain) resin (Modiper F600: manufactured by NOF Corporation) is used as the positively charged particle In the same manner as in Example 1 except that an acrylic styrene resin (Stylac AS-767: manufactured by Asahi Kasei) was used instead as the (acrylic and methacrylic) resin-hydrocarbon resin copolymer. Particles 13 having an average particle diameter of 9.8 μm were obtained in the range of 0.5 to 50 μm. The Tg of the resin component of the particles 13 was 100 ° C. Further, when the surface of the particle 13 was observed with an SEM, irregularities having an equivalent diameter of about 150 nm were confirmed.

負帯電粒子として、粒子2に(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマー(モディパーF600:日本油脂製)を使用せず、代わりに(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーとしてアクリルスチレン樹脂(スタイラックAS−767:旭化成製)を使用した点以外は、実施例1と全く同じ方法で粒子径0.5〜50μmの範囲で平均粒子径9.2μmの粒子14を得た。粒子14の樹脂成分のTgは95℃であった。また、粒子14の表面をSEM観察したところ、直径相当径約150nmの凹凸が確認された。   As the negatively charged particles, a copolymer (Modiper F600: manufactured by NOF Corporation) of (acrylic and methacrylic) resin- (acrylic and methacrylic resin having a hydrocarbon or fluorinated hydrocarbon in the side chain) is used as the particle 2 In the same manner as in Example 1 except that an acrylic styrene resin (Stylac AS-767: manufactured by Asahi Kasei) was used instead as the (acrylic and methacrylic) resin-hydrocarbon resin copolymer. Particles 14 having an average particle diameter of 9.2 μm were obtained in the range of 0.5 to 50 μm. The Tg of the resin component of the particles 14 was 95 ° C. Further, when the surface of the particle 14 was observed with an SEM, irregularities having an equivalent diameter of about 150 nm were confirmed.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加すると、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察される情報表示用パネルは黒色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、情報表示用パネルは白色に表示された。いずれの場合でも、ITOガラス基板上に表示させたい粒子と別色の粒子の混在は無く、良好な表示品質が得られた。また、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白色表示時反射率と黒色表示時反射率との比が8倍となる電圧を駆動電圧として求めたところ、その電圧は、110Vであった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a DC voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are negatively charged on the low potential electrode side. The particles moved to the high potential electrode side, and the information display panel observed through the glass substrate was displayed in black. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions, and the information display panel was displayed in white. In any case, there was no mixture of particles to be displayed on the ITO glass substrate and particles of different colors, and good display quality was obtained. Further, the voltage was gradually increased, the reflectivity in each display state was measured, and the voltage at which the ratio of the reflectivity during white display and the reflectivity during black display was 8 times was determined as the drive voltage. The voltage was 110V.

<実施例4>
正帯電粒子として、粒子1の黒色無機顔料系着色剤であるカーボンブラック(MA100:三菱化学製)を用いる代わりに、赤色着色剤として酸化鉄(TAROX R−516−L:チタン工業製)を使用した点以外は、実施例1と全く同じ方法で粒子15を得た。500nm以下の粒子は確認されなかった。また、粒子15の表面をSEM観察したところ、直径相当径約100nmの凹凸が確認された。
負帯電粒子としては、実施例1に記載の粒子2を使用した。
<Example 4>
As positively charged particles, instead of using carbon black (MA100: manufactured by Mitsubishi Chemical), which is a black inorganic pigment-based colorant for particles 1, iron oxide (TAROX R-516-L: manufactured by Titanium Industry) is used as a red colorant. Except for this point, particles 15 were obtained in exactly the same manner as in Example 1. Particles of 500 nm or less were not confirmed. Further, when the surface of the particle 15 was observed with an SEM, irregularities having an equivalent diameter of about 100 nm were confirmed.
As the negatively charged particles, the particles 2 described in Example 1 were used.

粒子の帯電は、両粒子を等量混合撹拌して摩擦帯電を行った。
上記混合粒子を、100μmのスペーサーを介して配置された、一方が内側ITO処理されたガラス基板と、もう一方が銅基板であるセル中に体積含有率30%で充填し、情報表示用パネルを得た。ITOガラス基板、銅基板それぞれに電源を接続し、ITOガラス基板が低電位に、銅基板が高電位となるように250Vの直流電圧を印加すると、正帯電粒子は低電位極側に、負帯電粒子は高電位極側にそれぞれ移動し、ガラス基板を通して観察される情報表示用パネルは赤色に表示された。次に、印加電圧の電位を逆にすると、粒子はそれぞれ逆方向に移動して、情報表示用パネルは白色に表示された。いずれの場合でも、ITOガラス基板上に表示させたい粒子と別色の粒子の混在は無く、良好な表示品質が得られた。また、電圧を徐々に大きくしていき、それぞれの表示状態における反射率を測定し、白色表示時反射率と赤色表示時反射率との比が8倍となる電圧を駆動電圧として求めたところ、その電圧は、125Vであった。
The particles were charged by friction charging by mixing and stirring the same amount of both particles.
The mixed particles are filled in a cell having a volume content of 30% in a cell which is disposed through a spacer of 100 μm, one is an inner ITO-treated glass substrate and the other is a copper substrate. Obtained. When a power supply is connected to each of the ITO glass substrate and the copper substrate, and a DC voltage of 250 V is applied so that the ITO glass substrate is at a low potential and the copper substrate is at a high potential, the positively charged particles are negatively charged on the low potential electrode side. The particles moved to the high potential electrode side, and the information display panel observed through the glass substrate was displayed in red. Next, when the potential of the applied voltage was reversed, the particles moved in the opposite directions, and the information display panel was displayed in white. In any case, there was no mixture of particles to be displayed on the ITO glass substrate and particles of different colors, and good display quality was obtained. Further, the voltage was gradually increased, the reflectance in each display state was measured, and the voltage at which the ratio of the reflectance during white display and the reflectance during red display was 8 times was determined as the drive voltage. The voltage was 125V.

以上をまとめると、実施例1、実施例2、実施例3、実施例4の表示媒体用粒子は、粒子表面に微小な凹凸が一様に形成されるとともに、駆動電圧が低いものとなったため、表示不良を起こし難い表示媒体用粒子となっていることがわかった。
一方、比較例1の表示媒体用粒子は、粒子表面に微小な凹凸が形成されておらず、これを表示媒体としたため駆動電圧が高いものとなったため、表示不良を起こし易い表示媒体用粒子となっていること、比較例2および比較例3の表示媒体用粒子は、粒子表面に微小な凹凸が形成されたが粒子が概真球になっておらず、これを表示媒体としたため駆動電圧が高いものとなったため、表示不良を起こし難い表示媒体用粒子となっていること、比較例4は粒子を形成することが自体ができず、比較例5の表示媒体用粒子は、粒子表面に微小な凹凸が形成されたが微粒子が分離しきれずに残存するとともに、微粒子によるコントラスト低下によって駆動電圧が見出せず、表示不良を起こし難い表示媒体用粒子となっていることがわかった。
In summary, the particles for display media of Example 1, Example 2, Example 3, and Example 4 were uniformly formed with minute irregularities on the particle surface, and the driving voltage was low. As a result, it was found that the particles for display media hardly cause display defects.
On the other hand, the particles for display medium of Comparative Example 1 have no minute irregularities on the particle surface, and since this was used as a display medium, the drive voltage was high. In the display medium particles of Comparative Example 2 and Comparative Example 3, fine irregularities were formed on the particle surface, but the particles were not substantially spherical. Since it was high, it was a display medium particle that hardly caused a display defect, and Comparative Example 4 could not form a particle itself, and the display medium particle of Comparative Example 5 was very small on the particle surface. It was found that fine irregularities were formed but the fine particles remained without being separated and the drive voltage could not be found due to the decrease in contrast due to the fine particles, resulting in display medium particles that hardly caused display defects.

本発明の製造方法で作製した表示媒体用粒子およびそれを用いた情報表示用パネルおよび情報表示装置は、ノートパソコン、PDA、携帯電話、ハンディターミナル等のモバイル機器の表示部、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、電卓、家電製品、自動車用品等の表示部、ポイントカード、ICカード等のカード表示部、電子広告、電子POP(Point Of Presence 、Point Of Purchase advertising )、電子棚札、情報ボード、電子値札、電子楽譜、RF−ID機器の表示部などに好適に用いられる。   Particles for display medium produced by the production method of the present invention, and an information display panel and information display device using the same are provided for display devices of mobile devices such as notebook computers, PDAs, mobile phones, handy terminals, electronic books, and electronic newspapers. Electronic paper, signboards, posters, bulletin boards such as blackboards, calculators, home appliances, display parts for automobiles, card displays such as point cards, IC cards, electronic advertisements, electronic POPs (Point Of Presence, Point Of Purchase) advertising), an electronic shelf label, an information board, an electronic price tag, an electronic score, and a display unit of an RF-ID device.

(a)、(b)はそれぞれ本発明の情報表示用パネルの一例を示す図である。(A), (b) is a figure which shows an example of the information display panel of this invention, respectively. (a)、(b)はそれぞれ本発明の情報表示用パネルの他の例を示す図である。(A), (b) is a figure which shows the other example of the information display panel of this invention, respectively. (a)、(b)はそれぞれ本発明の情報表示用パネルのさらに他の例を示す図である。(A), (b) is a figure which shows the further another example of the information display panel of this invention, respectively. 本発明の製造方法で製造した表示媒体用粒子を走査型電子顕微鏡(SEM)で撮像した一例を示す図である。It is a figure which shows an example which imaged the particle | grains for display media manufactured with the manufacturing method of this invention with the scanning electron microscope (SEM). 本発明の情報表示用パネルにおける隔壁の形状の一例を示す図である。It is a figure which shows an example of the shape of the partition in the information display panel of this invention.

符号の説明Explanation of symbols

1 基板
2 基板
3 表示媒体(粒子群)
3W 白色表示媒体
3B 黒色表示媒体
3Wa 白色表示媒体用粒子
3Ba 黒色表示媒体用粒子
4 隔壁
5 電極
6 電極
1 Substrate 2 Substrate 3 Display medium (particle group)
3W White display medium 3B Black display medium 3Wa White display medium particle 3Ba Black display medium particle 4 Partition 5 Electrode 6 Electrode

Claims (12)

少なくとも一方が透明な2枚の基板間に表示媒体を封入し、表示媒体に電界を付与することによって表示媒体を移動させて情報を表示する情報表示装置に用いる表示媒体を構成する表示媒体用粒子の製造方法において、
前記製造方法は、モノマーを含み、該モノマーの一部もしくは全部が1分子中に重合反応基を複数持つ多官能性モノマーである粒子原料であり、かつ、該粒子原料中に(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーもしくは(アクリル系およびメタクリル系)樹脂−(側鎖に炭化水素あるいは弗化炭化水素を持つアクリル系およびメタクリル系)樹脂とのコポリマーを含有する粒子原料を、少なくとも1種以上の界面活性剤を含有した懸濁媒に懸濁させた後、粒子原料を重合させて概球形粒子を得る懸濁重合法であり、かつ、懸濁媒に粒子原料を所定油滴径以上の油滴径に懸濁させた後、10時間半減期温度が75℃以下で分解して重合を開始もしくは促進させる効果を持つ物質を懸濁媒に添加し、その後、粒子原料の所定油滴径への懸濁と前記物質の分散とを同時に行い、さらにその後重合して粒子表面に微小な凹凸を一様に有する表示媒体用粒子を得ることを特徴とする表示媒体用粒子の製造方法。
Particles for display medium constituting a display medium used for an information display device that displays information by enclosing a display medium between two transparent substrates and applying an electric field to the display medium In the manufacturing method of
The production method includes a particle raw material containing a monomer, and a part or all of the monomer is a polyfunctional monomer having a plurality of polymerization reactive groups in one molecule, and the particle raw material includes (acrylic and methacrylic). System) -resin-hydrocarbon resin copolymer or (acrylic and methacrylic) resin- (acrylic and methacrylic resin having a hydrocarbon or fluorohydrocarbon in the side chain) This is a suspension polymerization method in which after suspending in a suspension medium containing one or more surfactants, the particle raw material is polymerized to obtain roughly spherical particles, and the particle raw material is added to the suspension medium in predetermined oil droplets. After suspending in an oil droplet diameter larger than the diameter, a substance having an effect of decomposing at 10 hours half-life temperature of 75 ° C. or less and initiating or accelerating polymerization is added to the suspension medium. A particle for a display medium, characterized in that the suspension to a constant oil droplet size and the dispersion of the substance are simultaneously performed and then polymerized to obtain particles for a display medium having uniform fine irregularities on the particle surface. Production method.
前記物質を懸濁媒に投入する際の懸濁媒の温度が10時間半減期温度以下であることを特徴とする請求項1に記載の表示媒体用粒子の製造方法。   The method for producing particles for a display medium according to claim 1, wherein the temperature of the suspension medium when the substance is charged into the suspension medium is 10 hours half-life temperature or less. 前記所定油滴径が0.5〜50μmであり、該油滴を重合させて粒子径0.5〜50μmの範囲にある粒子を得ることを特徴とする請求項1に記載の表示媒体用粒子の製造方法。   2. The display medium particle according to claim 1, wherein the predetermined oil droplet diameter is 0.5 to 50 [mu] m, and the oil droplet is polymerized to obtain particles having a particle diameter in the range of 0.5 to 50 [mu] m. Manufacturing method. 請求項1〜3のいずれか1項に記載の製造方法で作製したことを特徴とする表示媒体用粒子。   A particle for a display medium, which is produced by the production method according to claim 1. 前記微小な凹凸が、直径相当径0.01〜0.5μmの凸部もしくは凹部であることを特徴とする請求項4に記載の表示媒体用粒子。   The display medium particle according to claim 4, wherein the minute unevenness is a protrusion or a recess having an equivalent diameter of 0.01 to 0.5 μm. 前記(アクリル系およびメタクリル系)樹脂−炭化水素系樹脂コポリマーの炭化水素系樹脂が、スチレン系樹脂であることを特徴とする請求項4または5に記載の表示媒体用粒子。   6. The display medium particle according to claim 4, wherein the hydrocarbon resin of the (acrylic and methacrylic) resin-hydrocarbon resin copolymer is a styrene resin. 前記重合を開始もしくは促進させる効果を持つ物質がアシル系過酸化物であることを特徴とする請求項4〜6のいずれか1項に記載の表示媒体用粒子。   The display medium particle according to claim 4, wherein the substance having an effect of initiating or promoting the polymerization is an acyl peroxide. 前記重合を開始もしくは促進させる効果を持つ物質が1分子内の炭素数が10以上のアゾ系物質であることを特徴とする請求項4〜6のいずれか1項に記載の表示媒体用粒子。   The display medium particle according to any one of claims 4 to 6, wherein the substance having an effect of initiating or promoting the polymerization is an azo substance having 10 or more carbon atoms in one molecule. 前記粒子の色が、白色であることを特徴とする請求項4〜8のいずれか1項に記載の表示媒体用粒子。   The particle for display medium according to any one of claims 4 to 8, wherein the color of the particle is white. 前記粒子の色が、黒色であることを特徴とする請求項4〜8のいずれか1項に記載の表示媒体用粒子。   The particle for display medium according to any one of claims 4 to 8, wherein the color of the particle is black. 前記粒子の色が、赤色であることを特徴とする請求項4〜8のいずれか1項に記載の表示媒体用粒子。   The particle for display medium according to any one of claims 4 to 8, wherein the color of the particle is red. 請求項4〜11のいずれか1項に記載の表示媒体用粒子を用いたことを特徴とする情報表示装置。   An information display device using the display medium particle according to any one of claims 4 to 11.
JP2006102924A 2005-04-06 2006-04-04 Method of manufacturing particle for display medium, particle for display medium and information display device Withdrawn JP2006313325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102924A JP2006313325A (en) 2005-04-06 2006-04-04 Method of manufacturing particle for display medium, particle for display medium and information display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005109756 2005-04-06
JP2006102924A JP2006313325A (en) 2005-04-06 2006-04-04 Method of manufacturing particle for display medium, particle for display medium and information display device

Publications (1)

Publication Number Publication Date
JP2006313325A true JP2006313325A (en) 2006-11-16

Family

ID=37534824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102924A Withdrawn JP2006313325A (en) 2005-04-06 2006-04-04 Method of manufacturing particle for display medium, particle for display medium and information display device

Country Status (1)

Country Link
JP (1) JP2006313325A (en)

Similar Documents

Publication Publication Date Title
JP4328309B2 (en) Particles for display medium and information display panel using the same
JP2006313334A (en) Particle for display medium and information display panel using the same
JP2006313340A (en) Particle for display medium, and panel for information display using the same
JP2006313337A (en) Particle for black display medium and information display panel using the same
JP2006309213A (en) Particle for display medium and panel for information display using same
JP2006313326A (en) Particle for display medium and panel for information display using same
JP2006309212A (en) Particle for display medium and panel for information display using same
JP2006313336A (en) Particle for display medium and information display panel using the same
JP2006313325A (en) Method of manufacturing particle for display medium, particle for display medium and information display device
JP2007298969A (en) Particles for display medium, and information display panel using the particles
JP2006235621A (en) Particle for display medium and information display device using the same
JP2006309210A (en) Particle for display medium, and panel for information display using the same
JP2006293154A (en) Method for manufacturing panel for information display, and panel for information display
JP2006313327A (en) Particle for display medium and information display panel using the same
JP2006313329A (en) Particle for display medium, and panel for information display using the same
JP5134775B2 (en) Particles for display media and information display panels
JP4863762B2 (en) Particles for display media and information display panels
WO2006109648A1 (en) Information display panel
JP2006313333A (en) Information display panel
JP2006072223A (en) Particle for picture display medium and picture display device using the same
JP2006099046A (en) Particle for display medium and information display apparatus using same
JP2008102231A (en) Particle for display medium and panel for information display using the same
JP2006313339A (en) Particle for display medium and information display panel using the same
JP2006313338A (en) Particle for display medium and information display panel using the same
JP2007178855A (en) Particles for display medium, manufacturing method therefor, and information display panel using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707