JP2006308544A - Magnetic sensor and method of manufacturing same - Google Patents

Magnetic sensor and method of manufacturing same Download PDF

Info

Publication number
JP2006308544A
JP2006308544A JP2005250616A JP2005250616A JP2006308544A JP 2006308544 A JP2006308544 A JP 2006308544A JP 2005250616 A JP2005250616 A JP 2005250616A JP 2005250616 A JP2005250616 A JP 2005250616A JP 2006308544 A JP2006308544 A JP 2006308544A
Authority
JP
Japan
Prior art keywords
substrate
slope
magnetoresistive element
giant magnetoresistive
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005250616A
Other languages
Japanese (ja)
Other versions
JP5028769B2 (en
Inventor
Hiroshi Naito
寛 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2005250616A priority Critical patent/JP5028769B2/en
Priority to US11/328,255 priority patent/US7687284B2/en
Publication of JP2006308544A publication Critical patent/JP2006308544A/en
Application granted granted Critical
Publication of JP5028769B2 publication Critical patent/JP5028769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sensor, capable of measuring the magnetic field strength of three-axial directions sensing the magnetic field strength in the Z-axis direction by one or more magnetoresistive elements among three or more magnetoresistive elements mounted on one substrate. <P>SOLUTION: The four giant magnetoresistive elements 2, 3, 4 and 5 are mounted on a planar surface of the substrate 1. Among the four giant magnetoresistive elements, two giant magnetoresistive elements 2, 3 are an X axis sensor, remainder being two giant magnetoresistive elements 4, 5 are a Y axis sensor. A projection 6 is formed on the substrate 1, and on the elongated direction of the both side slopes of the projection 6, each of respective giant magnetoresistive elements 7, 8 is mounted. Since these giant magnetoresistive elements 7, 8 have detection axes parallel to the slope, that is, are directed in an upper slanting direction to the substrate 1, the magnetic field strength of three axes can be detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、基板に磁気抵抗素子を搭載してなる磁気センサに関し、特に磁気センサの表面に垂直な方向の磁界の強さを測定できる磁気抵抗素子を備え、三軸方向の磁界の強さを測定できるようにしたものである。   The present invention relates to a magnetic sensor in which a magnetoresistive element is mounted on a substrate, and in particular, includes a magnetoresistive element capable of measuring the strength of a magnetic field in a direction perpendicular to the surface of the magnetic sensor, and increases the strength of a magnetic field in a triaxial direction. It can be measured.

一枚の基板上に3個以上の巨大磁気抵抗素子などの磁気抵抗素子をそれぞれの感知軸を異ならせて配置し、X軸、Y軸、Z軸の三軸方向の磁界の強さを測定できるようにした磁気センサが特開2004−6752号公報に提案されている。
この先行発明では、基板の平坦面に、それぞれX軸方向およびY軸方向を感知軸とする2個以上の巨大磁気抵抗素子を配設する一方、基板にV字溝を形成し、このV字溝の斜面に1個以上の巨大磁気抵抗素子を配設し、この斜面に配設された巨大磁気抵抗素子でZ軸方向の磁界の強さを感知するようにしている。
特開2004−6752号公報
Three or more giant magnetoresistive elements, such as giant magnetoresistive elements, are placed on a single substrate, each with a different sensing axis, and the magnetic field strength in the three directions of the X, Y, and Z axes is measured. A magnetic sensor that can be used is proposed in Japanese Patent Application Laid-Open No. 2004-6752.
In this prior invention, two or more giant magnetoresistive elements each having a sensing axis in the X-axis direction and the Y-axis direction are disposed on the flat surface of the substrate, respectively, while a V-shaped groove is formed in the substrate. One or more giant magnetoresistive elements are disposed on the slope of the groove, and the magnitude of the magnetic field in the Z-axis direction is detected by the giant magnetoresistive element disposed on the slope.
JP 2004-6752 A

本発明は、この先行発明に関連するもので、その課題は上述の先行発明と同様に、一枚の基板上に3個以上の磁気抵抗素子を搭載し、その内の1個以上の磁気抵抗素子にZ軸方向の磁界の強さを感知させうるようにし、三軸方向の磁界の強さを測定することができる磁気センサを得ることにある。   The present invention relates to this prior invention, and the problem is that, as in the above-described prior invention, three or more magnetoresistive elements are mounted on one substrate, and one or more of the magnetoresistive elements are included. An object of the present invention is to obtain a magnetic sensor capable of sensing the strength of the magnetic field in the Z-axis direction and measuring the strength of the magnetic field in the three-axis direction.

かかる課題を解決するため、
請求項1に記載の発明は、基板に形成された山部の斜面に基板面に対し垂直方向の磁気成分に感度を持つ磁気抵抗素子が配置されていることを特徴とする磁気センサである。
請求項2に記載の発明は、基板に形成された山部の斜面に1以上の基板面に対し垂直方向の磁気成分に感度を持つ磁気抵抗素子が配置され、基板の平坦面に2以上の基板面に対し平行方向の磁気成分に感度を持つ磁気抵抗素子が配置されていることを特徴とする磁気センサである。
To solve this problem,
The invention according to claim 1 is a magnetic sensor characterized in that a magnetoresistive element having sensitivity to a magnetic component in a direction perpendicular to the substrate surface is arranged on a slope of a peak portion formed on the substrate.
According to a second aspect of the present invention, a magnetoresistive element having sensitivity to a magnetic component in a direction perpendicular to one or more substrate surfaces is disposed on a slope of a ridge formed on the substrate, and two or more magnetoresistive elements are disposed on a flat surface of the substrate. The magnetic sensor is characterized in that a magnetoresistive element having sensitivity to a magnetic component in a direction parallel to the substrate surface is disposed.

請求項3に記載の発明は、基板上に凸状の段差形成部を形成し、この段差形成部を含む基板上に絶縁膜を堆積して、段差形成部に対応する凸部を形成し、ついでプラズマエッチングまたはマイクロ波エッチングによりこの凸部に斜面を形成して山部としたのち、この山部の斜面に磁気抵抗素子を形成することを特徴とする磁気センサの製法である。   The invention according to claim 3 forms a convex step forming portion on the substrate, deposits an insulating film on the substrate including the step forming portion, and forms a convex portion corresponding to the step forming portion, Next, a method of manufacturing a magnetic sensor is characterized in that a slope is formed on the convex portion by plasma etching or microwave etching to form a peak, and then a magnetoresistive element is formed on the slope of the peak.

請求項4に記載の発明は、基板上に絶縁物からなる凸部を形成し、ついでプラズマエッチングまたはマイクロ波エッチングによりこの凸部に斜面を形成して山部としたのち、この斜面に磁気抵抗素子を形成することを特徴とする磁気センサの製法である。
請求項5に記載の発明は、山部の斜面に磁気抵抗素子を形成すると同時に基板の平坦面に磁気抵抗素子を形成することを特徴とする請求項3または4記載の磁気センサの製法である。
According to the invention of claim 4, a convex portion made of an insulating material is formed on a substrate, and then a slope is formed on the convex portion by plasma etching or microwave etching to form a peak portion. A method of manufacturing a magnetic sensor characterized by forming an element.
The invention according to claim 5 is the method of manufacturing a magnetic sensor according to claim 3 or 4, wherein the magnetoresistive element is formed on the flat surface of the substrate at the same time as the magnetoresistive element is formed on the slope of the peak portion. .

本発明によれば、基板上にZ軸方向の磁界の強さを感知しうる磁気抵抗素子を設けることができる。このため、X軸方向およびY軸方向に感知軸を有する磁気抵抗素子を基板の平坦面にさらに設けることにより、三軸磁気センサとすることができる。
また、これらの磁気抵抗素子を同時に同一の薄膜形成プロセスで形成することができる。
According to the present invention, a magnetoresistive element that can sense the strength of a magnetic field in the Z-axis direction can be provided on a substrate. For this reason, it can be set as a triaxial magnetic sensor by further providing the magnetoresistive element which has a sensing axis in a X-axis direction and a Y-axis direction on the flat surface of a board | substrate.
Moreover, these magnetoresistive elements can be simultaneously formed by the same thin film forming process.

以下、本発明を詳しく説明する。以下の説明では、磁気抵抗素子として巨大磁気抵抗素子を例示して記述を行うが、本発明では、これ以外の異方性磁気抵抗素子、磁気トンネル効果素子も同様に適用できる。
図1および図2は、本発明の磁気センサの一例を模式的に示すものである。
これらの図において、符号1は、基板を示す。この基板1は、シリコンなどの半導体基板に磁気センサの駆動回路、信号処理回路などとなる半導体集積回路(図示略)が予め形成されており、その表面には酸化ケイ素、窒化ケイ素などからなる絶縁膜(図示略)が被覆されてなるものである。
The present invention will be described in detail below. In the following description, a giant magnetoresistive element is described as an example of the magnetoresistive element. However, in the present invention, other anisotropic magnetoresistive elements and magnetic tunnel effect elements can be similarly applied.
1 and 2 schematically show an example of the magnetic sensor of the present invention.
In these drawings, reference numeral 1 denotes a substrate. In this substrate 1, a semiconductor integrated circuit (not shown) to be a magnetic sensor drive circuit, a signal processing circuit, etc. is formed in advance on a semiconductor substrate such as silicon, and the surface thereof is insulated from silicon oxide, silicon nitride or the like. A film (not shown) is coated.

この基板1の表面の平坦面には、4個の巨大磁気抵抗素子2、3、4、5が設けられている。4個の巨大磁気抵抗素子のうち、2個の巨大磁気抵抗素子2、3は、図1に示した座標軸におけるX軸方向にその感知軸を持つもので、基板1の一方の周辺部に並んで設けられている。
また、残りの2個の巨大磁気抵抗素子4、5は、その感知軸が同じくY軸方向に向いたもので、基板1の他方の周辺部に並んで設けられている。
Four giant magnetoresistive elements 2, 3, 4, and 5 are provided on the flat surface of the surface of the substrate 1. Of the four giant magnetoresistive elements, the two giant magnetoresistive elements 2 and 3 have their sensing axes in the X-axis direction of the coordinate axes shown in FIG. Is provided.
Further, the remaining two giant magnetoresistive elements 4 and 5 have their sensing axes oriented in the Y-axis direction, and are provided side by side on the other peripheral portion of the substrate 1.

また、基板1の表面には、山部6が形成されている。この山部6は、横断面形状が台形で全体形状が畝状のものである。この山部6の斜面の角度は約30〜60度に、斜面の幅は5〜7μm程度に、山部6の底部の幅は5〜30μmに、山部5の長さは50〜200μmとなっている。   Further, a peak portion 6 is formed on the surface of the substrate 1. The peak portion 6 has a trapezoidal cross-sectional shape and a bowl shape as a whole. The angle of the slope of the peak 6 is about 30 to 60 degrees, the width of the slope is about 5 to 7 μm, the width of the bottom of the peak 6 is 5 to 30 μm, and the length of the peak 5 is 50 to 200 μm. It has become.

さらに、図2に示すように、この山部6の長手方向の両方の斜面には、それぞれ1個の巨大磁気抵抗素子7、8が設けられている。これら巨大磁気抵抗素子7、8は、ともに斜面に平行な方向、すなわち基板1の斜め上方に向く方向に感知軸を有するものである。このため、これら2個の巨大磁気抵抗素子7、8は、Z軸方向の磁界の強さに感度を有し、Z軸方向の磁界の強さを測定できるものとなる。
なお、図1および図2に示した矢印は、それぞれの巨大磁気抵抗素子の感知軸の向きを示すものである。
Further, as shown in FIG. 2, one giant magnetoresistive element 7 and 8 is provided on each of the slopes in the longitudinal direction of the peak portion 6. These giant magnetoresistive elements 7 and 8 both have a sensing axis in a direction parallel to the inclined surface, that is, in a direction facing obliquely upward of the substrate 1. Therefore, these two giant magnetoresistive elements 7 and 8 are sensitive to the strength of the magnetic field in the Z-axis direction, and can measure the strength of the magnetic field in the Z-axis direction.
The arrows shown in FIGS. 1 and 2 indicate the direction of the sensing axis of each giant magnetoresistive element.

よって、この磁気センサは、X軸、Y軸およびX軸の三軸方向の磁界の強さを測定できるものとなる。
さらに、これら6個の巨大磁気抵抗素子2〜8が設けられた基板1の表面には、図示しない酸化ケイ素、窒化ケイ素などからなる保護膜で被覆されており、これら巨大磁気抵抗素子等が外界から保護されるようになっている。
Therefore, this magnetic sensor can measure the strength of the magnetic field in the three-axis directions of the X axis, the Y axis, and the X axis.
Further, the surface of the substrate 1 provided with these six giant magnetoresistive elements 2 to 8 is covered with a protective film made of silicon oxide, silicon nitride or the like (not shown). It comes to be protected from.

なお、基板1に設けられた6個の巨大磁気抵抗素子2〜8は、周知の構成のもので、複数の帯状の素子本体と、これら素子本体を接続するバイアス磁石とからなり、素子本体は、磁化の向きが所定の向きに固定(ピン)されたピンド層と、磁化の向きが外部磁界の向きに応じて変化するフリー層を備えたものである。   The six giant magnetoresistive elements 2 to 8 provided on the substrate 1 have a well-known configuration, and are composed of a plurality of band-shaped element bodies and bias magnets for connecting these element bodies. A pinned layer whose magnetization direction is fixed (pinned) in a predetermined direction and a free layer whose magnetization direction changes according to the direction of the external magnetic field are provided.

具体的には、素子本体はフリー層上に導電性のスペーサー層、ピンド層、キャピング層を順次積層してなる多層金属薄膜積層物から構成されており、例えばフリー層には、コバルト−ジルコニウム−ニオブのアモルファス磁性層とニッケル−コバルトの磁性層とコバルト−鉄の磁性層との3層からなるものが、スペーサー層には、銅からなるものが、ピンド層には、コバルト−鉄強磁性層と白金−マンガン反磁性層との2層からなるものが、キャッピング層にはタンタルからなるものが用いられる。   Specifically, the element body is composed of a multilayer metal thin film laminate in which a conductive spacer layer, a pinned layer, and a capping layer are sequentially laminated on a free layer. For example, the free layer includes cobalt-zirconium- Three layers of a niobium amorphous magnetic layer, a nickel-cobalt magnetic layer, and a cobalt-iron magnetic layer are used, the spacer layer is made of copper, and the pinned layer is a cobalt-iron ferromagnetic layer. And a platinum-manganese diamagnetic layer are used, and the capping layer is made of tantalum.

このような構造の巨大磁気抵抗素子は、周知技術のスパッタ、蒸着、イオンプレーティングなどの薄膜形成手段とホトリソグラフィによって作製することができる。   The giant magnetoresistive element having such a structure can be manufactured by a well-known technique such as sputtering, vapor deposition, ion plating, etc., and photolithography.

図3ないし図9は、上述の山部6を形成する方法およびその斜面に巨大磁気抵抗素子を形成する方法の一例を示すものである。これらの図において、符号11は、基板を示す。この基板11は、図1に示したものと同様のもので、この基板11の表面には、第1絶縁膜12が設けられている。
この第1絶縁膜12は、酸化ケイ素、窒化ケイ素などからなる厚さ300〜1500nm程度のものである。
3 to 9 show an example of a method for forming the above-described peak portion 6 and a method for forming a giant magnetoresistive element on the slope thereof. In these drawings, reference numeral 11 denotes a substrate. The substrate 11 is the same as that shown in FIG. 1, and a first insulating film 12 is provided on the surface of the substrate 11.
The first insulating film 12 is made of silicon oxide, silicon nitride or the like and has a thickness of about 300 to 1500 nm.

この第1絶縁膜12上の所定の位置には、アルミニウム、アルミニウム合金などの金属からなる凸状の段差形成部13が設けられている。この段差形成部13は、外形が直方体状のもので、高さ1〜3μm、幅2〜15μm、長さ50〜200μm程度の寸法を有するものである。   A convex step forming portion 13 made of a metal such as aluminum or aluminum alloy is provided at a predetermined position on the first insulating film 12. The step forming portion 13 has a rectangular parallelepiped shape, and has dimensions of about 1 to 3 μm in height, 2 to 15 μm in width, and about 50 to 200 μm in length.

この段差形成部13は、第2絶縁膜12上に蒸着、スパッタなど薄膜形成手段によって厚さ1〜3μmのアルミニウム、アルミニウム合金などからなる金属薄膜を成膜し、この金属薄膜をホトリソグラフィによって、不要部分をエッチングにより除去する方法で形成することができる。   The step forming portion 13 forms a metal thin film made of aluminum, aluminum alloy or the like having a thickness of 1 to 3 μm on the second insulating film 12 by thin film forming means such as vapor deposition and sputtering, and the metal thin film is formed by photolithography. It can be formed by a method of removing unnecessary portions by etching.

次ぎに、図4に示すように、段差形成部13を含む第1絶縁膜12上に第2絶縁膜14を堆積して、凸部15を形成する。この第2絶縁膜14は、シラン、テトラエトキシシランなどを原料化合物として、プラズマCVD法、オゾンCVD法などのCVD法によって成膜された酸化ケイ素からなるもので、その厚さが3〜5μm程度のものである。   Next, as shown in FIG. 4, the second insulating film 14 is deposited on the first insulating film 12 including the step forming portion 13 to form the convex portion 15. The second insulating film 14 is made of silicon oxide formed by a CVD method such as a plasma CVD method or an ozone CVD method using silane, tetraethoxysilane or the like as a raw material compound, and has a thickness of about 3 to 5 μm. belongs to.

この第2絶縁膜14の形成により、段差形成部13に対応する位置において、段差形成部13とほぼ同様の形状を有する凸部15が形成される。この凸部15の高さは3〜5μm、幅3〜6μm、長さ50〜200μm程度とされる。
なお、この凸部15を複数並べて基板1上に形成する場合には、その間隔を少なくとも5μm以上とすることが好ましい。
By forming the second insulating film 14, a convex portion 15 having a shape substantially similar to that of the step forming portion 13 is formed at a position corresponding to the step forming portion 13. The height of the projection 15 is about 3 to 5 μm, the width is 3 to 6 μm, and the length is about 50 to 200 μm.
When a plurality of the convex portions 15 are formed side by side on the substrate 1, the interval is preferably at least 5 μm.

つぎに、この状態の基板11に対して、プラズマエッチングまたはマイクロ波エッチングを施して、図5に示すように、凸部15の上部の隅部をテーパーエッチングして、斜面16、16を備えた山部17とする。   Next, plasma etching or microwave etching was performed on the substrate 11 in this state, and the upper corners of the protrusions 15 were tapered and the inclined surfaces 16 and 16 were provided as shown in FIG. Yamabe 17 is assumed.

プラズマエッチングには、平行平板型プラズマ装置が用いられ、電極板に対して、基板11を約30〜60度傾斜させつつ回転させて、アルゴン、酸素あるいはこれらの混合ガス雰囲気中でエッチングを行う。処理条件は、例えばアルゴン流量50〜200sccm、圧力6.7〜26.7Pa、高周波出力750〜1500W、周波数13.56MHzとされる。   For the plasma etching, a parallel plate type plasma apparatus is used, and etching is performed in an atmosphere of argon, oxygen, or a mixed gas thereof by rotating the substrate 11 while tilting about 30 to 60 degrees with respect to the electrode plate. The processing conditions are, for example, an argon flow rate of 50 to 200 sccm, a pressure of 6.7 to 26.7 Pa, a high frequency output of 750 to 1500 W, and a frequency of 13.56 MHz.

マイクロ波エッチングには、石英管内部にガスを導入し、導波管から石英管内部にマイクロ波を供給し、プラズマを発生させる装置が用いられ、アルゴン、酸素あるいはこれらの混合ガス雰囲気中でエッチングが行われ、処理条件は、例えば酸素流量50〜200sccm、圧力6.7〜13.3Pa、マイクロ波0.1〜0.5mA、周波数2.45GHz、RFパワー100〜200W(13.56MHz)とされる。   Microwave etching uses a device that introduces gas into the quartz tube and supplies microwaves from the waveguide into the quartz tube to generate plasma. Etching in an atmosphere of argon, oxygen, or a mixed gas of these. The processing conditions are, for example, an oxygen flow rate of 50 to 200 sccm, a pressure of 6.7 to 13.3 Pa, a microwave of 0.1 to 0.5 mA, a frequency of 2.45 GHz, and an RF power of 100 to 200 W (13.56 MHz). Is done.

このエッチングにより、第2絶縁膜14からなる凸部15の上部の隅部が削り取られ、この削り取られた酸化ケイ素が凸部15の下部に付着し、図5に示したような斜面16、16が形成されることになる。この斜面16の傾斜角は、30〜60度、好ましくは45度程度とされ、傾斜面の幅は、5〜7μm程度とされる。   By this etching, the upper corner portion of the convex portion 15 made of the second insulating film 14 is scraped off, and the scraped silicon oxide adheres to the lower portion of the convex portion 15, and the slopes 16, 16 as shown in FIG. Will be formed. The inclination angle of the slope 16 is 30 to 60 degrees, preferably about 45 degrees, and the width of the inclined surface is about 5 to 7 μm.

続いて、図6に示すように、この山部17の斜面16、16を含む第2絶縁膜14上に巨大磁気抵抗素子膜18を成膜し、この巨大磁気抵抗素子膜18上にレジスト19を塗布する。巨大磁気抵抗素子膜18は、スパッタ、蒸着、イオンプレーティングなどによって成膜されたもので、その膜構成は、先に述べたものと同様のものである。   Subsequently, as shown in FIG. 6, a giant magnetoresistive element film 18 is formed on the second insulating film 14 including the slopes 16, 16 of the mountain portion 17, and a resist 19 is formed on the giant magnetoresistive element film 18. Apply. The giant magnetoresistive element film 18 is formed by sputtering, vapor deposition, ion plating, or the like, and the film configuration is the same as described above.

ついで、図7に示すように、レジスト19に露光、現像し、山部17の斜面16、16に形成された巨大磁気抵抗素子膜18の上部のレジスト19以外の部分を除去し、山部17の斜面16、16に形成された巨大磁気抵抗素子膜18の一部をレジスト19で被覆した状態とする。
この際、巨大磁気抵抗素子膜18の、山頂に近い方側(斜面16の上側)の端部におけるレジスト19の厚さ、すなわちレジスト19の頂点から巨大磁気抵抗素子膜18の端部までの距離が、1.0〜2.0μm、好ましくは1.5μmとなるように、レジスト19の厚さを調整する。
さらに、基板11上の第2絶縁膜14の平坦面に形成された巨大磁気抵抗素子膜18の一部を同様にレジスト19で被覆された状態としておき、この平坦面にX軸感知用巨大磁気抵抗素子とY軸感知用巨大磁気抵抗素子とを同時に形成するようにすることが好ましい。
Next, as shown in FIG. 7, the resist 19 is exposed and developed, and portions other than the resist 19 on the giant magnetoresistive element film 18 formed on the slopes 16, 16 of the peak 17 are removed, and the peak 17 A part of the giant magnetoresistive element film 18 formed on the slopes 16, 16 is covered with a resist 19.
At this time, the thickness of the resist 19 at the end of the giant magnetoresistive film 18 closer to the summit (upper side of the slope 16), that is, the distance from the apex of the resist 19 to the end of the giant magnetoresistive film 18. However, the thickness of the resist 19 is adjusted so as to be 1.0 to 2.0 μm, preferably 1.5 μm.
Further, a part of the giant magnetoresistive element film 18 formed on the flat surface of the second insulating film 14 on the substrate 11 is similarly covered with the resist 19, and the giant magnetism for X-axis sensing is placed on the flat surface. It is preferable to form the resistance element and the Y-axis sensing giant magnetoresistive element at the same time.

ついで、図8に示すように、残っているレジスト19を加熱処理してその形状を変化させたのち、レジスト19で被覆されていない部分の巨大磁気抵抗素子膜18をミリング処理などによって除去し、さらに巨大磁気抵抗素子膜18上に残っているレジスト19を有機溶剤等で溶解して除去する。
これにより、図9に示すように、山部17の斜面16、16の中腹部分に巨大磁気抵抗素子20、20が形成される。また、図7に示したように、第2絶縁膜14の平坦面にレジスト19を残しておけば、その部分をX軸感知用巨大磁気抵抗素子、Y軸感知用巨大磁気抵抗素子とすることができる。
Next, as shown in FIG. 8, after the remaining resist 19 is heated to change its shape, the portion of the giant magnetoresistive element film 18 not covered with the resist 19 is removed by milling or the like, Further, the resist 19 remaining on the giant magnetoresistive element film 18 is dissolved and removed with an organic solvent or the like.
As a result, as shown in FIG. 9, giant magnetoresistive elements 20, 20 are formed on the middle portions of the slopes 16, 16 of the mountain portion 17. In addition, as shown in FIG. 7, if the resist 19 is left on the flat surface of the second insulating film 14, the portions are used as the X-axis sensing giant magnetoresistive element and the Y-axis sensing giant magnetoresistive element. Can do.

図10は、このようにして得られた巨大磁気抵抗素子20を示す斜視図である。山部17の斜面17の中腹部分に形成された巨大磁気抵抗素子20は、その長手方向の端部が図示のようにその角部が丸みをおびた形状となっている。、
その後、この上に酸化ケイ素、窒化ケイ素などからなる保護膜を成膜することで、磁気センサが作製される。
FIG. 10 is a perspective view showing the giant magnetoresistive element 20 obtained as described above. The giant magnetoresistive element 20 formed on the middle part of the slope 17 of the mountain portion 17 has a shape in which the end portion in the longitudinal direction is rounded as shown in the figure. ,
Thereafter, a magnetic film is produced by forming a protective film made of silicon oxide, silicon nitride or the like thereon.

図11ないし図13は、本発明における山部の形成方法の他の例を示すものである。
まず、図11に示すように、基板11上の第1絶縁膜12の上に、酸化ケイ素からなる第3絶縁膜21を成膜する。この第3絶縁膜21は、シラン、テトラエトキシシランなどを原料化合物として、プラズマCVD法、オゾンCVD法などのCVD法によって成膜された酸化ケイ素からなるもので、その厚さが3〜5μm程度のものである。
11 to 13 show another example of the method for forming the peak portion in the present invention.
First, as shown in FIG. 11, a third insulating film 21 made of silicon oxide is formed on the first insulating film 12 on the substrate 11. The third insulating film 21 is made of silicon oxide formed by a CVD method such as a plasma CVD method or an ozone CVD method using silane, tetraethoxysilane or the like as a raw material compound, and has a thickness of about 3 to 5 μm. belongs to.

この後、第3絶縁膜21をエッチングして、図12に示すように、先の例の凸部15と同様の形状の凸部22を形成する。この凸部22の高さは3〜5μm、幅3〜25μm、長さ50〜200μm程度とされる。この凸部22を複数並べて基板1上に形成する場合には、その間隔を少なくとも5μm以上とすることは先の例と同様である。   Thereafter, the third insulating film 21 is etched to form a convex portion 22 having the same shape as the convex portion 15 of the previous example, as shown in FIG. The height of the convex portion 22 is about 3 to 5 μm, the width is 3 to 25 μm, and the length is about 50 to 200 μm. When a plurality of the convex portions 22 are formed on the substrate 1, the interval is set to at least 5 μm as in the previous example.

ついで、この凸部22に対して、先の例と同様にして、プラズマエッチングまたはマイクロ波エッチングを施し、図13に示すように凸部22の上部の隅部をテーパーエッチングして、凸部22を山部23に加工する。
この山部23の斜面に巨大磁気抵抗素子を形成する方法は、先の例と同じである。
Subsequently, plasma etching or microwave etching is performed on the convex portion 22 in the same manner as in the previous example, and the upper corner portion of the convex portion 22 is taper-etched as shown in FIG. Is processed into a ridge 23.
The method of forming a giant magnetoresistive element on the slope of the peak 23 is the same as the previous example.

この例の方法では、アルミニウム、アルミニウム合金などの金属からなる段差形成部13を作り、この上に第2絶縁膜14を成膜する必要がなく、プロセスが短縮される。また、基板11の平坦面に第2絶縁膜14が存在しないので、基板11への応力が小さくなる利点もある。   In the method of this example, it is not necessary to form the step forming portion 13 made of a metal such as aluminum or aluminum alloy, and to form the second insulating film 14 thereon, so that the process is shortened. In addition, since the second insulating film 14 does not exist on the flat surface of the substrate 11, there is an advantage that stress on the substrate 11 is reduced.

本発明の磁気センサの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the magnetic sensor of this invention. 本発明の磁気センサの一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of an example of the magnetic sensor of this invention. 本発明の磁気センサの製法の一例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of an example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の一例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of an example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の一例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of an example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の一例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of an example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の一例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of an example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の一例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of an example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の一例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of an example of the manufacturing method of the magnetic sensor of this invention. 本発明で得られた巨大磁気抵抗素子を示す一部断面視した斜視図である。It is the perspective view which looked at a partial cross section which shows the giant magnetoresistive element obtained by this invention. 本発明の磁気センサの製法の他の例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of the other example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の他の例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of the other example of the manufacturing method of the magnetic sensor of this invention. 本発明の磁気センサの製法の他の例の工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of the other example of the manufacturing method of the magnetic sensor of this invention.

符号の説明Explanation of symbols

1、11・・・基板、2、3、4、5、7、8、20・・・巨大磁気抵抗素子、6、17、22・・・山部、13・・・段差形成部、15、22・・・凸部
DESCRIPTION OF SYMBOLS 1,11 ... Board | substrate 2, 3, 4, 5, 7, 8, 20 ... Giant magnetoresistive element, 6, 17, 22 ... Mountain part, 13 ... Level difference formation part, 15, 22 ... convex part

Claims (5)

基板に形成された山部の斜面に基板面に対し垂直方向の磁気成分に感度を持つ磁気抵抗素子が配置されていることを特徴とする磁気センサ。   A magnetic sensor, wherein a magnetoresistive element having sensitivity to a magnetic component in a direction perpendicular to a substrate surface is disposed on a slope of a mountain portion formed on a substrate. 基板に形成された山部の斜面に1以上の基板面に対し垂直方向の磁気成分に感度を持つ磁気抵抗素子が配置され、基板の平坦面に2以上の基板面に対し平行方向の磁気成分に感度を持つ磁気抵抗素子が配置されていることを特徴とする磁気センサ。   A magnetoresistive element having sensitivity to a magnetic component in a direction perpendicular to one or more substrate surfaces is disposed on a slope of a peak formed on the substrate, and a magnetic component parallel to two or more substrate surfaces is disposed on a flat surface of the substrate. A magnetic sensor having a sensitive magnetoresistive element disposed therein. 基板上に凸状の段差形成部を形成し、この段差形成部を含む基板上に絶縁膜を堆積して、段差形成部に対応する凸部を形成し、ついでプラズマエッチングまたはマイクロ波エッチングによりこの凸部に斜面を形成して山部としたのち、この山部の斜面に磁気抵抗素子を形成することを特徴とする磁気センサの製法。   A convex step forming portion is formed on the substrate, an insulating film is deposited on the substrate including the step forming portion, and a convex portion corresponding to the step forming portion is formed, and then this etching is performed by plasma etching or microwave etching. A method of manufacturing a magnetic sensor, comprising forming a slope by forming a slope on a convex portion and then forming a magnetoresistive element on the slope of the slope. 基板上に絶縁物からなる凸部を形成し、ついでプラズマエッチングまたはマイクロ波エッチングによりこの凸部に斜面を形成して山部としたのち、この斜面に磁気抵抗素子を形成することを特徴とする磁気センサの製法。   A convex portion made of an insulator is formed on a substrate, and then a slope is formed on the convex portion by plasma etching or microwave etching to form a peak, and then a magnetoresistive element is formed on the slope. Manufacturing method of magnetic sensor. 山部の斜面に磁気抵抗素子を形成すると同時に基板の平坦面に磁気抵抗素子を形成することを特徴とする請求項3または4記載の磁気センサの製法。
5. The method of manufacturing a magnetic sensor according to claim 3, wherein the magnetoresistive element is formed on the flat surface of the substrate simultaneously with forming the magnetoresistive element on the slope of the mountain portion.
JP2005250616A 2005-01-13 2005-08-31 Manufacturing method of magnetic sensor Expired - Fee Related JP5028769B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005250616A JP5028769B2 (en) 2005-03-29 2005-08-31 Manufacturing method of magnetic sensor
US11/328,255 US7687284B2 (en) 2005-01-13 2006-01-10 Magnetic sensor and manufacturing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005096087 2005-03-29
JP2005096087 2005-03-29
JP2005250616A JP5028769B2 (en) 2005-03-29 2005-08-31 Manufacturing method of magnetic sensor

Publications (2)

Publication Number Publication Date
JP2006308544A true JP2006308544A (en) 2006-11-09
JP5028769B2 JP5028769B2 (en) 2012-09-19

Family

ID=37475581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250616A Expired - Fee Related JP5028769B2 (en) 2005-01-13 2005-08-31 Manufacturing method of magnetic sensor

Country Status (1)

Country Link
JP (1) JP5028769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007235051A (en) * 2006-03-03 2007-09-13 Ricoh Co Ltd Magnetoresistive effect element, substrate for magnetoresistive effect element, and manufacturing method of magnetoresistive effect element
US8207587B2 (en) 2007-06-13 2012-06-26 Yamaha Corporation Magnetic sensor and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250875A (en) * 1988-03-31 1989-10-05 Toshiba Corp Magnetic sensor
JP2000232156A (en) * 1999-02-09 2000-08-22 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250875A (en) * 1988-03-31 1989-10-05 Toshiba Corp Magnetic sensor
JP2000232156A (en) * 1999-02-09 2000-08-22 Seiko Epson Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007235051A (en) * 2006-03-03 2007-09-13 Ricoh Co Ltd Magnetoresistive effect element, substrate for magnetoresistive effect element, and manufacturing method of magnetoresistive effect element
US8207587B2 (en) 2007-06-13 2012-06-26 Yamaha Corporation Magnetic sensor and manufacturing method therefor

Also Published As

Publication number Publication date
JP5028769B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US8178361B2 (en) Magnetic sensor and manufacturing method therefor
US7492554B2 (en) Magnetic sensor with tilted magnetoresistive structures
JP6496005B2 (en) Monolithic three-dimensional magnetic field sensor and manufacturing method thereof
EP3133412B1 (en) A monolithic three-axis linear magnetic sensor and manufacturing method thereof
US9557392B2 (en) Integrated magnetometer and its manufacturing process
US8134361B2 (en) Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
JP2004006752A (en) Magnetic sensor and manufacturing method thereof
US20120206137A1 (en) Monolithic tri-axis amr sensor and manufacturing method thereof
JP2004363157A (en) Thin film magnetic sensor and its manufacturing method
JP2006194733A (en) Magnetometric sensor and its manufacturing method
CN104122513A (en) High-density magnetic sensor device and magnetic induction method and preparation process thereof
US10816615B2 (en) Magnetic sensor
JP5348080B2 (en) Magnetic sensor and manufacturing method thereof
US20050231856A1 (en) Xenon ion beam to improve track width definition
JP5028769B2 (en) Manufacturing method of magnetic sensor
CN104183696A (en) Preparation process for magnetic sensing device
JP2017103378A (en) Magnetoresistance effect element, magnetic sensor, manufacturing method of magnetoresistance effect element, and manufacturing method of magnetic sensor
CN104122514A (en) Magnetic sensor device and magnetic induction method and preparation process thereof
WO2016075763A1 (en) Magnetic sensor
CN103887427A (en) Manufacturing technology of magnetic sensing device
JP4961736B2 (en) Manufacturing method of magnetic sensor
WO2006073127A1 (en) Method for producing magnetic multilayer film
JP5089853B2 (en) Manufacturing method of magnetic sensor
JP5535316B2 (en) Oscillation element and method for manufacturing the oscillation element
JP4896800B2 (en) Magnetic sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5028769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees