JP2006309926A - Perpendicular magnetic recording medium, and magnetic recording and reproducing apparatus - Google Patents

Perpendicular magnetic recording medium, and magnetic recording and reproducing apparatus Download PDF

Info

Publication number
JP2006309926A
JP2006309926A JP2006091438A JP2006091438A JP2006309926A JP 2006309926 A JP2006309926 A JP 2006309926A JP 2006091438 A JP2006091438 A JP 2006091438A JP 2006091438 A JP2006091438 A JP 2006091438A JP 2006309926 A JP2006309926 A JP 2006309926A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
magnetic
perpendicular magnetic
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006091438A
Other languages
Japanese (ja)
Other versions
JP4472655B2 (en
Inventor
Ken Takahashi
高橋  研
Masahiro Oka
正裕 岡
Satoru Kikitsu
哲 喜々津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toshiba Corp
Resonac Holdings Corp
Original Assignee
Tohoku University NUC
Showa Denko KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Showa Denko KK, Toshiba Corp filed Critical Tohoku University NUC
Priority to JP2006091438A priority Critical patent/JP4472655B2/en
Publication of JP2006309926A publication Critical patent/JP2006309926A/en
Application granted granted Critical
Publication of JP4472655B2 publication Critical patent/JP4472655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perpendicular recording medium and a magnetic recording and reproducing apparatus capable of recording and reproduction of information with high recording density by reviewing the function of magnetic anisotropy of a soft magnetic underlayer. <P>SOLUTION: A soft magnetic underlayer has a large negative perpendicular magnetic anisotropic energy Ku<SP>⊥</SP>perpendicular to a substrate surface. For example, a hexagonal Co-Ir alloy naturally has a negative crystal magnetic anisotropic energy Ku<SP>grain</SP>along its C axis, so when the C axis is oriented in parallel to the substrate surface, the substrate surface has properties of strong magnetization because of Ku<SP>⊥</SP>=-2πMs<SP>2</SP>-Ku<SP>grain</SP>. Further, the magnetization direction can freely be changed in the substrate surface, so there are the advantages that a magnetic wall is not apt to move in the surface and the possibility of generation of a spike noise etc., accompanying magnetic wall movement is small. Therefore, the direction of easy axis of a magnetization of the soft magnetic underlayer of the perpendicular magnetic recording medium can be controlled relatively easily and reliably. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ハードディスク装置等に用いられる垂直磁気記録媒体とそれを使用した磁気記録再生装置に関するものである。   The present invention relates to a perpendicular magnetic recording medium used in a hard disk device or the like and a magnetic recording / reproducing apparatus using the perpendicular magnetic recording medium.

垂直磁気記録方式は、従来、媒体の面内方向に向けられていた磁気記録層の磁化容易軸を媒体の垂直方向に向けることにより、記録ビット間の境界である磁化遷移領域付近での反磁界が小さくなるため、記録密度が高くなるほど静磁気的に安定となって熱揺らぎ耐性が向上することから、面記録密度の向上に適した方式である。   In the perpendicular magnetic recording method, the demagnetizing field in the vicinity of the magnetization transition region, which is the boundary between recording bits, is achieved by orienting the easy axis of the magnetic recording layer that has been oriented in the in-plane direction of the medium in the perpendicular direction of the medium. Therefore, the higher the recording density, the more stable the magnetic field and the higher the resistance to thermal fluctuation, so that the method is suitable for improving the surface recording density.

また、基板と垂直磁気記録層との間に軟磁性材料からなる裏打ち層を設けた場合には、いわゆる垂直2層媒体として機能し、高い記録能力を得ることができる。このとき、軟磁性裏打ち層は磁気ヘッドからの記録磁界を還流させる役割を果たしており、記録再生効率を向上させることができる。   Further, when a backing layer made of a soft magnetic material is provided between the substrate and the perpendicular magnetic recording layer, it functions as a so-called perpendicular two-layer medium, and high recording ability can be obtained. At this time, the soft magnetic underlayer plays a role of refluxing the recording magnetic field from the magnetic head, so that the recording / reproducing efficiency can be improved.

一般に垂直磁気記録媒体は、基板上に裏打ち層(非磁性膜)を設け、磁性層の磁化容易軸を基板面に対して垂直に配向させる下地膜、Co合金からなる垂直磁気記録層および保護層の順で構成されている。しかしながら、近年、垂直磁気記録媒体の問題点として、WATE(Wide Area/Adjacent Track Erasure)があることがわかってきている。WATEとは垂直磁気記録媒体特有の問題であり、あるトラックに信号を記録した際に、記録したトラックから数μmの広域にわたっての信号が減磁する現象である。主に裏打ち層の構造、磁気異方性で改善する方法が提案されている(例えば、特許文献1参照。)。   Generally, a perpendicular magnetic recording medium is provided with a backing layer (nonmagnetic film) on a substrate, an underlayer film in which the easy axis of magnetization of the magnetic layer is oriented perpendicular to the substrate surface, a perpendicular magnetic recording layer made of a Co alloy, and a protective layer. It is composed in the order. However, in recent years, it has been found that there is WATE (Wide Area / Adjacent Track Erasure) as a problem of the perpendicular magnetic recording medium. WAIT is a problem peculiar to the perpendicular magnetic recording medium. When a signal is recorded on a certain track, the signal is demagnetized over a wide area of several μm from the recorded track. A method for improving mainly the structure of the backing layer and magnetic anisotropy has been proposed (for example, see Patent Document 1).

また、特に軟磁性裏打ち層の磁化容易軸の向きを基板半径方向にそろえることも効果的であると言われている。これを実現するための方法としては、半径方向の磁場中にて裏打ち層を成膜する方法や裏打ち層を軟磁性膜と反強磁性膜の積層構造として、スピンの向きを一定方向に揃えた方法が提案されている(例えば、特許文献2,特許文献3参照。)。
その他、本願発明と類似の合金組成を用いる例として、面内の磁気記録媒体がある(例えば、特許文献4参照。)。この例は、CoIr系層の膜厚も薄く、c軸配向していない。
また、軟磁性体部分にIrは用いるものの、多孔質体に機能性材料を充填した垂直磁気記録媒体も知られている(例えば、特許文献5参照。)。さらに、軟磁性層の分断層としてIrを用いた垂直磁気記録媒体も知られている(例えば、特許文献6参照。)。
特開昭58−166531号公報 特開平06−103553号公報 米国特許出願公開第2002/0028357号明細書 特開2003−132515号公報 特開2004−237429号公報 特開2003−203326号公報
It is also said that it is particularly effective to align the direction of the easy magnetization axis of the soft magnetic underlayer with the substrate radial direction. As a method for realizing this, there is a method of forming a backing layer in a magnetic field in the radial direction, or the backing layer is a laminated structure of a soft magnetic film and an antiferromagnetic film, and the spin direction is aligned in a certain direction. A method has been proposed (see, for example, Patent Document 2 and Patent Document 3).
In addition, there is an in-plane magnetic recording medium as an example using an alloy composition similar to that of the present invention (see, for example, Patent Document 4). In this example, the film thickness of the CoIr-based layer is thin and c-axis orientation is not performed.
In addition, a perpendicular magnetic recording medium in which a porous material is filled with a functional material although Ir is used for the soft magnetic material portion is also known (see, for example, Patent Document 5). Further, a perpendicular magnetic recording medium using Ir as a dividing layer of a soft magnetic layer is also known (see, for example, Patent Document 6).
Japanese Patent Laid-Open No. 58-166531 Japanese Patent Laid-Open No. 06-103553 US Patent Application Publication No. 2002/0028357 JP 2003-132515 A JP 2004-237429 A JP 2003-203326 A

垂直磁気記録媒体の軟磁性裏打ち層を、磁場中で成膜する場合には以下の問題点が生じる。
(1)磁界を半径方向に均一に制御することが困難である、
(2)基板の内周部で磁界が小さくなる。
今後、さらに媒体の小型化が進んだときには、(2)は大きな問題となると推測される。
また、上記のように単に裏打ち層を設けた場合では、半径方向に均一な磁化容易軸を形成することは非常に困難であり、この問題を解決しかつ安易に製造が可能な磁気記録媒体が要望されている。
また、以上のようなさまざまな工夫をもって磁化容易軸を制御した場合においても、軟磁性裏打ち層の膜中にわずかな垂直磁化成分が残ることが原因となってWATE現象が発生することがありうると考えられている。
本発明は、上記事情に鑑みてなされたもので、裏打ち層の磁気異方性のはたらきを改めて見直し、高密度の情報の記録再生が可能な垂直磁気記録媒体および磁気記録再生装置を提供することを目的とする。
The following problems arise when the soft magnetic underlayer of the perpendicular magnetic recording medium is formed in a magnetic field.
(1) It is difficult to uniformly control the magnetic field in the radial direction.
(2) The magnetic field is reduced at the inner periphery of the substrate.
In the future, when the size of the medium is further reduced, it is estimated that (2) will be a big problem.
In addition, when a backing layer is simply provided as described above, it is very difficult to form a uniform easy axis in the radial direction, and there is a magnetic recording medium that can solve this problem and can be easily manufactured. It is requested.
In addition, even when the easy magnetization axis is controlled with the above various ideas, the WAIT phenomenon may occur due to the fact that a slight perpendicular magnetization component remains in the soft magnetic underlayer film. It is believed that.
The present invention has been made in view of the above circumstances, and provides a perpendicular magnetic recording medium and a magnetic recording / reproducing apparatus capable of recording / reproducing high-density information by reviewing the function of the magnetic anisotropy of the backing layer. With the goal.

上記課題を解決するため、本発明は以下に掲げた、
(1)非磁性基板上に少なくとも軟磁性裏打ち層と垂直磁気記録層とを有する垂直磁気記録媒体であって、Ms(emu/cc)なる飽和磁化を有する前記軟磁性裏打ち層が、媒体面に対して垂直磁気異方性エネルギーKu(erg/cc)として−2πMsより小さい負の値を持つ垂直磁気記録媒体、
(2)前記軟磁性裏打ち層が負の一軸結晶磁気異方性エネルギーKugrainを持つ材料を用いて構成され、その磁化困難軸が基板面に対して垂直な方向を向いている(1)に記載の垂直磁気記録媒体、
(3)前記軟磁性裏打ち層がCoとIrとを主成分とする合金から成る(1)または(2)に記載の垂直磁気記録媒体、
(4)前記軟磁性裏打ち層をなすCoとIrとの合金のIr含有量が5原子%以上、20原子%以下である(1)から(3)のいずれか1つに記載の垂直磁気記録媒体、
In order to solve the above-mentioned problems, the present invention is listed below.
(1) A perpendicular magnetic recording medium having at least a soft magnetic backing layer and a perpendicular magnetic recording layer on a nonmagnetic substrate, wherein the soft magnetic backing layer having a saturation magnetization of Ms (emu / cc) is formed on the medium surface. A perpendicular magnetic recording medium having a negative value smaller than −2πMs 2 as perpendicular magnetic anisotropy energy Ku (erg / cc),
(2) The soft magnetic underlayer is made of a material having a negative uniaxial crystal magnetic anisotropy energy Ku grain , and its hard axis is oriented in a direction perpendicular to the substrate surface (1). The perpendicular magnetic recording medium according to the description,
(3) The perpendicular magnetic recording medium according to (1) or (2), wherein the soft magnetic underlayer is made of an alloy mainly containing Co and Ir.
(4) The perpendicular magnetic recording according to any one of (1) to (3), wherein an Ir content of the alloy of Co and Ir forming the soft magnetic underlayer is 5 atomic% or more and 20 atomic% or less. Medium,

(5)前記軟磁性裏打ち層の下に2次元の六方最密格子面、または立方格子面を基板面と平行に配向させた結晶質下地膜を有する(1)から(4)のいずれか1つに記載の垂直磁気記録媒体、
(6)前記非磁性基板が半径28mm以下の円盤状基板である(1)から(5)のいずれか1つに記載の垂直磁気記録媒体、
(7)垂直磁気記録媒体と、該垂直磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、前記垂直磁気記録媒体(1)から(6)のいずれか1つに記載の垂直磁気記録媒体である磁気記録再生装置、
の各発明を提供する。
(5) Any one of (1) to (4), comprising a two-dimensional hexagonal close-packed lattice plane or a crystalline underlayer having a cubic lattice plane oriented parallel to the substrate surface under the soft magnetic underlayer. Perpendicular magnetic recording medium according to
(6) The perpendicular magnetic recording medium according to any one of (1) to (5), wherein the nonmagnetic substrate is a disk-shaped substrate having a radius of 28 mm or less,
(7) A magnetic recording / reproducing apparatus comprising a perpendicular magnetic recording medium and a magnetic head for recording / reproducing information on / from the perpendicular magnetic recording medium, wherein any one of the perpendicular magnetic recording media (1) to (6) A magnetic recording / reproducing apparatus, which is a perpendicular magnetic recording medium according to claim 1,
Each invention is provided.

本発明によれば、軟磁性裏打ち層の磁化容易軸が基板面内方向に配向し、かつ、磁壁移動が起こりにくく、ひいてはWATE現象、スパイクノイズ等の発生の危険が小さい垂直磁気記録媒体を供することができる。   According to the present invention, there is provided a perpendicular magnetic recording medium in which the easy axis of magnetization of the soft magnetic underlayer is oriented in the in-plane direction of the substrate, and domain wall movement is unlikely to occur, and the risk of occurrence of WATE phenomenon, spike noise, etc. is small. be able to.

本発明は、軟磁性裏打ち層に基板面に対して垂直な方向に対する結晶磁気異方性エネルギーKugrainが負の値をとる材料を用いる。このような材料としてCo−Ir合金があげられる。Co−Irの場合は結晶構造が六方稠密構造をとり、そのC軸方向に対して結晶磁気異方性エネルギーKugrain<0となる性質がある。
C軸に対して結晶磁気異方性エネルギーKugrain<0である材料はC軸に対して直角な方向に、したがってC軸が基板面に対して垂直方向を向いている場合は基板面内に、強力に磁化しようとする性質をもつ。このため、軟磁性裏打ち層の垂直磁気異方性Kuは−2πMs−Kugrainとなり、従来の軟磁性裏打ち層が持っていたKuよりも小さい値となる。このため、軟磁性裏打ち層は、従来よりも強い力で基板面内方向に磁化するようになるため、面直方向の磁化成分によりWATE現象が発生するという可能性が著しく低くなる。
In the present invention, a material having a negative value of the magnetocrystalline anisotropy energy Ku grain in the direction perpendicular to the substrate surface is used for the soft magnetic underlayer. An example of such a material is a Co—Ir alloy. In the case of Co—Ir, the crystal structure has a hexagonal close-packed structure, and has the property that the magnetocrystalline anisotropy energy Ku grain <0 with respect to the C-axis direction.
A material whose magnetocrystalline anisotropy energy Ku grain <0 with respect to the C axis is in a direction perpendicular to the C axis, and therefore in the substrate plane when the C axis is perpendicular to the substrate plane. It has the property of strongly magnetizing. Therefore, the vertical magnetic anisotropy Ku of the soft magnetic underlayer becomes -2πMs 2 -Ku grain becomes smaller than conventional Ku which soft magnetic backing layer had. For this reason, the soft magnetic underlayer is magnetized in the in-plane direction of the substrate with a stronger force than before, so the possibility that the WAIT phenomenon occurs due to the magnetization component in the direction perpendicular to the plane is significantly reduced.

本発明の内容を具体的に説明する。
既に述べたように、垂直磁気記録媒体においては、その軟磁性裏打ち層の磁気異方性、容易磁化軸方向の制御が媒体デザインにおいて極めて重要となる。特にWATE(WideArea/Adjacent Track Erasure)現象や軟磁性層の磁区の動きに付随するといわれるスパイクノイズ現象などを抑制するためには、この軟磁性層の磁化容易軸方向を基板面内に配向させたり、軟磁性裏打ち層の下にピン止め層と呼ばれる強磁性膜を設けて軟磁性層の磁壁が動きにくくするなどの工夫が必要といわれている。
本発明は、これら垂直磁気記録媒体の軟磁性裏打ち層に起因する問題点を、軟磁性材料の選定を適切に行うことにより解決しようとするものである。
The contents of the present invention will be specifically described.
As already described, in the perpendicular magnetic recording medium, control of the magnetic anisotropy and easy magnetization axis direction of the soft magnetic underlayer is extremely important in the medium design. In particular, in order to suppress the WATE (Wide Area / Adjacent Track Erasure) phenomenon and the spike noise phenomenon that is said to accompany the movement of the magnetic domain of the soft magnetic layer, the direction of the easy axis of magnetization of the soft magnetic layer is oriented in the substrate plane. In addition, it is said that a device such as providing a ferromagnetic film called a pinned layer under the soft magnetic backing layer to make the domain wall of the soft magnetic layer difficult to move is said to be necessary.
The present invention intends to solve the problems caused by the soft magnetic underlayer of these perpendicular magnetic recording media by appropriately selecting a soft magnetic material.

図1は、本発明の磁気記録媒体の第1の実施形態の一例を示すものである。ここに示されている磁気記録媒体10は、非磁性基板1上に、ピン止め層2及び非磁性の下地層3を介して、軟磁性裏打ち層4、さらに配向制御層5と、垂直磁気記録層6と、保護層7と潤滑層8とが順次形成された構成となっている。
非磁性基板としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。
ガラス基板としては、アモルファスガラスや結晶化ガラス等があり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。
非磁性基板として、特にガラス基板またはシリコン基板が好ましい。
FIG. 1 shows an example of the first embodiment of the magnetic recording medium of the present invention. A magnetic recording medium 10 shown here includes a soft magnetic backing layer 4, an orientation control layer 5, and perpendicular magnetic recording on a nonmagnetic substrate 1 via a pinned layer 2 and a nonmagnetic underlayer 3. The layer 6, the protective layer 7, and the lubricating layer 8 are sequentially formed.
As the nonmagnetic substrate, a metal substrate made of a metal material such as aluminum or an aluminum alloy may be used, or a nonmetal substrate made of a nonmetal material such as glass, ceramic, silicon, silicon carbide, or carbon may be used. .
Examples of the glass substrate include amorphous glass and crystallized glass. As the amorphous glass, general-purpose soda lime glass and aluminosilicate glass can be used. Further, as the crystallized glass, lithium-based crystallized glass can be used.
As the nonmagnetic substrate, a glass substrate or a silicon substrate is particularly preferable.

非磁性基板は、平均表面粗さRaが0.8nm以下、好ましくは0.5nm以下であることがヘッドを低浮上させた高記録密度記録に適している点から望ましい。
また、表面の微小うねり(Wa)が0.3nm以下(より好ましくは0.25nm以下)であるのがヘッドを低浮上させた高記録密度記録に適している点から好ましい。
テクスチャリング処理した処理後の基板の平均表面粗さRaが0.1nm以上0.8nm以下であることが好ましい。0.1nm未満であると、テクスチャリング処理した溝の効果が不十分となり、裏打ち層の磁気異方性が溝からずれるために好ましくない。0.8nmを超えると、磁気ヘッドの浮上量を十分に小さくすることができないため好ましくない。また、垂直磁気記録層の配向が悪化することによるSNRの低下を引き起こすので好ましくない。
The nonmagnetic substrate preferably has an average surface roughness Ra of 0.8 nm or less, preferably 0.5 nm or less from the viewpoint of being suitable for high recording density recording with a low flying head.
Further, it is preferable that the surface micro-waviness (Wa) is 0.3 nm or less (more preferably 0.25 nm or less) from the viewpoint of being suitable for high recording density recording with a low flying head.
It is preferable that the average surface roughness Ra of the textured substrate after the treatment is 0.1 nm or more and 0.8 nm or less. When the thickness is less than 0.1 nm, the effect of the textured groove becomes insufficient, and the magnetic anisotropy of the backing layer deviates from the groove, which is not preferable. If it exceeds 0.8 nm, the flying height of the magnetic head cannot be made sufficiently small, which is not preferable. Further, it is not preferable because the SNR is lowered due to the deterioration of the orientation of the perpendicular magnetic recording layer.

本発明においては、ピン止め層、及び/又は、下地層が設けられた構成としても良いし、これらの層の何れかの層、又は両方の層が無くても、発明の効果に何ら影響はない。本発明では軟磁性裏打ち層の結晶磁気異方性エネルギーKugrainが負の値をとることを特徴とするが、例えば軟磁性層材料としてCo−Irを用いた場合、稠密六方晶構造のC軸を基板面に対して垂直な方向に配向させることが必要である。このような結晶配向のコントロールを行う目的で下地層を設けることがある。この場合、下地層自身も稠密六方晶構造をとることが多く、Ti、Ruなどが考えられる。
軟磁性裏打ち層としては、基板面に対して垂直な軸に対する結晶磁気異方性エネルギーKugrainが負の値をとるものが特に適していることを見出した。
ここで、結晶磁気異方性エネルギーKugrainの決定方法は以下のようにした。すなわち、軟磁性裏打ち層材料の薄膜を基板上に成膜し、同試料の小片をトルクメーターにかけ、基板内に直交する面内で磁界を回転させることにより得られる垂直磁気トルク曲線の2θ成分の磁界飽和外挿値が、垂直磁気異方性エネルギーKuであると定義した。
また、一軸結晶磁気異方性を持つ材料のc軸(一軸性対称軸)を膜面に垂直な方向に配向させた軟磁性裏打ち層については、Ku=−2πMs−Kugrainの関係を用いて一軸異方性エネルギーKugrainを算出した。
一般的に膜面に垂直な方向には強力な反磁界が働くことが知られており、そのときのKuの値は、試料の飽和磁化をMsとしたとき、−2πMsとなる。本発明にいう軟磁性裏打ち層とは、このときのKuの値を仮に Ku=−2πMs+Xと表すとしたときに、Xが負の値をとるような性質のものを指す。
従来の軟磁性裏打ち層の場合には、欠陥や不純物の存在によりXの値は小さな正値となることがほとんどであった。しかるに本発明では、Xの値が負になることにより、大きな│Ku│の力で磁化を基板面内方向に向けることができる。また、基板面内に磁化が向いた方向がより安定になるので、外部環境の影響により磁化が動揺する可能性も低くすることができる。
Kuが負の値をとる場合、その材料の磁化状態は磁化方向が基板面内方向であるとしたときに、最もエネルギー的に安定である。従って、このような軟磁性膜は特別な工夫を必要とせずに、自ら基板面内方向に磁化しようとする。
In the present invention, a pinning layer and / or a base layer may be provided, and even if one or both of these layers are not provided, there is no influence on the effect of the invention. Absent. The present invention is characterized in that the magnetocrystalline anisotropy energy Ku grain of the soft magnetic underlayer has a negative value. For example, when Co—Ir is used as the soft magnetic layer material, the C axis of the dense hexagonal crystal structure is used. Must be oriented in a direction perpendicular to the substrate surface. An underlayer may be provided for the purpose of controlling the crystal orientation. In this case, the underlying layer itself often has a dense hexagonal crystal structure, and Ti, Ru, etc. are conceivable.
It has been found that a soft magnetic backing layer is particularly suitable when the magnetocrystalline anisotropy energy Ku grain with respect to an axis perpendicular to the substrate surface takes a negative value.
Here, the method of determining the magnetocrystalline anisotropy energy Ku grain was as follows. That is, a thin film of a soft magnetic backing layer material is formed on a substrate, a small piece of the sample is applied to a torque meter, and a 2θ component of a perpendicular magnetic torque curve obtained by rotating a magnetic field in a plane orthogonal to the substrate field saturation extrapolation value was defined as the perpendicular magnetic anisotropy energy Ku ⊥.
Also, the c-axis (uniaxial symmetry axis) of the soft magnetic backing layer is oriented in a direction perpendicular to the film surface of the material with uniaxial magnetocrystalline anisotropy, the relationship between Ku = -2πMs 2 -Ku grain Using this, the uniaxial anisotropic energy Ku grain was calculated.
Generally known to work strong demagnetizing field in the direction perpendicular to the film plane, the value of Ku at that time, when the saturation magnetization of the sample was Ms, the -2πMs 2. The soft magnetic backing layer according to the present invention, when a representative of the assumed Ku = -2πMs 2 + X value of Ku this case, refers to those properties such as X takes a negative value.
In the case of a conventional soft magnetic underlayer, the value of X is almost a small positive value due to the presence of defects and impurities. In the present invention however, by the value of X is negative, it is possible to direct the magnetization force of the large │Ku │ toward the substrate surface. In addition, since the direction in which the magnetization is directed in the substrate plane becomes more stable, the possibility that the magnetization is shaken due to the influence of the external environment can be reduced.
When Ku takes a negative value, the magnetization state of the material is most energetically stable when the magnetization direction is the in-plane direction of the substrate. Therefore, such a soft magnetic film tends to be magnetized by itself in the in-plane direction of the substrate without requiring any special device.

上述のような指針から、本発明者らは、垂直磁気記録媒体の軟磁性裏打ち層用材料として、Co−Ir合金膜が極めて適当な性質を示すことを見出した。
すなわち、Ir含有量が5原子%以上の領域において、Co−Ir合金のC軸方向に対する結晶磁気異方性エネルギーKuは負の値をとるようになり、本発明の用途に適する性質を示す。ただし、Ir添加量が増えるに従って飽和磁束磁化量Msは減少するため、目的に合致する濃度に制御する必要がある。
Co−Irを成膜する際の基板温度は室温から400℃程度までの範囲が好ましい。
From the above guidelines, the present inventors have found that a Co—Ir alloy film exhibits extremely suitable properties as a material for a soft magnetic underlayer of a perpendicular magnetic recording medium.
That is, in a region where the Ir content is 5 atomic% or more, the magnetocrystalline anisotropy energy Ku ⊥ with respect to the C-axis direction of the Co—Ir alloy takes a negative value, and exhibits properties suitable for the use of the present invention. . However, since the saturation magnetic flux magnetization Ms decreases as the Ir addition amount increases, it is necessary to control the concentration to match the purpose.
The substrate temperature when depositing Co—Ir is preferably in the range from room temperature to about 400 ° C.

軟磁性裏打ち層の保磁力Hcは30(Oe)以下、好ましくは10(Oe)以下、さらに好ましくは1(Oe)以下とするのが望ましい。なお、1(Oe)は、約79A/mである。
軟磁性裏打ち層の飽和磁束密度Bsは、0.6T以上、好ましくは1T以上とするのが望ましい。
軟磁性裏打ち層を構成する軟磁性膜の膜厚は20nm以上120nm以下、好ましくは20nm以上100nm以下、さらに好ましくは20nm以上60nm以下である。
また、本発明に含まれるCo−Ir合金薄膜においては、その磁化モードがネール磁壁構造からブロッホ磁壁構造に変化する膜厚(以後、磁壁臨界膜厚とする)が、Coの原子比の変化に伴って変わることが確認されている。すなわち、Ir濃度を5原子%以上20原子%以下の範囲内のある値に固定した場合、Co−Ir合金薄膜の膜厚を少しずつ厚くしていくと、ある厚さを境にして磁壁の磁化モードがネール型からブロッホ型に変わる。一般的にはWATE現象の抑制にはネール磁界の方が好ましいと考えられるが、ブロッホ磁界構造は、媒体ノイズを抑制する点で有利であることも考えられる。膜厚の設定にはこれらの事実を勘案して決定されるべきである。
軟磁性膜の形成方法としては、スパッタリング法を用いることができる。
軟磁性裏打ち層は、軟磁性膜と、Ru膜またはRe膜とのサンドイッチ構造をとっていてもよい。軟磁性膜と、Ru膜またはRe膜とを設け、所定の厚さに設定することで軟磁性膜を反強磁性結合させることができるためである。このとき、RuまたはReの膜厚は一般に0.3nm以上1.5nm以下、好ましくは0.5nm以上1.2nm以下であるような構成とすることで、垂直媒体特有の問題であるWATE現象をより改善することができる。
The coercive force Hc of the soft magnetic underlayer is 30 (Oe) or less, preferably 10 (Oe) or less, more preferably 1 (Oe) or less. Note that 1 (Oe) is about 79 A / m.
The saturation magnetic flux density Bs of the soft magnetic underlayer is 0.6T or more, preferably 1T or more.
The thickness of the soft magnetic film constituting the soft magnetic backing layer is 20 nm to 120 nm, preferably 20 nm to 100 nm, and more preferably 20 nm to 60 nm.
Further, in the Co—Ir alloy thin film included in the present invention, the film thickness at which the magnetization mode changes from the Nehru domain wall structure to the Bloch domain wall structure (hereinafter referred to as domain wall critical film thickness) corresponds to the change in the atomic ratio of Co. It has been confirmed that it changes with this. That is, when the Ir concentration is fixed to a certain value within the range of 5 atomic% or more and 20 atomic% or less, the Co—Ir alloy thin film is gradually increased in thickness to increase the boundary of the domain wall at a certain thickness. Magnetization mode changes from Nail type to Bloch type. In general, the Neel magnetic field is considered to be preferable for suppressing the WATE phenomenon, but the Bloch magnetic field structure may be advantageous in terms of suppressing medium noise. The film thickness should be determined in consideration of these facts.
As a method for forming the soft magnetic film, a sputtering method can be used.
The soft magnetic backing layer may have a sandwich structure of a soft magnetic film and a Ru film or Re film. This is because the soft magnetic film and the Ru film or the Re film are provided and set to a predetermined thickness so that the soft magnetic film can be antiferromagnetically coupled. At this time, by setting the film thickness of Ru or Re to be generally 0.3 nm to 1.5 nm, preferably 0.5 nm to 1.2 nm, the WAIT phenomenon which is a problem peculiar to vertical media can be prevented. It can be improved further.

配向制御層は、下地層とともに、配向制御層上に設けられる垂直磁気記録層の配向や結晶サイズを制御するためのものである。配向制御層に用いられる材料は、六方細密構造(hcp構造)または面心立方構造(fcc構造)を有するものが好適であり、Pt、Pd、NiCr、NiFeCr、Mgなどが利用できる。hcp構造やfcc構造以外の構造(例えば、体心立方構造(bcc構造)やアモルファス構造)であると、垂直磁気記録層の配向が不十分となり、その結果、SNRの低下や保磁力の低下を生じるので好ましくない。
配向制御層5は、シード層5−1と中間層5−2の2層から形成する。シード層5−1に用いられる材料は、例えばPdが適する。中間層5−2に用いられる材料は、特にRuが好ましい。配向制御層の厚さは30nm以下であることが好ましい。配向制御層の厚さが30nmを超えると記録再生時における磁気ヘッドと軟磁性裏打ち層の距離が大きくなるため、OW特性や再生信号の分解能が低下するため好ましくない。
The orientation control layer is for controlling the orientation and crystal size of the perpendicular magnetic recording layer provided on the orientation control layer together with the underlayer. The material used for the orientation control layer preferably has a hexagonal close-packed structure (hcp structure) or a face-centered cubic structure (fcc structure), and Pt, Pd, NiCr, NiFeCr, Mg, and the like can be used. If the structure is other than the hcp structure or the fcc structure (for example, a body-centered cubic structure (bcc structure) or an amorphous structure), the orientation of the perpendicular magnetic recording layer becomes insufficient, resulting in a decrease in SNR and a decrease in coercive force. Since it occurs, it is not preferable.
The orientation control layer 5 is formed of two layers, a seed layer 5-1 and an intermediate layer 5-2. For example, Pd is suitable as the material used for the seed layer 5-1. The material used for the intermediate layer 5-2 is particularly preferably Ru. The thickness of the orientation control layer is preferably 30 nm or less. If the thickness of the orientation control layer exceeds 30 nm, the distance between the magnetic head and the soft magnetic backing layer at the time of recording / reproducing is increased, which is not preferable because the OW characteristics and the resolution of the reproduced signal are lowered.

垂直磁気記録層5は磁化容易軸が基板面に対し垂直方向に有している。構成元素としては、少なくともCoとPtと酸化物を含んでおり、さらにSNR特性改善などの目的でCr、B、Cu、Ta、Zrを添加することもできる。
垂直磁気記録層を構成する酸化物としては、SiO 、SiO、Cr、CoO、Ta 、TiOを挙げることができる。酸化物の体積率は15〜40体積%であることが好ましい。酸化物の体積率が15体積%未満であると、SNR特性が不十分となるため好ましくない。酸化物の体積率が40体積%を超えると、高記録密度に対応するだけの保磁力を得ることができないため好ましくない。
また、これ以外にもCo/Pt・Co/Pd人工格子系,FePt・FePd規則合金系、RE−TM系等の垂直磁気記録媒体材料を使用することができる。
垂直磁気記録層のニュークリエーション磁界(−Hn)は1.5(kOe)以上であることが好ましい。−Hnが1.5(kOe)未満であると、熱揺らぎが発生するので好ましくない。
垂直磁気記録層の厚さは6〜18nmであることが好ましい。垂直磁気記録層の厚さがこの範囲であると、十分な出力を確保することができ、OW特性の悪化が生じないために好ましい。
垂直磁気記録層は、単層構造とすることもできるし、組成の異なる材料からなる2層以上の構造とすることもできる。
The perpendicular magnetic recording layer 5 has an easy axis of magnetization perpendicular to the substrate surface. Constituent elements include at least Co, Pt, and oxide, and Cr, B, Cu, Ta, and Zr can be added for the purpose of improving SNR characteristics.
Examples of the oxide constituting the perpendicular magnetic recording layer include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 , and TiO 2 . The volume ratio of the oxide is preferably 15 to 40% by volume. If the volume ratio of the oxide is less than 15% by volume, the SNR characteristic becomes insufficient, which is not preferable. When the volume ratio of the oxide exceeds 40% by volume, it is not preferable because a coercive force sufficient for a high recording density cannot be obtained.
In addition, a perpendicular magnetic recording medium material such as a Co / Pt · Co / Pd artificial lattice system, an FePt · FePd ordered alloy system, or an RE-TM system can be used.
The nucleation magnetic field (-Hn) of the perpendicular magnetic recording layer is preferably 1.5 (kOe) or more. -Hn of less than 1.5 (kOe) is not preferable because thermal fluctuation occurs.
The thickness of the perpendicular magnetic recording layer is preferably 6 to 18 nm. When the thickness of the perpendicular magnetic recording layer is within this range, it is preferable because a sufficient output can be secured and the OW characteristics do not deteriorate.
The perpendicular magnetic recording layer can have a single layer structure, or can have a structure of two or more layers made of materials having different compositions.

保護層は垂直磁気記録層の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのもので、従来公知の材料を使用でき、例えばC、SiO 、ZrO を含むものが使用可能である。保護層の厚さは、1nm以上5nm以下とするのがヘッドと媒体の距離を小さくできるので高記録密度の点から望ましい。 The protective layer prevents corrosion of the perpendicular magnetic recording layer and prevents damage to the surface of the medium when the magnetic head comes into contact with the medium. Conventionally known materials can be used, for example, C, SiO 2 , ZrO 2 can be used. What is included can be used. The thickness of the protective layer is preferably 1 nm or more and 5 nm or less because the distance between the head and the medium can be reduced, which is desirable from the viewpoint of high recording density.

潤滑層には従来公知の材料、例えばパーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などを用いるのが好ましい。   A conventionally known material such as perfluoropolyether, fluorinated alcohol, fluorinated carboxylic acid or the like is preferably used for the lubricating layer.

図2は、上記磁気記録媒体を用いた磁気記録再生装置の例を示すものである。ここに示す磁気記録再生装置は、磁気記録媒体10と、磁気記録媒体10を回転駆動させる媒体駆動部11と、磁気記録媒体10に情報を記録再生する磁気ヘッド12と、ヘッド駆動部13と、記録再生信号処理系14とを備えている。記録再生信号処理系14は、入力されたデータを処理して記録信号を磁気ヘッド12に送ったり、磁気ヘッド12からの再生信号を処理してデータを出力することができるようになっている。   FIG. 2 shows an example of a magnetic recording / reproducing apparatus using the magnetic recording medium. The magnetic recording / reproducing apparatus shown here includes a magnetic recording medium 10, a medium driving unit 11 that rotationally drives the magnetic recording medium 10, a magnetic head 12 that records and reproduces information on the magnetic recording medium 10, a head driving unit 13, And a recording / reproducing signal processing system 14. The recording / reproducing signal processing system 14 can process the input data and send the recording signal to the magnetic head 12, or can process the reproducing signal from the magnetic head 12 and output the data.

以下、実施例を示して本発明の作用効果を明確にする。ただし、本発明は以下の実施例に限定されるものではない。
(実施例1)
ガラス基板(オハラ社製結晶化基板TS10−SX、直径2.5インチ)を洗浄した後、基板をDCマグネトロンスパッタ装置(アネルバ社製C−3010)の成膜チャンバ内に収容して、到達真空度1×10−5Paとなるまで成膜チャンバ内を排気した。この基板上に下地層であるTi膜を7nm成膜した。その上にRu膜を3nm成膜し、さらにその上に88Co−12Ir(Ir;12原子%)軟磁性膜を20nm成膜して、2層構造からなる軟磁性裏打ち層を形成した。
この上にスパッタリング法でPdシード層を6nm、Ru中間層を20nm、CoCrPt−SiO垂直磁気記録層を10nm、及び保護層としてC膜を5nm成膜した。 次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層を形成し、垂直磁気記録媒体を得た。
Hereinafter, an example is shown and the operation effect of the present invention is clarified. However, the present invention is not limited to the following examples.
(Example 1)
After cleaning the glass substrate (Ohara's crystallized substrate TS10-SX, diameter 2.5 inches), the substrate is housed in a film formation chamber of a DC magnetron sputtering apparatus (Anelva C-3010), and an ultimate vacuum is reached. The film formation chamber was evacuated until the pressure reached 1 × 10 −5 Pa. A Ti film as a base layer was formed to 7 nm on this substrate. A Ru film was formed thereon with a thickness of 3 nm, and an 88Co-12Ir (Ir; 12 atom%) soft magnetic film was further formed thereon with a thickness of 20 nm to form a soft magnetic backing layer having a two-layer structure.
On top of this, a Pd seed layer was formed by sputtering, a Ru intermediate layer was formed by 20 nm, a CoCrPt—SiO 2 perpendicular magnetic recording layer was formed by 10 nm, and a C film was formed by 5 nm as a protective layer. Next, a lubricating layer made of perfluoropolyether was formed by a dipping method to obtain a perpendicular magnetic recording medium.

(比較例1)
一方、実施例1と同様の基板、手法を用いて、基板上に軟磁性裏打ち層となる第1の軟磁性膜として91Co−5Zr−4Nb(Co含有量91at%、Zr含有量5at%、Nb含有量4at%)を60nm、Ru膜を0.8nm、第2の軟磁性膜として91Co−5Zr−4Nbを60nm成膜した。
軟磁性裏打ち層を形成した後、実施例1と同様に、Pdシード層を6nm、Ru中間層を20nm、CoCrPt−SiO垂直磁気記録層を10nm、及び保護層としてC膜を5nm成膜した。
次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層を形成し、垂直磁気記録媒体を得た。このようにして得た直磁気記録媒体を比較例とした。
(Comparative Example 1)
On the other hand, using the same substrate and method as in Example 1, 91Co-5Zr-4Nb (Co content 91 at%, Zr content 5 at%, Nb as a first soft magnetic film to be a soft magnetic underlayer on the substrate) The content was 4 at%) 60 nm, the Ru film was 0.8 nm, and the second soft magnetic film was 91 Co-5Zr-4Nb.
After forming the soft magnetic backing layer, the Pd seed layer was 6 nm, the Ru intermediate layer was 20 nm, the CoCrPt—SiO 2 perpendicular magnetic recording layer was 10 nm, and the C film was formed as a protective layer with a thickness of 5 nm, as in Example 1. .
Next, a lubricating layer made of perfluoropolyether was formed by a dipping method to obtain a perpendicular magnetic recording medium. The direct magnetic recording medium thus obtained was used as a comparative example.

引き続き実施例および比較例の垂直磁気記録媒体についてWATE測定を実施した。評価方法は以下の通りである。
(1)媒体表面±6μmにわたって156kfciの基本パターンを記録する。
(2)各トラックの平均出力を全トラックにわたって測定し、初期状態でのトラックプロファイルとする。
(3)真ん中の1トラックを選び、937kfciの信号を10000回繰り返し記録する。
(4)もう一度トラックプロファイルを測定し、初期状態と比較する。
こうして得られた実施例と比較例のトラックプロファイルをそれぞれ図3、図4に示す。
また、それぞれについて、C軸に対する結晶磁気異方性エネルギーKugrain、トラッキングプロファイル中の出力減衰幅、垂直磁気異方性Kuおよび−2πMsの値を表1に示した。
Subsequently, WAIT measurement was performed on the perpendicular magnetic recording media of the examples and comparative examples. The evaluation method is as follows.
(1) A basic pattern of 156 kfci is recorded over the medium surface ± 6 μm.
(2) The average output of each track is measured over all tracks to obtain a track profile in the initial state.
(3) Select one middle track and record a 937 kfci signal 10,000 times repeatedly.
(4) Measure the track profile again and compare with the initial state.
The track profiles of the example and the comparative example thus obtained are shown in FIGS. 3 and 4, respectively.
Table 1 shows values of the magnetocrystalline anisotropy energy Ku grain , the output attenuation width in the tracking profile, the perpendicular magnetic anisotropy Ku and −2πMs 2 with respect to the C axis.

表1の結果から、本発明による垂直磁気記録媒体は、WATE現象を抑える効果があることが明らかになった。   From the results shown in Table 1, it is clear that the perpendicular magnetic recording medium according to the present invention has an effect of suppressing the WATE phenomenon.

Figure 2006309926
Figure 2006309926

(実施例2〜実施例6、比較例2〜比較例6)
次に、基板として半径22mmのシリコン製基板を用いて実施例1、比較例1と同様のプロセスを用いて垂直磁気記録媒体を作製した。ただし、スパッタリング装置内にて成膜を行う際、基板は計5枚をセットし同時成膜を行った。すなわち実施例1と同じプロセスのものを5枚、比較例1と同じプロセスのものを5枚作製した。この成膜時の基板の配置を図5に示した。
実施例1にならった試料を実施例2〜6、比較例1にならった試料を比較例2〜6とする。
これら試料についてやはり実施例1、比較例1と同様にWATE測定を実施した。ターゲットに対する位置関係の異なる5枚の媒体間にWATE現象の起こり方に差が生じるかどうかを比べた。結果を表2に示した。
(Example 2 to Example 6, Comparative Example 2 to Comparative Example 6)
Next, a perpendicular magnetic recording medium was manufactured using the same process as in Example 1 and Comparative Example 1 using a silicon substrate having a radius of 22 mm as the substrate. However, when film formation was performed in the sputtering apparatus, a total of five substrates were set and film formation was performed simultaneously. That is, five sheets of the same process as in Example 1 and five sheets of the same process as in Comparative Example 1 were produced. The arrangement of the substrate during the film formation is shown in FIG.
Samples according to Example 1 are referred to as Examples 2 to 6, and samples according to Comparative Example 1 are referred to as Comparative Examples 2 to 6.
These samples were also subjected to WAIT measurement in the same manner as in Example 1 and Comparative Example 1. It was compared whether or not there was a difference in how the WAIT phenomenon occurred between five media having different positional relationships with respect to the target. The results are shown in Table 2.

Figure 2006309926
Figure 2006309926

表2の結果より、本発明に基づく実施例2〜実施例6においては基板の配置にかかわらず、WATE現象はまったく観測されなかった。これは基板がさらされる磁界の方向、強さやターゲットの方向などにかかわらず、軟磁性裏打ち層の結晶構造さえ制御できれば、磁化容易軸方向を強力に基板面内に向けることができるということを示唆していると考えられる。
一方の比較例2〜比較例6ではWATE現象が観測されるとともに、その強度も基板位置により変動している可能性が認められる。これは裏打ち軟磁性層の軟磁気特性がターゲット裏のマグネトロン磁界や、ターゲットからのスパッタ粒子入射角などによって影響を受けているためであると考えられる。
From the results of Table 2, in Examples 2 to 6 according to the present invention, no WAIT phenomenon was observed regardless of the substrate arrangement. This suggests that, regardless of the direction of the magnetic field to which the substrate is exposed, the direction of the magnetic field, the direction of the target, etc., if the crystal structure of the soft magnetic backing layer can be controlled, the easy axis direction can be strongly directed in the substrate plane. it seems to do.
In one comparative example 2 to comparative example 6, the WAIT phenomenon is observed, and it is recognized that the intensity may vary depending on the substrate position. This is presumably because the soft magnetic properties of the backing soft magnetic layer are influenced by the magnetron magnetic field on the back of the target, the incident angle of sputtered particles from the target, and the like.

(実施例7)
2つのターゲットを回転させることができるようになっており、2種類のターゲット材料による混合スパッタリング成膜が可能なマグネトロンスパッタリング装置(アネルバ C−3010)の真空チャンバ内に、結晶化ガラス基板をセットして、同チャンバ内を到達真空度1×10−5Paとなるまで排気した。ターゲット材料としては、純Coと純Irをそれぞれセットした。
先ずランプヒーターを用いて結晶化ガラス基板を350℃に加熱した。次いで、Ti膜を7nm、Ru膜を3nm順次成膜し、引き続いてCoとIrの回転同時成膜を利用してCo100−xIrを20nm成膜した。このとき、CoとIrの放電出力を加減してxを変化させた。
さらに、試料最上部にCの保護膜を成膜した。
このようにしてできた各種組成のCo100−xIrについて、結晶磁気異方性エネルギーKugrainを測定した。測定には前述の通り磁気トルクメーターを用いた。また2つのターゲットの放電出力を変化させて得られた組成を、蛍光X線分析を用いて求めた。これらの測定結果を表3にまとめた。なお、Co100−xIr合金膜を成膜する際のAr分圧は3.0Paと0.6Paの2種類について調べた。
(Example 7)
Two targets can be rotated, and a crystallized glass substrate is set in a vacuum chamber of a magnetron sputtering apparatus (Anelva C-3010) capable of mixed sputtering film formation using two types of target materials. The inside of the chamber was evacuated until the ultimate vacuum was 1 × 10 −5 Pa. As target materials, pure Co and pure Ir were set.
First, the crystallized glass substrate was heated to 350 ° C. using a lamp heater. Next, a Ti film was formed in a thickness of 7 nm and a Ru film was formed in a thickness of 3 nm, and then Co 100-x Ir x was formed in a thickness of 20 nm by using simultaneous rotation of Co and Ir. At this time, x was changed by adjusting the discharge outputs of Co and Ir.
Further, a C protective film was formed on the top of the sample.
The crystal magnetic anisotropy energy Ku grain was measured for Co 100-x Ir x having various compositions thus obtained. As described above, a magnetic torque meter was used for the measurement. Moreover, the composition obtained by changing the discharge output of two targets was calculated | required using the fluorescent X ray analysis. These measurement results are summarized in Table 3. Incidentally, Ar partial pressure at the time of forming the Co 100-x Ir x alloy film was examined for two types of 3.0Pa and 0.6 Pa.

Figure 2006309926
Figure 2006309926

表3に示した結果を基に、Ir濃度とKugrainの関係をグラフ化して図6に示した。
本発明においてはKugrainが負であることが必要である。Kugrainの値は成膜時のArガス分圧によっても挙動が変わるが、上記結果を基に判断するとIr濃度5at%〜30at%の範囲が最も適当であることがわかった。
Based on the results shown in Table 3, the relationship between Ir concentration and Ku grain is graphed and shown in FIG.
In the present invention, Ku grain needs to be negative. Although the behavior of Ku grain changes depending on the Ar gas partial pressure during film formation, it was found that the range of Ir concentration of 5 at% to 30 at% is most suitable based on the above results.

(実施例8〜12、比較例8〜比較例12)
直径の異なる5種類の基板について、実施例1及び比較例1と同様の方法を用いて垂直磁気記録媒体を作成し、そのWATE特性を測定した。
基板サイズは直径95mm(実施例8)、65mm(実施例9)、48mm(実施例10)、28mm(実施例11)及び22mm(実施例12)の5種類で、それぞれのサイズについて4枚の試料を作成して評価した。裏打ち磁性層材料としてCo−Irを用いたものを実施例8〜実施例12、裏打ち磁性層材料としてCo−Zr−Nbを用いたものを比較例8〜比較例12とした。測定結果を表4に示す。
(Examples 8 to 12, Comparative Example 8 to Comparative Example 12)
For five types of substrates having different diameters, perpendicular magnetic recording media were prepared using the same method as in Example 1 and Comparative Example 1, and their WAIT characteristics were measured.
There are five types of substrate sizes of 95 mm in diameter (Example 8), 65 mm (Example 9), 48 mm (Example 10), 28 mm (Example 11), and 22 mm (Example 12). Samples were made and evaluated. Examples using Co—Ir as the backing magnetic layer material were Examples 8 to 12, and those using Co—Zr—Nb as the backing magnetic layer material were Comparative Examples 8 to 12. Table 4 shows the measurement results.

Figure 2006309926
Figure 2006309926

軟磁性裏打ち層材料がCo−Zr−Nbの場合、基板直径が小さいものでよりWATE現象が顕著になっている。したがって、本発明は直径28mm以下のサイズの基板を用いる場合により大きな価値があるということができる。   When the soft magnetic underlayer material is Co—Zr—Nb, the WAIT phenomenon is more prominent when the substrate diameter is small. Therefore, it can be said that the present invention is more valuable when a substrate having a diameter of 28 mm or less is used.

本発明の垂直磁気記録媒体の断面構造を示す図である。It is a figure which shows the cross-section of the perpendicular magnetic recording medium of this invention. 本発明の垂直磁気記録再生装置の構造を示す図である。It is a figure which shows the structure of the perpendicular magnetic recording / reproducing apparatus of this invention. 実施例1に係わる垂直磁気記録媒体のトラックプロファイルを示す図であり、(a)は初期状態を、(b)は10000回記録後の状態を示す。2A and 2B are diagrams showing a track profile of a perpendicular magnetic recording medium according to Example 1, where FIG. 5A shows an initial state, and FIG. 5B shows a state after recording 10,000 times. 比較例1に係わる垂直磁気記録媒体のトラックプロファイルを示す図であり、(a)は初期状態を、(b)は10000回記録後の状態を示す。It is a figure which shows the track profile of the perpendicular magnetic recording medium concerning the comparative example 1, (a) shows an initial state, (b) shows the state after 10,000 times recording. 成膜時の基板の配置を説明する図であって、(a)は正面図、(b)は平面図を示す。It is a figure explaining arrangement | positioning of the board | substrate at the time of film-forming, Comprising: (a) is a front view, (b) shows a top view. 実施例7におけるIr濃度とKuの関係を示す図である。It is a diagram showing the relationship between Ir concentration and Ku in Example 7.

符号の説明Explanation of symbols

1・・・・・非磁性基板、2・・・・・ピン止め層、3・・・・・下地層、4・・・・・軟磁性裏打ち層、5・・・・・配向制御層、6・・・・・垂直磁気記録層、7・・・・・保護層、8・・・・・潤滑層、10・・・・・磁気記録媒体、11・・・・・媒体駆動部、12・・・・・磁気ヘッド、13・・・・・ヘッド駆動部、14・・・・・記録再生信号系、20・・・・・磁気記録再生装置、30・・・・・ターゲット
DESCRIPTION OF SYMBOLS 1 ... Nonmagnetic board | substrate, 2 ... Pinning layer, 3 ... Underlayer, 4 ... Soft magnetic backing layer, 5 ... Orientation control layer, 6... Perpendicular magnetic recording layer, 7... Protective layer, 8... Lubricating layer, 10... Magnetic recording medium, 11. ... Magnetic head, 13... Head drive unit, 14... Recording / reproducing signal system, 20.

Claims (7)

非磁性基板上に少なくとも軟磁性裏打ち層と垂直磁気記録層とを有する垂直磁気記録媒体であって、Ms(emu/cc)なる飽和磁化を有する前記軟磁性裏打ち層が、媒体面に対して垂直磁気異方性エネルギーKu(erg/cc)として−2πMsより小さい負の値を持つことを特徴とする垂直磁気記録媒体。 A perpendicular magnetic recording medium having at least a soft magnetic backing layer and a perpendicular magnetic recording layer on a nonmagnetic substrate, wherein the soft magnetic backing layer having a saturation magnetization of Ms (emu / cc) is perpendicular to the medium surface. A perpendicular magnetic recording medium having a negative value smaller than −2πMs 2 as magnetic anisotropy energy Ku (erg / cc). 前記軟磁性裏打ち層が負の一軸結晶磁気異方性エネルギーKugrainを持つ材料を用いて構成され、その磁化困難軸が基板面に対して垂直な方向を向いていることを特徴とする請求項1に記載の垂直磁気記録媒体。 The soft magnetic underlayer is made of a material having negative uniaxial crystal magnetic anisotropy energy Ku grain , and its hard axis of magnetization is oriented in a direction perpendicular to the substrate surface. 2. The perpendicular magnetic recording medium according to 1. 前記軟磁性裏打ち層がCoとIrとを主成分とする合金から成ることを特徴とする請求項1または請求項2に記載の垂直磁気記録媒体。   3. The perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic underlayer is made of an alloy mainly composed of Co and Ir. 前記軟磁性裏打ち層をなすCoとIrとの合金のIr含有量が5原子%以上、30原子%以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の垂直磁気記録媒体。   The vertical content according to any one of claims 1 to 3, wherein an Ir content of an alloy of Co and Ir forming the soft magnetic underlayer is 5 atomic percent or more and 30 atomic percent or less. Magnetic recording medium. 前記軟磁性裏打ち層の下に2次元の六方最密格子面、または立方格子面を基板面と平行に配向させた結晶質下地膜を有することを特徴とする請求項1から請求項4のいずれか1項に記載の垂直磁気記録媒体。   5. The crystalline underlayer having a two-dimensional hexagonal close-packed lattice plane or a cubic lattice plane oriented parallel to the substrate surface under the soft magnetic backing layer. 6. 2. The perpendicular magnetic recording medium according to claim 1. 前記非磁性基板が半径28mm以下の円盤状基板であることを特徴とする請求項1から請求項5のいずれか1項に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the nonmagnetic substrate is a disk-shaped substrate having a radius of 28 mm or less. 垂直磁気記録媒体と、該垂直磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、前記垂直磁気記録媒体が請求項1から請求項6のいずれか1項に記載の垂直磁気記録媒体であることを特徴とする磁気記録再生装置。
A magnetic recording / reproducing apparatus comprising a perpendicular magnetic recording medium and a magnetic head for recording / reproducing information on the perpendicular magnetic recording medium, wherein the perpendicular magnetic recording medium is defined in any one of claims 1 to 6. A magnetic recording / reproducing apparatus comprising the perpendicular magnetic recording medium described above.
JP2006091438A 2005-03-30 2006-03-29 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus Active JP4472655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091438A JP4472655B2 (en) 2005-03-30 2006-03-29 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005100020 2005-03-30
JP2006091438A JP4472655B2 (en) 2005-03-30 2006-03-29 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus

Publications (2)

Publication Number Publication Date
JP2006309926A true JP2006309926A (en) 2006-11-09
JP4472655B2 JP4472655B2 (en) 2010-06-02

Family

ID=37476618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091438A Active JP4472655B2 (en) 2005-03-30 2006-03-29 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JP4472655B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287829A (en) * 2007-05-21 2008-11-27 Toshiba Corp Vertical magnetic recording medium
US7573777B2 (en) 2006-10-02 2009-08-11 Hynix Semiconductor Inc. Over driver control signal generator in semiconductor memory device
US7613059B2 (en) 2007-03-05 2009-11-03 Hynix Semiconductor, Inc. Semiconductor memory device and method for driving the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7573777B2 (en) 2006-10-02 2009-08-11 Hynix Semiconductor Inc. Over driver control signal generator in semiconductor memory device
US7613059B2 (en) 2007-03-05 2009-11-03 Hynix Semiconductor, Inc. Semiconductor memory device and method for driving the same
JP2008287829A (en) * 2007-05-21 2008-11-27 Toshiba Corp Vertical magnetic recording medium
WO2008143296A1 (en) * 2007-05-21 2008-11-27 Tohoku University Vertical magnetic recording medium, and magnetic recording/reproducing device

Also Published As

Publication number Publication date
JP4472655B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4470881B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP5638814B2 (en) Single-sided perpendicular magnetic recording medium
WO2007116813A1 (en) Method for manufacturing vertical magnetic recording disc, and vertical magnetic recording disc
JP2004310910A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2006024346A (en) Magnetic recording medium, production method for the same and magnetic recording and reproducing device
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4083494B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US20090226763A1 (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2010272202A (en) Perpendicular magnetic recording medium
JP4902210B2 (en) Perpendicular magnetic recording medium, method for manufacturing the same, and perpendicular magnetic recording / reproducing apparatus
US7879466B2 (en) Perpendicular magnetic recording medium, and perpendicular magnetic recording and reproducing apparatus
JP4611847B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP4101836B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2008192249A (en) Vertical magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
JP4864391B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4472655B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
US20100079911A1 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
JP2006351055A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing apparatus
JP4123806B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP6416041B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP4358208B2 (en) Perpendicular magnetic recording medium
JP2005302109A (en) Manufacturing method of multilayer film vertical magnetic recording medium
JP4637785B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP5001768B2 (en) Method for manufacturing perpendicular magnetic recording disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4472655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160312

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250