JP2006308578A - Equalizing valve for measuring differential pressure, and differential pressure type flowmeter - Google Patents

Equalizing valve for measuring differential pressure, and differential pressure type flowmeter Download PDF

Info

Publication number
JP2006308578A
JP2006308578A JP2006099518A JP2006099518A JP2006308578A JP 2006308578 A JP2006308578 A JP 2006308578A JP 2006099518 A JP2006099518 A JP 2006099518A JP 2006099518 A JP2006099518 A JP 2006099518A JP 2006308578 A JP2006308578 A JP 2006308578A
Authority
JP
Japan
Prior art keywords
valve
path
differential pressure
pressure
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099518A
Other languages
Japanese (ja)
Other versions
JP4777816B2 (en
Inventor
Takayuki Ite
貴幸 射手
Hideki Muramatsu
秀樹 村松
Toshiaki Kobayashi
俊明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Co Ltd
Original Assignee
Nagano Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Co Ltd filed Critical Nagano Keiki Co Ltd
Priority to JP2006099518A priority Critical patent/JP4777816B2/en
Publication of JP2006308578A publication Critical patent/JP2006308578A/en
Application granted granted Critical
Publication of JP4777816B2 publication Critical patent/JP4777816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an equalizing valve for measuring differential pressure and a differential pressure type flowmeter, capable of making size compact, of simplifying, and of reducing the cost. <P>SOLUTION: The first inlet passage 361 is extended along the axial direction of a valve stem 351, in the equalizing valve 35 assembled in the differential pressure type flowmeter, and a tapered part 351H provided around an axis of the valve stem 351 is advanced and retreated along the axial direction, to conduct switching from a differential pressure condition to an equalized condition. The equalizing valve 35 is made compact therein by the overlapped section where the advanced and retreated section for the valve stem 351 is overlapped with a valve passage 352. Pressure unevenness, caused by flow delays between the first lead-out passage 371 and the second lead-out passage 372, is reduced, since a distance between the first lead-out passage 371 and the second lead-out passage 372 is shortened by making compact. A valve element of the equalizing valve 35 is also easy to be assembled to contribute to reliability and cost reduction, because the valve element has simple structure, such as the tapered part 351H. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、差圧測定用の均圧弁、および、被検出流体の流量を検出する差圧式流量計に関する。   The present invention relates to a pressure equalizing valve for measuring a differential pressure and a differential pressure type flow meter for detecting a flow rate of a fluid to be detected.

従来、ビルの空調や冷・温水設備、工場の排気装置、集塵装置などの運転の適正化や省エネルギー化を図るために、装置の配管内部での流量を測定する差圧式流量計が使用されている。
このような差圧式流量計は、被検出流体が通過する流路に配置される差圧発生手段を備える。すなわち、被検出流体が通過する流路に静止した物体を置くと、その前後に差圧が発生するが、これを応用し、発生差圧に対する流量が一定の関係となるオリフィスなどの絞り機構やピトー管、後流ピトー管、層流素子などの差圧発生手段によって差圧を発生させることにより、流量が測定可能となる。
従来の差圧式流量計は、差圧発生手段と差圧センサとで構成されている(例えば、特許文献1および特許文献2)。このような流量計では、流路の途中にオリフィスが設けられ、このオリフィスの前後で流体の圧力がそれぞれ導圧管を介して取り出され、取り出された圧力が差圧センサによって測定される。また、ゼロ点調整のために、導圧管同士を結ぶ均圧配管が設けられており、この均圧配管には、均圧弁が配置されている。すなわち、ゼロ点調整時に均圧弁を開き、差圧発生手段の前後における被検出流体の圧力を均圧化して、このゼロ点調整後に、差圧測定が行われる。
Conventionally, differential pressure flow meters that measure the flow rate inside equipment piping have been used to optimize the operation and save energy of building air conditioning, cold / hot water equipment, factory exhaust systems, and dust collectors. ing.
Such a differential pressure type flow meter includes a differential pressure generating means disposed in a flow path through which the fluid to be detected passes. That is, when a stationary object is placed in the flow path through which the fluid to be detected passes, a differential pressure is generated before and after that. By applying this, a throttling mechanism such as an orifice that has a fixed flow rate relative to the generated differential pressure, The flow rate can be measured by generating a differential pressure by a differential pressure generating means such as a Pitot tube, a wake Pitot tube, or a laminar flow element.
A conventional differential pressure type flow meter includes a differential pressure generating means and a differential pressure sensor (for example, Patent Document 1 and Patent Document 2). In such a flow meter, an orifice is provided in the middle of the flow path, and the pressure of the fluid is taken out through the pressure guiding pipe before and after the orifice, and the taken out pressure is measured by a differential pressure sensor. In order to adjust the zero point, a pressure equalizing pipe connecting the pressure guiding pipes is provided, and a pressure equalizing valve is disposed in the pressure equalizing pipe. That is, the pressure equalizing valve is opened during zero point adjustment, the pressure of the fluid to be detected before and after the differential pressure generating means is equalized, and the differential pressure is measured after the zero point adjustment.

ここで、特許文献1では、導圧管に流体圧力の抵抗器が設けられており、この抵抗器および均圧弁のみによって、三岐弁などを使用することなくゼロ点調整が可能となっている。
また、特許文献2では、高圧側経路と均圧用の連通路との接続部分に設けられる均圧弁(シャトル弁)が提案されており、この均圧弁は、開閉状態が互いに逆となるように連動する弁体を両端にそれぞれ有する。この均圧弁の弁体部分は、弁箱に挿入される弁棒先端の弁体に傾斜面が形成されたもので、弁箱にも、この傾斜面に対応する傾斜面が形成されている。そして、これらの傾斜面が弁棒の進退に応じて互いに圧接されることで弁が開閉する。なお、弁棒の進退は、バネを備えたシリンダ・ピストンにより行われている。
Here, in Patent Document 1, a fluid pressure resistor is provided in the pressure guiding tube, and the zero point adjustment can be performed by using only the resistor and the pressure equalizing valve without using a three-way valve or the like.
Further, Patent Document 2 proposes a pressure equalizing valve (shuttle valve) provided at a connection portion between the high pressure side path and the pressure equalizing communication path, and the pressure equalizing valve is interlocked so that the open / close states are opposite to each other. Each has a valve body on each end. The valve body portion of the pressure equalizing valve has an inclined surface formed on the valve body at the tip of the valve rod inserted into the valve box, and the valve box also has an inclined surface corresponding to the inclined surface. These inclined surfaces are brought into pressure contact with each other according to the advancement and retreat of the valve rod, thereby opening and closing the valve. The valve stem is advanced and retracted by a cylinder / piston having a spring.

一方、前述のような差圧式流量計では、被検出流体の温度や圧力の変化による被検出流体の密度変化を検出できないため、流量測定時の温度および圧力状態での体積流量の測定しかできず、このままでは質量流量計としては使用できない。
すなわち、質量流量を測定するためには、被検出流体の温度、圧力、流量を測定する必要があるため、前述のような差圧式流量計に加えて、温度センサと、これらの差圧式流量計および温度センサにネットワーク接続された中央装置と、を備えた流量計測システムが提案されている(特許文献3)。この流量計測システムでは、温度センサで測定された温度データが中央装置を介して差圧式流量計に入力され、差圧式流量計は、圧力データおよび温度データを用いて流量を算出し、その流量データを中央装置へ出力する。
On the other hand, since the differential pressure type flow meter as described above cannot detect the density change of the fluid to be detected due to the temperature or pressure change of the fluid to be detected, it can only measure the volumetric flow rate in the temperature and pressure conditions during flow rate measurement. As it is, it cannot be used as a mass flow meter.
That is, in order to measure the mass flow rate, it is necessary to measure the temperature, pressure, and flow rate of the fluid to be detected. Therefore, in addition to the differential pressure type flow meter as described above, a temperature sensor and these differential pressure type flow meters And a flow rate measuring system including a central device connected to a temperature sensor via a network has been proposed (Patent Document 3). In this flow measurement system, the temperature data measured by the temperature sensor is input to the differential pressure type flow meter via the central device, and the differential pressure type flow meter calculates the flow rate using the pressure data and the temperature data, and the flow rate data Is output to the central unit.

特開平8−201206号公報(図1、図2、図3)Japanese Patent Laid-Open No. 8-201206 (FIGS. 1, 2, and 3) 特開平7−243930号公報(図6、図7)JP-A-7-243930 (FIGS. 6 and 7) 特開2003−240616号公報(請求項1、図1)JP 2003-240616 A (Claim 1, FIG. 1)

差圧式流量計は、前述のように、ビルや工場、プラントのプロセスなどで広く利用されており、これらの配管に簡単に取り付けることができるように、構造が簡略であって小型、そして低廉なものが望まれていた。また、差圧測定には通常、均圧弁を利用したゼロ点調整が欠かせないため、このゼロ点調整および差圧測定を迅速、簡便に行うことができるものが望まれていた。   As described above, differential pressure type flow meters are widely used in building, factory, and plant processes, and have a simple structure, small size, and low cost so that they can be easily attached to these pipes. Things were desired. In addition, since the zero point adjustment using a pressure equalizing valve is usually indispensable for the differential pressure measurement, it is desired to be able to perform the zero point adjustment and the differential pressure measurement quickly and easily.

ここで、特許文献1の流量計では、必要な弁は均圧弁のみであるが、その前提として抵抗器が必要となり、構造が簡略化されるとは言い難い。構造が簡略でないため、コストも増加しかねない。
また、特許文献2のように、高圧側経路が均圧用の連通路を介してシャトル弁機構に接続される構成では、当該連通路の両端で高圧側経路の接続口と低圧側経路の接続口とが連通路の長さ分だけ離れた位置にそれぞれ配置されることになるため、これら高圧側経路、均圧用の連通路、および低圧側経路からなる差圧伝送路を器体(弁箱)に実装するに際して小型化に限界がある。このため、弁ユニット自体の小型化を図ることが難しい。そもそも、特許文献2の構成では、空気圧シリンダ装置やばねを備えた弁体作動機構が器体の外部に設けられており、このことは、装置の小型化をより一層困難なものとしている。
Here, in the flow meter of Patent Document 1, only a pressure equalizing valve is necessary, but a resistor is necessary as a premise thereof, and it is difficult to say that the structure is simplified. Since the structure is not simple, the cost may increase.
Further, in the configuration in which the high pressure side path is connected to the shuttle valve mechanism via the pressure equalizing communication path as in Patent Document 2, the high pressure side path connection port and the low pressure side path connection port at both ends of the communication path. Are arranged at positions separated from each other by the length of the communication path, so the differential pressure transmission path consisting of the high-pressure side path, the pressure equalization communication path, and the low-pressure side path is provided as a body (valve box). There is a limit to downsizing when mounted on. For this reason, it is difficult to reduce the size of the valve unit itself. In the first place, in the configuration of Patent Document 2, a valve body operating mechanism including a pneumatic cylinder device and a spring is provided outside the device body, which makes it more difficult to reduce the size of the device.

さらに、特許文献3の流量計測システムでは、中央装置、温度センサ、および差圧式流量計がそれぞれ配置された大型かつ複雑な構造であり、これらの装置、計器類を別々に施工しなくてはならないから、ネットワークへの接続を含めて、計装関係の工事に手間が掛かり、コスト高に繋がってしまう。
なお、このような差圧式流量計では、均圧弁ないし流量計自体が十分に小型でないと、導圧管同士の距離が大きいために流れに遅延が生じ、均圧化することが難しくなるという問題もある。
一方、特許文献3のように温度センサを用いる構成において、温度センサは、この温度センサが取り付けられる流量検出部の温度影響を受けやすいため、流量補正の信頼性が損なわれるという問題もあった。
Furthermore, the flow rate measurement system of Patent Document 3 has a large and complicated structure in which a central device, a temperature sensor, and a differential pressure type flow meter are respectively arranged, and these devices and instruments must be separately constructed. Therefore, it takes time for instrumentation-related work including connection to the network, leading to high costs.
In such a differential pressure type flow meter, if the pressure equalizing valve or the flow meter itself is not sufficiently small, the distance between the pressure guiding pipes is large, so that the flow is delayed and it is difficult to equalize the pressure. is there.
On the other hand, in the configuration using the temperature sensor as in Patent Document 3, the temperature sensor is easily affected by the temperature of the flow rate detection unit to which the temperature sensor is attached, so that the reliability of the flow rate correction is impaired.

このような問題点に鑑みて、本発明の目的は、小型化、構造の簡略化、および低コスト化を図ることができる差圧測定用の均圧弁、およびこの均圧弁を備えた差圧式流量計を提供することにある。   In view of such problems, an object of the present invention is to provide a pressure equalizing valve for measuring a differential pressure that can be reduced in size, simplified in structure, and reduced in cost, and a differential pressure type flow rate provided with the pressure equalizing valve. To provide a total.

本発明の差圧測定用の均圧弁は、内部に弁通路が形成された弁箱と、この弁箱において前記弁通路の延出方向一端側に設けられた挿入口から挿入される棒状部材であって、軸周りに沿って弁体を有し、軸方向への進退に応じて前記弁体により前記弁通路を仕切る弁棒と、を備え、前記弁箱には、前記弁通路に連通し流体の圧力がそれぞれ導入される第1導入路および第2導入路と、前記弁通路から流体の圧力がそれぞれ排出される第1導出路および第2導出路とが形成され、前記第1導入路および第1導出路は第1経路を構成し、かつその一方の前記弁通路側の開口部と他方の前記弁通路側の開口部との前記弁棒の軸方向における位置は互いに異なり、前記第2導入路および前記第2導出路は、第2経路を構成し、前記弁棒の進退に応じて、前記第1経路と前記第2経路とが仕切られてこれらの第1経路と第2経路との差圧を測定可能な差圧状態と、前記第1導出路が前記第1導入路とは仕切られて前記第2経路と連通され、前記第1導出路および前記第2導出路が均圧化される均圧状態と、に切り替えられることを特徴とする。   The pressure equalizing valve for measuring the differential pressure according to the present invention is a valve box having a valve passage formed therein, and a rod-like member inserted from an insertion port provided on one end side of the valve passage in the valve box. And a valve rod having a valve body around an axis and partitioning the valve passage by the valve body in accordance with advancement and retreat in the axial direction, and the valve box communicates with the valve passage A first introduction path and a second introduction path into which the fluid pressure is introduced, respectively, and a first lead-out path and a second lead-out path through which the fluid pressure is discharged from the valve passage, respectively, are formed, and the first introduction path is formed. And the first lead-out path constitutes a first path, and the position in the axial direction of the valve stem of the one opening on the valve passage side and the other opening on the valve passage side is different from each other, 2 introduction path and the second lead-out path constitute a second path, and according to the advance and retreat of the valve stem, A differential pressure state in which the first path and the second path are partitioned to measure a differential pressure between the first path and the second path, and the first lead-out path is partitioned from the first introduction path. And is switched to a pressure equalization state in which the first lead-out path and the second lead-out path are pressure-equalized by communicating with the second path.

この発明によれば、第1導入路および第1導出路の弁通路側の開口部の位置が互いにずれており、弁棒の軸周りに設けられた弁体を軸方向に沿って進退させるだけで、差圧状態から均圧状態へと簡便に切り替えることができる。
なお、均圧状態では、第1経路側の第1導出路と、第2経路側の第2導出路とが互いに連通し、この連通空間において被検出流体が均圧化される。この均圧化により、第1経路および第2経路での被検出流体の圧力差がなくなり、これをもって差圧測定のゼロ点調整が行われるので、差圧測定を適切に実施できる。
すなわち、第1導入路および第1導出路の一方に弁体が挿入されて第1導入路と第1導出路とが仕切られ、均圧状態における連通空間では片側の第2経路側の被検出流体の圧力のみが作用し、第1経路側の圧力は作用しないため、当該連通空間(均圧路)中に流体の流れが発生しない。このように、第1経路および第2経路の一方の導入路(ここでは第1導入路)を遮断することにより、均圧中に第1導入路と第2導入路との間で流体が流れ、これら第1導入路と第2導入路との間の均圧路が絞りとなって差圧が生じることを防止できる。
According to the present invention, the positions of the openings on the valve passage side of the first introduction path and the first lead-out path are shifted from each other, and the valve body provided around the shaft of the valve rod is only advanced and retracted along the axial direction. Thus, it is possible to easily switch from the differential pressure state to the pressure equalization state.
In the pressure equalization state, the first lead-out path on the first path side and the second lead-out path on the second path side communicate with each other, and the detected fluid is pressure-equalized in this communication space. This pressure equalization eliminates the pressure difference of the fluid to be detected in the first path and the second path, and with this, the zero point adjustment of the differential pressure measurement is performed, so that the differential pressure measurement can be appropriately performed.
That is, a valve body is inserted into one of the first introduction path and the first lead-out path to partition the first lead-in path and the first lead-out path, and in the communication space in the pressure equalization state, the detected side on the second path side on one side is detected. Since only the pressure of the fluid acts and the pressure on the first path side does not act, no fluid flows in the communication space (pressure equalization path). In this way, by shutting off one introduction path (here, the first introduction path) of the first path and the second path, fluid flows between the first introduction path and the second introduction path during pressure equalization. The pressure equalization path between the first introduction path and the second introduction path can be prevented from being throttled to generate a differential pressure.

ここで、弁棒の進退する区間が、均圧に用いられる弁通路と互いに重なっていることにより、この重なりのぶん、弁通路ないし弁箱、そして弁棒を短くすることができ、均圧弁の小型化を図ることができる。これにより、第1導出路と第2導出路とを近接配置することが可能となり、均圧弁の小型化が促進される。   Here, since the section in which the valve stem advances and retreats overlaps the valve passage used for pressure equalization, the overlap, the valve passage or valve box, and the valve stem can be shortened. Miniaturization can be achieved. Thereby, it becomes possible to arrange | position the 1st derivation path and the 2nd derivation path close, and size reduction of a pressure equalization valve is promoted.

また、弁体が第1経路と第2経路との間の位置から第1導入路へと前進、または弁通路に沿って挿入口側へと後退することによって均圧弁が閉じるので、弁体の構造は、弁棒の軸周りに沿った環状部材や軸回りに沿って軸方向に傾斜するテーパ面などの簡略なものとすることができる。これによって組み立ても容易となるから、信頼性を向上させることができ、また、低コスト化を促進できる。   Further, the pressure equalizing valve is closed by the valve body moving forward from the position between the first path and the second path to the first introduction path, or retreating to the insertion port side along the valve path. The structure may be simple, such as an annular member along the axis of the valve stem, or a tapered surface inclined in the axial direction along the axis. As a result, assembly is facilitated, so that reliability can be improved and cost reduction can be promoted.

なお、第1経路および第2経路のいずれを低圧側(あるいは高圧側)とすることも可能である。   Note that either the first path or the second path can be the low pressure side (or the high pressure side).

本発明の均圧弁では、前記弁体は、弾性を有し、前記弁棒の外周面と前記弁箱との間に介装されるシール部であり、前記シール部は、前記差圧状態のときに前記第1経路と前記第2経路とを仕切る第1シール部と、前記挿入口側に配置されて流体の圧力を前記弁通路内に封止する第2シール部とを含んで構成されることが好ましい。   In the pressure equalizing valve of the present invention, the valve body is elastic and is a seal portion interposed between an outer peripheral surface of the valve stem and the valve box, and the seal portion is in the differential pressure state. And a first seal part that partitions the first path and the second path, and a second seal part that is disposed on the insertion port side and seals the pressure of the fluid in the valve passage. It is preferable.

ここで、シール部は、弁棒の一部分であってもよいし、弁棒本体とは別部材であってもよい。別部材の場合は、いわゆるOリングなどの環状部材をシール部として利用できる。また、シール部の材料としては、被検出流体に耐性を持つゴム材料、例えば、NBR(アクリロニトリルブタジエンゴム)あるいはフッ素ゴム等のゴム材料があげられる。   Here, the seal portion may be a part of the valve stem, or may be a separate member from the valve stem body. In the case of another member, an annular member such as a so-called O-ring can be used as the seal portion. Examples of the material for the seal portion include a rubber material that is resistant to the fluid to be detected, for example, a rubber material such as NBR (acrylonitrile butadiene rubber) or fluorine rubber.

この発明によれば、シール部の弾性により、シール部が弁通路の内周面に密接するため、弁の開閉が確実となり、差圧測定を正確に行うことができる。
なお、第1シール部は、差圧状態では第1経路と第2経路との間に配置され、均圧状態では、第1導入路および弁通路のいずれかに配置される。すなわち、差圧状態であっても均圧状態であっても、第1シール部によって弁通路が仕切られる。
According to the present invention, since the seal portion is in close contact with the inner peripheral surface of the valve passage due to the elasticity of the seal portion, the valve is surely opened and closed, and the differential pressure can be accurately measured.
The first seal portion is disposed between the first path and the second path in the differential pressure state, and is disposed in either the first introduction path or the valve path in the pressure equalization state. That is, the valve passage is partitioned by the first seal portion regardless of the differential pressure state or the pressure equalization state.

本発明の均圧弁では、前記シール部は、前記第1シール部よりも前記弁通路の延出方向一端側に設けられる第3シール部を含んで構成され、前記第3シール部は、前記均圧状態のときに、前記第1導入経路に配置されることが好ましい。   In the pressure equalizing valve of the present invention, the seal portion includes a third seal portion provided at one end side in the extending direction of the valve passage with respect to the first seal portion, and the third seal portion is configured to be the pressure equalizing valve. It is preferable that the first introduction path is disposed in the pressure state.

この発明によれば、差圧状態では、第1シール部によって弁通路が仕切られる一方、均圧状態では、第3シール部によって弁通路が仕切られる。これにより、第1シール部が差圧測定時に第1経路と第2経路との間に配置され、この位置から第1導入路に挿入するように移動することで均圧状態とされる場合に比べて、弁棒が進退する寸法(ストローク)を短くでき、弁棒操作を簡易にできる。   According to this invention, in the differential pressure state, the valve passage is partitioned by the first seal portion, while in the pressure equalization state, the valve passage is partitioned by the third seal portion. As a result, when the first seal portion is disposed between the first path and the second path at the time of measuring the differential pressure and moved to be inserted into the first introduction path from this position, the pressure is equalized. In comparison, the dimension (stroke) in which the valve stem advances and retracts can be shortened, and the valve stem operation can be simplified.

本発明の均圧弁では、前記弁通路は、その一端から他端に至るまで、前記弁棒の軸方向に沿って延びており、前記第1導出路は、前記均圧状態における前記第1シール部および前記第3シール部の一方と前記第2導出路との間において、前記弁棒の軸方向と交差する方向である前記弁通路の径方向に沿って延びていることが好ましい。   In the pressure equalizing valve of the present invention, the valve passage extends from one end to the other end along the axial direction of the valve stem, and the first lead-out path is the first seal in the pressure-equalized state. It is preferable to extend along the radial direction of the valve passage, which is a direction intersecting the axial direction of the valve stem, between one of the first and third seal portions and the second lead-out path.

この発明によれば、第1導出路が形成される位置に関し、第1シール部と第2導出路との間、または、第3シール部が設けられている場合は第3シール部と第2導出路との間の位置において、弁通路の径方向に沿って第1導出路が形成される。つまり、このように第1導出路を弁通路と交差するように配置することにより、第1導出路と第2導出路とを互いに十分に近接させることが可能となり、その結果、第1経路の一部と弁通路との重なり代が大きくなることから、第1経路と第2経路とを備えた差圧伝送のための構成に要するスペース効率が上がり、均圧弁の構成全体を一層小型化できる。
また、このように第1導出路と第2導出路とを十分に近接させてこれらの第1、第2導出路の間の距離を短くできるので、均圧時、第1導出路と第2導出路との間の遅延による圧力のムラを小さくできる。すなわち、迅速かつ適切に均圧状態にすることができる。
According to this invention, regarding the position where the first lead-out path is formed, between the first seal part and the second lead-out path, or when the third seal part is provided, the third seal part and the second A first lead-out path is formed along the radial direction of the valve passage at a position between the lead-out path. That is, by arranging the first lead-out path so as to intersect the valve passage in this way, the first lead-out path and the second lead-out path can be made sufficiently close to each other. Since the overlap margin between a part and the valve passage becomes large, the space efficiency required for the differential pressure transmission configuration including the first path and the second path is improved, and the entire configuration of the pressure equalizing valve can be further reduced in size. .
In addition, since the first lead-out path and the second lead-out path can be made sufficiently close in this way to shorten the distance between the first and second lead-out paths, the first lead-out path and the second lead-out path can be reduced during pressure equalization. Pressure unevenness due to a delay with the lead-out path can be reduced. That is, the pressure equalization state can be achieved quickly and appropriately.

本発明の均圧弁では、前記第2導入路と前記第2導出路とは、前記弁通路とそれぞれ交差する位置が互いに離れ、前記均圧状態のときに、前記第2導入路と前記第2導出路とが仕切られることが好ましい。   In the pressure equalizing valve of the present invention, the second introduction path and the second lead-out path are separated from each other at positions intersecting the valve path, and the second introduction path and the second lead-off path are in the pressure-equalized state. It is preferable that the lead-out path is partitioned.

この発明によれば、第2導出路が第2導入路と仕切られることにより、脈動が生じず、圧力が極めて安定するので、被検出流体の圧力差を迅速かつ容易に「0」とすることができる。   According to the present invention, since the second lead-out path is partitioned from the second introduction path, pulsation does not occur and the pressure is extremely stable, so that the pressure difference of the fluid to be detected is quickly and easily set to “0”. Can do.

本発明の均圧弁では、前記シール部は、前記弁通路において第2導入路と前記第2導出路との間に設けられる第4シール部を含んで構成され、前記第4シール部により、前記均圧状態のときに、前記第2導入路と前記第2導出路とが仕切られることが好ましい。
この発明によれば、第4シール部により、前記第2導入路と前記第2導出路との間を簡単な構造で仕切ることができる。
In the pressure equalizing valve of the present invention, the seal portion includes a fourth seal portion provided between the second introduction path and the second lead-out path in the valve passage, and the fourth seal section It is preferable that the second introduction path and the second lead-out path are partitioned when the pressure is equalized.
According to this invention, the fourth seal portion can partition the second introduction path and the second lead-out path with a simple structure.

本発明の均圧弁では、前記弁箱は、前記弁棒が挿入される筒状部材を有し、この筒状部材は、前記第1導出路、前記第2導入路、および前記第2導出路の少なくともいずれかの近傍で前記弁通路に沿って設けられることが好ましい。   In the pressure equalizing valve of the present invention, the valve box includes a cylindrical member into which the valve rod is inserted, and the cylindrical member includes the first lead-out path, the second lead-in path, and the second lead-out path. It is preferable that it is provided along the valve passage in the vicinity of at least one of the above.

この発明によれば、筒状部材が設けられているため、弁通路と交差するように形成された第1導出路、第2導入路、第2導出路などの弁通路との連通部に弁棒が接触せず、連通部の端縁(エッジ)に弁棒が引っ掛かって損傷するなどの不具合が防止され、弁棒を円滑に進退させることができる。
すなわち、第1導出路、第2導入路、および第2導出路などを弁箱にドリルなどで穿孔する際にバリなどが生じやすいが、このバリなどによる弁体の損傷などを防止するために、このような筒状部材を設けることが有効である。
According to the present invention, since the cylindrical member is provided, the valve is provided at the communication portion with the valve passage such as the first lead-out passage, the second lead-in passage, and the second lead-out passage formed so as to intersect the valve passage. The rod does not come into contact, and the trouble such as the valve rod being caught by the edge of the communicating portion (edge) and being damaged is prevented, and the valve rod can be smoothly advanced and retracted.
That is, when the first lead-out path, the second lead-in path, the second lead-out path, etc. are drilled in the valve box with a drill or the like, burrs or the like are likely to occur. It is effective to provide such a cylindrical member.

本発明の均圧弁では、前記第2シール部以外の前記シール部は、前記第1導出路、前記第2導入路、および前記第2導出路が前記弁通路にそれぞれ連通された開口端の少なくともいずれかと隙間を有して配置されることが好ましい。   In the pressure equalizing valve according to the aspect of the invention, the seal portion other than the second seal portion may include at least an opening end where the first lead-out path, the second lead-in path, and the second lead-out path communicate with the valve passage, respectively. It is preferable to arrange it with a gap.

この発明によれば、弁通路における連通部の通路内壁面と第1〜第3シール部との間に隙間があって互いに接触しないので、これらのシール部が連通部のエッジに引っ掛かることなく、弁棒を円滑に進退させることができる。これにより、第1導出路、第2導入路、および第2導出路の孔開けによるバリなどでシール部が切れることを効果的に防止できる。
なお、前述の筒状部材を設けても、弁通路における連通部の通路内壁面と隙間をあけてシール部を配置することが可能である。
According to this invention, since there is a gap between the inner wall surface of the communication portion of the communication portion and the first to third seal portions in the valve passage and does not contact each other, these seal portions are not caught on the edge of the communication portion, The valve stem can be smoothly advanced and retracted. Thereby, it is possible to effectively prevent the seal portion from being cut by a burr caused by perforating the first lead-out path, the second lead-in path, and the second lead-out path.
Even if the above-described tubular member is provided, the seal portion can be disposed with a gap from the inner wall surface of the communication portion of the valve passage.

本発明の均圧弁では、前記弁棒は、その軸方向に沿って前記挿入口から突出する摘みを有することが好ましい。
この発明によれば、挿入口から摘みが突出しているので、摘みを掴むなどして弁棒を進退させる操作が容易であり、差圧状態と均圧状態とに確実に切り替えることができる。
また、この摘みに目盛りや文字などを形成することによって、弁棒が弁通路内に挿入された寸法を容易に判別できる。なお、目盛りの代わりに色分け表示によって弁棒の弁通路への挿入寸法を見極めることができ、これらの目盛り、文字、色分け表示を併用してもよい。
In the pressure equalizing valve of the present invention, it is preferable that the valve stem has a knob protruding from the insertion port along the axial direction thereof.
According to the present invention, since the knob protrudes from the insertion port, an operation for moving the valve rod forward and backward by grasping the knob is easy, and it is possible to surely switch between the differential pressure state and the pressure equalization state.
Further, by forming scales or letters on the knob, it is possible to easily determine the size of the valve rod inserted into the valve passage. In addition, the insertion dimension of the valve stem into the valve passage can be determined by color-coded display instead of the scale, and these scale, character, and color-coded display may be used in combination.

本発明の均圧弁では、前記挿入口の開口端には、挿通孔が形成された板状部材が設けられ、前記摘みは、前記弁棒の軸方向端部の径が縮径しており、前記挿通孔に挿通されることで前記弁棒の前記挿入口外側への移動が規制されることが好ましい。   In the pressure equalizing valve of the present invention, the opening end of the insertion port is provided with a plate-like member having an insertion hole, and the knob has a reduced diameter at the axial end of the valve stem, It is preferable that the movement of the valve rod to the outside of the insertion port is restricted by being inserted through the insertion hole.

この発明によれば、摘みが形成された基端側では弁棒は拡径しており、挿入口に向かって弁棒を後退させた際、この拡径部分が板状部材に当接して挿入孔外側への移動が規制される。これにより、弁棒の弁箱からの離脱を防止できる。   According to the present invention, the diameter of the valve stem is enlarged on the base end side where the knob is formed, and when the valve stem is retracted toward the insertion port, the enlarged diameter portion comes into contact with the plate member and is inserted. Movement to the outside of the hole is restricted. Thereby, the detachment | leave from the valve case of a valve stem can be prevented.

本発明の均圧弁では、前記弁棒を軸方向に沿って付勢する付勢手段が設けられることが好ましい。   In the pressure equalizing valve of the present invention, it is preferable that an urging means for urging the valve rod along the axial direction is provided.

この発明によれば、付勢手段の付勢力に抗して弁通路内に押しこんだ、あるいは弁通路から引き出した弁棒が付勢力によって元の位置に戻るので、弁の開閉動作を確実に行うことができる。
また、このように、弁通路の内部に付勢手段が設けられていることにより、弁棒を移動させるシリンダ・ピストン、ソレノイドなどの弁棒作動装置を弁箱の外部に設けることを不要にできる。このため、均圧弁の小型化が阻害されない。
付勢手段としては、コイルバネを例示でき、このようなコイルバネの内側に弁棒が挿入された状態としたり、弁棒の内部にコイルバネを組み込むことができる。
According to the present invention, the valve rod pushed into the valve passage against the urging force of the urging means or pulled out from the valve passage is returned to the original position by the urging force, so that the opening and closing operation of the valve is ensured. It can be carried out.
Further, by providing the urging means inside the valve passage in this way, it is unnecessary to provide a valve rod actuating device such as a cylinder / piston or solenoid for moving the valve rod outside the valve box. . For this reason, downsizing of the pressure equalizing valve is not hindered.
As the biasing means, a coil spring can be exemplified, and a valve rod can be inserted inside such a coil spring, or a coil spring can be incorporated inside the valve rod.

本発明の均圧弁では、前記摘みは、断面略円柱形状であって、その基端側の外周面に、前記挿通孔と嵌合する嵌合部が軸方向に沿って形成され、前記弁棒は、前記嵌合部の前記挿通孔との嵌合が外れた状態で軸周りに回転され、前記付勢手段の付勢力によって前記嵌合部が前記板状部材に係止されることが好ましい。
ここで、摘みの嵌合部は、例えば、弁棒の外周面に形成された凸状のリブであり、この凸状のリブが板状部材の挿通孔に形成された凹状の切欠に嵌合する構成とすることができる。反対に、弁棒に凹状の溝などを形成し、この溝に挿通孔に形成された凸状の突起が嵌合する構成とすることもできる。
In the pressure equalizing valve according to the present invention, the knob has a substantially cylindrical cross section, and a fitting portion that fits the insertion hole is formed along an axial direction on an outer peripheral surface of the base end side. Is rotated around the axis in a state in which the fitting portion is disengaged from the insertion hole, and the fitting portion is preferably locked to the plate-like member by the urging force of the urging means. .
Here, the fitting portion of the knob is, for example, a convex rib formed on the outer peripheral surface of the valve stem, and this convex rib is fitted into a concave notch formed in the insertion hole of the plate member. It can be set as the structure to do. On the contrary, a concave groove or the like may be formed in the valve stem, and a convex protrusion formed in the insertion hole may be fitted into the groove.

この発明によれば、付勢手段の付勢力に抗して弁棒を弁通路内に押しこむ、あるいは弁通路から引き出し、弁棒と挿通孔とが嵌合していない状態で弁棒を軸周りに回転させることにより、付勢力によって元の位置に戻ろうとする嵌合部が板状部材の板面に当接して係止される。すなわち、嵌合部のような簡潔な構造により、弁棒に外力を加えない状態でも、弁棒の位置を差圧状態または均圧状態となる一方の位置に保持することができる。   According to this invention, the valve rod is pushed into the valve passage against the urging force of the urging means or pulled out from the valve passage, and the valve rod is pivoted in a state where the valve rod and the insertion hole are not fitted. By rotating around, the fitting portion that is about to return to the original position by the urging force is brought into contact with and locked on the plate surface of the plate-like member. That is, with a simple structure such as a fitting portion, the position of the valve stem can be held at one of the differential pressure state or the pressure equalization state even when no external force is applied to the valve stem.

本発明の差圧式流量計は、通過する被検出流体に差圧を発生させる差圧発生手段を有する流量検出部と、前記流量検出部で被検出流体に発生した差圧を測定する差圧センサ、前記被検出流体のゲージ圧を測定するゲージ圧センサ、前記被検出流体の温度を測定する温度センサ、および、大気圧を測定する絶対圧センサを有するセンサ部と、前記センサ部から送信される信号を基に前記被検出流体の流量を算出する演算手段、および、この演算手段で算出された流量を表示する表示手段を有する表示演算部とを含む差圧式流量計であって、前述の均圧弁を備えたことを特徴とする。   A differential pressure type flow meter of the present invention includes a flow rate detection unit having a differential pressure generating means for generating a differential pressure in a fluid to be detected passing therethrough, and a differential pressure sensor that measures a differential pressure generated in the fluid to be detected by the flow rate detection unit. A sensor unit having a gauge pressure sensor for measuring the gauge pressure of the fluid to be detected, a temperature sensor for measuring the temperature of the fluid to be detected, and an absolute pressure sensor for measuring atmospheric pressure, and the sensor unit transmits the sensor pressure. A differential pressure type flow meter including a calculation means for calculating a flow rate of the fluid to be detected based on a signal and a display calculation unit having a display means for displaying the flow rate calculated by the calculation means. A pressure valve is provided.

この発明によれば、前述の均圧弁を備え、さらに、差圧センサ、ゲージ圧センサ、温度センサ、および大気圧測定用としての絶対圧センサを内蔵したので、質量流量および標準体積流量(0℃、1気圧の条件や、20℃、1気圧の条件での)が測定可能な高機能な流量計でありながら、前述と同様に、小型化、構造の簡略化、および低コスト化が促進され、当該流量計の利用範囲をさらに拡大することができる。
ここで、差圧センサ、ゲージ圧センサ、温度センサ、および大気圧測定用としての絶対圧センサを搭載したことで、被検出流体の温度や圧力の変化による被検出流体の密度変化を検出可能となり、質量流量の測定を行うことができる。
なお、差圧レンジの互いに異なる差圧センサを並列に接続し、流量に応じて適切な差圧センサを2つ以上選択することによっても、低い流量域において高い分解能を得ることが可能となるのと同時に、差圧センサの精度を各センサにより決めることが可能であるため、流量精度保証ができる流量レンジアビリティを広くできる。
According to the present invention, since the pressure equalizing valve described above is provided and the differential pressure sensor, the gauge pressure sensor, the temperature sensor, and the absolute pressure sensor for measuring atmospheric pressure are incorporated, the mass flow rate and the standard volume flow rate (0 ° C. Although it is a high-performance flowmeter that can measure at 1 atm or at 20 ° C. and 1 atm), as described above, miniaturization, simplification of structure, and cost reduction are promoted. The range of use of the flow meter can be further expanded.
Here, the differential pressure sensor, gauge pressure sensor, temperature sensor, and absolute pressure sensor for measuring atmospheric pressure can be installed to detect changes in the density of the detected fluid due to changes in the temperature and pressure of the detected fluid. The mass flow rate can be measured.
It is also possible to obtain a high resolution in a low flow rate region by connecting differential pressure sensors having different differential pressure ranges in parallel and selecting two or more appropriate differential pressure sensors according to the flow rate. At the same time, since the accuracy of the differential pressure sensor can be determined by each sensor, the flow rate range ability that can guarantee the flow rate accuracy can be widened.

本発明の差圧式流量計では、前記センサ部および前記表示演算部は、一体化されて本体部として構成されるとともに、前記流量検出部に接合され、前記流量検出部は、前記差圧発生手段が設けられるとともに前記被検出流体の流路と接続される流路接続部と、前記本体部と接合される本体取付部とを有し、前記本体取付部には、前記差圧発生手段の上流側および下流側で前記流路とそれぞれ連通して前記被検出流体の圧力を前記センサ部に取り出す各取出し孔がそれぞれ形成され、前記取出し孔の一方は、前記流量検出部の前記本体部との接合面の略中心位置で、前記流路に向かって直線状に延び、前記温度センサは、棒状に形成されて一端側に感温素子を有し、前記接合面の略中心位置に配置された前記取出し孔に一端側が挿入されて前記感温素子が前記流路に臨み、前記本体部と前記流量検出部とは、前記温度センサを軸に互いに回転させた状態でも接合可能であることが好ましい。
なお、差圧発生手段としては、オリフィスなどの絞り機構やピトー管、後流ピトー管、層流素子などから任意に選択できる。
In the differential pressure type flow meter of the present invention, the sensor unit and the display calculation unit are integrated and configured as a main body unit, and are joined to the flow rate detection unit, and the flow rate detection unit includes the differential pressure generating unit. And a flow path connection portion connected to the flow path of the fluid to be detected, and a main body attachment portion joined to the main body portion. The main body attachment portion has an upstream of the differential pressure generating means. Each extraction hole is formed in communication with the flow path on the side and on the downstream side to extract the pressure of the fluid to be detected into the sensor unit, and one of the extraction holes is connected to the main body of the flow rate detection unit. The temperature sensor extends linearly toward the flow path at a substantially central position of the joint surface, and the temperature sensor is formed in a rod shape and has a temperature-sensitive element on one end side, and is disposed at a substantially central position of the joint surface. One end side is inserted into the extraction hole, and the Temperature element faces the flow path, wherein the main body portion and the flow rate detection unit, it is preferable even when the temperature sensor is rotated together in the axial be joined.
The differential pressure generating means can be arbitrarily selected from a throttling mechanism such as an orifice, a pitot tube, a wake pitot tube, a laminar flow element, and the like.

この発明によれば、本体部に差圧センサ、ゲージ圧センサ、温度センサ、絶対圧センサ、および均圧弁などを搭載し、流量検出部にはセンサ類を搭載しないことにより、流量検出部とセンサ部とを機械的に切り離すことが可能になり、構造を簡略化できるとともに、計装関係の工事を容易に実施することができる。
また、温度センサが被検出流体の圧力の取出し孔を利用して、この取出し孔の部分に設けられているので、温度センサの取り付け部材などを別途備える必要がなく、構造をより簡略化できる。
なお、差圧センサおよびゲージ圧センサについても、前記の取出し孔を利用して(温度センサが設けられた取出し孔を共用)設けることが、構造を簡略にするうえで好ましい。温度センサが設けられた取出し孔を通じて差圧センサやゲージ圧センサに導圧する場合は、これらの差圧センサ、ゲージ圧センサにも圧力が伝わるように、温度センサの径寸法を取出し孔の径よりも小さくすれば良い。
According to this invention, a differential pressure sensor, a gauge pressure sensor, a temperature sensor, an absolute pressure sensor, a pressure equalizing valve, and the like are mounted on the main body, and no sensors are mounted on the flow rate detection unit. It is possible to mechanically separate the unit, simplify the structure, and easily perform the instrumentation-related work.
Further, since the temperature sensor is provided in the portion of the extraction hole using the pressure extraction hole of the fluid to be detected, it is not necessary to separately provide a temperature sensor attachment member and the like, and the structure can be further simplified.
In addition, it is preferable to provide the differential pressure sensor and the gauge pressure sensor by using the above-described extraction hole (shared with the extraction hole provided with the temperature sensor) in order to simplify the structure. When the pressure is introduced to the differential pressure sensor or gauge pressure sensor through the take-out hole provided with the temperature sensor, the diameter of the temperature sensor is taken from the diameter of the take-out hole so that the pressure is also transmitted to the differential pressure sensor and the gauge pressure sensor. Can also be reduced.

さらに、感温素子の位置が、流路に臨む位置から、差圧発生手段における流体通過部分の手前の位置までの範囲で可変となるように温度センサを配設することにより、感温素子が流路の中央に向かって突出したり、被検出流体の流れを遮ったりせず、流路における被検出流体の流れが乱れないので、被検出流体の流量を正確に測定できる。
ここで、温度センサの配設に関して、この温度センサは流体の温度を測定するためのものであり、通常、流体の流れに対する断面略中央に感温素子が位置するように設置されるが、本発明では温度センサが内蔵され、かつ本体取付部の取出し孔を利用して温度センサが配置されたので温度センサと差圧発生手段とが近く、温度センサを流路の流れの断面略中央に設置した場合には、乱流が生じるおそれがある。このため、このように感温素子を流路に臨む位置、または取出し孔より僅かに突出する位置に設けることが非常に有効となる。
Further, by arranging the temperature sensor so that the position of the temperature sensing element is variable from the position facing the flow path to the position before the fluid passage portion in the differential pressure generating means, the temperature sensing element is Since it does not protrude toward the center of the flow path or obstruct the flow of the detected fluid, and the flow of the detected fluid in the flow path is not disturbed, the flow rate of the detected fluid can be accurately measured.
Here, regarding the arrangement of the temperature sensor, this temperature sensor is for measuring the temperature of the fluid, and is usually installed so that the temperature sensing element is located at the approximate center of the cross section with respect to the flow of the fluid. In the invention, since the temperature sensor is built in and the temperature sensor is arranged by utilizing the take-out hole of the body mounting portion, the temperature sensor and the differential pressure generating means are close to each other, and the temperature sensor is installed at substantially the center of the cross section of the flow of the channel If this happens, turbulence may occur. For this reason, it is very effective to provide the temperature sensing element at a position facing the flow path or a position slightly protruding from the take-out hole.

そのうえ、温度センサが挿入される取出し孔が流量検出部の本体取付部における本体部との接合面の略中心位置に設けられるため、通常、流路内の流体に接触するように本体部の端部から突出するように設けられる温度センサを中心軸として本体部と流量検出部とを互いに回転させることが可能となるから、流量検出部を配管などに取り付けた向きを問わずに、流量検出部の本体取付部と本体部とを接合可能となる。すなわち、流量検出部は、差圧発生手段の種類、仕様によって決められた流れ方向に合わせた向きで配管などに取り付ける必要があるが、本体部の向きを自在にでき、表示手段の表示方向を適当なものとできるので、流量計の設置場所が限定されることがない。   In addition, since the take-out hole into which the temperature sensor is inserted is provided at substantially the center position of the joint surface of the main body mounting portion of the flow rate detection portion with the main body portion, the end of the main body portion is usually contacted with the fluid in the flow path. Since the main body and the flow rate detection unit can be rotated with the temperature sensor provided so as to protrude from the center as the central axis, the flow rate detection unit can be used regardless of the orientation in which the flow rate detection unit is attached to piping or the like. The main body attaching portion and the main body portion can be joined. In other words, the flow rate detector needs to be attached to the pipe in a direction that matches the flow direction determined by the type and specification of the differential pressure generating means, but the body part can be freely oriented, and the display direction of the display means can be changed. Since it can be made appropriate, the installation location of the flowmeter is not limited.

なお、流量検出部と本体部との接合面の形状は任意であるが、例えば、正多角形、又は円形など、接合面の中心点に対称な形状とすることにより、本体部を流量検出部に対して回転させても本体部が流量検出部の接合面に重なり、流量検出部と本体部とを外周部で、ねじ止めなどの手段によって容易に固定することができる。
また、本体部がアダプタ等を備え、このアダプタ等によって本体部が流量検出部に接合されていてもよい。
In addition, the shape of the joint surface between the flow rate detection unit and the main body unit is arbitrary. For example, the main body unit is made symmetrical with respect to the center point of the joint surface, such as a regular polygon or a circle, so that the main body unit is made to be a flow rate detection unit. The main body part overlaps the joint surface of the flow rate detection part even when rotated relative to the flow rate detection part, and the flow rate detection part and the main body part can be easily fixed at the outer peripheral part by means such as screwing.
Further, the main body portion may include an adapter or the like, and the main body portion may be joined to the flow rate detection portion by the adapter or the like.

本発明の差圧式流量計では、前記感温素子と前記取出し孔の内周面との間には、熱伝導率が小さい低熱伝導性部材が配置されることが好ましい。
ここで、低熱伝導性部材としては、テフロン(登録商標)などの樹脂系材料を採用でき
る。
In the differential pressure type flow meter of the present invention, it is preferable that a low thermal conductivity member having a low thermal conductivity is disposed between the temperature sensitive element and the inner peripheral surface of the extraction hole.
Here, as the low thermal conductivity member, a resin-based material such as Teflon (registered trademark) can be adopted.

この発明によれば、感温素子と取出し孔の内周面との間に低熱伝導性部材が介在配置されることにより、感温素子と本体取付部との間での熱伝導が抑制されるため、流量検出部の温度影響を受けにくく、被検出流体の温度を正確に測定することができる。特に、流量検出部が金属製などで熱伝導率が大きい場合に顕著な効果を得ることができる。
なお、冶具などを使用することにより、低熱伝導性部材が感温素子の周りに設けられた状態で、温度センサを取出し孔に挿入することが可能である。
According to this invention, the heat conduction between the temperature sensing element and the main body attachment portion is suppressed by the low thermal conductivity member being interposed between the temperature sensing element and the inner peripheral surface of the take-out hole. Therefore, it is difficult to be influenced by the temperature of the flow rate detection unit, and the temperature of the fluid to be detected can be accurately measured. In particular, a remarkable effect can be obtained when the flow rate detector is made of metal or the like and has a high thermal conductivity.
By using a jig or the like, it is possible to take out the temperature sensor and insert it into the hole with the low thermal conductivity member provided around the temperature sensitive element.

本発明の差圧式流量計では、前記取出し孔の内周には、前記被検出流体を前記取出し孔の内部に封止する環状のシール部材が設けられ、前記シール部材は、その内周面に複数の突起を有し、これらの突起の間で前記感温素子が保持固定されることが好ましい。   In the differential pressure type flow meter of the present invention, an annular seal member that seals the fluid to be detected inside the take-out hole is provided on the inner circumference of the take-out hole, and the seal member is disposed on the inner circumferential surface thereof. It is preferable to have a plurality of protrusions and to hold and fix the temperature sensitive element between these protrusions.

この発明によれば、本体部と流量検出部との間にシール部材を挟み、ネジなどで締め付けることによりシール部材がつぶれ、取出し孔に被検出流体が密封されるので、圧力が取出し孔から漏れるのを防止できる。そのうえ、温度センサがシール部材に形成された突起と突起との間に保持され、本体取付部の取出し孔の内周面に接触しないため、流量検出部の温度変化が温度センサに与える影響を小さくでき、流体の温度を正確に測定できる。なお、複数形成された突起の間で温度センサは散点的に保持されるので、取出し孔は塞がれない。
また、シール部材としては、前述の低熱伝導性部材と同様に、熱伝導率が小さい材料で形成されたものが好適である。
According to the present invention, the sealing member is crushed by sandwiching the sealing member between the main body portion and the flow rate detection portion and tightening with a screw or the like, and the fluid to be detected is sealed in the extraction hole, so that the pressure leaks from the extraction hole. Can be prevented. In addition, since the temperature sensor is held between the protrusions formed on the seal member and does not come into contact with the inner peripheral surface of the take-out hole of the main body mounting portion, the influence of the temperature change of the flow rate detection portion on the temperature sensor is reduced. The temperature of the fluid can be measured accurately. Since the temperature sensor is held in a scattered manner between the plurality of formed protrusions, the take-out hole is not blocked.
Further, as the sealing member, like the above-described low thermal conductivity member, a seal member made of a material having low thermal conductivity is preferable.

本発明の差圧式流量計では、前記流量検出部は、前記差圧発生手段が設けられるとともに前記被検出流体の流路と接続される流路接続部と、前記差圧発生手段の上流側および下流側で前記流路とそれぞれ連通して前記被検出流体の圧力を前記センサ部に取り出す各取出し孔がそれぞれ形成された導圧部とを有し、前記取出し孔の一方は、前記センサ部から前記流路に向かって直線状に延び、前記温度センサは、棒状に形成されて一端側に感温素子を有し、前記直線状に延びている一方の取出し孔に一端側が挿入されて前記感温素子が前記流路に臨み、前記一方の取出し孔には、前記温度センサを長手方向に沿って保持する保持部材が設けられ、前記保持部材の外周面および内周面の少なくとも一方には、前記温度センサの長手方向に沿って延びて前記取出し孔と連通し、前記被検出流体の圧力を伝達可能な連通路が形成されていることが好ましい。   In the differential pressure type flow meter of the present invention, the flow rate detection unit is provided with the differential pressure generating means and connected to the flow path of the fluid to be detected, the upstream side of the differential pressure generating means, Each of the extraction holes is connected to the flow path on the downstream side and formed with respective extraction holes for extracting the pressure of the fluid to be detected to the sensor unit. The temperature sensor extends in a straight line toward the flow path, and the temperature sensor is formed in a rod shape and has a temperature sensing element on one end side, and one end side is inserted into one of the extraction holes extending in the straight line shape. A temperature element faces the flow path, and the one take-out hole is provided with a holding member that holds the temperature sensor along the longitudinal direction, and at least one of the outer peripheral surface and the inner peripheral surface of the holding member, It extends along the longitudinal direction of the temperature sensor. The through extraction hole and communicating, it is preferable that the communicating path capable of transmitting the pressure of the detected fluid is formed Te.

この発明によれば、流量検出部の導圧部に、センサ部と流路との間を結ぶ流体圧力の取出し孔が形成され、この取出し孔に棒状の温度センサが挿入される構成において、温度センサを長手方向に沿って保持する保持部材を設けたことにより、温度センサが長手方向に対して斜めに振れることを防止できる。すなわち、流量検出部における流体の流速が速い場合や、取出し孔が本体取付部を貫通する寸法が長い場合であっても、温度センサが安定姿勢に保持され、温度センサ先端の感温素子を流路に臨む位置、もしくはこの位置から流路側に僅かに突出する位置に維持できる。また、このように保持部材によって温度センサが保持されることにより、配管の振動などによって温度センサが破損することなどを防止でき、耐振動性も向上させることができる。
なお、このような保持部材を取出し孔に設けても、保持部材には連通路が形成されているため、流路の流体の圧力の取り出しを問題なく行える。連通路は、例えば保持部材の外周面や内周面に形成された溝により構成でき、あるいは、保持部材の肉厚部に形成された中空部分などによっても構成できる。
According to the present invention, in the configuration in which the fluid pressure extraction hole connecting the sensor unit and the flow path is formed in the pressure guiding unit of the flow rate detection unit, and the rod-shaped temperature sensor is inserted into the extraction hole, By providing the holding member that holds the sensor along the longitudinal direction, it is possible to prevent the temperature sensor from swinging obliquely with respect to the longitudinal direction. That is, even when the flow rate of the fluid in the flow rate detection unit is high or when the extraction hole has a long dimension that penetrates the main body mounting unit, the temperature sensor is held in a stable posture and the temperature sensing element at the tip of the temperature sensor flows. It can be maintained at a position facing the road or a position slightly protruding from this position to the flow path side. In addition, since the temperature sensor is held by the holding member in this way, it is possible to prevent the temperature sensor from being damaged due to vibration of the pipe and the like, and vibration resistance can be improved.
Even if such a holding member is provided in the take-out hole, since the communication path is formed in the holding member, the fluid pressure in the flow path can be taken out without any problem. The communication path can be constituted by, for example, a groove formed on the outer peripheral surface or the inner peripheral surface of the holding member, or can be constituted by a hollow portion formed in the thick portion of the holding member.

本発明の差圧式流量計では、前記保持部材は、前記温度センサが内部に挿入される略円筒形状に形成されるとともに、当該保持部材の軸方向に沿ったスリットを有し、前記連通路は、前記スリットにより構成されていることが好ましい。   In the differential pressure type flow meter of the present invention, the holding member is formed in a substantially cylindrical shape into which the temperature sensor is inserted, and has a slit along the axial direction of the holding member. The slit is preferably constituted by the slit.

この発明によれば、保持部材の形状をスリットを有する略円筒形状とすることにより、当該円筒形状の内側に温度センサを保持可能でかつ、スリットに沿って流路の流体の圧力を伝達可能な構成を簡略に実現できる。例えば射出成形などによって保持部材を容易に形成でき、部品コストを抑えることができる。また、スリットによって連通路を形成することにより、保持部材を設けない場合の取出し孔の径寸法から変更することなく、取出し孔に温度センサおよび保持部材の両方を設けることが可能となり、小型化が阻害されない。   According to the present invention, the holding member has a substantially cylindrical shape having a slit, so that the temperature sensor can be held inside the cylindrical shape and the pressure of the fluid in the flow path can be transmitted along the slit. The configuration can be simplified. For example, the holding member can be easily formed by injection molding or the like, and the component cost can be suppressed. In addition, by forming the communication path by the slit, it becomes possible to provide both the temperature sensor and the holding member in the take-out hole without changing from the diameter size of the take-out hole when the holding member is not provided. Not disturbed.

本発明の差圧式流量計では、前記保持部材は、前記取出し孔の内周面に側面が接触するフランジ部と、このフランジ部以外の部位であって、前記取出し孔の内径よりも外径が小さい小径部とを有することが好ましい。   In the differential pressure type flow meter of the present invention, the holding member is a flange portion whose side surface is in contact with the inner peripheral surface of the extraction hole, and a portion other than the flange portion, and has an outer diameter that is larger than the inner diameter of the extraction hole. It is preferable to have a small-diameter portion.

この発明によれば、取出し孔の内周面に接触しない小径部が設けられることにより、本体取付部から保持部材を介して温度センサに伝わる熱による温度影響を少なくできる。なお、フランジ部は、保持部材の軸方向における任意の位置に形成可能であるが、このようなフランジ部を保持部材の軸方向略中央に1つ形成するよりも、軸方向両端側にそれぞれフランジ部を形成した方が、取出し孔の内周面に保持部材が安定的に保持され、保持部材による温度センサの保持も安定する。   According to the present invention, by providing the small-diameter portion that does not contact the inner peripheral surface of the take-out hole, it is possible to reduce the temperature effect due to the heat transmitted from the main body attachment portion to the temperature sensor via the holding member. The flange portion can be formed at an arbitrary position in the axial direction of the holding member, but the flange portion is respectively provided at both ends in the axial direction rather than being formed at one substantially central portion in the axial direction of the holding member. When the portion is formed, the holding member is stably held on the inner peripheral surface of the take-out hole, and the holding of the temperature sensor by the holding member is also stabilized.

本発明の差圧式流量計では、前記保持部材は、熱伝導率が小さい低熱伝導性材質により形成されていることが好ましい。   In the differential pressure type flow meter of the present invention, it is preferable that the holding member is formed of a low thermal conductivity material having a low thermal conductivity.

この発明によれば、本体取付部が金属製などの熱伝導率が高い材質であっても、本体取付部から温度センサへの温度影響を極力小さくできるので、流量測定に際して高い精度を実現できる。
なお、低熱伝導性材質としては、PTFE(ポリテトラフルオロエチレン)、POM(ポリオキシメチレン)などの樹脂系材料を例示できる。
According to the present invention, even if the main body mounting portion is made of a material having a high thermal conductivity such as a metal, the temperature influence from the main body mounting portion to the temperature sensor can be reduced as much as possible, so that high accuracy can be realized in flow rate measurement.
Examples of the low thermal conductivity material include resin-based materials such as PTFE (polytetrafluoroethylene) and POM (polyoxymethylene).

〔第1実施形態〕
以下、本発明の第1実施形態を図1〜図12に基づいて説明する。
なお、第2実施形態以降の説明において、以下に説明する第1実施形態と同様の構成については、同一符号を付して、説明を省略もしくは簡略化する。
図1は、本実施形態における流量計1の斜視図であり、図2は、流量計1の側断面図である。なお、図2では、ケース43を取り外している。
流量計1は、配管100(図2)に取り付けられ、差圧発生手段を通過した流体FLに生じる差圧を利用して、配管100内部の流体FLの流量を測定する差圧式のものである。
この流量計1は、配管100に取り付けられる流量検出部10と、センサ部31を備え流量検出部10に接合するためのアダプタ20を有する本体部30と、センサ部31から送信される信号を基に流量を算出して表示する表示演算部40(図1)とを具備する。なお、表示演算部40は、ケース43内に組み込まれている。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
In the description of the second and subsequent embodiments, the same components as those of the first embodiment described below are denoted by the same reference numerals, and description thereof is omitted or simplified.
FIG. 1 is a perspective view of a flow meter 1 in the present embodiment, and FIG. 2 is a side sectional view of the flow meter 1. In FIG. 2, the case 43 is removed.
The flow meter 1 is a differential pressure type that is attached to the pipe 100 (FIG. 2) and measures the flow rate of the fluid FL inside the pipe 100 using the differential pressure generated in the fluid FL that has passed through the differential pressure generating means. .
This flow meter 1 includes a flow rate detection unit 10 attached to a pipe 100, a main body unit 30 having an adapter 20 that is provided with a sensor unit 31 and joined to the flow rate detection unit 10, and a signal transmitted from the sensor unit 31. And a display calculation unit 40 (FIG. 1) for calculating and displaying the flow rate. The display calculation unit 40 is incorporated in the case 43.

図3は、流量検出部10の側断面図である。
流量検出部10は、SUSなどの金属製であり、配管100に接続するための流路接続部としての雌ネジ部111を両端に有するパイプ部材11を備え、そのパイプの内部が流体FLの流路13を構成する。また、パイプ部材11内の流路13略中央には、差圧発生手段としてのSUS製のオリフィス14が流体FLの流れに対向するように設けられる。さらに、パイプ部材11の側面には本体取付部としての板状部12が溶接されている。
FIG. 3 is a side sectional view of the flow rate detector 10.
The flow rate detection unit 10 is made of metal such as SUS, and includes a pipe member 11 having a female screw portion 111 at both ends as a flow path connection unit for connection to the pipe 100, and the inside of the pipe has a flow of the fluid FL. A path 13 is formed. Further, a SUS orifice 14 as a differential pressure generating means is provided at the approximate center of the flow path 13 in the pipe member 11 so as to face the flow of the fluid FL. Further, a plate-like portion 12 as a main body attachment portion is welded to the side surface of the pipe member 11.

オリフィス14は、略中央に円形状の孔141が形成された円盤状の部材であって、図3中の矢印Aの方向に沿って流体FLが流れ孔141を通過することにより、流体FLの流れが絞られる。これにより、オリフィス14の下流側での流体FLの圧力は、オリフィス14の上流側よりも低圧となる。本実施形態では、オリフィス14の孔141の断面形状は、下流側が拡径するものとなっているが、これに限られない。
また、オリフィス14の上流側および下流側には、流路13に連通し、流体FLの圧力を取り出すための上流側取出し孔131および下流側取出し孔132が板状部12を貫通するようにそれぞれ形成されている。
The orifice 14 is a disk-like member having a circular hole 141 formed in the substantially center, and the fluid FL passes through the flow hole 141 along the direction of arrow A in FIG. The flow is narrowed. Thereby, the pressure of the fluid FL on the downstream side of the orifice 14 becomes lower than that on the upstream side of the orifice 14. In the present embodiment, the cross-sectional shape of the hole 141 of the orifice 14 is such that the diameter on the downstream side is increased, but is not limited thereto.
In addition, upstream and downstream of the orifice 14 are communicated with the flow path 13 so that an upstream extraction hole 131 and a downstream extraction hole 132 for extracting the pressure of the fluid FL penetrate the plate-like portion 12 respectively. Is formed.

板状部12は、図4に示すように、平面視正方形状であり、略中央には、平面視円形状の圧力取出し部15が形成され、四隅には、本体部30を取り付けるためのネジ孔121がそれぞれ形成されている。
圧力取出し部15には、周縁部153の内側に平面視円形状に窪む凹部154が形成されている。この凹部154の中央には、取出し孔131が貫通する取出し部151が配置され、凹部154の残りの部分は、取出し孔132が貫通する取出し部152となっている。これらの取出し部151,152は、同心円上に配置されている。
取出し部151は、取出し孔131を囲む筒状に形成されている。
一方、取出し部152における凹部154の底部154Aには、取出し孔132が貫通している。
As shown in FIG. 4, the plate-like portion 12 has a square shape in a plan view, a pressure extraction portion 15 having a circular shape in a plan view is formed at a substantially center, and screws for attaching the main body portion 30 at four corners. Each hole 121 is formed.
A concave portion 154 that is recessed in a circular shape in plan view is formed inside the peripheral edge portion 153 in the pressure extraction portion 15. An extraction portion 151 through which the extraction hole 131 passes is disposed in the center of the recess 154, and the remaining portion of the recess 154 is an extraction portion 152 through which the extraction hole 132 passes. These extraction parts 151 and 152 are arranged on concentric circles.
The take-out part 151 is formed in a cylindrical shape surrounding the take-out hole 131.
On the other hand, an extraction hole 132 passes through the bottom 154A of the recess 154 in the extraction portion 152.

図5は、互いに固定された本体部30およびアダプタ20の側断面図であり、図6および図7は、本体部30をアダプタ20により流量検出部10に取り付ける状態を示す図である。また、図8は本体部30の裏面32B(アダプタ20との接合面)を示す図である。
アダプタ20は、本体部30を流量検出部10に取り付けるための板状の部材であり、一方の面が流量検出部10に接合される平面視略正方形状の流量検出側接合部21、他方の面が本体部30の裏面32Bに接合される平面視略矩形状の本体側接合部22となっている。
また、アダプタ20の平面略中央を貫通するように、流量検出部10の取出し孔131と連通する取出し孔201が形成され、この取出し孔201と少し離れた位置には、流量検出部10の取出し孔132と連通する取出し孔202が形成されている。
FIG. 5 is a side sectional view of the main body 30 and the adapter 20 fixed to each other, and FIGS. 6 and 7 are views showing a state in which the main body 30 is attached to the flow rate detection unit 10 by the adapter 20. FIG. 8 is a view showing the back surface 32 </ b> B (joint surface with the adapter 20) of the main body 30.
The adapter 20 is a plate-like member for attaching the main body 30 to the flow rate detection unit 10, and has one surface joined to the flow rate detection unit 10, the flow rate detection side joint 21 having a substantially square shape in plan view, and the other. The surface is a main body side joint portion 22 having a substantially rectangular shape in plan view and joined to the back surface 32 </ b> B of the main body portion 30.
Further, an extraction hole 201 communicating with the extraction hole 131 of the flow rate detection unit 10 is formed so as to pass through substantially the center of the adapter 20 in the plane, and the extraction of the flow rate detection unit 10 is at a position slightly away from the extraction hole 201. An extraction hole 202 communicating with the hole 132 is formed.

流量検出側接合部21において、図6、図7に示すように、一対の辺の部分は、平面視矩形状の本体部30から露出し、四隅には、貫通孔211がそれぞれ形成されている。これらの貫通孔211は、板状部12のネジ孔121と重なり、流量検出側接合部21と板状部12とは、貫通孔211を介してネジ孔121にネジ212を螺合することにより、互いに固定される。
また、流量検出側接合部21の板状部12への接合面213(図5)には、大径小径のゴム製Oリング214,215がそれぞれ配置される環状の溝214A,215Aが形成され、これらのOリング214,215が、ネジ212(図6)の締め付けの際に周縁部153(図2)、および取出し部151の端部151A(図2)にそれぞれ当接した状態でつぶれることで、各取出し孔201,202は、流体FLの導圧路として封止される。
As shown in FIGS. 6 and 7, in the flow rate detection side joining portion 21, the pair of sides are exposed from the main body 30 having a rectangular shape in plan view, and through holes 211 are formed at the four corners, respectively. . These through-holes 211 overlap the screw holes 121 of the plate-like portion 12, and the flow rate detection side joining portion 21 and the plate-like portion 12 are screwed into the screw holes 121 via the through-holes 211. , Fixed to each other.
In addition, annular grooves 214A and 215A in which large and small diameter rubber O-rings 214 and 215 are respectively disposed are formed on the joint surface 213 (FIG. 5) of the flow rate detection side joint 21 to the plate-like portion 12. These O-rings 214 and 215 are crushed in a state where they are in contact with the peripheral portion 153 (FIG. 2) and the end 151A (FIG. 2) of the take-out portion 151 when the screw 212 (FIG. 6) is tightened. Thus, each extraction hole 201, 202 is sealed as a pressure guiding path for the fluid FL.

ここで、流量検出側接合部21および流量検出部10の板状部12の形状がいずれも平面視正方形状であることにより、流量検出部10に対して、流量検出側接合部21の取り付け方向を、図6および図7に示すように、90°ずつ回転させることが可能となっている。   Here, the flow detection side joint 21 and the plate-like part 12 of the flow rate detection unit 10 are both square in plan view, so that the flow rate detection side joint 21 is attached to the flow rate detection unit 10. As shown in FIG. 6 and FIG.

一方、本体側接合部22の四隅には、本体部30の裏面32Bの四隅に形成されたネジ孔324(図8)とそれぞれ重なる位置に図示しない貫通孔が形成され、この貫通孔を介してネジ孔324にネジ222(図5)を螺合することにより、本体側接合部22と本体部30とが互いに固定される。
また、本体側接合部22の本体部30への接合面223において、取出し孔201,202の周りには、ゴム製のOリング224,225がそれぞれ配置される環状の溝が形成され、Oリング224,225が、ネジ222の締め付けの際につぶれることで、各取出し孔201,202が導圧路として封止される。
On the other hand, through holes (not shown) are formed at the four corners of the main body side joining portion 22 at positions overlapping with the screw holes 324 (FIG. 8) formed at the four corners of the back surface 32B of the main body portion 30, respectively. By screwing a screw 222 (FIG. 5) into the screw hole 324, the main body side joining portion 22 and the main body portion 30 are fixed to each other.
In addition, on the joint surface 223 of the main body side joint portion 22 to the main body portion 30, annular grooves in which rubber O-rings 224 and 225 are respectively disposed are formed around the take-out holes 201 and 202. When the screws 224 and 225 are crushed when the screw 222 is tightened, the extraction holes 201 and 202 are sealed as pressure guiding paths.

次に、本体部30は、図5および図8に示すように、センサ部31が搭載される略矩形板状のベース32と、このベース32に取り付けられてセンサ部31を覆い、表示演算部40や電池(図示せず)が組み込まれるケース43(図1)とを備える。
センサ部31は、流量検出部10で流体FLに発生した差圧を測定する差圧センサ311と、流体FLのゲージ圧を測定するゲージ圧センサ312と、流体FLの温度を測定する温度センサ313と、大気圧を測定する絶対圧センサ314(図9)とを備えて構成されている。
Next, as shown in FIGS. 5 and 8, the main body 30 includes a substantially rectangular plate-like base 32 on which the sensor unit 31 is mounted, and is attached to the base 32 so as to cover the sensor unit 31. 40 and a case 43 (FIG. 1) in which a battery (not shown) is incorporated.
The sensor unit 31 includes a differential pressure sensor 311 that measures the differential pressure generated in the fluid FL by the flow rate detection unit 10, a gauge pressure sensor 312 that measures the gauge pressure of the fluid FL, and a temperature sensor 313 that measures the temperature of the fluid FL. And an absolute pressure sensor 314 (FIG. 9) for measuring atmospheric pressure.

また、ベース32は、図8の裏面図に示すように、略中央に、アダプタ20の取出し孔201と連通する取出し孔321が形成され、取出し孔321と少し離れた位置には、取出し孔202と連通する取出し孔322とがそれぞれ貫通形成されている。
ここで、取出し孔321と取出し孔322とは、ベース32の内部に形成された通路323によって、互いに連通し、この通路323には、ベース32を弁箱とする均圧弁35が設けられている。
Further, as shown in the rear view of FIG. 8, the base 32 has an extraction hole 321 communicating with the extraction hole 201 of the adapter 20 at substantially the center, and the extraction hole 202 at a position slightly away from the extraction hole 321. An extraction hole 322 communicating with each other is formed through.
Here, the take-out hole 321 and the take-out hole 322 communicate with each other by a passage 323 formed inside the base 32, and a pressure equalizing valve 35 having the base 32 as a valve box is provided in the passage 323. .

通路323は、ベース32の端面からベース32の平面方向に沿って延び、一端側は、均圧弁35の弁棒351が挿入される挿入口323Aであり、挿入口323Aの近傍は、拡径部323Bとなっている。また、通路323の他端側には、ゲージ圧センサ312が配置されるセンサ配設穴323Dが形成されている。
取出し孔321は、ベース32の表面32A側では拡径し、この拡径部321Aの内周面には、温度センサ313を固定するためのネジが刻設されている。
The passage 323 extends from the end surface of the base 32 along the planar direction of the base 32, and one end side is an insertion port 323A into which the valve rod 351 of the pressure equalizing valve 35 is inserted, and the vicinity of the insertion port 323A is an enlarged diameter portion. It is 323B. In addition, a sensor disposition hole 323D in which the gauge pressure sensor 312 is disposed is formed on the other end side of the passage 323.
The take-out hole 321 is enlarged in diameter on the surface 32A side of the base 32, and a screw for fixing the temperature sensor 313 is engraved on the inner peripheral surface of the enlarged diameter portion 321A.

ここで、均圧弁35に関係する流体FLの導圧路について説明すると、まず、通路323において、取出し孔321から弁棒351の端部までは、オリフィス14の上流側で取出し孔131、取出し孔201、および取出し孔321を介して取り出された流体FLの圧力を弁通路352に導入する第1導入路361である。すなわち、第1導入路361は、弁棒351の軸方向に沿って延びている。
また、通路323は、取出し孔321が通路323と交差する位置と取出し孔322が通路323と交差した位置との間で分岐してベース32の表面32A側に貫通し、この分岐した部分は、第1導入路361を通じて取り出された流体FLの圧力を差圧センサ311に導出する第1導出路371となっている。
なお、通路323には、第1導出路371と第2導出路372との間の位置で、第2導出路372側から第1導出路371側に向かって次第に縮径する傾斜面が形成され、この部分は縮径部323Cとなっている。
Here, the pressure guiding path of the fluid FL related to the pressure equalizing valve 35 will be described. First, in the passage 323, the extraction hole 131 and the extraction hole are arranged upstream from the extraction hole 321 to the end of the valve rod 351. 201 and a first introduction passage 361 for introducing the pressure of the fluid FL taken out through the extraction hole 321 into the valve passage 352. That is, the first introduction path 361 extends along the axial direction of the valve rod 351.
The passage 323 branches between the position where the extraction hole 321 intersects the passage 323 and the position where the extraction hole 322 intersects the passage 323 and penetrates to the surface 32A side of the base 32. This is a first outlet path 371 for leading the pressure of the fluid FL taken out through the first inlet path 361 to the differential pressure sensor 311.
The passage 323 is formed with an inclined surface that gradually decreases in diameter from the second lead-out path 372 side toward the first lead-out path 371 side at a position between the first lead-out path 371 and the second lead-out path 372. This portion is a reduced diameter portion 323C.

そして、取出し孔322は、ベース32の厚さ方向に通路323と交差するように延び、ベース32の裏面32B側から通路323までは、弁通路352に流体FLの圧力を導入する第2導入路362とされ、通路323からベース32表面32A側は、第2導入路362を通じて取り出された流体FLを差圧センサ311に導出する第2導出路372となっている。
そして、均圧弁35は、第1導出路371を通って差圧センサ311に導出される流体FLと、第2導出路372を通って差圧センサ311に導出される流体FLとの圧力を均圧化するために設けられている。
The take-out hole 322 extends so as to intersect the passage 323 in the thickness direction of the base 32, and the second introduction passage for introducing the pressure of the fluid FL into the valve passage 352 from the back surface 32 </ b> B side of the base 32 to the passage 323. 362 and the base 32 surface 32A side from the passage 323 is a second lead-out path 372 for leading the fluid FL taken out through the second introduction path 362 to the differential pressure sensor 311.
The pressure equalizing valve 35 equalizes the pressure of the fluid FL that is led to the differential pressure sensor 311 through the first lead-out path 371 and the fluid FL that is led to the differential pressure sensor 311 through the second lead-out path 372. It is provided to compress.

図9は、センサ部31および流量検出部10の概念図であり、この図9および図5を参照してセンサ部31の構成について説明する。
差圧センサ311は、ベース32表面32Aの第1、第2導出路371,372の各開口を密閉するように設けられ、流量検出部10で流体FLに発生した差圧を測定する。すなわち、流量検出部10の上流側から取出し孔131,201,321を通じて、あるいは、流量検出部10の上流側から取出し孔132,202,322を通じてそれぞれ流体FLの圧力を取り出すための導圧空間が構成されている。
FIG. 9 is a conceptual diagram of the sensor unit 31 and the flow rate detection unit 10, and the configuration of the sensor unit 31 will be described with reference to FIG. 9 and FIG.
The differential pressure sensor 311 is provided so as to seal each opening of the first and second lead-out paths 371 and 372 of the surface 32A of the base 32, and measures the differential pressure generated in the fluid FL by the flow rate detection unit 10. That is, there are pressure guiding spaces for extracting the pressure of the fluid FL from the upstream side of the flow rate detection unit 10 through the extraction holes 131, 201, 321, or from the upstream side of the flow rate detection unit 10 through the extraction holes 132, 202, 322, respectively. It is configured.

ゲージ圧センサ312は、センサ配設穴323Dに挿入される素子部312Aと、ベース32の表面32Aに突出し、流体FLのゲージ圧を測定する。測定したゲージ圧は、表示演算部40へ表示する他に、絶対圧センサ314で測定した大気圧と足し合わされ、流体FLの絶対圧として質量流量や標準体積流量の演算に用いられる。   The gauge pressure sensor 312 protrudes from the element portion 312A inserted into the sensor placement hole 323D and the surface 32A of the base 32, and measures the gauge pressure of the fluid FL. The measured gauge pressure is added to the atmospheric pressure measured by the absolute pressure sensor 314 in addition to being displayed on the display calculation unit 40, and is used for calculating the mass flow rate and the standard volume flow rate as the absolute pressure of the fluid FL.

温度センサ313は、図5に示すように、取出し孔321に挿入される棒状の本体313Aと、本体313Aの周りに固定される筒状のネジ部材313Bと、本体313Aの一端側に設けられ、ベース32およびアダプタ20を貫通して外側に突出する感温素子313Gとを備え、本体313Aの他端側は、表示演算部40に配線313Dで接続されている。   As shown in FIG. 5, the temperature sensor 313 is provided on a rod-like main body 313A inserted into the take-out hole 321, a cylindrical screw member 313B fixed around the main body 313A, and one end of the main body 313A. A thermosensitive element 313G that penetrates the base 32 and the adapter 20 and protrudes to the outside is provided, and the other end side of the main body 313A is connected to the display calculation unit 40 by wiring 313D.

図10は、図5の拡大図であり、温度センサ313の取出し孔321への取り付けについて示す図である。
本体313Aは、図10に示すように、取出し孔321の内周面との間に隙間SP1を有する状態で取出し孔321に挿入され、ネジ部材313Bの外周に刻設されたネジ313Fが取出し孔321の拡径部321Aに螺合され、ネジ部材313Bの端面が拡径部321Aの基端部321Bに押圧されることにより、取出し孔321に固定される。
FIG. 10 is an enlarged view of FIG. 5 and shows the attachment of the temperature sensor 313 to the take-out hole 321.
As shown in FIG. 10, the main body 313A is inserted into the extraction hole 321 with a clearance SP1 between the main body 313A and the inner peripheral surface of the extraction hole 321, and the screw 313F carved on the outer periphery of the screw member 313B is inserted into the extraction hole. The screw member 313B is screwed into the enlarged diameter portion 321A, and the end surface of the screw member 313B is pressed against the proximal end portion 321B of the enlarged diameter portion 321A, thereby being fixed to the take-out hole 321.

ここで、本体313Aが拡径部321Aに挿入される位置には、テフロン(登録商標)製の低熱伝導性部材およびシール部材としての環状のパッキン313Eが設けられ、ネジ部材313Bが螺合される際にこのパッキン313Eがネジ部材313Bと基端部321Bとの間でつぶれ、本体313Aと取出し孔321との間がシールされるようになっている。
また、パッキン313Eがつぶれ、このパッキン313Eによって本体313Aは取出し孔321の内周面との間に接触しない状態のまま保持される。
Here, a Teflon (registered trademark) low thermal conductivity member and an annular packing 313E as a seal member are provided at a position where the main body 313A is inserted into the enlarged diameter portion 321A, and a screw member 313B is screwed. At this time, the packing 313E is crushed between the screw member 313B and the base end 321B, and the space between the main body 313A and the take-out hole 321 is sealed.
Further, the packing 313E is crushed, and the main body 313A is held by the packing 313E without being in contact with the inner peripheral surface of the take-out hole 321.

図11は、図10におけるXI−XI線による温度センサ313の断面図である。前述のOリング224は、図11に示すように、その内周面224Bから内側に向かって略等間隔で突出する3つの突起224Cを有する。これらの突起224Cの先端部により、温度センサ313はベース32の取出し孔321内周面と接触しない状態で保持される。なお、温度センサ313は、突起224Cにより散点的に保持されるので、取出し孔321は塞がれず、取出し孔321の内部において流体FLの導圧が可能となっている。   FIG. 11 is a cross-sectional view of the temperature sensor 313 taken along line XI-XI in FIG. As shown in FIG. 11, the aforementioned O-ring 224 has three protrusions 224C that protrude from the inner peripheral surface 224B toward the inside at substantially equal intervals. The temperature sensor 313 is held in a state in which the temperature sensor 313 is not in contact with the inner peripheral surface of the take-out hole 321 of the base 32 by the tip portions of the protrusions 224C. Since the temperature sensor 313 is held in a scattered manner by the protrusions 224C, the take-out hole 321 is not blocked, and the fluid FL can be guided inside the take-out hole 321.

また、感温素子313Gは、本体部30およびアダプタ20と流量検出部10とが組み立てられる際に、流量検出部10の取出し孔131に挿入される。ここで、感温素子313Gの先端313Hは、図2に示すように、配管100内の流路13の断面略中央までは突出せず、取出し孔131の開口で流路13に臨む位置から流路13側に僅かに突出するように設けられている。   Further, the temperature sensing element 313G is inserted into the take-out hole 131 of the flow rate detection unit 10 when the main body 30, the adapter 20, and the flow rate detection unit 10 are assembled. Here, as shown in FIG. 2, the tip 313H of the temperature sensing element 313G does not protrude to the approximate center of the cross section of the flow path 13 in the pipe 100, and flows from a position facing the flow path 13 at the opening of the extraction hole 131. It is provided so as to slightly protrude toward the path 13 side.

ケース43は、図1に示すように、平面視矩形の箱状に形成されたアルミニウム製の部材であり、表示演算部40や、図示しない電池収納部が設けられている。
ケース43の表側には、測定された流体FLの流量や、動作モード、電池の電圧低下、警報出力などのモニタ情報などが表示される表示演算部40における表示手段としての液晶パネル部431と、モード切替や各種の設定を行う操作パネル部432とが設けられている。
そして、ケース43の内部には、液晶パネル部431や操作パネル部432、センサ部31の図示しない駆動回路や演算手段41(図9)などが実装された回路ブロックが設けられ、回路ブロックの電源となる電池が電池収納部(不図示)に収納されている。なお、電源が電池でない場合は、電池収納部の代わりに電源接続用の端子が設けられる。
As shown in FIG. 1, the case 43 is an aluminum member formed in a rectangular box shape in plan view, and includes a display calculation unit 40 and a battery storage unit (not shown).
On the front side of the case 43, a liquid crystal panel unit 431 as a display means in the display calculation unit 40 in which the flow rate of the measured fluid FL, monitor information such as operation mode, battery voltage drop, alarm output, etc. is displayed; An operation panel unit 432 for performing mode switching and various settings is provided.
In the case 43, a circuit block on which a liquid crystal panel unit 431, an operation panel unit 432, a drive circuit (not shown) of the sensor unit 31, an arithmetic unit 41 (FIG. 9), and the like are mounted is provided. Is stored in a battery storage (not shown). When the power source is not a battery, a terminal for connecting the power source is provided instead of the battery housing portion.

次に、均圧弁35について説明する。
図12は、均圧弁35の側面図である。
均圧弁35の弁棒351は、一端側の先端部が先細り形状の弁体としてのテーパ部351Hであり、挿入口323Aから第1導入路361と第1導出路371とが互いに連通する連通部352Dまでを弁通路352として、この弁通路352に沿って弁棒351が図12(A)および(B)のように進退する。これにより、テーパ部351Hにおいて弁通路352が仕切られることで、均圧弁35は、流体FLの導圧の流れを遮断、あるいは許可する開閉弁として機能する。
Next, the pressure equalizing valve 35 will be described.
FIG. 12 is a side view of the pressure equalizing valve 35.
The valve rod 351 of the pressure equalizing valve 35 is a tapered portion 351H as a valve body having a tapered shape at one end side, and a communication portion where the first introduction path 361 and the first lead-out path 371 communicate with each other from the insertion port 323A. Up to 352D is defined as a valve passage 352, and the valve rod 351 advances and retreats along the valve passage 352 as shown in FIGS. As a result, the valve passage 352 is partitioned in the tapered portion 351H, so that the pressure equalizing valve 35 functions as an on-off valve that blocks or permits the flow of the guided pressure of the fluid FL.

弁棒351は、断面略円柱状の部材であり、テーパ部351Hを有する弁棒本体351Aと、この弁棒本体351Aよりも挿入口323A側に形成され、外周にネジが刻設されたネジ部351Bと、弁通路352に形成された拡径部323Bの径に応じて拡径する拡径部351Cと、拡径部351Cの挿入口323A近傍で、弁棒351が後退した際に(図12(B))挿入口323Aから突出する摘み353とを有して構成されている。
弁棒351が前進した際(図12(A))、テーパ部351Hが弁通路352側の縮径部323Cと当接することにより、流体FLの導圧が遮断される。
The valve stem 351 is a member having a substantially cylindrical cross section, a valve stem main body 351A having a tapered portion 351H, and a threaded portion formed on the insertion port 323A side of the valve stem main body 351A and screwed on the outer periphery. When the valve stem 351 is retracted in the vicinity of the insertion port 323A of the enlarged diameter portion 351C and the enlarged diameter portion 351C, the enlarged diameter portion 351C formed in the valve passage 352 in accordance with the diameter of the enlarged diameter portion 323B (FIG. (B)) It has a knob 353 protruding from the insertion port 323A.
When the valve stem 351 moves forward (FIG. 12A), the tapered portion 351H comes into contact with the reduced diameter portion 323C on the valve passage 352 side, thereby cutting off the pressure of the fluid FL.

弁棒本体351Aは、弁通路352の径よりも径が小さく、その外周面と弁通路352の内周面との間には隙間SPが開いている。すなわち、図12(A)のように、第2導入路362および第2導出路372の延出方向を弁棒本体351Aが横切っていても、第2導入路362および第2導出路372との間は導圧可能となっている。   The valve stem body 351 </ b> A has a diameter smaller than the diameter of the valve passage 352, and a gap SP is opened between the outer peripheral surface thereof and the inner peripheral surface of the valve passage 352. That is, as shown in FIG. 12A, even if the valve stem body 351A crosses the extending direction of the second introduction path 362 and the second lead-out path 372, the second introduction path 362 and the second lead-out path 372 Pressure can be introduced between the two.

ネジ部351Bは、弁棒本体351Aと拡径部351Cとの間に形成され、弁通路352の内周面に刻設されたネジ352Aに螺合されることにより、弁棒351が進退するものとなっている。
拡径部351Cには、径方向に縮径した溝部351Eが形成され、この溝部351Eの周りにリング状のゴムである第2シール部382が配置されている。この第2シール部382により、通路323(図5)内の導圧空間が封止される。
The screw portion 351B is formed between the valve stem main body 351A and the enlarged diameter portion 351C, and is screwed into a screw 352A engraved on the inner peripheral surface of the valve passage 352 so that the valve stem 351 advances and retreats. It has become.
A groove portion 351E having a diameter reduced in the radial direction is formed in the enlarged diameter portion 351C, and a second seal portion 382 that is a ring-shaped rubber is disposed around the groove portion 351E. The second seal portion 382 seals the pressure guiding space in the passage 323 (FIG. 5).

摘み353の頭部には、溝353Aが形成され、この溝353Aにドライバー等を差込んで摘み353を回転させることにより、ネジ部351Bを弁通路352に螺合させることが可能となっている。   A groove 353A is formed in the head of the knob 353, and a screw portion 351B can be screwed into the valve passage 352 by inserting a screwdriver into the groove 353A and rotating the knob 353. .

ここで、摘み353を回し、弁棒351を弁通路352に前進させると、図12(A)に示したように、テーパ部351Hが縮径部323Cに当接する。このとき、第1導入路361および第1導出路371を第1経路P1、第2導入路362および第2導出路372を第2経路P2とすると、これらの第1、第2経路P1,P2は、テーパ部351Hによって互いに仕切られ、流体FLの導圧が遮断されて、均圧弁35として閉じた状態となる。これは、差圧センサ311において、第1経路P1、第2経路P2の差圧を測定可能な差圧状態である。   Here, when the knob 353 is turned to advance the valve rod 351 into the valve passage 352, the tapered portion 351H comes into contact with the reduced diameter portion 323C as shown in FIG. At this time, if the first introduction path 361 and the first lead-out path 371 are the first path P1, and the second introduction path 362 and the second lead-out path 372 are the second path P2, these first and second paths P1 and P2 Are partitioned from each other by the taper portion 351H, the pressure of the fluid FL is cut off, and the pressure equalizing valve 35 is closed. This is a differential pressure state in which the differential pressure of the first path P1 and the second path P2 can be measured in the differential pressure sensor 311.

このような差圧測定において、ゼロ点調整を行う際は、摘み353を先ほどとは逆に回して弁棒351を後退させる。これにより、図12(B)に示すように、テーパ部351Hが縮径部323Cから離れ、第1経路P1と第2経路P2とが互いに連通されて均圧弁35が開く。この状態が、第1経路P1および第2経路P2における流体FLの圧力を均一化することで差圧センサ311のゼロ点調整が可能な均圧状態となる。すなわち、均圧弁35の摘み353を回して弁棒351を徐々に弁通路352から後退させると、第1経路P1と第2経路P2とが互いに連通し、次第に均圧化される。   In such differential pressure measurement, when performing zero point adjustment, the knob 353 is rotated in the opposite direction to retract the valve rod 351. Accordingly, as shown in FIG. 12B, the tapered portion 351H is separated from the reduced diameter portion 323C, the first path P1 and the second path P2 are communicated with each other, and the pressure equalizing valve 35 is opened. This state becomes a pressure equalization state in which the zero point of the differential pressure sensor 311 can be adjusted by equalizing the pressure of the fluid FL in the first path P1 and the second path P2. That is, when the knob 353 of the pressure equalizing valve 35 is rotated to gradually retract the valve rod 351 from the valve passage 352, the first path P1 and the second path P2 communicate with each other, and the pressure is gradually equalized.

以上説明した差圧式の流量計1を使用する際には、前述のように差圧センサ311における差圧測定のためのゼロ点調整を実施する。
このゼロ点調整後、均圧弁35の摘み353を元に戻すと、第1経路P1と第2経路P2とが互いに仕切られ、差圧式の流量計1が使用可能な状態となる。
When the differential pressure type flow meter 1 described above is used, the zero point adjustment for the differential pressure measurement in the differential pressure sensor 311 is performed as described above.
After the zero point adjustment, when the knob 353 of the pressure equalizing valve 35 is returned to the original position, the first path P1 and the second path P2 are separated from each other, and the differential pressure type flow meter 1 can be used.

そして、配管100内の流路13において、オリフィス14の通過前後で流体FLに生じた差圧が差圧センサ311により測定され、図9に示すように、差圧を示す信号が表示演算部40に送信される。また、ゲージ圧センサ312では、大気圧条件で測定されたオリフィス14上流側の圧力が測定され、測定値が表示演算部40に送信される。同様に、温度センサ313では、オリフィス14上流側で流体FLの温度が測定され、また、絶対圧センサ314では大気圧が測定されて、これらの測定値が表示演算部40にそれぞれ送信される。   Then, in the flow path 13 in the pipe 100, the differential pressure generated in the fluid FL before and after the passage of the orifice 14 is measured by the differential pressure sensor 311. As shown in FIG. Sent to. Further, the gauge pressure sensor 312 measures the pressure upstream of the orifice 14 measured under atmospheric pressure conditions, and transmits the measured value to the display calculation unit 40. Similarly, the temperature sensor 313 measures the temperature of the fluid FL on the upstream side of the orifice 14, and the absolute pressure sensor 314 measures the atmospheric pressure, and these measured values are transmitted to the display calculation unit 40.

次いで、表示演算部40では、センサ部31から送信された信号、すなわち、流体FLの差圧、ゲージ圧、温度、大気圧、そしてオリフィス14の発生差圧に対する流量との関係を基に、流体FLの流量を算出し、その流量をデジタル数値表示やバー表示などの形式で液晶パネル部431に表示する。流量が所定値を超えている場合などは、モードに応じて、警報が出力される。   Next, in the display calculation unit 40, based on the signal transmitted from the sensor unit 31, that is, based on the relationship between the differential pressure of the fluid FL, the gauge pressure, the temperature, the atmospheric pressure, and the flow rate with respect to the generated differential pressure of the orifice 14. The flow rate of the FL is calculated, and the flow rate is displayed on the liquid crystal panel unit 431 in the form of a digital numerical value display or a bar display. When the flow rate exceeds a predetermined value, an alarm is output according to the mode.

このような第1実施形態によれば、次のような効果がある。
(1)差圧測定式の流量計1に組み込まれた均圧弁35によれば、第1導入路361が弁棒351の軸方向に沿って延びており、弁棒351の軸周りに設けられたテーパ部351Hを軸方向に沿って進退させるだけで、差圧状態から均圧状態へと簡便に切り替えることができる。
なお、均圧状態では、第1経路P1側の第1導出路371と、第2経路P2側の第2導出路372とが互いに連通し、この連通空間において流体FLが均圧化される。この均圧化により、第1経路P1および第2経路P2での流体FLの圧力差がなくなり、これをもって差圧測定のゼロ点調整がされるので、差圧測定を適切に実施できる。
According to such 1st Embodiment, there exist the following effects.
(1) According to the pressure equalizing valve 35 incorporated in the differential pressure measurement type flow meter 1, the first introduction path 361 extends along the axial direction of the valve stem 351 and is provided around the axis of the valve stem 351. The taper portion 351H can be easily switched from the differential pressure state to the pressure equalization state simply by advancing and retreating along the axial direction.
In the pressure equalization state, the first lead-out path 371 on the first path P1 side and the second lead-out path 372 on the second path P2 side communicate with each other, and the fluid FL is pressure-equalized in this communication space. This pressure equalization eliminates the pressure difference of the fluid FL in the first path P1 and the second path P2, and the zero point adjustment of the differential pressure measurement is performed with this, so that the differential pressure measurement can be appropriately performed.

ここで、弁棒351の進退する区間が、均圧に用いられる弁通路352と互いに重なっていることにより、この重なりのぶん、弁通路352ないしベース32、そして弁棒351を短くすることができ、均圧弁35の小型化を図ることができる。この小型化により、第1導出路371と第2導出路372との距離が短くなるので、これらの第1導出路371と第2導出路372との間の遅延による圧力のムラを小さくでき、第1導出路371および第2導出路372における流体FLの圧力を迅速かつ適切に均圧化することが可能となる。   Here, since the section in which the valve stem 351 advances and retreats overlaps with the valve passage 352 used for pressure equalization, the overlap, the valve passage 352 or the base 32, and the valve stem 351 can be shortened. The pressure equalizing valve 35 can be downsized. Due to this downsizing, the distance between the first lead-out path 371 and the second lead-out path 372 is shortened, so that the pressure unevenness due to the delay between the first lead-out path 371 and the second lead-out path 372 can be reduced, It is possible to quickly and appropriately equalize the pressure of the fluid FL in the first lead-out path 371 and the second lead-out path 372.

また、テーパ部351Hが第1経路P1と第2経路P2との間の位置から弁通路352に沿って挿入口323A側に後退することによって均圧弁35が開くので、均圧弁35の弁体として、テーパ部351Hのように簡略な構造とすることができる。これによって流量計1の組み立ても容易となるから、信頼性を向上させることができ、また、低コスト化を促進できる。   Further, the pressure equalizing valve 35 is opened by the taper portion 351H retreating from the position between the first path P1 and the second path P2 along the valve passage 352 toward the insertion port 323A. A simple structure such as a tapered portion 351H can be obtained. As a result, the flow meter 1 can be easily assembled, so that reliability can be improved and cost reduction can be promoted.

(2)挿入口323Aから摘み353が突出し、摘み353に溝353Aが形成されているため、弁棒351を弁通路352に対して容易に螺合進退させることができ、差圧状態と均圧状態とに確実に切り替えることができる。 (2) Since the knob 353 protrudes from the insertion port 323A and the groove 353A is formed in the knob 353, the valve rod 351 can be easily screwed back and forth with respect to the valve passage 352, and the differential pressure state and the pressure equalization It is possible to switch to the state reliably.

(3)弁棒本体351Aと弁通路352との間には隙間SPが開いているため、弁棒351が弁通路352に対して進退する際、弁通路352に向かって第2導入路362および第2導出路372とが貫通する開口端(エッジ)362B,372Bに弁棒本体351Aが接触しない。これにより、開口端372Bとの接触によって弁棒351の進退が円滑でなくなるなどの不具合を防止できる。
また、第1導出路371、第2導入路362、および第2導出路372を形成する際の孔開けによるバリなどで弁棒本体351Aが傷つくことも効果的に防止できる。
なお、本実施形態の弁棒351はネジ部351Bを有し、弁通路352の内周面のネジ352Aと螺合することで進退するため、進退する際に軸周りにぶれにくく、弁棒本体351Aと弁通路352の内周面との隙間SPを保って弁棒351を進退させることが可能である。
(3) Since the gap SP is opened between the valve stem main body 351A and the valve passage 352, when the valve stem 351 advances and retreats with respect to the valve passage 352, the second introduction passage 362 and the valve passage 352 The valve stem body 351A does not contact the open ends (edges) 362B and 372B through which the second lead-out path 372 passes. As a result, it is possible to prevent problems such as the valve rod 351 moving back and forth smoothly due to contact with the open end 372B.
In addition, the valve stem body 351A can be effectively prevented from being damaged by burrs or the like due to drilling when forming the first lead-out path 371, the second lead-in path 362, and the second lead-out path 372.
The valve stem 351 of the present embodiment has a threaded portion 351B, and advances and retracts by screwing with the screw 352A on the inner peripheral surface of the valve passage 352. The valve rod 351 can be advanced and retracted while maintaining a clearance SP between 351A and the inner peripheral surface of the valve passage 352.

(4)差圧式流量計1が均圧弁35を備え、さらに、差圧センサ311、ゲージ圧センサ312、温度センサ313、および絶対圧センサ314を内蔵したので、質量流量が測定可能な高機能な流量計1でありながら、前述と同様に、小型化、構造の簡略化、および低コスト化が促進され、流量計1の利用範囲をさらに拡大することができる。
ここで、差圧センサ311、ゲージ圧センサ312、温度センサ313、および大気圧測定用としての絶対圧センサ314を搭載したことで、流体FLの温度や圧力の変化による流体FLの密度変化を検出可能となり、質量流量の測定を行うことができる。
(4) Since the differential pressure type flow meter 1 includes the pressure equalizing valve 35 and further includes the differential pressure sensor 311, the gauge pressure sensor 312, the temperature sensor 313, and the absolute pressure sensor 314, it has a high function capable of measuring a mass flow rate. Although the flow meter 1 is used, as described above, downsizing, simplification of the structure, and cost reduction are promoted, and the usage range of the flow meter 1 can be further expanded.
Here, the differential pressure sensor 311, the gauge pressure sensor 312, the temperature sensor 313, and the absolute pressure sensor 314 for measuring atmospheric pressure are installed, so that changes in the density of the fluid FL due to changes in the temperature and pressure of the fluid FL are detected. The mass flow rate can be measured.

(5)また、差圧式流量計1においては、センサ部31および表示演算部40が本体部30として一体化されて、流量検出部10にはセンサ類が搭載されていないため、流量検出部10とセンサ部31とを機械的に切り離すことが可能になり、構造を簡略化できるとともに、計装関係の工事を容易に実施することができる。
また、温度センサ313が流体FLの圧力取出し孔321,201,131の内部に設けられているので、温度センサ313の取り付け部材を別途備える必要がなく、構造をより簡略化できる。
(5) In the differential pressure type flow meter 1, the sensor unit 31 and the display calculation unit 40 are integrated as the main body unit 30, and no sensors are mounted on the flow rate detection unit 10. And the sensor unit 31 can be mechanically separated, the structure can be simplified, and the construction work related to instrumentation can be easily performed.
Further, since the temperature sensor 313 is provided inside the pressure extraction holes 321, 201, 131 of the fluid FL, it is not necessary to separately provide a mounting member for the temperature sensor 313, and the structure can be further simplified.

(6)さらに、感温素子313Gが流路13に臨む位置から流路13側に僅かに突出するるように温度センサ313が配設されたため、感温素子313Gが流路13の中央に向かって突出したり、流体FLの流れを遮ったりせず、流路13における流体FLの流れが乱れないので、流体FLの流量を正確に測定できる。
ここで、温度センサ313の配設に関して、この温度センサ313は流体FLの温度を測定するためのものであり、通常、流体FLの流れに対する断面略中央に感温素子313Gが位置するように設置されるが、本実施形態では温度センサ313が本体部30に内蔵され、かつ流量検出部10の取出し孔321,201,131を利用して温度センサ313が配置されたので温度センサ313とオリフィス14とが近く、温度センサ313を流路13の流れの断面略中央に設置した場合には、乱流が生じるおそれがある。このため、このように感温素子313Gを流路13に臨む位置または流路13側に僅かに突出する位置に設けることが非常に有効となる。
(6) Furthermore, since the temperature sensor 313 is disposed so that the temperature sensitive element 313G slightly protrudes from the position facing the flow path 13 toward the flow path 13, the temperature sensitive element 313G is directed toward the center of the flow path 13. The flow of the fluid FL is not disturbed, and the flow of the fluid FL is not disturbed. Therefore, the flow rate of the fluid FL can be accurately measured.
Here, regarding the arrangement of the temperature sensor 313, the temperature sensor 313 is for measuring the temperature of the fluid FL, and is usually installed so that the temperature-sensitive element 313G is located at the approximate center of the cross section with respect to the flow of the fluid FL. However, in the present embodiment, the temperature sensor 313 is built in the main body 30 and the temperature sensor 313 is arranged using the take-out holes 321, 201, 131 of the flow rate detection unit 10, so the temperature sensor 313 and the orifice 14 are arranged. When the temperature sensor 313 is installed at the approximate center of the cross section of the flow path 13, turbulence may occur. For this reason, it is very effective to provide the temperature sensitive element 313G at a position facing the flow path 13 or a position slightly protruding toward the flow path 13 in this way.

(7)そのうえ、温度センサ313が挿入される取出し孔321,201,131が流量検出部10の本体部30との接合面の略中心位置に設けられているため、通常、流路13内の流体FLに接触するように本体部30の端部から突出するように設けられる温度センサ313を中心軸として本体部30と流量検出部10とを互いに回転させることが可能となる。これにより、流量検出部10を配管100に取り付けた向きに関係なく、本体部30を流量検出部10に接合可能となる。すなわち、流量検出部10は、オリフィス14等の差圧発生手段の種類、仕様によって決められた流れ方向に合わせた向きで配管100などに取り付ける必要があるが、本体部30の向きを自在にでき、液晶パネル部431の表示向きを適当なものとできるので、流量計1の設置場所が限定されることがない。 (7) In addition, since the take-out holes 321, 201, 131 into which the temperature sensor 313 is inserted are provided at substantially the center position of the joint surface with the main body 30 of the flow rate detection unit 10, normally, The main body 30 and the flow rate detection unit 10 can be rotated with respect to each other about a temperature sensor 313 provided so as to protrude from the end of the main body 30 so as to contact the fluid FL. Accordingly, the main body 30 can be joined to the flow rate detection unit 10 regardless of the direction in which the flow rate detection unit 10 is attached to the pipe 100. That is, the flow rate detection unit 10 must be attached to the pipe 100 or the like in a direction that matches the flow direction determined by the type and specification of the differential pressure generating means such as the orifice 14, but the body unit 30 can be freely oriented. Since the display direction of the liquid crystal panel unit 431 can be made appropriate, the installation location of the flow meter 1 is not limited.

(8)流量検出部10の板状部12と、この板状部12に接合されるアダプタ20の流量検出側接合部21とが、ともに平面視正方形状であって、流量検出部10とアダプタ20との接合面の中心点に対称な形状であることから、本体部30を流量検出部10に対して90°ずつ回転させても、これらの板状部12の四隅に形成されたネジ孔121と、流量検出側接合部21の四隅に形成された貫通孔211との位置がずれず、確実にネジ固定することができる。 (8) The plate-like portion 12 of the flow rate detection unit 10 and the flow rate detection-side joining portion 21 of the adapter 20 joined to the plate-like portion 12 are both square in plan view, and the flow rate detection unit 10 and the adapter The screw holes formed at the four corners of these plate-like parts 12 even if the main body part 30 is rotated by 90 ° with respect to the flow rate detection part 10 because it has a symmetric shape with respect to the center point of the joint surface with 20. 121 and the positions of the through holes 211 formed at the four corners of the flow rate detection side joint 21 are not displaced, and can be securely fixed with screws.

(9)感温素子313Gと取出し孔321の内周面との間にテフロン(登録商標)製のパッキン313Eが介在配置されることにより、感温素子313Gとベース32との間での熱伝導が抑制されるため、金属製のネジ部材313Bだけで温度センサ313を配設する場合と比べて、ベース32の温度影響を受けにくく、流体FLの温度を正確に測定することができる。 (9) Heat conduction between the temperature sensing element 313G and the base 32 is achieved by placing a Teflon (registered trademark) packing 313E between the temperature sensing element 313G and the inner peripheral surface of the extraction hole 321. Therefore, compared to the case where the temperature sensor 313 is provided only with the metal screw member 313B, the temperature of the fluid FL can be accurately measured as it is less affected by the temperature of the base 32.

(10)また、温度センサ313はOリング224に形成された突起224Cと突起224Cとの間に保持され、アダプタ20の取出し孔201の内周面に接触しないため、アダプタ20の温度変化が温度センサ313に与える影響を小さくでき、流体FLの温度を正確に測定できる。 (10) Since the temperature sensor 313 is held between the protrusion 224C and the protrusion 224C formed on the O-ring 224 and does not contact the inner peripheral surface of the take-out hole 201 of the adapter 20, the temperature change of the adapter 20 The influence on the sensor 313 can be reduced, and the temperature of the fluid FL can be accurately measured.

〔第2実施形態〕
次に、本発明の第2実施形態について図13、図14を参照して説明する。
本実施形態では、均圧弁55における弁体および弁棒の構造などが前記実施形態とは相違する。
図13は、本実施形態における均圧弁55の側断面図である。なお、作図上の都合により、弁棒551における断面表示(ハッチ線)は省略した。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, the structure of the valve body and the valve stem in the pressure equalizing valve 55 is different from that in the above embodiment.
FIG. 13 is a side sectional view of the pressure equalizing valve 55 in the present embodiment. In addition, the cross-sectional display (hatch line) in the valve stem 551 is omitted for convenience of drawing.

まず、この均圧弁55の弁通路552は、ベース32に形成された通路323(図5)において、第1導入路361の中間部361Aから挿入口323Aまでの拡径した空間となっている。この弁通路552において、第1導出路371と第2導入・導出路362,372との間には、第2導入・導出路362,372側から第1導出路371側へと縮径する段差部552Aが形成されている。   First, the valve passage 552 of the pressure equalizing valve 55 is a space in which the diameter is increased from the intermediate portion 361A of the first introduction passage 361 to the insertion port 323A in the passage 323 (FIG. 5) formed in the base 32. In this valve passage 552, a step between the first lead-out path 371 and the second lead-in / lead-out path 362, 372 is reduced in diameter from the second lead-out / lead-out path 362, 372 side to the first lead-out path 371 side. A portion 552A is formed.

均圧弁55における弁棒551は、断面略円柱状の弁棒本体551Aと、この弁棒本体551Aの一端側に弁体としての第1シール部581を保持するシール保持部551Bと、弁棒本体551Aの他端側で第2シール部382を保持するシール保持部551Cと、摘み553とを有して構成されている。
弁棒551が弁通路552に沿って図14(A)および(B)のように進退し、第1シール部581において弁通路552が仕切られることで、均圧弁55は、流体FLの導圧を遮断、あるいは許可する開閉弁として機能する。
ここで、第1導出路371は、図14(B)に示した均圧状態における第1シール部581と第2導出路372との間の位置に設けられ、弁通路552の径方向に沿って延びている。このような第1導出路371および第2導出路372の弁通路552に対する配置により、かなり小型の均圧弁55において第1導出路371と第2導出路372とを互いに十分に近接して配置することを実現できる。これにより、均圧弁55の小型化に寄与できるとともに、遅延による圧力のムラを小さくできるので、迅速かつ適切に均圧化できる。
The valve rod 551 in the pressure equalizing valve 55 includes a valve rod body 551A having a substantially cylindrical cross section, a seal holding portion 551B that holds a first seal portion 581 as a valve body on one end side of the valve rod body 551A, and a valve rod body. A seal holding portion 551C for holding the second seal portion 382 on the other end side of 551A and a knob 553 are configured.
The valve rod 551 advances and retreats along the valve passage 552 as shown in FIGS. 14A and 14B, and the valve passage 552 is partitioned by the first seal portion 581, so that the pressure equalizing valve 55 is guided to the fluid FL. It functions as an on-off valve that shuts off or permits.
Here, the first lead-out path 371 is provided at a position between the first seal portion 581 and the second lead-out path 372 in the pressure equalized state shown in FIG. 14B, and extends along the radial direction of the valve passage 552. It extends. By arranging the first lead-out path 371 and the second lead-out path 372 with respect to the valve passage 552, the first lead-out path 371 and the second lead-out path 372 are disposed sufficiently close to each other in the fairly small pressure equalizing valve 55. Can be realized. Thereby, while being able to contribute to size reduction of the pressure equalizing valve 55, the pressure nonuniformity by delay can be made small, Therefore A pressure equalization can be performed rapidly and appropriately.

弁棒本体551Aは、シール保持部551B,551Cよりも細軸であって、軸周りに付勢手段としての圧縮コイルバネ554が設けられている。このコイルバネ554は、弁通路552側の段差部552Aに配置された環状のプレート552Bとシール保持部551Cとの間で係止され、図14(B)のように弁棒551が弁通路552の内部に押し込まれた状態で弁棒551を挿入口323A側に付勢する。なお、弁棒本体551Aおよびコイルバネ554と弁通路552の内周面との間には隙間SP2があり、第2導入路362から第2導出路372への導圧が可能な状態となっている。   The valve stem main body 551A has a narrower shaft than the seal holding portions 551B and 551C, and a compression coil spring 554 as an urging means is provided around the shaft. The coil spring 554 is locked between an annular plate 552B disposed in a step 552A on the valve passage 552 side and a seal holding portion 551C, and the valve rod 551 is connected to the valve passage 552 as shown in FIG. The valve rod 551 is urged toward the insertion port 323A while being pushed inside. There is a gap SP2 between the valve stem main body 551A and the coil spring 554 and the inner peripheral surface of the valve passage 552, and it is possible to conduct pressure from the second introduction path 362 to the second lead-out path 372. .

シール保持部551B,551Cには、径方向に縮径した溝部がそれぞれ形成され、この溝部の周りにリング状のゴムである第1シール部581、第2シール部382がそれぞれ、弁通路552の内壁との間に介装されている。
摘み553は、シール保持部551Cの径よりも小さい径で形成されている。
また、この摘み553が挿通される挿通孔555Aを有する板状部材555が設けられ、この板状部材555は、挿入口323Aの周りにネジ555Bで取り付けられている。
The seal holding portions 551B and 551C are each formed with a radially reduced groove portion, and the first seal portion 581 and the second seal portion 382, which are ring-shaped rubbers, are respectively formed around the groove portion of the valve passage 552. It is interposed between the inner walls.
The knob 553 is formed with a diameter smaller than the diameter of the seal holding portion 551C.
Further, a plate-like member 555 having an insertion hole 555A through which the knob 553 is inserted is provided, and this plate-like member 555 is attached around the insertion port 323A with screws 555B.

このような均圧弁55では、図14(A)のようにコイルバネ554が復元した状態では、第1シール部581が第1導出路371と第2導入・導出路362,372の間に位置し、この第1シール部581によって第1経路P1と第2経路P2とが仕切られているため、第1経路P1、第2経路P2の間が閉じ、これらの経路間での差圧を測定可能な状態にある。   In such a pressure equalizing valve 55, when the coil spring 554 is restored as shown in FIG. 14A, the first seal portion 581 is positioned between the first lead-out path 371 and the second introduction / lead-out paths 362 and 372. Since the first path P1 and the second path P2 are partitioned by the first seal portion 581, the first path P1 and the second path P2 are closed, and the differential pressure between these paths can be measured. It is in a state.

この差圧状態から均圧状態とするには、摘み553を弁通路552の内部に押し込み、シール保持部551Bの端部が第1導入路361の中間部361Aに当接された状態とする。これにより、第1シール部581が第1導入路361と第1導出路371との間に摺動し、これらの導入、導出路361,371間の導圧が第1シール部581によって遮断される一方、第1導出路371は第2導入路362および第2導出路372と連通され、均圧化される状態となる。
この際、第1導入路361に第1シール部581が挿入されて第1導入路361と第1導出路371とが仕切られ、均圧状態における連通空間では片側の第2経路P2側の流体FLの圧力のみが作用し、第1経路P1側の圧力は作用しないため、当該連通空間(均圧路)中に流体FLの流れが発生しない。このように、第1導入路361が遮断されることにより、均圧中に第1導入路361と第2導入路362との間で流体が流れ、これら第1導入路361と第2導入路362との間の均圧路が絞りとなって差圧が生じることを防止できる。
前述のように、差圧状態であっても均圧状態であっても、第1シール部581によって弁通路552が仕切られる。
In order to change from the differential pressure state to the pressure equalization state, the knob 553 is pushed into the valve passage 552 so that the end portion of the seal holding portion 551B is in contact with the intermediate portion 361A of the first introduction passage 361. As a result, the first seal portion 581 slides between the first introduction path 361 and the first lead-out path 371, and the guiding pressure between these introduction and lead-out paths 361 and 371 is blocked by the first seal portion 581. On the other hand, the first lead-out path 371 communicates with the second lead-in path 362 and the second lead-out path 372 and is in a state where pressure is equalized.
At this time, the first seal portion 581 is inserted into the first introduction path 361 to partition the first introduction path 361 and the first lead-out path 371, and in the communication space in the pressure equalized state, the fluid on the second path P2 side on one side Since only the pressure of FL acts and the pressure on the first path P1 side does not act, the flow of the fluid FL does not occur in the communication space (pressure equalizing path). As described above, when the first introduction path 361 is interrupted, fluid flows between the first introduction path 361 and the second introduction path 362 during pressure equalization, and the first introduction path 361 and the second introduction path 361 It is possible to prevent the pressure equalization path between the 362 and the 362 from becoming a throttle and causing a differential pressure.
As described above, the valve passage 552 is partitioned by the first seal portion 581 regardless of the differential pressure state or the pressure equalization state.

ここで、弁棒551が弁通路552に押し込まれる際に、プレート552Bとシール保持部551Cとの間でコイルバネ554が縮むため、弁棒551を押しこむ外力の印加を止めると、コイルバネ554のバネ力によって弁棒551が迅速に後退し、摘み553が再び挿入口323Aから突出する。これで差圧状態に移行する。
なお、コイルバネ554に付勢されて弁棒551が元の位置に復帰する際、シール保持部551Cが板状部材555に当接するため、弁棒551が挿入口323Aから抜け出るおそれはない。
Here, when the valve rod 551 is pushed into the valve passage 552, the coil spring 554 contracts between the plate 552B and the seal holding portion 551C. Therefore, when the application of the external force pushing the valve rod 551 is stopped, the spring of the coil spring 554 The valve stem 551 is quickly retracted by the force, and the knob 553 protrudes from the insertion port 323A again. This shifts to the differential pressure state.
When the valve rod 551 is biased by the coil spring 554 and returns to the original position, the seal holding portion 551C comes into contact with the plate-like member 555, so that the valve rod 551 does not come out of the insertion port 323A.

本実施形態によれば、第1実施形態による効果に加えて、次のような効果を奏する。
(11)均圧弁55の弁体として用いられた第1シール部581は、その弾性によって弁通路552の内周面に密接するため、均圧弁55の開閉が確実に行われ、差圧測定を正確に行うことができる。
According to this embodiment, in addition to the effect by 1st Embodiment, there exist the following effects.
(11) Since the first seal portion 581 used as the valve body of the pressure equalizing valve 55 is in close contact with the inner peripheral surface of the valve passage 552 due to its elasticity, the pressure equalizing valve 55 is reliably opened and closed, and differential pressure measurement is performed. Can be done accurately.

(12)弁通路552内に弁棒551を押し込んで均圧した後、弁棒551への外力印加を止めると、コイルバネ554の付勢力によって弁棒551が元の位置に戻るので、均圧弁55の開閉動作をより確実に行うことができる。 (12) After the valve rod 551 is pushed into the valve passage 552 to equalize the pressure, when the external force application to the valve rod 551 is stopped, the valve rod 551 returns to the original position by the biasing force of the coil spring 554. The opening / closing operation can be performed more reliably.

(13)また、挿入口323Aに板状部材555が設けられ、この板状部材555に摘み553を挿通することによって、摘み553よりも大径のシール保持部551Cの挿入口323A外側への移動が規制されるため、弁棒551のベース32からの離脱を防止できる。 (13) Further, a plate-like member 555 is provided in the insertion port 323A, and the tab 553 is inserted into the plate-like member 555, whereby the seal holding portion 551C having a larger diameter than the knob 553 is moved to the outside of the insertion port 323A Therefore, detachment of the valve stem 551 from the base 32 can be prevented.

〔第3実施形態〕
次に、本発明の第3実施形態について図15、図16を参照して説明する。
本実施形態の均圧弁は、第2実施形態における均圧弁55において、弁棒が挿通される
筒状部材を設けたものである。
図15は、本実施形態における均圧弁65の側断面図である。
この均圧弁65の弁通路552には、第1導出路371と第2導入・導出路362,372との間を延びる筒状部材656が内周面に沿って設けられている。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS.
The pressure equalizing valve of this embodiment is provided with a cylindrical member through which a valve rod is inserted in the pressure equalizing valve 55 of the second embodiment.
FIG. 15 is a side sectional view of the pressure equalizing valve 65 in the present embodiment.
In the valve passage 552 of the pressure equalizing valve 65, a cylindrical member 656 extending between the first lead-out path 371 and the second introduction / lead-out paths 362 and 372 is provided along the inner peripheral surface.

筒状部材656は、SUS製であって、両端側の開口端部内側の角が面取りされ、これらの面取り部656Aの間に弁棒651が当接される被当接面656Bが形成されている。
筒状部材656の外周面には、ゴム製のOリング656Cが嵌合する溝が形成され、このOリング656Cによって筒状部材656は弁通路552の内周面に密接した状態で保持される。また、Oリング656Cにより、第1経路P1、第2経路P2それぞれにおける圧力が封止される。
この筒状部材656の挿入口323A側の端面には、プレート656Dが配置されている。
The cylindrical member 656 is made of SUS, and the corners inside the opening ends on both ends are chamfered, and a contacted surface 656B on which the valve rod 651 is contacted is formed between these chamfered portions 656A. Yes.
A groove for fitting a rubber O-ring 656C is formed on the outer peripheral surface of the cylindrical member 656, and the cylindrical member 656 is held in close contact with the inner peripheral surface of the valve passage 552 by the O-ring 656C. . Further, the pressure in each of the first path P1 and the second path P2 is sealed by the O-ring 656C.
A plate 656D is disposed on the end surface of the cylindrical member 656 on the insertion port 323A side.

本実施形態では、この筒状部材656が弁通路552に配置されたぶん、弁棒本体651Aの径が第2実施形態での寸法よりも小さくなっているが、これを除けば、弁棒651の構成は、第2実施形態における弁棒551の構成と略同様である。すなわち、弁棒651は、弁棒本体651Aと、この弁棒本体651Aの両端側にシール保持部651B,551Cと、シール保持部551Cと連続して形成される摘み553とを有して構成され、弁棒本体651Aの軸周りには、コイルバネ554が設けられている。
なお、弁棒本体651Aは、挿入口323A側が拡径しており、この部分には斜面651Eが形成されている。
In the present embodiment, the tubular member 656 is disposed in the valve passage 552. The diameter of the valve stem body 651A is smaller than the size in the second embodiment. The configuration is substantially the same as the configuration of the valve stem 551 in the second embodiment. That is, the valve stem 651 includes a valve stem main body 651A, seal holding portions 651B and 551C on both ends of the valve stem main body 651A, and a knob 553 formed continuously with the seal holding portion 551C. A coil spring 554 is provided around the axis of the valve stem body 651A.
The valve stem main body 651A has an enlarged diameter on the insertion port 323A side, and an inclined surface 651E is formed in this portion.

なお、弁棒本体651Aの径が小さく形成されたことに伴い、弁通路552において、第1導入路361と第1導出路371との交差部371Aにおける径よりも第1導入路361側の部分の方が縮径し、この縮径部361Bの径はシール保持部651Bに配置される第1シール部581の径に対応している。   As the diameter of the valve stem body 651A is reduced, a portion of the valve passage 552 that is closer to the first introduction path 361 than the diameter at the intersection 371A between the first introduction path 361 and the first lead-out path 371. The diameter is reduced, and the diameter of the reduced diameter portion 361B corresponds to the diameter of the first seal portion 581 disposed in the seal holding portion 651B.

このような均圧弁65において、図16(A)のようにコイルバネ554が復元し、弁棒651が弁通路552から引き出された状態では、第1シール部581が筒状部材656の被当接面656Bに密着状態で当接し、均圧弁65として閉じた状態にある。すなわち、第1経路P1、第2経路P2間での差圧を測定可能な状態にある。   In such a pressure equalizing valve 65, when the coil spring 554 is restored as shown in FIG. 16A and the valve rod 651 is pulled out from the valve passage 552, the first seal portion 581 is brought into contact with the tubular member 656. The pressure equalizing valve 65 is in close contact with the surface 656B and is in close contact. That is, the differential pressure between the first path P1 and the second path P2 can be measured.

この差圧状態から均圧状態とする際は、摘み553を弁通路552の内部に押し込み、シール保持部651Bの端部を第1導入路361の中間部361Aに当接させる。弁棒本体651Aの反対側では、弁棒本体651Aの斜面651Eが筒状部材656の面取り部656Aに対向する。この状態では、第1導入路361と第1導出路371との間の導圧が第1シール部581によって遮断される一方、第1導出路371は第2導入路362および第2導出路372と連通され、均圧状態となる。   When changing from the differential pressure state to the pressure equalization state, the knob 553 is pushed into the valve passage 552 to bring the end of the seal holding portion 651B into contact with the intermediate portion 361A of the first introduction path 361. On the opposite side of the valve stem body 651A, the inclined surface 651E of the valve stem body 651A faces the chamfered portion 656A of the tubular member 656. In this state, the guiding pressure between the first introduction path 361 and the first lead-out path 371 is blocked by the first seal portion 581, while the first lead-out path 371 has the second lead-in path 362 and the second lead-out path 372. The pressure is equalized.

ここで、弁棒651が弁通路552に沿って進退する際、第1シール部581は筒状部材656の内部を通過し、次いで、第1導入路361と第1導出路371との交差部371Aにおいて、第1導出路371の開口端371Bと離れた位置を通過する。すなわち、開口端371Bにより第1シール部581が傷ついて切れるおそれがない。   Here, when the valve rod 651 advances and retreats along the valve passage 552, the first seal portion 581 passes through the inside of the cylindrical member 656, and then the intersection between the first introduction path 361 and the first outlet path 371. In 371A, it passes through a position away from the opening end 371B of the first lead-out path 371. That is, there is no possibility that the first seal portion 581 is damaged and cut by the opening end 371B.

本実施形態によれば、前記各実施形態による効果に加えて、次のような効果を奏する。(14)筒状部材656が第1導出路371の開口端371Bの近傍に配置されているため、開口端371Bに第1シール部581が引っ掛かって損傷するなどの不具合が防止され、弁棒651を円滑に進退させることができる。
すなわち、第1導出路371などをベース32にドリルなどで穿孔する際にバリなどが生じやすいが、このバリなどによる第1シール部581の損傷などを防止するために、このような筒状部材656を設けることが有効である。
According to this embodiment, in addition to the effects of the above-described embodiments, the following effects can be obtained. (14) Since the cylindrical member 656 is disposed in the vicinity of the opening end 371B of the first outlet passage 371, problems such as the first seal portion 581 being caught by the opening end 371B and being damaged are prevented, and the valve rod 651 is prevented. Can be smoothly advanced and retracted.
That is, when the first lead-out path 371 or the like is drilled in the base 32 with a drill or the like, burrs or the like are likely to occur, but in order to prevent damage to the first seal portion 581 due to the burrs or the like, such a cylindrical member It is effective to provide 656.

〔第4実施形態〕
次に、本発明の第4実施形態について図17、図18を参照して説明する。
本実施形態の均圧弁75は、第3実施形態における均圧弁65の弁棒651において、第1シール部581よりも弁棒651の前進側に、第3シール部783を設けたものである。
図17は、本実施形態における均圧弁75の側断面図である。
均圧弁75の弁棒751の先端部には、シール保持部751Dが形成され、このシール保持部751Dに第3シール部783が配置される。このように、第3シール部783が設けられたことにより、弁棒751の長さは第3実施形態における弁棒651よりも長く、弁棒751の先端と第1導入路361における縮径部361Bとの間の距離は短くなっている。
弁棒751のその他の構成は、第3実施形態における弁棒651の構成と略同様である。
なお、第1導出路371は、図18(B)に示した均圧状態における第3シール部783と第2導出路372との間の位置に設けられ、弁通路652の径方向に沿って延びている。このような第1導出路371および第2導出路372の弁通路552に対する配置により、第1導出路371と第2導出路372とを互いに十分に近接して配置でき、均圧弁75の小型化、および均圧の迅速化、適正化が図られる。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIGS.
The pressure equalizing valve 75 according to the present embodiment is a valve rod 651 of the pressure equalizing valve 65 according to the third embodiment in which a third seal portion 783 is provided on the more advanced side of the valve rod 651 than the first seal portion 581.
FIG. 17 is a side sectional view of the pressure equalizing valve 75 in the present embodiment.
A seal holding portion 751D is formed at the tip of the valve rod 751 of the pressure equalizing valve 75, and a third seal portion 783 is disposed on the seal holding portion 751D. Thus, by providing the third seal portion 783, the length of the valve stem 751 is longer than the valve stem 651 in the third embodiment, and the reduced diameter portion in the tip of the valve stem 751 and the first introduction path 361. The distance from 361B is shortened.
The other configuration of the valve stem 751 is substantially the same as the configuration of the valve stem 651 in the third embodiment.
Note that the first lead-out path 371 is provided at a position between the third seal portion 783 and the second lead-out path 372 in the pressure equalized state shown in FIG. 18B, and along the radial direction of the valve passage 652. It extends. By arranging the first lead-out path 371 and the second lead-out path 372 with respect to the valve passage 552, the first lead-out path 371 and the second lead-out path 372 can be disposed sufficiently close to each other, and the pressure equalizing valve 75 can be downsized. , And speeding up and optimizing pressure equalization.

このような均圧弁75において、図18(A)のように弁棒751が弁通路652から引き出された状態では、第3実施形態と同様に、第1シール部581が筒状部材656の被当接面656Bに密着状態で当接し、均圧弁75として閉じた状態にある。すなわち、第1経路P1、第2経路P2間での差圧を測定可能な状態にある。   In such a pressure equalizing valve 75, when the valve rod 751 is pulled out from the valve passage 652 as shown in FIG. 18A, the first seal portion 581 is covered by the tubular member 656 as in the third embodiment. The pressure equalizing valve 75 is in close contact with the contact surface 656B, and is in a closed state. That is, the differential pressure between the first path P1 and the second path P2 can be measured.

この差圧状態から均圧状態とする際は、前述と同様に、摘み553を弁通路652の内部に押し込む。すると、第1シール部581が第1導入路361と第1導出路371との交差部371Aに移動する。この際、弁棒751の先端部に設けられた第3シール部783が第1導入路361における縮径部361Bに密接するため、前記各実施形態における弁棒の押し込み量よりも短い押し込み量で、第1導入路361と第1導出路371との間が遮断されるとともに、第1導出路371が第2導入路362および第2導出路372と連通され、均圧状態となる。すなわち、第1シール部581を第1導入路361まで移動させて第1導入路361と第1導出路371とを遮断する必要がないので、弁棒751を進退させるストロークを小さくできる。   When changing from the differential pressure state to the pressure equalization state, the knob 553 is pushed into the valve passage 652 as described above. Then, the first seal portion 581 moves to the intersection 371A between the first introduction path 361 and the first lead-out path 371. At this time, since the third seal portion 783 provided at the tip of the valve stem 751 is in close contact with the reduced diameter portion 361B in the first introduction path 361, the push amount is shorter than the push amount of the valve rod in each of the above embodiments. The first introduction path 361 and the first lead-out path 371 are blocked, and the first lead-out path 371 is communicated with the second introduction path 362 and the second lead-out path 372 so that the pressure is equalized. That is, since it is not necessary to move the first seal portion 581 to the first introduction path 361 to block the first introduction path 361 and the first lead-out path 371, the stroke for moving the valve rod 751 forward and backward can be reduced.

本実施形態によれば、前記各実施形態による効果に加えて、次のような効果を奏する。(15)差圧状態では、第1シール部581によって弁通路652が仕切られる一方、均圧状態では、第3シール部783によって弁通路652が仕切られる。これにより、第1シール部581が差圧測定時に第1導出路371と第2導入・導出路362,372との間に配置され、この位置から第1導入路361に挿入するように移動することで均圧状態とされる場合に比べて、弁棒751が進退する寸法(ストローク)を短くでき、弁棒751の操作を簡易にできる。   According to this embodiment, in addition to the effects of the above-described embodiments, the following effects can be obtained. (15) In the differential pressure state, the valve passage 652 is partitioned by the first seal portion 581, while in the pressure equalization state, the valve passage 652 is partitioned by the third seal portion 783. Accordingly, the first seal portion 581 is disposed between the first lead-out path 371 and the second introduction / lead-out paths 362 and 372 during differential pressure measurement, and moves so as to be inserted into the first lead-in path 361 from this position. As a result, the dimension (stroke) in which the valve stem 751 advances and retreats can be shortened and the operation of the valve stem 751 can be simplified compared to the case where the pressure is equalized.

〔第5実施形態〕
次に、本発明の第5実施形態について図19〜図21を参照して説明する。
本実施形態の均圧弁85では、圧力の導入路、導出路の構成の一部が前記各実施形態とは異なり、これに応じて、新たなシール部材を配置したものである。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIGS.
In the pressure equalizing valve 85 of the present embodiment, a part of the configuration of the pressure introduction path and the lead-out path is different from that of each of the embodiments described above, and a new seal member is arranged accordingly.

図19は、本実施形態における均圧弁85の側断面図である。
まず、本実施形態では、第2導入路362と第2導出路372とでは、弁通路652とそれぞれ交差する位置が互いに離れている。具体的に、第2導入路362は、第2導出路372と挿入口323Aとの間で弁通路652と交差している。
FIG. 19 is a side sectional view of the pressure equalizing valve 85 in the present embodiment.
First, in the present embodiment, the positions where the second introduction path 362 and the second lead-out path 372 intersect with the valve passage 652 are separated from each other. Specifically, the second introduction path 362 intersects the valve passage 652 between the second lead-out path 372 and the insertion port 323A.

そして、弁通路652に沿って、第2導出路372が弁通路652と交差する両側部分に跨るように、筒状部材856が設けられている。
図20は、この筒状部材856の斜視図である。
筒状部材856の中央部には縮径部856Eが形成され、この縮径部856Eは、図19に示すように、第2導出路372の弁通路652と連通する開口端372Bの位置と合うように配置される。そして、この縮径部856Eには、第2導出路372が延びる方向に沿って貫通する孔856Fが形成されている。
筒状部材856における縮径部856E両側の外周面には、Oリング656Cが嵌合する溝がそれぞれ形成される。
A cylindrical member 856 is provided along the valve passage 652 so as to straddle both side portions where the second outlet passage 372 intersects the valve passage 652.
FIG. 20 is a perspective view of the tubular member 856. FIG.
A reduced diameter portion 856E is formed at the center of the cylindrical member 856, and this reduced diameter portion 856E matches the position of the opening end 372B communicating with the valve passage 652 of the second outlet passage 372 as shown in FIG. Are arranged as follows. The reduced diameter portion 856E is formed with a hole 856F penetrating along the direction in which the second lead-out path 372 extends.
Grooves into which the O-ring 656C is fitted are respectively formed on the outer peripheral surfaces of both sides of the reduced diameter portion 856E in the cylindrical member 856.

一方、弁棒851には、第1シール部581と第2シール部382との間にシール保持部851Eが形成され、このシール保持部851Eに第4シール部884が配置される。この第4シール部884の径は、筒状部材856の内径に対応している。   On the other hand, the valve stem 851 is formed with a seal holding portion 851E between the first seal portion 581 and the second seal portion 382, and the fourth seal portion 884 is disposed on the seal holding portion 851E. The diameter of the fourth seal portion 884 corresponds to the inner diameter of the cylindrical member 856.

このような均圧弁85において、図21(A)のように弁棒851が弁通路652から引き出された状態では、第4実施形態と同様に、第1シール部581が筒状部材856の被当接面656Bに密着状態で当接し、均圧弁85として閉じた状態にある。すなわち、第1経路P1、第2経路P2間での差圧を測定可能な状態にある。
この際、第4シール部884は、筒状部材856の端部と挿入口323Aとの間の、弁通路652における拡径空間に位置するため、第2導入路362と第2導出路372との間は、筒状部材856の孔856Fを通じて導圧自在な連通空間となっている。
In such a pressure equalizing valve 85, when the valve rod 851 is pulled out from the valve passage 652 as shown in FIG. 21A, the first seal portion 581 is covered by the tubular member 856 as in the fourth embodiment. The pressure contact valve 656B is in close contact with the contact surface 656B and is closed as the pressure equalizing valve 85. That is, the differential pressure between the first path P1 and the second path P2 can be measured.
At this time, since the fourth seal portion 884 is located in the enlarged space in the valve passage 652 between the end portion of the tubular member 856 and the insertion port 323A, the second introduction path 362, the second lead-out path 372, and the like. A space between them is a communication space in which pressure can be guided through a hole 856F of the cylindrical member 856.

この差圧状態から均圧状態とする際は、摘み553を弁通路652の内部に押し込む。すると、前述のように、第3シール部783が第1導入路361における縮径部361Bに密接し、第1導入路361と第1導出路371との間が遮断される。
このとき、第4シール部884が筒状部材856の被当接面656Bに密接されて、第2導入路362と第2導出路372とが遮断される。
これにより、第1経路P1では第1導入路361と第1導出路371とが遮断され、第2経路P2では第2導入路362と第2導出路372とが遮断され、第1導出路371および第2導出路372のみが互いに連通された均圧化状態となる。
When changing from the differential pressure state to the pressure equalization state, the knob 553 is pushed into the valve passage 652. Then, as described above, the third seal portion 783 is in close contact with the reduced diameter portion 361B in the first introduction path 361, and the first introduction path 361 and the first outlet path 371 are blocked.
At this time, the fourth seal portion 884 is brought into close contact with the abutted surface 656B of the cylindrical member 856, and the second introduction path 362 and the second lead-out path 372 are blocked.
As a result, the first introduction path 361 and the first lead-out path 371 are blocked in the first path P1, and the second lead-in path 362 and the second lead-out path 372 are blocked in the second path P2, and the first lead-out path 371. Only the second lead-out path 372 communicates with each other.

なお、弁棒851の進退の際、筒状部材856が設けられているため、第1シール部581、第4シール部884がそれぞれ、第1導出路371の開口端371B、第2導出路372の開口端372B、と離れた位置を通過し、第1シール部581、第4シール部884が開口端371B,372Bで切れることがない。   In addition, since the cylindrical member 856 is provided when the valve rod 851 is advanced and retracted, the first seal portion 581 and the fourth seal portion 884 are the opening end 371B of the first outlet passage 371 and the second outlet passage 372, respectively. The first seal portion 581 and the fourth seal portion 884 do not break at the open ends 371B and 372B.

本実施形態によれば、前記各実施形態による効果に加えて、次のような効果を奏する。(16)第2導出路372が第2導入路362と仕切られることにより、脈動が防止されて圧力が極めて安定するので、流体FLの圧力差を迅速かつ容易に「0」とすることができる。
また、第4シール部884により、第2導入路362と第2導出路372との間を簡単な構造で仕切ることができる。
According to this embodiment, in addition to the effects of the above-described embodiments, the following effects can be obtained. (16) Since the second lead-out path 372 is partitioned from the second introduction path 362, pulsation is prevented and the pressure is extremely stable, so that the pressure difference of the fluid FL can be quickly and easily set to “0”. .
In addition, the fourth seal portion 884 can partition the second introduction path 362 and the second lead-out path 372 with a simple structure.

〔第6実施形態〕
次に、本発明の第6実施形態について図22を参照して説明する。
本実施形態例では、前記各実施形態とは流体の圧力の導入、導出経路のレイアウトなどが異なる。
図22は、本実施形態における均圧弁95の側断面図である。第1導出路962は弁通路352の延出方向に沿って延び、この第1導出路962と交差する方向に延びた第1導入路961とともに第1経路P1を形成する。また、第2経路P2に関しては、第5実施形態のように、第2導入路362および第2導出路372の弁通路352とそれぞれ交差する位置が異なり、第2導出路372は、弁通路352において、第1導入路961と第2導入路362との間に形成されている。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described with reference to FIG.
The present embodiment is different from the above embodiments in the introduction of fluid pressure, the layout of the derivation path, and the like.
FIG. 22 is a side sectional view of the pressure equalizing valve 95 in the present embodiment. The first lead-out path 962 extends along the extending direction of the valve passage 352 and forms a first path P1 together with the first lead-in path 961 extending in a direction intersecting with the first lead-out path 962. As for the second path P2, as in the fifth embodiment, the positions of the second introduction path 362 and the second lead-out path 372 intersecting with the valve passages 352 are different, and the second lead-out path 372 has a valve path 352. , The first introduction path 961 and the second introduction path 362 are formed.

一方、均圧弁95は、弁棒351の先端部にシール部980が設けられる。
また、摘み953は断面六角形状に形成されるとともに、摘み953の端面には、平面視四角形状の穴953Aが形成され、レンチなどの工具類で摘み953を容易に回すことが可能であり、これによって弁棒351が螺合進退されるものとなっている。
均圧弁95におけるそのほかの構成は、第1実施形態における均圧弁35と同様の構成である。
このような本実施形態によっても、第1実施形態と略同様の効果を得ることができる。
On the other hand, the pressure equalizing valve 95 is provided with a seal portion 980 at the tip of the valve rod 351.
Further, the knob 953 is formed in a hexagonal cross section, and a hole 953A having a rectangular shape in plan view is formed on the end face of the knob 953, and the knob 953 can be easily turned with a tool such as a wrench. As a result, the valve stem 351 is screwed forward and backward.
Other configurations of the pressure equalizing valve 95 are the same as those of the pressure equalizing valve 35 in the first embodiment.
Also according to this embodiment, substantially the same effect as that of the first embodiment can be obtained.

〔第7実施形態〕
次に、本発明の第7実施形態について図23および図24を参照して説明する。
図23に示すように、本実施形態の流量計2は、温度センサ313を保持する保持部材73が設けられていることを特徴とする。図23は、第1実施形態を示した図2に対応する図であるが、図23では、表示演算部40が組み込まれるケース43により本体部30が覆われている。
また、流量計2は、第1実施形態の流量計1が備えていた流量検出部10の代わりに、流量検出部70を備える。
[Seventh Embodiment]
Next, a seventh embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 23, the flowmeter 2 of the present embodiment is characterized in that a holding member 73 that holds a temperature sensor 313 is provided. FIG. 23 is a diagram corresponding to FIG. 2 illustrating the first embodiment. In FIG. 23, the main body 30 is covered with a case 43 in which the display calculation unit 40 is incorporated.
The flow meter 2 includes a flow rate detection unit 70 instead of the flow rate detection unit 10 provided in the flow meter 1 of the first embodiment.

流量検出部70は、2つの配管110の間に挟みこまれて取付けられるタイプのものであり、配管110のフランジ110Aがそれぞれ取付けられる流路接続部711を両端に有するパイプ部材71と、パイプ部材71の側面に溶接され、アダプタ20を介して本体部30(図2)に接合されるとともに上流側取出し孔721および下流側取出し孔722が形成された金属製の導圧部72とを有する。
ここで、本実施形態の流量計2のパイプ部材71の軸方向長さは、ケース43の同方向における長さよりも短い。つまり、フランジ110Aとフランジ110Aとの間にケース43が納まらないほど、パイプ部材71の軸方向長さが非常に短い。このため、導圧部72の厚み寸法は、フランジ110Aが配管110の開口の外側に張り出す寸法よりも厚く設けられる。これに応じて温度センサ313の長さ、および温度センサ313が挿入される取出し孔721の長さが長くなっている。
The flow rate detection unit 70 is of a type that is sandwiched and attached between two pipes 110, a pipe member 71 having a flow path connection part 711 at each end to which a flange 110A of the pipe 110 is attached, and a pipe member 71 and a metal pressure guiding portion 72 which is joined to the main body 30 (FIG. 2) via the adapter 20 and has an upstream extraction hole 721 and a downstream extraction hole 722 formed therein.
Here, the axial length of the pipe member 71 of the flow meter 2 of the present embodiment is shorter than the length of the case 43 in the same direction. That is, the axial length of the pipe member 71 is so short that the case 43 does not fit between the flange 110A and the flange 110A. For this reason, the thickness dimension of the pressure guiding part 72 is provided thicker than the dimension in which the flange 110 </ b> A protrudes outside the opening of the pipe 110. Accordingly, the length of the temperature sensor 313 and the length of the extraction hole 721 into which the temperature sensor 313 is inserted are increased.

図24は、温度センサ313を保持する保持部材73の斜視図である。保持部材73は、低熱伝導性材質であるPTFE(ポリテトラフルオロエチレン)による射出成形品として略円筒形状に形成され、軸方向に沿ってスリット731が形成されている。つまり、保持部材73は、断面略C字状に形成され、内部に温度センサ313が挿入される。このとき、スリット731は、取出し孔721の内部空間と連通する連通路を構成し、このスリット731を通じてパイプ部材71の内部からセンサ部31へと流体FLの圧力を伝達可能となっている。
なお、保持部材73の材質は、流体FLに対する耐腐食性や、熱伝導効率を考慮して選定されている。本実施形態の保持部材73の材質であるPTFEは、熱伝導率が空気の10倍程度と低い。
FIG. 24 is a perspective view of the holding member 73 that holds the temperature sensor 313. The holding member 73 is formed in a substantially cylindrical shape as an injection-molded product made of PTFE (polytetrafluoroethylene), which is a low heat conductive material, and has a slit 731 formed along the axial direction. That is, the holding member 73 has a substantially C-shaped cross section, and the temperature sensor 313 is inserted therein. At this time, the slit 731 constitutes a communication path communicating with the internal space of the take-out hole 721, and the pressure of the fluid FL can be transmitted from the inside of the pipe member 71 to the sensor unit 31 through the slit 731.
The material of the holding member 73 is selected in consideration of the corrosion resistance against the fluid FL and the heat conduction efficiency. PTFE, which is the material of the holding member 73 of this embodiment, has a thermal conductivity as low as about 10 times that of air.

この保持部材73の軸方向両端側には、フランジ部732,733が形成され、このフランジ部732,733の間は小径部734となっている。ここで、取出し孔721の内周面には、フランジ部732,733の側面のみが接触する。一方のフランジ部732の外周部には、取出し孔721の径よりも外径が大きい拡径部732Aが形成されている。また、保持部材73のフランジ部732側の端部732Bは、拡径部732Aに対して段落ち形成されている。   Flange portions 732 and 733 are formed on both axial ends of the holding member 73, and a small diameter portion 734 is formed between the flange portions 732 and 733. Here, only the side surfaces of the flange portions 732 and 733 are in contact with the inner peripheral surface of the extraction hole 721. An enlarged diameter portion 732 </ b> A having an outer diameter larger than the diameter of the extraction hole 721 is formed on the outer peripheral portion of the one flange portion 732. Further, the end portion 732B on the flange portion 732 side of the holding member 73 is formed to be stepped with respect to the enlarged diameter portion 732A.

このような保持部材73は、図24中、下端のフランジ部733の側から取出し孔721に挿入され、上端のフランジ部732の側から保持部材73の内部に温度センサ313が挿入される。このとき、フランジ部732の略半分が取出し孔721に入るとともに拡径部732Aが取出し孔721の端縁に掛かり、保持部材73が取出し孔721にそれ以上挿入されない。つまり拡径部732Aはストッパーの役目を果たす。この状態において、拡径部732Aの周りにOリング735(図23)が配置され、このOリング735により、導圧部72とアダプタ20との間がシールされる。なお、拡径部732Aが取出し孔721から突出する寸法は、弾性変形したOリング735の厚みよりも小さいため、Oリング735のシール性能には支障を来たさない。
また、アダプタ20取り付けの際、取出し孔721から突出した保持部材73の端部732Bが位置決め用のガイドとして機能する。
24, the holding member 73 is inserted into the take-out hole 721 from the lower flange portion 733 side, and the temperature sensor 313 is inserted into the holding member 73 from the upper flange portion 732 side. At this time, approximately half of the flange portion 732 enters the take-out hole 721 and the enlarged diameter portion 732A is hooked on the edge of the take-out hole 721, and the holding member 73 is not inserted into the take-out hole 721 any more. That is, the enlarged diameter portion 732A serves as a stopper. In this state, an O-ring 735 (FIG. 23) is disposed around the enlarged diameter portion 732 </ b> A, and the space between the pressure guiding portion 72 and the adapter 20 is sealed by the O-ring 735. In addition, since the dimension in which the enlarged diameter portion 732A protrudes from the extraction hole 721 is smaller than the thickness of the elastically deformed O-ring 735, the sealing performance of the O-ring 735 is not hindered.
Further, when the adapter 20 is attached, the end portion 732B of the holding member 73 protruding from the take-out hole 721 functions as a positioning guide.

なお、フランジ部732,733の外径は、取出し孔721の内径よりも若干大きめの寸法となっているが、スリット731の部分で保持部材73をすぼめて取出し孔721に挿入可能である。また、保持部材73の内径は、温度センサ313の外径よりも若干大きいが、保持部材73が取出し孔721に挿入された際にスリット731の間隔が狭くなり、この状態では保持部材73の内径と温度センサ313の外径とが略同寸となるため、温度センサ313は確実に保持される。   The outer diameters of the flange portions 732 and 733 are slightly larger than the inner diameter of the take-out hole 721, but the holding member 73 can be squeezed at the slit 731 and inserted into the take-out hole 721. In addition, the inner diameter of the holding member 73 is slightly larger than the outer diameter of the temperature sensor 313, but when the holding member 73 is inserted into the take-out hole 721, the interval between the slits 731 is narrowed. Since the outer diameter of the temperature sensor 313 is substantially the same, the temperature sensor 313 is securely held.

本実施形態によれば、前記各実施形態による効果に加えて、次のような効果を奏する。(17)温度センサ313の周りに保持部材73を設けたことにより、温度センサ313が長手方向に対して斜めに振れることを防止できる。すなわち、本実施形態のように導圧部72の厚みが大きく、取出し孔721が長く形成されている場合であっても、温度センサ313が安定姿勢に保持される。ここで、流量検出部70における流体FLの流速が速い場合であっても、温度センサ313先端の感温素子313Gを流路13に臨む位置または流路13側に僅かに突出する位置に維持できる。また、このように保持部材73によって温度センサ313が保持されることにより、配管110の振動などによって温度センサ313が破損することなどを防止でき、耐振動性も向上させることができる。   According to this embodiment, in addition to the effects of the above-described embodiments, the following effects can be obtained. (17) By providing the holding member 73 around the temperature sensor 313, the temperature sensor 313 can be prevented from swinging obliquely with respect to the longitudinal direction. That is, the temperature sensor 313 is held in a stable posture even when the thickness of the pressure guiding portion 72 is large and the extraction hole 721 is long as in the present embodiment. Here, even when the flow rate of the fluid FL in the flow rate detection unit 70 is high, the temperature sensing element 313G at the tip of the temperature sensor 313 can be maintained at a position facing the flow path 13 or a position slightly protruding toward the flow path 13. . Further, since the temperature sensor 313 is held by the holding member 73 as described above, it is possible to prevent the temperature sensor 313 from being damaged due to vibration of the pipe 110 and the like, and to improve vibration resistance.

(18)また、温度センサ313を保持可能、かつ、流体FLの圧力を取出し可能とするように、略円筒状であってスリット731を有するものとして保持部材73を簡略に構成したので、保持部材73の部品コストを抑えることができる。また、流体FLの圧力を伝達可能な連通路がスリット731によって形成されているため、保持部材73を設けない場合(図2など)の取出し孔131の径寸法と大差ない径寸法である取出し孔721に温度センサ313および保持部材73の両方を設けることが可能となるから、流量計2の小型化が阻害されない。 (18) Since the holding member 73 is simply configured as having a substantially cylindrical shape and having a slit 731 so that the temperature sensor 313 can be held and the pressure of the fluid FL can be taken out. 73 component costs can be reduced. Further, since the communication path capable of transmitting the pressure of the fluid FL is formed by the slit 731, the extraction hole having a diameter that is not significantly different from the diameter of the extraction hole 131 when the holding member 73 is not provided (such as FIG. 2). Since both the temperature sensor 313 and the holding member 73 can be provided in the 721, downsizing of the flow meter 2 is not hindered.

(19)さらに、保持部材73がフランジ部732,733と、取出し孔721の内周面に接触しない小径部734とを有して構成されていることにより、導圧部72から保持部材73を介して温度センサ313に伝わる熱による流量測定への温度影響を少なくできる。 (19) Further, since the holding member 73 is configured to include the flange portions 732 and 733 and the small diameter portion 734 that does not contact the inner peripheral surface of the take-out hole 721, the holding member 73 is removed from the pressure guiding portion 72. Thus, the temperature influence on the flow rate measurement due to the heat transmitted to the temperature sensor 313 can be reduced.

(20)保持部材73の材質は、熱伝導率が小さいPTFEにより形成されているため、金属製の導圧部72から温度センサ313への温度影響を極力小さくでき、流量測定に際して高い精度を実現できる。 (20) Since the material of the holding member 73 is formed of PTFE having a low thermal conductivity, the temperature influence from the metal pressure guiding portion 72 to the temperature sensor 313 can be minimized, and high accuracy can be realized in the flow rate measurement. it can.

〔本発明の変形例〕
本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形および改良を加えることができるものである。
[Modification of the present invention]
Although the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but may be configured for the above-described embodiments without departing from the scope and spirit of the invention. Various modifications and improvements can be made by those skilled in the art in terms of materials, quantity, and other detailed configurations.

例えば、第2実施形態における均圧弁55において、弁棒551の弁通路552からの抜け止めを図るために、板状部材555が設けられていたが、この板状部材555を利用した図25に示すような構造により、弁棒551の弁通路552への押し込み量を所定量に規律することができる。
すなわち、図25は、板状部材555と、摘み553とを示す斜視図であり、板状部材555には、摘み553が挿通される略円形状の挿通孔555Aが形成されている。なお、板状部材555の両端に形成された2つの貫通孔555Cには、ネジ555B(図13)が挿通される。
ここで、板状部材555の挿通孔555Aには、嵌合部として凹状の切欠955Dが形成されており、摘み553の外周面には、この切欠955Dと嵌合する凸部のリブ953Fが軸方向に沿って形成されている。
For example, in the pressure equalizing valve 55 in the second embodiment, a plate-like member 555 is provided in order to prevent the valve rod 551 from coming off from the valve passage 552, but FIG. 25 using this plate-like member 555 is used. With the structure shown, the pushing amount of the valve rod 551 into the valve passage 552 can be regulated to a predetermined amount.
25 is a perspective view showing the plate-like member 555 and the knob 553, and the plate-like member 555 is formed with a substantially circular insertion hole 555A through which the knob 553 is inserted. Note that screws 555B (FIG. 13) are inserted through the two through holes 555C formed at both ends of the plate-like member 555.
Here, a concave notch 955D is formed as a fitting portion in the insertion hole 555A of the plate-like member 555, and a convex rib 953F that fits the notch 955D is provided on the outer peripheral surface of the knob 553 as a shaft. It is formed along the direction.

このような構成によれば、コイルバネ554(図13)の付勢力に抗して弁棒551を弁通路552内に押しこみ、摘み553のリブ953Fと挿通孔555Aの切欠955Dとが嵌合していない状態で摘み553を軸周りに回転させることにより、付勢力によって元の位置に戻ろうとする摘み553のリブ953Fが板状部材555の板面に当接して係止される。すなわち、凹凸嵌合のような簡潔な構造により、弁棒551に外力を加えない状態でも、弁棒551の位置を差圧測定可能な所定位置に保持することができる。リブ953Fの長さを変更することで、弁棒551の弁通路552への挿入量を適宜変更できる。
なお、この図25に示すような構造は、第3〜第7実施形態などにも適用することができる。
According to such a configuration, the valve rod 551 is pushed into the valve passage 552 against the biasing force of the coil spring 554 (FIG. 13), and the rib 953F of the knob 553 and the notch 955D of the insertion hole 555A are fitted. When the knob 553 is rotated around the axis in a state where it is not, the rib 953F of the knob 553 that attempts to return to the original position by the urging force is brought into contact with the plate surface of the plate-like member 555 and locked. That is, with a simple structure such as concave-convex fitting, the position of the valve stem 551 can be held at a predetermined position where differential pressure can be measured even when no external force is applied to the valve stem 551. By changing the length of the rib 953F, the amount of insertion of the valve rod 551 into the valve passage 552 can be appropriately changed.
The structure shown in FIG. 25 can be applied to the third to seventh embodiments.

また、前述の各実施形態では、差圧発生手段としてオリフィス14が使用されていたが、これに限らず、ピトー管、後流ピトー管、層流素子などが使用されていてもよい。
さらに、前述の実施形態では、圧縮バネのコイルバネ554が使用されていたが、弁棒を付勢する手段はこれに限らず、圧力の導入、導出路の配置などに応じて、引っ張りバネを使用することも可能である。
In each of the embodiments described above, the orifice 14 is used as the differential pressure generating means. However, the present invention is not limited to this, and a pitot tube, a wake pitot tube, a laminar flow element, or the like may be used.
Furthermore, although the coil spring 554 of the compression spring is used in the above-described embodiment, the means for biasing the valve rod is not limited to this, and a tension spring is used according to the introduction of pressure, the arrangement of the outlet path, and the like. It is also possible to do.

また、前記実施形態における流量計1(図1)は、前述したように、アルミニウム製のケース43を有し、このケース43に収納された電池で駆動するものであって、液晶表示式の表示演算部40がケース43に組み込まれていたが、本発明の流量計において、ケースの材質や、電源の種類や、表示演算部およびセンサ部に関する実装の形態などはこれらに何ら限定されない。例えば、樹脂製のケースも良好に採用でき、表示演算部には液晶パネル以外にLED(Light Emitting Diode)等の表示手段も採用できる。また、表示演算部の表示パネルや操作パネル、これらのパネルを駆動する回路基板、センサ部の駆動回路基板、および、CPUなどの演算手段が実装された回路ブロックのすべてがセンサ部31のベース32に取付けられて一体化され、このセンサ部31のベース32に対して回路ブロックを覆うようにケースが取付けられていてもよい。そして、このような回路ブロックを駆動する電源として、外部電源も勿論使用できる。   Further, as described above, the flow meter 1 (FIG. 1) in the above embodiment has an aluminum case 43 and is driven by a battery stored in the case 43, and is a liquid crystal display type display. Although the calculation part 40 was incorporated in the case 43, in the flowmeter of this invention, the material of a case, the kind of power supply, the form of mounting regarding a display calculation part and a sensor part, etc. are not limited to these at all. For example, a resin case can be favorably employed, and a display means such as an LED (Light Emitting Diode) can be employed in addition to the liquid crystal panel in the display calculation unit. The display panel and operation panel of the display calculation unit, the circuit board for driving these panels, the drive circuit board of the sensor unit, and the circuit block on which calculation means such as a CPU are mounted are all provided in the base 32 of the sensor unit 31. The case may be attached to the base 32 of the sensor unit 31 so as to cover the circuit block. Of course, an external power source can be used as a power source for driving such a circuit block.

最後に、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   Finally, the description limited to the shape, material and the like disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which removed the limitation of part or all of the material and the like is included in the present invention.

本発明の均圧弁は、差圧式の流量計に利用できる他、必要に応じて、流体を制御するシステムなどに組み込んで利用することができる。   The pressure equalizing valve of the present invention can be used for a differential pressure type flow meter, and can be used by being incorporated in a fluid control system or the like as required.

本発明の第1実施形態における流量計の斜視図。The perspective view of the flowmeter in 1st Embodiment of this invention. 前記実施形態における流量計の側断面図。The sectional side view of the flowmeter in the embodiment. 前記実施形態における流量検出部の側断面図。The sectional side view of the flow volume detection part in the embodiment. 前記実施形態における流量検出部の斜視図。The perspective view of the flow volume detection part in the said embodiment. 前記実施形態における本体部およびアダプタの側断面図。The sectional side view of the main-body part and adapter in the said embodiment. 前記実施形態において、本体部をアダプタにより流量検出部に取り付ける一の状態を示す図。The figure which shows the one state which attaches a main-body part to a flow volume detection part with an adapter in the said embodiment. 前記実施形態において、本体部をアダプタにより流量検出部に取り付ける他の状態を示す図。The figure which shows the other state which attaches a main-body part to a flow volume detection part with an adapter in the said embodiment. 前記実施形態における本体部のアダプタとの接合面を示す図。The figure which shows the joint surface with the adapter of the main-body part in the said embodiment. 前記実施形態におけるセンサ部および流量検出部の概念図Conceptual diagram of sensor unit and flow rate detection unit in the embodiment 図5の部分拡大図。The elements on larger scale of FIG. 図10のXI−XI線による温度センサの断面図。Sectional drawing of the temperature sensor by the XI-XI line of FIG. 前記実施形態における均圧弁の側面図。(A)は、均圧弁が閉じた差圧状態を示し、(B)は、均圧弁が開いた均圧状態を示す。The side view of the pressure equalization valve in the said embodiment. (A) shows the differential pressure state with the pressure equalizing valve closed, and (B) shows the pressure equalized state with the pressure equalizing valve opened. 本発明の第2実施形態における均圧弁の側断面図。The sectional side view of the pressure equalizing valve in 2nd Embodiment of this invention. 前記実施形態における均圧弁の側面図。(A)は、均圧弁が閉じた差圧状態を示し、(B)は、均圧弁が開いた均圧状態を示す。The side view of the pressure equalization valve in the said embodiment. (A) shows the differential pressure state with the pressure equalizing valve closed, and (B) shows the pressure equalized state with the pressure equalizing valve opened. 本発明の第3実施形態における均圧弁の側断面図。The sectional side view of the pressure equalizing valve in 3rd Embodiment of this invention. 前記実施形態における均圧弁の側面図。(A)は、均圧弁が閉じた差圧状態を示し、(B)は、均圧弁が開いた均圧状態を示す。The side view of the pressure equalization valve in the said embodiment. (A) shows the differential pressure state with the pressure equalizing valve closed, and (B) shows the pressure equalized state with the pressure equalizing valve opened. 本発明の第4実施形態における均圧弁の側断面図。The sectional side view of the pressure equalizing valve in 4th Embodiment of this invention. 前記実施形態における均圧弁の側面図。(A)は、均圧弁が閉じた差圧状態を示し、(B)は、均圧弁が開いた均圧状態を示す。The side view of the pressure equalization valve in the said embodiment. (A) shows the differential pressure state with the pressure equalizing valve closed, and (B) shows the pressure equalized state with the pressure equalizing valve opened. 本発明の第5実施形態における均圧弁の側断面図。The sectional side view of the pressure equalizing valve in 5th Embodiment of this invention. 前記実施形態における均圧弁の弁棒の斜視図。The perspective view of the valve rod of the pressure equalizing valve in the said embodiment. 前記実施形態における均圧弁の側面図。(A)は、均圧弁が閉じた差圧状態を示し、(B)は、均圧弁が開いた均圧状態を示す。The side view of the pressure equalization valve in the said embodiment. (A) shows the differential pressure state with the pressure equalizing valve closed, and (B) shows the pressure equalized state with the pressure equalizing valve opened. 本発明の第6実施形態における均圧弁の側面図。(A)は、均圧弁が閉じた差圧状態を示し、(B)は、均圧弁が開いた均圧状態を示す。The side view of the pressure equalization valve in 6th Embodiment of this invention. (A) shows the differential pressure state with the pressure equalizing valve closed, and (B) shows the pressure equalized state with the pressure equalizing valve opened. 本発明の第7実施形態における流量計の側断面図。The sectional side view of the flowmeter in 7th Embodiment of this invention. 前記実施形態における保持部材の斜視図。The perspective view of the holding member in the said embodiment. 本発明の変形例における弁棒の弁通路への押し込み量の規律に係る構成を示す図。The figure which shows the structure which concerns on the discipline of the pushing amount to the valve channel | path of the valve stem in the modification of this invention.

符号の説明Explanation of symbols

1,2 流量計
10,70 流量検出部
11,71 パイプ部材
12 板状部(本体取付部)
13 流路
14 オリフィス(差圧発生手段)
20 アダプタ
22 本体側接合部
30 本体部
31 センサ部
32 ベース(弁箱)
35 均圧弁
40 表示演算部
41 演算手段
43 ケース
72 導圧部
73 保持部材
100,110 配管
111 雌ネジ部(流路接続部)
131,132,721,722 取出し孔
201,202 取出し孔
213 接合面
224 Oリング(シール部材)
224B 内周面
224C 突起
311 差圧センサ
312 ゲージ圧センサ
313 温度センサ
313G 感温素子
313E パッキン(低熱伝導性部材)
314 絶対圧センサ
321,322 取出し孔
323A 挿入口
351 弁棒
351H テーパ部(弁体)
352 弁通路
353 摘み
361 第1導入路
362 第2導入路
371 第1導出路
371B 開口端
372 第2導出路
382 第2シール部
431 液晶パネル部(表示手段)
554 コイルバネ(付勢手段)
555 板状部材
555A 挿通孔
581 第1シール部
656 筒状部材
711 流路接続部
731 スリット
732,733 フランジ部
734 小径部
783 第3シール部
884 第4シール部
955D 切欠(嵌合部)
953F リブ(嵌合部)
FL 流体
P1 第1経路
P2 第2経路
SP 隙間
1 and 2 Flowmeters 10 and 70 Flow rate detection parts 11 and 71 Pipe member 12 Plate-like part (main body attachment part)
13 Channel 14 Orifice (Differential pressure generating means)
20 Adapter 22 Body side joint 30 Body part 31 Sensor part 32 Base (valve box)
35 Pressure equalizing valve 40 Display calculation section 41 Calculation means 43 Case 72 Pressure guiding section 73 Holding member 100, 110 Pipe 111 Female thread section (flow path connection section)
131, 132, 721, 722 Extract hole 201, 202 Extract hole 213 Joint surface 224 O-ring (seal member)
224B Inner peripheral surface 224C Protrusion 311 Differential pressure sensor 312 Gauge pressure sensor 313 Temperature sensor 313G Temperature sensing element 313E Packing (low thermal conductivity member)
314 Absolute Pressure Sensors 321 and 322 Extraction Hole 323A Insertion Port 351 Valve Rod 351H Taper (Valve)
352 Valve passage 353 Knob 361 First introduction path 362 Second introduction path 371 First outlet path 371B Open end 372 Second outlet path 382 Second seal part 431 Liquid crystal panel part (display means)
554 Coil spring (biasing means)
555 Plate-like member 555A Insertion hole 581 First seal portion 656 Tubular member 711 Flow path connection portion 731 Slit 732, 733 Flange portion 734 Small diameter portion 783 Third seal portion 884 Fourth seal portion 955D Notch (fitting portion)
953F Rib (fitting part)
FL fluid P1 first path P2 second path SP clearance

Claims (20)

内部に弁通路が形成された弁箱と、
この弁箱において前記弁通路の延出方向一端側に設けられた挿入口から挿入される棒状部材であって、軸周りに沿って弁体を有し、軸方向への進退に応じて前記弁体により前記弁通路を仕切る弁棒と、を備え、
前記弁箱には、前記弁通路に連通し流体の圧力がそれぞれ導入される第1導入路および第2導入路と、前記弁通路から流体の圧力がそれぞれ排出される第1導出路および第2導出路とが形成され、
前記第1導入路および第1導出路は第1経路を構成し、かつその一方の前記弁通路側の開口部と他方の前記弁通路側の開口部との前記弁棒の軸方向における位置は互いに異なり、
前記第2導入路および前記第2導出路は、第2経路を構成し、
前記弁棒の進退に応じて、
前記第1経路と前記第2経路とが仕切られてこれらの第1経路と第2経路との差圧を測定可能な差圧状態と、
前記第1導出路が前記第1導入路とは仕切られて前記第2経路と連通され、前記第1導出路および前記第2導出路が均圧化される均圧状態と、に切り替えられる
ことを特徴とする差圧測定用の均圧弁。
A valve box having a valve passage formed therein;
In this valve box, a rod-shaped member inserted from an insertion port provided on one end side in the extending direction of the valve passage, having a valve body around an axis, and the valve according to advancement and retraction in the axial direction A valve stem that partitions the valve passage by a body,
The valve box has a first introduction path and a second introduction path through which the fluid pressure is introduced and communicated with the valve passage, and a first lead-out path and a second passage through which the fluid pressure is discharged from the valve passage, respectively. A lead-out path is formed,
The first introduction path and the first lead-out path constitute a first path, and the position in the axial direction of the valve rod between the one opening on the valve passage side and the other opening on the valve passage side is Different from each other
The second introduction path and the second lead-out path constitute a second path,
According to the advance and retreat of the valve stem,
A differential pressure state in which the first path and the second path are partitioned to measure a differential pressure between the first path and the second path;
The first derivation path is partitioned from the first introduction path and communicated with the second path, and is switched to a pressure equalization state in which the first derivation path and the second derivation path are equalized. A pressure equalizing valve for measuring differential pressure.
請求項1に記載の差圧測定用の均圧弁において、
前記弁体は、弾性を有し、前記弁棒の外周面と前記弁箱との間に介装されるシール部であり、
前記シール部は、前記差圧状態のときに前記第1経路と前記第2経路とを仕切る第1シール部と、前記挿入口側に配置されて流体の圧力を前記弁通路内に封止する第2シール部とを含んで構成される
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to claim 1,
The valve body is elastic and is a seal portion interposed between an outer peripheral surface of the valve stem and the valve box,
The seal portion is disposed on the insertion port side to seal the pressure of fluid in the valve passage, and the first seal portion that partitions the first path and the second path in the differential pressure state. A pressure equalizing valve for measuring a differential pressure, comprising a second seal portion.
請求項2に記載の差圧測定用の均圧弁において、
前記シール部は、前記第1シール部よりも前記弁通路の延出方向一端側に設けられる第3シール部を含んで構成され、
前記第3シール部は、前記均圧状態のときに、前記第1導入経路に配置される
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to claim 2,
The seal portion is configured to include a third seal portion provided on one end side in the extending direction of the valve passage from the first seal portion,
The pressure equalizing valve for differential pressure measurement, wherein the third seal portion is disposed in the first introduction path when in the pressure equalized state.
請求項2または3に記載の差圧測定用の均圧弁において、
前記弁通路は、その一端から他端に至るまで、前記弁棒の軸方向に沿って延びており、
前記第1導出路は、前記均圧状態における前記第1シール部および前記第3シール部の一方と前記第2導出路との間において、前記弁棒の軸方向と交差する方向である前記弁通路の径方向に沿って延びている
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to claim 2 or 3,
The valve passage extends from one end to the other end along the axial direction of the valve stem,
The first lead-out path is a direction that intersects the axial direction of the valve stem between one of the first seal part and the third seal part in the pressure equalized state and the second lead-out path. A pressure equalizing valve for measuring a differential pressure, characterized by extending along a radial direction of the passage.
請求項1から請求項4のいずれかに記載の差圧測定用の均圧弁において、
前記第2導入路と前記第2導出路とは、前記弁通路とそれぞれ交差する位置が互いに離れ、
前記均圧状態のときに、前記第2導入路と前記第2導出路とが仕切られる
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to any one of claims 1 to 4,
The second introduction path and the second lead-out path are separated from each other at positions intersecting the valve passage,
The pressure equalizing valve for differential pressure measurement, wherein the second introduction path and the second lead-out path are partitioned in the pressure equalization state.
請求項5に記載の差圧測定用の均圧弁において、
前記シール部は、前記弁通路において第2導入路と前記第2導出路との間に設けられる第4シール部を含んで構成され、
前記第4シール部により、前記均圧状態のときに、前記第2導入路と前記第2導出路とが仕切られる
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to claim 5,
The seal portion includes a fourth seal portion provided between the second introduction path and the second lead-out path in the valve passage,
The pressure equalizing valve for measuring a differential pressure, wherein the second introduction path and the second lead-out path are partitioned by the fourth seal portion in the pressure equalization state.
請求項1から請求項6のいずれかに記載の差圧測定用の均圧弁において、
前記弁箱は、前記弁棒が挿入される筒状部材を有し、
この筒状部材は、前記第1導出路、前記第2導入路、および前記第2導出路の少なくと
もいずれかの近傍で前記弁通路に沿って設けられる
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to any one of claims 1 to 6,
The valve box has a cylindrical member into which the valve stem is inserted,
The tubular member is provided along the valve passage in the vicinity of at least one of the first lead-out path, the second lead-in path, and the second lead-out path. Pressure valve.
請求項2から請求項7のいずれかに記載の差圧測定用の均圧弁において、
前記第2シール部以外の前記シール部は、前記第1導出路、前記第2導入路、および前記第2導出路が前記弁通路にそれぞれ連通された開口端の少なくともいずれかと隙間を有して配置される
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to any one of claims 2 to 7,
The seal portion other than the second seal portion has a gap with at least one of the first lead-out path, the second lead-in path, and the open end where the second lead-out path communicates with the valve passage. A pressure equalizing valve for measuring a differential pressure, which is arranged.
請求項1から請求項8のいずれかに記載の差圧測定用の均圧弁において、
前記弁棒は、その軸方向に沿って前記挿入口から突出する摘みを有する
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to any one of claims 1 to 8,
The pressure equalizing valve for measuring a differential pressure, wherein the valve stem has a knob protruding from the insertion port along an axial direction thereof.
請求項9に記載の差圧測定用の均圧弁において、
前記挿入口の開口端には、挿通孔が形成された板状部材が設けられ、
前記摘みは、前記弁棒の軸方向端部の径が縮径しており、前記挿通孔に挿通されることで前記弁棒の前記挿入口外側への移動が規制される
ことを特徴とする差圧測定用の均圧弁。
The pressure equalizing valve for differential pressure measurement according to claim 9,
A plate-like member having an insertion hole is provided at the opening end of the insertion port,
In the knob, the diameter of the axial end of the valve stem is reduced, and the movement of the valve stem to the outside of the insertion port is restricted by being inserted through the insertion hole. A pressure equalizing valve for differential pressure measurement.
請求項1から請求項10のいずれかに記載の差圧測定用の均圧弁において、
前記弁棒を軸方向に沿って付勢する付勢手段が設けられる
ことを特徴とする差圧測定用の均圧弁。
In the pressure equalizing valve for differential pressure measurement according to any one of claims 1 to 10,
A pressure equalizing valve for differential pressure measurement, characterized in that a biasing means for biasing the valve stem along the axial direction is provided.
請求項11に記載の差圧測定用の均圧弁において、
前記摘みは、断面略円柱形状であって、その基端側の外周面に、前記挿通孔と嵌合する嵌合部が軸方向に沿って形成され、
前記弁棒は、前記嵌合部の前記挿通孔との嵌合が外れた状態で軸周りに回転され、前記付勢手段の付勢力によって前記嵌合部が前記板状部材に係止される
ことを特徴とする差圧測定用の均圧弁。
The pressure equalizing valve for differential pressure measurement according to claim 11,
The knob has a substantially cylindrical shape in cross section, and a fitting portion that fits the insertion hole is formed along the axial direction on the outer peripheral surface of the proximal end.
The valve stem is rotated around the shaft in a state in which the fitting portion is disengaged from the insertion hole, and the fitting portion is locked to the plate-like member by the urging force of the urging means. A pressure equalizing valve for measuring a differential pressure.
通過する被検出流体に差圧を発生させる差圧発生手段を有する流量検出部と、
前記流量検出部で被検出流体に発生した差圧を測定する差圧センサ、前記被検出流体のゲージ圧を測定するゲージ圧センサ、前記被検出流体の温度を測定する温度センサ、および、大気圧を測定する絶対圧センサを有するセンサ部と、
前記センサ部から送信される信号を基に前記被検出流体の流量を算出する演算手段、および、この演算手段で算出された流量を表示する表示手段を有する表示演算部とを含む差圧式流量計であって、
請求項1から請求項12のいずれかに記載の差圧測定用の均圧弁を備えた
ことを特徴とする差圧式流量計。
A flow rate detector having differential pressure generating means for generating a differential pressure in the fluid to be detected that passes;
A differential pressure sensor that measures a differential pressure generated in the fluid to be detected by the flow rate detection unit, a gauge pressure sensor that measures the gauge pressure of the fluid to be detected, a temperature sensor that measures the temperature of the fluid to be detected, and atmospheric pressure A sensor unit having an absolute pressure sensor for measuring
A differential pressure type flow meter including a calculation unit that calculates a flow rate of the fluid to be detected based on a signal transmitted from the sensor unit, and a display calculation unit that has a display unit that displays the flow rate calculated by the calculation unit Because
A differential pressure type flow meter comprising the pressure equalizing valve for measuring the differential pressure according to any one of claims 1 to 12.
請求項13に記載の差圧式流量計において、
前記センサ部および前記表示演算部は、一体化されて本体部として構成されるとともに、前記流量検出部に接合され、
前記流量検出部は、前記差圧発生手段が設けられるとともに前記被検出流体の流路と接続される流路接続部と、前記本体部と接合される本体取付部とを有し、
前記本体取付部には、前記差圧発生手段の上流側および下流側で前記流路とそれぞれ連通して前記被検出流体の圧力を前記センサ部に取り出す各取出し孔がそれぞれ形成され、
前記取出し孔の一方は、前記流量検出部の前記本体部との接合面の略中心位置で、前記流路に向かって直線状に延び、
前記温度センサは、棒状に形成されて一端側に感温素子を有し、前記接合面の略中心位置に配置された前記取出し孔に一端側が挿入されて前記感温素子が前記流路に臨み、
前記本体部と前記流量検出部とは、前記温度センサを軸に互いに回転させた状態でも接合可能である
ことを特徴とする差圧式流量計。
The differential pressure type flow meter according to claim 13,
The sensor unit and the display calculation unit are integrated and configured as a main body unit, and are joined to the flow rate detection unit,
The flow rate detection unit includes a flow channel connection unit that is provided with the differential pressure generating unit and is connected to a flow channel of the fluid to be detected, and a main body attachment unit that is joined to the main body unit,
The main body attachment portion is formed with respective extraction holes that communicate with the flow path on the upstream side and the downstream side of the differential pressure generating means, respectively, and extract the pressure of the fluid to be detected to the sensor portion,
One of the extraction holes extends linearly toward the flow path at a substantially central position of a joint surface with the main body of the flow rate detection unit,
The temperature sensor is formed in a rod shape and has a temperature sensing element on one end side, and one end side is inserted into the take-out hole arranged at a substantially central position of the joint surface so that the temperature sensing element faces the flow path. ,
The differential pressure type flow meter, wherein the main body part and the flow rate detection part can be joined even in a state where the temperature sensor is rotated around an axis.
請求項14に記載の差圧式流量計において、
前記感温素子と前記取出し孔の内周面との間には、熱伝導率が小さい低熱伝導性部材が配置される
ことを特徴とする差圧式流量計。
The differential pressure type flow meter according to claim 14,
A differential pressure type flow meter, wherein a low thermal conductivity member having a low thermal conductivity is disposed between the temperature sensitive element and the inner peripheral surface of the extraction hole.
請求項14または請求項15に記載の差圧式流量計において、
前記取出し孔の内周には、前記被検出流体を前記取出し孔の内部に封止する環状のシール部材が設けられ、
前記シール部材は、その内周面に複数の突起を有し、これらの突起の間で前記感温素子が保持固定される
ことを特徴とする差圧式流量計。
The differential pressure type flow meter according to claim 14 or 15,
An annular seal member that seals the fluid to be detected inside the extraction hole is provided on the inner periphery of the extraction hole,
The seal member has a plurality of protrusions on its inner peripheral surface, and the temperature sensitive element is held and fixed between these protrusions.
請求項13から請求項16のいずれかに記載の差圧式流量計において、
前記流量検出部は、前記差圧発生手段が設けられるとともに前記被検出流体の流路と接続される流路接続部と、前記差圧発生手段の上流側および下流側で前記流路とそれぞれ連通して前記被検出流体の圧力を前記センサ部に取り出す各取出し孔がそれぞれ形成された導圧部とを有し、
前記取出し孔の一方は、前記センサ部から前記流路に向かって直線状に延び、
前記温度センサは、棒状に形成されて一端側に感温素子を有し、前記直線状に延びている一方の取出し孔に一端側が挿入されて前記感温素子が前記流路に臨み、
前記一方の取出し孔には、前記温度センサを長手方向に沿って保持する保持部材が設けられ、
前記保持部材の外周面および内周面の少なくとも一方には、前記温度センサの長手方向に沿って延びて前記取出し孔と連通し、前記被検出流体の圧力を伝達可能な連通路が形成されている
ことを特徴とする差圧式流量計。
The differential pressure type flow meter according to any one of claims 13 to 16,
The flow rate detection unit is provided with the differential pressure generating means and communicates with the flow path connecting portion connected to the flow path of the fluid to be detected, and the flow path upstream and downstream of the differential pressure generating means. And each of the extraction holes for taking out the pressure of the fluid to be detected into the sensor part, and a pressure guiding part formed respectively.
One of the extraction holes extends linearly from the sensor part toward the flow path,
The temperature sensor is formed in a rod shape and has a temperature sensing element on one end side, one end side is inserted into one of the linearly extending extraction holes, and the temperature sensing element faces the flow path,
The one take-out hole is provided with a holding member that holds the temperature sensor along the longitudinal direction,
At least one of the outer peripheral surface and the inner peripheral surface of the holding member is formed with a communication path that extends along the longitudinal direction of the temperature sensor, communicates with the take-out hole, and can transmit the pressure of the detected fluid. A differential pressure type flow meter characterized by having
請求項17に記載の差圧式流量計において、
前記保持部材は、前記温度センサが内部に挿入される略円筒形状に形成されるとともに、当該保持部材の軸方向に沿ったスリットを有し、
前記連通路は、前記スリットにより構成されている
ことを特徴とする差圧式流量計。
The differential pressure type flow meter according to claim 17,
The holding member is formed in a substantially cylindrical shape into which the temperature sensor is inserted, and has a slit along the axial direction of the holding member,
The differential pressure type flow meter, wherein the communication path is constituted by the slit.
請求項17または請求項18に記載の差圧式流量計において、
前記保持部材は、前記取出し孔の内周面に側面が接触するフランジ部と、このフランジ部以外の部位であって、前記取出し孔の内径よりも外径が小さい小径部とを有する
ことを特徴とする差圧式流量計。
The differential pressure type flow meter according to claim 17 or 18,
The holding member has a flange portion whose side surface contacts the inner peripheral surface of the take-out hole, and a small-diameter portion that is a portion other than the flange portion and has an outer diameter smaller than the inner diameter of the take-out hole. Differential pressure flow meter.
請求項17から請求項19のいずれかに記載の差圧式流量計において、
前記保持部材は、熱伝導率が小さい低熱伝導性材質により形成されている
ことを特徴とする差圧式流量計。
The differential pressure type flow meter according to any one of claims 17 to 19,
The differential pressure type flow meter, wherein the holding member is made of a low thermal conductivity material having a low thermal conductivity.
JP2006099518A 2005-03-31 2006-03-31 Pressure equalizing valve for differential pressure measurement and differential flow meter Expired - Fee Related JP4777816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099518A JP4777816B2 (en) 2005-03-31 2006-03-31 Pressure equalizing valve for differential pressure measurement and differential flow meter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005103311 2005-03-31
JP2005103311 2005-03-31
JP2006099518A JP4777816B2 (en) 2005-03-31 2006-03-31 Pressure equalizing valve for differential pressure measurement and differential flow meter

Publications (2)

Publication Number Publication Date
JP2006308578A true JP2006308578A (en) 2006-11-09
JP4777816B2 JP4777816B2 (en) 2011-09-21

Family

ID=37475606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099518A Expired - Fee Related JP4777816B2 (en) 2005-03-31 2006-03-31 Pressure equalizing valve for differential pressure measurement and differential flow meter

Country Status (1)

Country Link
JP (1) JP4777816B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133755A (en) * 2007-11-30 2009-06-18 Yokogawa Electric Corp Field device
WO2010002999A2 (en) * 2008-07-01 2010-01-07 Daniel Measurement And Control, Inc. Orifice fitting with a drainage system
JP2010096599A (en) * 2008-10-15 2010-04-30 Nagano Keiki Co Ltd Indicator
KR101365050B1 (en) 2012-12-03 2014-02-19 이만근 Difference pressure tester
KR101441541B1 (en) * 2012-12-21 2014-10-30 (주)에이스앤아이 Difference pressure tester
KR101584976B1 (en) 2013-05-24 2016-01-13 알스톰 테크놀러지 리미티드 Sensor mounting attachment
CN105697456A (en) * 2014-11-27 2016-06-22 无锡市海骏液压机电设备有限公司 Adjustment type hydraulic cylinder pressure measurement device
CN108088508A (en) * 2018-01-09 2018-05-29 上海科洋科技股份有限公司 A kind of differential flow measuring device
WO2020208697A1 (en) * 2019-04-09 2020-10-15 株式会社エルフ Flow rate sensor
CN114000867A (en) * 2021-11-10 2022-02-01 海默科技(集团)股份有限公司 Shallow water underwater flowmeter
JP2022069118A (en) * 2020-10-23 2022-05-11 長野計器株式会社 Pressure sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE534919C2 (en) * 2010-06-28 2012-02-14 Tour & Andersson Ab Valve device for differential pressure transducer with automatic zero point calibration and flushing
JP2015034762A (en) * 2013-08-09 2015-02-19 株式会社菊池製作所 Differential pressure type flowmeter
JP6502769B2 (en) * 2015-07-02 2019-04-17 旭サナック株式会社 Pressure detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929737U (en) * 1982-08-20 1984-02-24 株式会社ほくさん Simple gas tester for medical gas piping
JPH01285832A (en) * 1988-05-13 1989-11-16 Yokogawa Electric Corp Measuring apparatus of differential pressure
JPH07243930A (en) * 1994-03-08 1995-09-19 Tokyo Gas Co Ltd Installation mechanism for differential pressure transmitter and valve unit for installation
JP2000205985A (en) * 1999-01-18 2000-07-28 Toshiba Corp Differential pressure transmitter with remote seal diaphragm
JP2004020524A (en) * 2002-06-20 2004-01-22 Yamatake Corp Differential pressure transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929737U (en) * 1982-08-20 1984-02-24 株式会社ほくさん Simple gas tester for medical gas piping
JPH01285832A (en) * 1988-05-13 1989-11-16 Yokogawa Electric Corp Measuring apparatus of differential pressure
JPH07243930A (en) * 1994-03-08 1995-09-19 Tokyo Gas Co Ltd Installation mechanism for differential pressure transmitter and valve unit for installation
JP2000205985A (en) * 1999-01-18 2000-07-28 Toshiba Corp Differential pressure transmitter with remote seal diaphragm
JP2004020524A (en) * 2002-06-20 2004-01-22 Yamatake Corp Differential pressure transmitter

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133755A (en) * 2007-11-30 2009-06-18 Yokogawa Electric Corp Field device
WO2010002999A2 (en) * 2008-07-01 2010-01-07 Daniel Measurement And Control, Inc. Orifice fitting with a drainage system
WO2010002999A3 (en) * 2008-07-01 2010-03-25 Daniel Measurement And Control, Inc. Orifice fitting with a drainage system
US8161825B2 (en) 2008-07-01 2012-04-24 Daniel Measuremant and Control, Inc. Orifice fitting with a drainage system
JP2010096599A (en) * 2008-10-15 2010-04-30 Nagano Keiki Co Ltd Indicator
US8436742B2 (en) 2008-10-15 2013-05-07 Nagano Keiki Co., Ltd. Indicator
KR101365050B1 (en) 2012-12-03 2014-02-19 이만근 Difference pressure tester
KR101441541B1 (en) * 2012-12-21 2014-10-30 (주)에이스앤아이 Difference pressure tester
KR101584976B1 (en) 2013-05-24 2016-01-13 알스톰 테크놀러지 리미티드 Sensor mounting attachment
CN105697456A (en) * 2014-11-27 2016-06-22 无锡市海骏液压机电设备有限公司 Adjustment type hydraulic cylinder pressure measurement device
CN108088508A (en) * 2018-01-09 2018-05-29 上海科洋科技股份有限公司 A kind of differential flow measuring device
WO2020208697A1 (en) * 2019-04-09 2020-10-15 株式会社エルフ Flow rate sensor
JPWO2020208697A1 (en) * 2019-04-09 2020-10-15
JP2022069118A (en) * 2020-10-23 2022-05-11 長野計器株式会社 Pressure sensor
JP7330161B2 (en) 2020-10-23 2023-08-21 長野計器株式会社 pressure sensor
CN114000867A (en) * 2021-11-10 2022-02-01 海默科技(集团)股份有限公司 Shallow water underwater flowmeter
CN114000867B (en) * 2021-11-10 2024-02-02 海默科技(集团)股份有限公司 Shallow water flow meter under water

Also Published As

Publication number Publication date
JP4777816B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4777816B2 (en) Pressure equalizing valve for differential pressure measurement and differential flow meter
KR101036589B1 (en) Flow measurement valve
CN100424476C (en) Valve assembly
US7047822B2 (en) Devices, installations and methods for improved fluid flow measurement in a conduit
US20080072877A1 (en) Combined temperature and pressure transducer incorporating connector keyway alignment and an alignment method
US20130312537A1 (en) Ultrasonic flow rate measurement device
JP5783991B2 (en) Vortex flow meter and fiber guide for the vortex flow meter
US6672173B2 (en) Flow meter
NO321278B1 (en) Apparatus for measuring fluid flow rate in rudder using fluidistor
US6923074B2 (en) Ball valve with flow-rate gauge incorporated directly in the ball
US9459126B2 (en) Flow meter
BRPI1103833A2 (en) Device for measuring the characteristics of a flow in a pipe
US20160209252A1 (en) Variable orifice flow sensor utilizing localized contact force
US20180224344A1 (en) Differential pressure transducer
JPH10142017A (en) Karman&#39;s vortex flow meter
US8201457B1 (en) Fluid measuring device
JP2007064805A (en) Pressure gage and its assembly
KR101608394B1 (en) The butterfly valve that have a pressure gauge and thermometer
CN104792374A (en) Antifreezing differential pressure type flow meter
CN111121989A (en) Fluid detection device
WO2014078918A1 (en) Flowmeter with central venturi tube
US5792966A (en) Thermally stable, fluid flow measurement device
CN211425547U (en) Underground flow metering device
JPH11326070A (en) Support device for fluid thermometer in piping
CN204188206U (en) Uniform-speed tube flowmeter probe

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

R150 Certificate of patent or registration of utility model

Ref document number: 4777816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees