JP2006312135A - Superecritical carbon dioxide sterilizing device - Google Patents

Superecritical carbon dioxide sterilizing device Download PDF

Info

Publication number
JP2006312135A
JP2006312135A JP2005135698A JP2005135698A JP2006312135A JP 2006312135 A JP2006312135 A JP 2006312135A JP 2005135698 A JP2005135698 A JP 2005135698A JP 2005135698 A JP2005135698 A JP 2005135698A JP 2006312135 A JP2006312135 A JP 2006312135A
Authority
JP
Japan
Prior art keywords
carbon dioxide
liquid
sterilized
mixed fluid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005135698A
Other languages
Japanese (ja)
Inventor
Ikuro Sato
幾郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2005135698A priority Critical patent/JP2006312135A/en
Publication of JP2006312135A publication Critical patent/JP2006312135A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Cyclones (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercritical carbon dioxide sterilizing device suitable for sterilizing a liquid easy to foam up. <P>SOLUTION: The supercritical carbon dioxide sterilizing device 1 is provided with a mixing-dissolving means 30 mixing carbon dioxide with the liquid to be sterilized to dissolve, a constant-temperature holding means 40 warming the mixed fluid yielded by the mixing-dissolving means 30 up to the predetermined temperature, and at the same time, holding the mixed fluid warmed up to the predetermined temperature at the predetermined temperature and pressure where the carbon dioxide turns to a supercritical state, to sterilize, a pressure releasing means 52 reducing the pressure of the mixed fluid sterilized by the constant-temperature holding means 40 up to the pressure where the carbon dioxide turns to a gaseous state, and a separating means 60 dividing the mixed fluid pressure-reduced by the pressure releasing means 52 into the carbon dioxide in the gaseous state and the sterilized liquid. In the device, the separating means 60 is to be a cyclone. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体(液状の原料や製品など)を加工処理し、そこでの微生物および/または酵素活動を減少させるための装置に関し、より具体的には超臨界状態の二酸化炭素を利用した殺菌装置に関する。   The present invention relates to an apparatus for processing a liquid (liquid raw material, product, etc.) and reducing microbial and / or enzymatic activity therein, and more specifically, a sterilizer using carbon dioxide in a supercritical state. About.

牛乳、ジュース、清涼飲料水、ミネラルウォーターのような飲料、スープのような液状食品、ビールのような酒類等の保存性の向上のため、また発酵用培地の事前滅菌のため、種々の殺菌装置が開発されている。一般的には加熱殺菌装置が多用されているが、加熱殺菌では飲料等では風味、組織、栄養価の劣化、また発酵用培地では培地としての機能の低下が生じるおそれがある。このため低温加熱あるいは加熱によらない殺菌方法が求められることもある。非加熱の除菌方法としてはろ過除菌が挙げられるが、清澄な液にしか適用できないので、具等の固体が入った液体に適用できないという欠点がある。また非加熱の殺菌方法としては高圧殺菌が挙げられるが、高圧を使用するため、設備や運用上のコストが高いという欠点がある。   Various sterilizers for improving the preservability of milk, juice, beverages such as soft drinks, mineral water, liquid foods such as soups, alcoholic beverages such as beer, and pre-sterilization of fermentation medium Has been developed. In general, heat sterilization apparatuses are frequently used. However, in heat sterilization, there is a possibility that flavor, tissue, nutritional value will be deteriorated in beverages, etc., and that the function as medium will be reduced in fermentation medium. For this reason, a low temperature heating or a sterilization method not using heating may be required. Non-heated sterilization methods include filtration sterilization, but since it can be applied only to a clear liquid, there is a disadvantage that it cannot be applied to a liquid containing a solid such as a tool. Moreover, although high pressure sterilization is mentioned as a non-heating sterilization method, since high pressure is used, there exists a fault that the cost on an installation or operation is high.

このような観点から、近年は、超臨界状態の二酸化炭素を利用した殺菌装置(本明細書では「超臨界二酸化炭素殺菌装置」という場合がある。)が知られている(例えば、特許文献1〜3参照)。この種の殺菌装置では、殺菌すべき液体を超臨界状態の二酸化炭素と接触させることで液体の殺菌を行う。二酸化炭素は安全性が高く、かつ殺菌処理後に気化させることにより液体中への残留もない、という利点を有するので、飲料等や培地などの殺菌に好適である。
特開2000−83634号公報 特開平7−170965号公報 特開2004−290081号公報
From this point of view, in recent years, a sterilizer using carbon dioxide in a supercritical state (in this specification, sometimes referred to as “supercritical carbon dioxide sterilizer”) is known (for example, Patent Document 1). To 3). In this type of sterilizer, the liquid to be sterilized is brought into contact with carbon dioxide in a supercritical state to sterilize the liquid. Since carbon dioxide has the advantage that it is highly safe and does not remain in the liquid by being vaporized after the sterilization treatment, it is suitable for sterilization of beverages and culture media.
JP 2000-83634 A Japanese Patent Laid-Open No. 7-170965 JP 2004-290081 A

超臨界二酸化炭素殺菌装置は、種々の液体の殺菌への適用が望まれる。しかしながら、粘度の高い液体、発泡しやすい液体、懸濁物質の含まれる液体などの場合には、殺菌後、二酸化炭素を気化させる際に泡が生じ、装置の運用に支障が生じることが懸念される。例えば、殺菌後の液体を貯留するタンク内に泡が充満し、実質的な貯留量が少なくなったり、タンクの上部から泡が溢れたりするおそれがある。また、気化した二酸化炭素中に液体の微粒子が混入して、殺菌済みの液体の回収量が少なくなったり、二酸化炭素の回収や再利用に支障が生じるおそれがある。とりわけ、タンパク質を含む液体は、発泡しやすい液体の一つである。タンパク質は加熱により変性するので、タンパク質を含む液体の殺菌のため、低温殺菌が可能な超臨界二酸化炭素殺菌装置の適用が望まれる。   The supercritical carbon dioxide sterilizer is desired to be applied to sterilization of various liquids. However, in the case of liquids with high viscosity, liquids that easily foam, liquids that contain suspended substances, bubbles are generated when carbon dioxide is vaporized after sterilization, and there is concern that the operation of the apparatus may be hindered. The For example, there is a possibility that bubbles are filled in a tank that stores the sterilized liquid, and that a substantial storage amount is reduced or bubbles are overflowed from the upper part of the tank. In addition, liquid fine particles may be mixed in the vaporized carbon dioxide, so that the amount of recovered liquid that has been sterilized may be reduced, or the recovery or reuse of carbon dioxide may be hindered. In particular, a liquid containing protein is one of the liquids that easily foam. Since protein is denatured by heating, application of a supercritical carbon dioxide sterilizer capable of pasteurization is desired for sterilization of a liquid containing protein.

殺菌後の液体と超臨界二酸化炭素との混合物を大型の貯留タンクに回収して、該貯留タンク内で気体の二酸化炭素を分離することも考えられる(例えば特許文献1の段落0017に記載の分離槽、特許文献2の段落0025に記載の分離容器を参照)。しかし、これらの文献には、処理後の混合物が泡状になった場合の対処について特に記載はなく、発泡性の液体の殺菌に適するものとはいえない。   It is also conceivable to collect a mixture of the sterilized liquid and supercritical carbon dioxide in a large storage tank and separate gaseous carbon dioxide in the storage tank (for example, the separation described in paragraph 0017 of Patent Document 1). Tank, see separation container described in paragraph 0025 of patent document 2). However, these documents do not particularly describe how to deal with the case where the mixture after treatment becomes foamy, and are not suitable for sterilization of foaming liquid.

すなわち、殺菌後の混合物が泡状になった場合、以下のような問題が生じうる。泡状の混合物を貯留タンクに回収して静置するだけでは、泡が長時間残留するため、殺菌後の液体を速やかに次工程に移すことが難しい。また脱気装置で吸引した場合には、気体のみならず泡の液膜も吸引され、殺菌済み液体の回収量が目減りする等の問題が生じる。公知の脱泡手段や消泡手段を適用することも考えられるが、殺菌済み液体について要求される衛生的基準を満たす取り扱いが難しい。食品添加物の消泡剤をあらかじめ液体に添加する方法も考えられるが、液体の用途によっては、消泡剤の添加が好ましくない場合もある。   That is, when the mixture after sterilization becomes foamy, the following problems may occur. If the foam-like mixture is simply collected in the storage tank and left to stand, the foam remains for a long time, so that it is difficult to quickly transfer the sterilized liquid to the next step. Further, when sucking with a degassing device, not only gas but also a liquid film of bubbles is sucked, resulting in a problem that the amount of recovered sterilized liquid is reduced. Although it is conceivable to apply known defoaming means and defoaming means, it is difficult to handle sanitary liquids that meet the sanitary standards required. Although the method of adding the antifoamer of a food additive to a liquid beforehand is also considered, addition of an antifoamer may not be preferable depending on the use of a liquid.

本発明は、上記事情に鑑みてなされたものであり、発泡しやすい液体の殺菌に好適に採用することができる超臨界二酸化炭素殺菌装置を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the supercritical carbon dioxide sterilizer which can be employ | adopted suitably for sterilization of the liquid which is easy to foam.

前記課題を解決するため、本発明は、殺菌すべき液体に二酸化炭素を混合して溶解する混合溶解手段と、前記混合溶解手段によって得られる混合流体を所定の温度まで昇温するとともに前記所定の温度まで昇温された混合流体を二酸化炭素が超臨界状態となる所定の温度と圧力に保持して殺菌する恒温保持手段と、前記恒温保持手段によって殺菌された混合流体を二酸化炭素が気体状態となる圧力まで減圧する圧力開放手段と、前記圧力開放手段によって減圧された混合流体を気体状態の二酸化炭素と殺菌済みの液体とに分離する分離手段とを備えた超臨界二酸化炭素殺菌装置において、前記分離手段がサイクロンであることを特徴とする超臨界二酸化炭素殺菌装置を提供する。
前記分離手段は、複数のサイクロンを直列または並列に接続したものとすることができる。
In order to solve the above-mentioned problems, the present invention provides a mixing / dissolving means for mixing and dissolving carbon dioxide in a liquid to be sterilized, a mixed fluid obtained by the mixing / dissolving means being heated to a predetermined temperature, and A constant temperature holding means for sterilizing the mixed fluid heated to a temperature at a predetermined temperature and pressure at which carbon dioxide becomes a supercritical state, and the mixed fluid sterilized by the constant temperature holding means is in a gaseous state. In a supercritical carbon dioxide sterilizer comprising pressure release means for reducing the pressure to a pressure, and separation means for separating the mixed fluid decompressed by the pressure release means into gaseous carbon dioxide and sterilized liquid, A supercritical carbon dioxide sterilizer characterized in that the separation means is a cyclone.
The separating means may be a plurality of cyclones connected in series or in parallel.

本発明によれば、超臨界二酸化炭素殺菌装置において発泡性の液体(液状の原料や製品など)を殺菌した後、効率よく泡を消すことができ、また殺菌済みの液体を歩留まり良く回収することができる。これにより、食品や発酵の分野で好適に使用できる超臨界二酸化炭素殺菌装置を提供することができる。   According to the present invention, after a foamable liquid (liquid raw material, product, etc.) is sterilized in a supercritical carbon dioxide sterilization apparatus, bubbles can be efficiently erased, and the sterilized liquid can be recovered with a high yield. Can do. Thereby, the supercritical carbon dioxide sterilizer which can be used conveniently in the field | area of a foodstuff or fermentation can be provided.

以下、最良の形態に基づき、図面を参照して本発明を説明する。
図1は、本発明の超臨界二酸化炭素殺菌装置の一例を示す概略構成図である。図1に示す超臨界二酸化炭素殺菌装置1は、殺菌すべき液体を供給する液体供給手段10と、二酸化炭素を供給する二酸化炭素供給手段20と、殺菌すべき液体に二酸化炭素を混合して溶解する混合溶解手段30と、前記混合溶解手段30によって得られる混合流体を所定の温度まで昇温するとともに前記所定の温度まで昇温された混合流体を二酸化炭素が超臨界状態となる所定の温度と圧力に保持して殺菌する恒温保持手段40と、前記恒温保持手段40によって殺菌された混合流体を二酸化炭素が気体状態となるまで減圧する圧力開放手段52と、前記圧力開放手段52によって減圧された混合流体を気体状態の二酸化炭素と殺菌済みの液体とに分離する分離手段60としてのサイクロンを備える。
The present invention will be described below with reference to the drawings based on the best mode.
FIG. 1 is a schematic configuration diagram showing an example of a supercritical carbon dioxide sterilizer according to the present invention. A supercritical carbon dioxide sterilizer 1 shown in FIG. 1 includes a liquid supply means 10 for supplying a liquid to be sterilized, a carbon dioxide supply means 20 for supplying carbon dioxide, and a liquid to be sterilized by mixing and dissolving carbon dioxide. Mixing and dissolving means 30, and the mixed fluid obtained by the mixing and dissolving means 30 is heated to a predetermined temperature, and the mixed fluid heated to the predetermined temperature has a predetermined temperature at which carbon dioxide becomes a supercritical state. The constant temperature holding means 40 for holding and sterilizing the pressure, the pressure release means 52 for reducing the pressure of the mixed fluid sterilized by the constant temperature holding means 40 until the carbon dioxide is in a gaseous state, and the pressure release means 52 for reducing the pressure. A cyclone is provided as separation means 60 for separating the mixed fluid into gaseous carbon dioxide and sterilized liquid.

液体供給手段10は、殺菌すべき液体を貯留する液体貯留手段11と、一端が液体貯留手段11に接続された液体供給管路12と、液体供給管路12の途中に設けられた調節弁13と、液体供給管路12を通して液体を圧送する圧送ポンプ14(定量ポンプ)とを有する。   The liquid supply means 10 includes a liquid storage means 11 for storing a liquid to be sterilized, a liquid supply line 12 having one end connected to the liquid storage means 11, and a control valve 13 provided in the middle of the liquid supply line 12. And a pumping pump 14 (metering pump) that pumps the liquid through the liquid supply pipe 12.

二酸化炭素供給手段20は、二酸化炭素を貯留する二酸化炭素貯留手段21(例えば液化炭酸ガスボンベ)と、一端が二酸化炭素貯留手段21に接続された二酸化炭素供給管路22と、二酸化炭素供給管路22を通して液体状態の二酸化炭素(液化炭酸ガス)を圧送する圧送ポンプ24(定量ポンプ)とを有する。なお、二酸化炭素供給管路22には、内部を流れる二酸化炭素が沸騰しないように、図示しない冷却装置が設けられている。   The carbon dioxide supply means 20 includes a carbon dioxide storage means 21 (for example, a liquefied carbon dioxide cylinder) for storing carbon dioxide, a carbon dioxide supply pipe 22 having one end connected to the carbon dioxide storage means 21, and a carbon dioxide supply pipe 22. And a pumping pump 24 (metering pump) for pumping liquid carbon dioxide (liquefied carbon dioxide gas) through. The carbon dioxide supply line 22 is provided with a cooling device (not shown) so that carbon dioxide flowing inside does not boil.

混合溶解手段30は、殺菌すべき液体と二酸化炭素とを混合して溶解させるものである。本発明では、殺菌すべき液体と二酸化炭素とが混合してなる流体を「混合流体」と称するものとする。混合溶解手段30は、液体供給管路12の他端および二酸化炭素供給管路22の他端が合流して接続される管路結合点31と、管路結合点31の下流側で混合流体が通液される混合流体管路32とを有する。液体供給管路12を通して供給される殺菌すべき液体と、二酸化炭素供給管路22を通して供給される二酸化炭素とは、管路結合点31で混合され、さらに混合流体管路32を通過する間に相互に溶解して混合流体となる。   The mixing and dissolving means 30 mixes and dissolves the liquid to be sterilized and carbon dioxide. In the present invention, a fluid obtained by mixing a liquid to be sterilized and carbon dioxide is referred to as a “mixed fluid”. The mixing / dissolving means 30 includes a pipe connection point 31 where the other end of the liquid supply pipe 12 and the other end of the carbon dioxide supply pipe 22 merge and are connected to each other, and a mixed fluid on the downstream side of the pipe connection point 31. And a mixed fluid conduit 32 through which liquid is passed. The liquid to be sterilized supplied through the liquid supply line 12 and the carbon dioxide supplied through the carbon dioxide supply line 22 are mixed at the pipe connection point 31 and further passed through the mixed fluid line 32. Dissolves with each other to form a mixed fluid.

恒温保持手段40は、混合流体が通る恒温保持管路41と、この恒温保持管路41の周囲を覆う恒温水槽42とを有する。恒温保持管路41の上流側は混合流体管路32に接続されており、液体供給手段10の液体供給管路12から続く連続的な流路を形成している。恒温水槽42には恒温の水が貯留されて所定の温度に維持されている。このため、恒温保持管路41の内部を通過する混合流体の温度を一定に保つことができる。恒温保持管路41を通過する混合流体は、恒温水槽42との熱交換により所定の温度まで昇温され、さらに混合流体中の二酸化炭素が超臨界状態となる所定の温度と圧力にて保持される。こうして恒温保持管路41内で殺菌すべき液体が超臨界状態の二酸化炭素と接触することにより、液体が殺菌されることになる。恒温保持管路41の下流側、すなわち恒温水槽42を出た後は、液体の殺菌が終了した混合流体が流れる排出管路51を形成している。したがって、液体供給管路12、恒温保持管路41、および排出管路51は、各々接続されており、一連の流路を形成している。   The constant temperature holding means 40 has a constant temperature holding pipe 41 through which the mixed fluid passes, and a constant temperature water tank 42 covering the periphery of the constant temperature holding pipe 41. The upstream side of the constant temperature holding pipe 41 is connected to the mixed fluid pipe 32 and forms a continuous flow path continuing from the liquid supply pipe 12 of the liquid supply means 10. Constant temperature water is stored in the constant temperature water tank 42 and maintained at a predetermined temperature. For this reason, the temperature of the mixed fluid that passes through the inside of the constant temperature holding pipe 41 can be kept constant. The mixed fluid that passes through the constant temperature holding pipe 41 is heated to a predetermined temperature by heat exchange with the constant temperature water tank 42, and is further held at a predetermined temperature and pressure at which carbon dioxide in the mixed fluid becomes a supercritical state. The In this way, the liquid to be sterilized in the constant temperature holding pipe 41 comes into contact with the supercritical carbon dioxide, so that the liquid is sterilized. After exiting the constant temperature holding pipe 41, that is, after leaving the constant temperature water tank 42, a discharge pipe 51 is formed through which the mixed fluid having been sterilized by liquid flows. Accordingly, the liquid supply pipe 12, the constant temperature holding pipe 41, and the discharge pipe 51 are connected to each other to form a series of flow paths.

排出管路51には、恒温保持手段40によって殺菌された混合流体を減圧する圧力開放手段52が設けられている。圧力開放手段52は、圧力を開放して混合流体中の二酸化炭素が気体状態となる圧力まで減圧するものである。よって圧力開放手段52以後の管路を流れる混合流体は、殺菌済みの液体と、気体状態になった二酸化炭素との混合物となる。圧力開放手段52は、1個または複数個の減圧弁によって構成されてもよい。なお、圧力開放手段52は、混合流体の減圧にともなって奪われる熱を補填するための加熱手段が備えられているが、図面では図示を省略している。   The discharge pipe 51 is provided with a pressure release means 52 for decompressing the mixed fluid sterilized by the constant temperature holding means 40. The pressure release means 52 releases the pressure and reduces the pressure to a pressure at which carbon dioxide in the mixed fluid becomes a gas state. Therefore, the mixed fluid flowing in the pipe line after the pressure release means 52 is a mixture of the sterilized liquid and the carbon dioxide in a gaseous state. The pressure release means 52 may be configured by one or a plurality of pressure reducing valves. Note that the pressure release means 52 is provided with a heating means for making up for the heat lost as the mixed fluid is depressurized, but is not shown in the drawing.

分離手段60は、圧力開放手段52によって減圧された混合流体を気体状態の二酸化炭素と殺菌済みの液体とに分離するものである。本発明は、この分離手段60をサイクロンにより構成することを特徴とする。   The separation means 60 separates the mixed fluid decompressed by the pressure release means 52 into gaseous carbon dioxide and sterilized liquid. The present invention is characterized in that the separating means 60 is constituted by a cyclone.

図2にサイクロン60の一例を示す。このサイクロン60は、流入する混合流体が通る流入配管61と、流入配管61の下流側の端部に形成された流体入口62と、流入配管61の下流側の端部が接続された気液分離部63と、気液分離部63で分離された気体が排出される気体排出配管64と、気液分離部63で分離された殺菌済みの液体が排出される液体排出口65とを有する。流入配管61の上流側の端部は、排出管路51に接続されており、液体排出口65は、殺菌済みの液体が貯留される殺菌済み液体貯留手段(貯留タンク)70に接続されている。気体排出配管64の末端には、特に図示しないが、二酸化炭素を回収する容器または大気への放出口が接続される。   An example of the cyclone 60 is shown in FIG. The cyclone 60 has an inflow pipe 61 through which an inflowing mixed fluid passes, a fluid inlet 62 formed at the downstream end of the inflow pipe 61, and a gas-liquid separation in which the downstream end of the inflow pipe 61 is connected. A part 63, a gas discharge pipe 64 through which the gas separated by the gas-liquid separator 63 is discharged, and a liquid outlet 65 through which the sterilized liquid separated by the gas-liquid separator 63 is discharged. The upstream end of the inflow pipe 61 is connected to the discharge pipe 51, and the liquid discharge port 65 is connected to a sterilized liquid storage means (storage tank) 70 in which sterilized liquid is stored. . Although not particularly shown, a terminal for collecting carbon dioxide or a discharge port to the atmosphere is connected to the end of the gas exhaust pipe 64.

気液分離部63の上部63aは円筒状であり、その上面中央部には気体排出配管64が垂直に貫通している。流入配管61は、気液分離部63の水平面に沿う断面(図2(c)参照)における接線方向に延在しており、流体入口62を介して気液分離部63の上部63aに連通している。気液分離部63の下部63bは、気液分離部63の上部63aから連続し、かつ下方に向かって直径が縮小する円錐状に形成されており、その下端部には液体排出口65が形成されている。サイクロン60は、気液分離部63の内径が小さいほど強力な遠心力が得やすいため、最大の内径が50mm以下、より好ましくは、最大の内径が10mm以下が好ましい。   The upper part 63a of the gas-liquid separation part 63 has a cylindrical shape, and a gas discharge pipe 64 passes vertically through the center part of the upper surface. The inflow pipe 61 extends in a tangential direction in a cross section (see FIG. 2C) along the horizontal plane of the gas-liquid separator 63, and communicates with the upper part 63 a of the gas-liquid separator 63 via the fluid inlet 62. ing. The lower part 63b of the gas-liquid separation part 63 is formed in a conical shape that is continuous from the upper part 63a of the gas-liquid separation part 63 and decreases in diameter downward, and a liquid discharge port 65 is formed at the lower end part thereof. Has been. In the cyclone 60, the smaller the inner diameter of the gas-liquid separator 63, the easier it is to obtain a stronger centrifugal force. Therefore, the maximum inner diameter is preferably 50 mm or less, and more preferably the maximum inner diameter is 10 mm or less.

次に、本形態例の超臨界二酸化炭素殺菌装置1の動作について説明する。液体貯留手段11には殺菌すべき液体が貯留されており、この液体は、圧送ポンプ14によって、液体供給管路12を介して輸送される。同時に二酸化炭素貯留手段21に貯留されている液体状態の二酸化炭素は、圧送ポンプ24により二酸化炭素供給管路22を介して輸送され、混合溶解手段30において殺菌すべき液体と混合され、液体と二酸化炭素とが相互に溶解する。   Next, the operation of the supercritical carbon dioxide sterilizer 1 of this embodiment will be described. Liquid to be sterilized is stored in the liquid storage means 11, and this liquid is transported via the liquid supply pipe 12 by the pressure feed pump 14. At the same time, the liquid state carbon dioxide stored in the carbon dioxide storage means 21 is transported by the pressure pump 24 via the carbon dioxide supply line 22 and mixed with the liquid to be sterilized in the mixing and dissolving means 30. Carbon and each other dissolve.

殺菌すべき液体と二酸化炭素とが相互溶解した混合流体は、恒温保持管路41を流れている間、混合流体中の二酸化炭素が超臨界状態に保持される所定の温度および圧力に維持され、超臨界状態の二酸化炭素の作用によって液体が殺菌される。液体が殺菌された混合流体は、排出管路51を流れ、圧力開放手段52によって混合流体中の二酸化炭素が気体状態となる圧力(例えば常圧)まで減圧される。ところで、殺菌すべき液体が発泡性の高い液体、例えば粘度の高い液体や発泡しやすい液体や懸濁物質の含まれる液体などの場合には、混合流体を減圧したとき、混合流体中の殺菌済みの液体と気体状態の二酸化炭素とが円滑に分離せず、発泡することがある。   The mixed fluid in which the liquid to be sterilized and carbon dioxide are mutually dissolved is maintained at a predetermined temperature and pressure at which carbon dioxide in the mixed fluid is maintained in a supercritical state while flowing through the constant temperature holding pipe 41. The liquid is sterilized by the action of carbon dioxide in the supercritical state. The mixed fluid in which the liquid is sterilized flows through the discharge pipe 51, and is depressurized by the pressure release means 52 to a pressure at which carbon dioxide in the mixed fluid becomes a gas state (for example, normal pressure). By the way, when the liquid to be sterilized is a highly foamable liquid, for example, a liquid with high viscosity, a liquid that easily foams, or a liquid containing suspended solids, when the mixed fluid is decompressed, the sterilized liquid in the mixed fluid has been sterilized. The liquid and the carbon dioxide in the gaseous state may not be smoothly separated and may foam.

この混合流体の発泡に対処するため、本形態例の超臨界二酸化炭素殺菌装置1は、排出管路51の下流側に、サイクロンからなる分離手段60を備える。このため、図3に示すように、流入配管61および流体入口62を通して気液分離部63に流入した混合流体は、気液分離部63の上部63aの内面に沿って旋回する流れを形成し、混合流体の流入速度により強力な遠心力を生じる。気液分離部63内では、気体と液体との比重の違いおよび旋回流に働く遠心力により、気体は気液分離部63の中央部(半径方向の内側)へ、液体は気液分離部63の外周部(半径方向の外側)へと移動し、泡が破壊されるとともに気体と液体が分離される。気体(主として気体状態の二酸化炭素)は、気体排出配管64を通って排出される。液体(すなわち殺菌済みの液体)は重力に従って落下し、液体排出口65から殺菌済み液体貯留手段70に流入する。この結果、殺菌済みの液体が殺菌済み液体貯留手段70に貯留される。   In order to cope with the foaming of the mixed fluid, the supercritical carbon dioxide sterilization apparatus 1 according to this embodiment includes a separating unit 60 made of a cyclone on the downstream side of the discharge pipe 51. For this reason, as shown in FIG. 3, the mixed fluid that has flowed into the gas-liquid separator 63 through the inlet pipe 61 and the fluid inlet 62 forms a flow that swirls along the inner surface of the upper part 63 a of the gas-liquid separator 63, Strong centrifugal force is generated by the inflow speed of the mixed fluid. In the gas-liquid separator 63, the gas moves to the center (radially inside) of the gas-liquid separator 63 and the liquid gas-liquid separator 63 due to the difference in specific gravity between the gas and the liquid and the centrifugal force acting on the swirl flow. It moves to the outer peripheral part (outside in the radial direction), and bubbles are destroyed and gas and liquid are separated. The gas (mainly gaseous carbon dioxide) is discharged through the gas discharge pipe 64. The liquid (that is, the sterilized liquid) falls according to gravity and flows into the sterilized liquid storage means 70 from the liquid discharge port 65. As a result, the sterilized liquid is stored in the sterilized liquid storage means 70.

このように、本発明の超臨界二酸化炭素殺菌装置では、混合流体の高圧力の一部をサイクロン60で気液分離する際の動力として利用でき、サイクロン60は、外部動力を消費することなく、効率的に動作する。また、殺菌終了後には、サイクロン60の内部を超臨界二酸化炭素殺菌装置の他の部分と合わせて、効率的に洗浄、すすぎ、乾燥等を行うことが可能である。   Thus, in the supercritical carbon dioxide sterilization apparatus of the present invention, a part of the high pressure of the mixed fluid can be used as power for gas-liquid separation with the cyclone 60, and the cyclone 60 does not consume external power, Operates efficiently. In addition, after the sterilization is completed, the inside of the cyclone 60 can be combined with other parts of the supercritical carbon dioxide sterilizer to efficiently perform cleaning, rinsing, drying, and the like.

以上、本発明を好適な実施の形態に基づいて説明してきたが、本発明は上述の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
例えば、図4に示す超臨界二酸化炭素殺菌装置2は、分離手段60Aが複数のサイクロン60、60を直列接続したものであることを除き、上述の第1形態例の超臨界二酸化炭素殺菌装置1と同様に構成されている。すなわち、1段目のサイクロン60(図4中の左側)の気体排出配管64が2段目のサイクロン60(図4中の右側)の流入配管61に接続されている。これにより、殺菌済みの液体の一部が1段目のサイクロン60で分離しきれずに気体中に混入して気体排出配管64へと移行した場合であっても、2段目のサイクロン60で分離して殺菌済み液体貯留手段70へと回収することが可能になる。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned example, Various modifications are possible in the range which does not deviate from the summary of this invention.
For example, the supercritical carbon dioxide sterilizer 2 shown in FIG. 4 is the supercritical carbon dioxide sterilizer 1 of the first embodiment described above, except that the separating means 60A is a plurality of cyclones 60, 60 connected in series. It is configured in the same way. That is, the gas discharge pipe 64 of the first-stage cyclone 60 (left side in FIG. 4) is connected to the inflow pipe 61 of the second-stage cyclone 60 (right side in FIG. 4). As a result, even if a part of the sterilized liquid cannot be completely separated by the first-stage cyclone 60 but is mixed in the gas and transferred to the gas discharge pipe 64, it is separated by the second-stage cyclone 60. Thus, the liquid can be collected into the sterilized liquid storage means 70.

また、図5に示す超臨界二酸化炭素殺菌装置3は、分離手段60Bが複数のサイクロン60、60を並列接続したものであることを除き、上述の第1形態例の超臨界二酸化炭素殺菌装置1と同様に構成されている。すなわち、排出管路51の下流部に管路分岐点53が設けられており、分岐した管路がそれぞれ別のサイクロン60の流入配管61に接続されている。これにより、混合流体の流量が1個のサイクロン60で分離しきれない量であったとしても、複数のサイクロン60、60で処理量を配分することにより、効率的な気体と液体の分離が可能になる。   Moreover, the supercritical carbon dioxide sterilizer 3 shown in FIG. 5 is the supercritical carbon dioxide sterilizer 1 of the above-mentioned first embodiment except that the separating means 60B is a plurality of cyclones 60, 60 connected in parallel. It is configured in the same way. That is, a pipe branch point 53 is provided in the downstream portion of the discharge pipe 51, and the branched pipe is connected to the inflow pipe 61 of another cyclone 60. As a result, even if the flow rate of the mixed fluid is an amount that cannot be separated by one cyclone 60, it is possible to efficiently separate the gas and liquid by distributing the processing amount by the plurality of cyclones 60 and 60. become.

次に、実施例によって本発明を説明するが、以下の実施例は本発明を特に限定するものではない。   EXAMPLES Next, the present invention will be described with reference to examples. However, the following examples do not particularly limit the present invention.

(実施例1)
図1に示す構成の超臨界二酸化炭素殺菌装置1において、圧力開放手段52の下流に設ける分離手段60として、図2の構造を有する直径50mmのサイクロン60を設置した。試験試料としては、ホエイタンパク質単離物(WPI、ALACEN895)5%液に対して、市販のヨーグルトを滅菌水で2倍希釈のうえ遠心分離により清澄して得た上澄み液を0.05%接種したものを使用した。この試験試料中の細菌数は、標準寒天培地を用いた測定の結果、2.2×10cfu/mlであった。
Example 1
In the supercritical carbon dioxide sterilizer 1 having the configuration shown in FIG. 1, a cyclone 60 having a structure of FIG. 2 having a diameter of 50 mm is installed as the separating means 60 provided downstream of the pressure release means 52. As a test sample, 0.05% inoculation of a supernatant obtained by diluting a commercially available yogurt twice with sterile water and clarified by centrifugation against a 5% solution of whey protein isolate (WPI, ALACEN 895) We used what we did. The number of bacteria in this test sample was 2.2 × 10 5 cfu / ml as a result of measurement using a standard agar medium.

恒温水槽42の温度を30℃に設定し、恒温保持管路41の圧力を10MPaに維持し、二酸化炭素と試験試料(液体)の混合割合を1:17.5にして試験試料を殺菌した。殺菌後の試験試料中の細菌数は、標準寒天培地を用いた測定の結果、30cfu/ml以下であった。サイクロン60を設置することにより、殺菌済み試料の大半をサイクロン60の下流の貯留タンク70に捕集することができ、気体排出配管64へ移行した液はわずかであった。捕集された殺菌済み試料の内部には細かい気泡が見られたが、数時間放置することにより浮上し、気体が放出されて泡が消失した。
なお、この殺菌済み試料は、二酸化炭素の溶解により若干のpH値の低下が見られた。水酸化ナトリウム水溶液を添加してpHを元の値に戻したところ、殺菌前の原料液と同等の物性を示すことが確認された。
The temperature of the constant temperature water tank 42 was set to 30 ° C., the pressure of the constant temperature holding pipe 41 was maintained at 10 MPa, and the mixing ratio of carbon dioxide and the test sample (liquid) was 1: 17.5 to sterilize the test sample. The number of bacteria in the test sample after sterilization was 30 cfu / ml or less as a result of measurement using a standard agar medium. By installing the cyclone 60, most of the sterilized sample can be collected in the storage tank 70 downstream of the cyclone 60, and the amount of liquid transferred to the gas discharge pipe 64 is small. Fine bubbles were observed inside the collected sterilized sample. However, when the sample was allowed to stand for several hours, it floated, and the gas was released and the bubbles disappeared.
The sterilized sample showed a slight decrease in pH value due to dissolution of carbon dioxide. When the aqueous solution of sodium hydroxide was added to return the pH to the original value, it was confirmed that it showed the same physical properties as the raw material solution before sterilization.

(比較例1)
図6に示すように、圧力開放手段52の下流にサイクロン60を設けることなく、排出管路51を貯留タンク70に直接接続した超臨界二酸化炭素殺菌装置101を用いたことを除き、実施例1と同様の条件で殺菌試験を行った。この場合、殺菌済み試料は配管開口部より泡状で放出され、一部液滴の飛散も観察された。貯留タンク70には泡が充満し、一部の泡は貯留タンク70の上部より外に溢れ出た。殺菌済み試料は泡沫状で、液状に戻るには一昼夜を要した。すなわち、殺菌済みの液体をただちに次の工程へと送ることはできない。
(Comparative Example 1)
As shown in FIG. 6, Example 1 is used except that a supercritical carbon dioxide sterilizer 101 in which the discharge pipe 51 is directly connected to the storage tank 70 is used without providing the cyclone 60 downstream of the pressure release means 52. The sterilization test was conducted under the same conditions as above. In this case, the sterilized sample was released in the form of bubbles from the opening of the pipe, and some droplets were scattered. The storage tank 70 was filled with bubbles, and some of the bubbles overflowed from the upper part of the storage tank 70. The sterilized sample was foamy, and it took a whole day and night to return to the liquid state. That is, the sterilized liquid cannot be immediately sent to the next process.

(実施例2)
未殺菌の卵白を試験試料として用いたことを除き、図1に示す構成の超臨界二酸化炭素殺菌装置1を用いて実施例1と同様の条件で殺菌試験を行った。実施例2の試験試料には菌の接種は行わなかった。殺菌済み試料はサイクロン60により二酸化炭素と分離され、貯留タンク70に回収された。回収された殺菌済み卵白は、貯留タンク70に流入した直後には白濁した液状であった。これを冷蔵庫中に一昼夜放置したところ、殺菌試験の前と同等の外観に戻ることが確認された。
(Example 2)
A sterilization test was performed under the same conditions as in Example 1 using the supercritical carbon dioxide sterilizer 1 having the configuration shown in FIG. 1 except that unsterilized egg white was used as a test sample. The test sample of Example 2 was not inoculated with bacteria. The sterilized sample was separated from carbon dioxide by the cyclone 60 and collected in the storage tank 70. The collected sterilized egg white was a cloudy liquid immediately after flowing into the storage tank 70. When this was left in the refrigerator for a whole day and night, it was confirmed that it returned to the same appearance as before the sterilization test.

本発明は、飲料、液状食品、酒類、液体原料、発酵用培地などの液体の殺菌に利用することができ、特に、粘度の高い液体、発泡しやすい液体、懸濁物質の含まれる液体、タンパク質を含む液体などの発泡性の高い液体の殺菌に好適である。   INDUSTRIAL APPLICABILITY The present invention can be used for sterilization of liquids such as beverages, liquid foods, alcoholic beverages, liquid raw materials, fermentation media and the like, and in particular, high-viscosity liquids, liquids that easily foam, liquids containing suspended substances, proteins Suitable for sterilization of highly foamable liquids such as liquids containing

本発明の超臨界二酸化炭素殺菌装置の第1形態例を示す概略構成図である。It is a schematic block diagram which shows the 1st example of a supercritical carbon dioxide sterilizer of this invention. 本発明の分離手段として用いられるサイクロンの一例を示す図面であって、(a)は平面図、(b)は正面図、(c)は(b)のB−B線に沿う横断面図、(d)は(a)のA−A線に沿う縦断面図である。It is drawing which shows an example of the cyclone used as the isolation | separation means of this invention, Comprising: (a) is a top view, (b) is a front view, (c) is a cross-sectional view which follows the BB line of (b), (D) is a longitudinal cross-sectional view which follows the AA line of (a). 図2に示すサイクロンの動作原理を説明する図面であって、(a)は斜視図、(b)は図2(b)のB−B線に沿う横断面図である。It is drawing explaining the operation | movement principle of the cyclone shown in FIG. 2, Comprising: (a) is a perspective view, (b) is a cross-sectional view which follows the BB line of FIG.2 (b). 本発明の超臨界二酸化炭素殺菌装置の第2形態例を示す概略構成図である。It is a schematic block diagram which shows the 2nd form example of the supercritical carbon dioxide sterilizer of this invention. 本発明の超臨界二酸化炭素殺菌装置の第3形態例を示す概略構成図である。It is a schematic block diagram which shows the 3rd form example of the supercritical carbon dioxide sterilizer of this invention. 比較例に係る超臨界二酸化炭素殺菌装置を示す概略構成図である。It is a schematic block diagram which shows the supercritical carbon dioxide sterilizer which concerns on a comparative example.

符号の説明Explanation of symbols

1、2、3…超臨界二酸化炭素殺菌装置、30…混合溶解手段、40…恒温保持手段、52…圧力開放手段、60…サイクロン(分離手段)、60A…直列接続された複数のサイクロン(分離手段)、60B…並列接続された複数のサイクロン(分離手段)。 1, 2, 3, ... supercritical carbon dioxide sterilizer, 30 ... mixing and dissolving means, 40 ... constant temperature holding means, 52 ... pressure releasing means, 60 ... cyclone (separation means), 60A ... a plurality of cyclones connected in series (separation) Means), 60B... A plurality of cyclones (separation means) connected in parallel.

Claims (2)

殺菌すべき液体に二酸化炭素を混合して溶解する混合溶解手段と、前記混合溶解手段によって得られる混合流体を所定の温度まで昇温するとともに前記所定の温度まで昇温された混合流体を二酸化炭素が超臨界状態となる所定の温度と圧力に保持して殺菌する恒温保持手段と、前記恒温保持手段によって殺菌された混合流体を二酸化炭素が気体状態となる圧力まで減圧する圧力開放手段と、前記圧力開放手段によって減圧された混合流体を気体状態の二酸化炭素と殺菌済みの液体とに分離する分離手段とを備えた超臨界二酸化炭素殺菌装置において、
前記分離手段がサイクロンであることを特徴とする超臨界二酸化炭素殺菌装置。
Mixing / dissolving means for mixing and dissolving carbon dioxide in a liquid to be sterilized, and raising the temperature of the mixed fluid obtained by the mixing / dissolving means to a predetermined temperature and increasing the temperature of the mixed fluid to the predetermined temperature to carbon dioxide Constant temperature holding means for holding and sterilizing at a predetermined temperature and pressure at which it becomes a supercritical state, pressure release means for reducing the mixed fluid sterilized by the constant temperature holding means to a pressure at which carbon dioxide is in a gaseous state, and In a supercritical carbon dioxide sterilization apparatus provided with a separation means for separating the mixed fluid decompressed by the pressure release means into gaseous carbon dioxide and sterilized liquid,
The supercritical carbon dioxide sterilizer characterized in that the separation means is a cyclone.
前記分離手段が、複数のサイクロンを直列または並列に接続したものであることを特徴とする請求項1に記載の超臨界二酸化炭素殺菌装置。   The supercritical carbon dioxide sterilizer according to claim 1, wherein the separating means is a plurality of cyclones connected in series or in parallel.
JP2005135698A 2005-05-09 2005-05-09 Superecritical carbon dioxide sterilizing device Withdrawn JP2006312135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005135698A JP2006312135A (en) 2005-05-09 2005-05-09 Superecritical carbon dioxide sterilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135698A JP2006312135A (en) 2005-05-09 2005-05-09 Superecritical carbon dioxide sterilizing device

Publications (1)

Publication Number Publication Date
JP2006312135A true JP2006312135A (en) 2006-11-16

Family

ID=37533845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135698A Withdrawn JP2006312135A (en) 2005-05-09 2005-05-09 Superecritical carbon dioxide sterilizing device

Country Status (1)

Country Link
JP (1) JP2006312135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038061A1 (en) * 2021-09-08 2023-03-16 川崎重工業株式会社 Hydrogen production system
RU2826520C1 (en) * 2023-09-22 2024-09-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) Device for gas-dynamic sterilization of medical tissues and equipment in supercritical media of carbon dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038061A1 (en) * 2021-09-08 2023-03-16 川崎重工業株式会社 Hydrogen production system
RU2826520C1 (en) * 2023-09-22 2024-09-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) Device for gas-dynamic sterilization of medical tissues and equipment in supercritical media of carbon dioxide

Similar Documents

Publication Publication Date Title
Fernández García et al. Microfiltration applied to dairy streams: removal of bacteria
Chandrapala et al. Ultrasonics in food processing
JP4895697B2 (en) Beverage filling equipment cleaning equipment
RU2457050C2 (en) Tube cleanse system
WO2005099918A1 (en) Cleaning method and apparatus
Datta et al. Emerging dairy processing technologies: Opportunities for the dairy industry
JPH09206044A (en) Apparatus for treatment with fluid under supercritical condition
Zisu et al. High power ultrasound processing in milk and dairy products
EP2777388B1 (en) Method and device for producing starting material milk for skim milk
Nor et al. Integrated ultrafiltration process for the recovery of bromelain from pineapple waste mixture
Goff Dairy product processing equipment
CN108495807A (en) The integrated beverage distribution head of wash module
EP2777389B1 (en) Method for producing and device for producing cheese starting material milk
US20160192669A1 (en) Method for controlling microbiological contamination in a heat exchanger while processing a food product.
JP2006312135A (en) Superecritical carbon dioxide sterilizing device
JP2006333835A (en) Method for treating liquid state fluid by utilizing high pressure carbon dioxide
JP5033159B2 (en) Gas-liquid separation liquid cyclone and gas-liquid separation system
KR101699801B1 (en) Method of treating liquid food
CA2866140A1 (en) Method of manufacturing protein beverages and denaturizing loop apparatus and system
US20110076359A1 (en) Removing gas additives from raw milk
US20230129877A1 (en) Flow separation device
AU2010338115B2 (en) Method for reducing the bacterial content of a food and/or biological medium of interest containing lipid droplets
US20020122860A1 (en) Method and apparatus for continuous flow reduction of microbial and/or enzymatic activity in a liquid product using carbon dioxide
WO2017073477A1 (en) Milk-containing beverage production method
US10932475B2 (en) Process for the preparation of lactose-free and reduced phosphorus skim milk

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805