JP2006307818A - Tank water supply and drainage type hydroelectric power generation and tidal power generation - Google Patents

Tank water supply and drainage type hydroelectric power generation and tidal power generation Download PDF

Info

Publication number
JP2006307818A
JP2006307818A JP2005154588A JP2005154588A JP2006307818A JP 2006307818 A JP2006307818 A JP 2006307818A JP 2005154588 A JP2005154588 A JP 2005154588A JP 2005154588 A JP2005154588 A JP 2005154588A JP 2006307818 A JP2006307818 A JP 2006307818A
Authority
JP
Japan
Prior art keywords
pressure
water
valve
power generation
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154588A
Other languages
Japanese (ja)
Other versions
JP4151907B2 (en
JP2006307818A5 (en
Inventor
Masahiro Ikemura
正博 池村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005154588A priority Critical patent/JP4151907B2/en
Publication of JP2006307818A publication Critical patent/JP2006307818A/en
Publication of JP2006307818A5 publication Critical patent/JP2006307818A5/ja
Application granted granted Critical
Publication of JP4151907B2 publication Critical patent/JP4151907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make efficient use of a water source in the electric power generation utilizing tidal level difference. <P>SOLUTION: A tank (1) for electric power generation is installed at a position where there is a water level difference in the water source and the water is supplied from a high level water and is drained to a low level water. An air turbine is rotated to generate electric power by a tank pressure change at that time. Equipment operated in the water is improved in durability and reliability and equipment requiring maintenance is disposed above the water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は給排水するタンクとエアータービンを使用する水力発電であり、潮位差も利用する、水力発電に関するものであります。  The present invention relates to hydroelectric power generation using a tank for supplying and draining water and an air turbine, and also relates to hydroelectric power generation utilizing a tidal level difference.

従来の水力発電は水の圧力でタービンを回転させるもので流体摩擦が大きく、低水位差では高速のタービン回転が出来なく、発電効率を上げる事が出来なかった。  Conventional hydroelectric power generation rotates turbines with water pressure, and fluid friction is large. At low water level differences, high-speed turbine rotation cannot be achieved, and power generation efficiency cannot be increased.

低水位差の水力発電で発電効率を上げる。  Increase power generation efficiency with hydroelectric power generation with low water level difference.

発電に関連した装置の動力を発電装置の原理の圧力で動作させる。  The power of the device related to power generation is operated at the pressure of the principle of the power generation device.

水中で動作する装置の耐久性と信頼性を上げ、メンテナンスが必要な装置は水上に配置する様にする。  Increase the durability and reliability of devices that operate in water, and place devices that require maintenance on the water.

潮位差を利用して水源の確保を水位差の段階で別け水源の節約をおこなう  Use the tide level difference to secure the water source and separate the water source at the stage of the water level difference.

潮位差の水源を確保する水門を高信頼性、高耐久性な構造にする。  The sluice that secures the water source of the tide level difference will have a highly reliable and durable structure.

潮位差発電において発電手法を簡素化し設置の拡張性を広げる。  Simplify the power generation method for tide difference power generation and expand the expandability of installation.

課題を解決する為の手段Means to solve the problem

図1に示す、二つの水位差の水源があるところに、タンク上部は高水位水源(5)の水面、タンク下部は低水位水源(6)の水面より低くなるようにタンクを設置します。高水位水源(5)の水中に給水弁(3)を設置し、低水位水源(6)の水中に排水弁(4)を設置します。そして発電用タンク(1)の上部の高水位水源(5)の水面より高い位置に発電用タービン(2)を配置します。この様に設置すると、発電用タンク(1)に完全に給水した場合でも発電用タービン(2)には空気が出入りする事になります。そして、排水は給水弁(3)を閉じ排水弁(4)を開くと発電用タンク(1)内の気圧が下がり発電用タービン(2)が吸気になり回転します。この回転力で発電機を回転させます。次に、排水弁(4)を閉じた状態で給水弁(3)を開くと給水が始まり、発電用タンク(1)内気圧が上昇し発電用タービン(2)が排気になり回転します。本発明はこの工程を繰り返す発電装置であります。タービンの羽の断面積が1mであれば1m×水位差mの水の重さに等しい圧力がタービンの羽にかかる事になり、水位差が1mであれば1トンの圧力がタービンの羽にかかる事になります。また、発電用タンク(1)内の構造でありますが、タンク内は強度補強用の梁が在っても良い訳ですが、あまり多いとタンク内の水を攪拌する事になり、タンク内湿度が上がり発電用タービン(2)の寿命を下げる事になります。また図1では発電用タンク(1)上部に空気層があり、原理理解しやすい様にしてありますが、発電効率を上げるには空気層がない方が良い様です。As shown in Figure 1, where there are two water sources with different water levels, install the tank so that the upper part of the tank is lower than the surface of the high water source (5) and the lower part of the tank is lower than the surface of the low water source (6). A water supply valve (3) is installed in the water of the high water level water source (5), and a drain valve (4) is installed in the water of the low water level water source (6). The power generation turbine (2) is placed above the water level of the high water level water source (5) above the power generation tank (1). When installed in this way, even when water is completely supplied to the power generation tank (1), air will enter and exit the power generation turbine (2). When the drainage valve (3) is closed and the drainage valve (4) is opened, the atmospheric pressure in the power generation tank (1) drops and the power generation turbine (2) rotates as intake air. The generator is rotated by this rotational force. Next, when the water supply valve (3) is opened with the drain valve (4) closed, water supply begins, the pressure inside the power generation tank (1) rises, and the power generation turbine (2) becomes exhaust and rotates. The present invention is a power generator that repeats this process. If the cross-sectional area of the turbine blade is 1 m 2 , a pressure equal to the weight of water of 1 m 2 × water level difference m is applied to the turbine blade, and if the water level difference is 1 m, 1 ton of pressure is applied to the turbine. It will take on the wings. In addition, the structure inside the power generation tank (1) may include a beam for strengthening the strength of the tank, but if it is too large, the water in the tank will be agitated and the humidity in the tank Will increase the life of the power generation turbine (2). In Fig. 1, there is an air layer at the top of the power generation tank (1), which makes it easy to understand the principle, but it is better to have no air layer to increase power generation efficiency.

図3に示す、満水で減圧状態の発電用タンク(8)の吸気口と、減水で加圧状態の発電用タンク(9)に排気口の間に発電タービン(2)接続して発電すると、それぞれの圧力が加算され2倍の圧力で発電出来る様になります。すなわち高速高圧で高効率の発電が出来、給排水のスピードが速くなる事になります。そして次に給排水を切り替えると、発電タンクの減圧と加圧が入れ替わり逆方向で同様な高効率の発電する事が出来ます。特に低水位差で圧力が不足するような環境の発電では有効な手段となります。When the power generation turbine (2) is connected between the exhaust port of the intake tank (8) of the power generation tank (8) that is full and depressurized as shown in FIG. Each pressure is added, and it becomes possible to generate electricity with double pressure. In other words, high-efficiency power generation is possible at high speed and pressure, and the speed of water supply and drainage will be increased. Then, when the water supply / drainage is switched, the decompression and pressurization of the power generation tank are switched, and the same highly efficient power generation can be performed in the opposite direction. This is particularly effective for power generation in environments where pressure is insufficient due to low water level differences.

本発明の発電用タンク(1)は動力源としての利用方法があり、発電用タンク(1)と同じ原理で圧力を制御に応用します。図4に示す、制御用加圧タンク(10)の上部はエアーバルブ(16)になります。制御用加圧タンク(10)内を排水しエアーバルブ(16)と排水弁(4)を閉じます。高水位水源(5)の給水弁(3)を開くと制御用加圧タンク(10)内の制御用タンク内水位(12)が上昇しようとするのでエアーバルブ(16)は加圧され、この状態を保持しておいて制御で必要な時に加圧供給源とします。次に図5に示す、制御用減圧タンク(11)内を給水しエアーバルブ(16)と給水弁(3)を閉じます。低水位水源(6)の排水弁(4)を開くと制御用減圧タンク(11)内の水面が下がろうとするので、エアーバルブ(16)は減圧されます。この状態を保持しておいて制御で必要な時に減圧供給源とします。この場合、減圧力は水位差の水の重さの分だけマイナスの圧力になり、大気圧が基準となります。これらの圧力源を使い水中の駆動制御を行います。図4に示す、ピストンシリンダー構造の駆動装置シリンダー部(14)から駆動管(13)を配管します。この駆動管(13)を水上で加圧されたエアーバルブ(16)に接続すると、駆動装置シリンダー部(14)内の圧力が上がりスライド弁(15)を動かす事ができます。次に図5に示す、減圧制御ですが、駆動管(13)と制御用加圧タンク(10)を接続すると水面維持タンク(17)の水面を引き、水中の駆動装置を動かす事ができます。その時に水面維持タンク(17)がなければ、加圧で水面が上がる為にその分の水位差で圧力が減少してしまう事になります。これは加圧制御でも同じなのです。この様な手法で水上から動作圧力を水中に送るのは、水中の装置は形状だけで機能を持つ為に故障がしにくい事であり、水中のメンテナンスを少なくする事であります。The power generation tank (1) of the present invention can be used as a power source and applies pressure to control based on the same principle as the power generation tank (1). The upper part of the control pressure tank (10) shown in Fig. 4 is the air valve (16). Drain the pressure tank (10) for control and close the air valve (16) and drain valve (4). When the water supply valve (3) of the high water level water source (5) is opened, the water level in the control tank (12) in the control pressurized tank (10) tends to rise, so the air valve (16) is pressurized and this Hold the state and use it as a pressurized supply source when needed for control. Next, water is supplied to the decompression tank (11) for control shown in Fig. 5, and the air valve (16) and the water supply valve (3) are closed. When the drain valve (4) of the low water level water source (6) is opened, the water level in the decompression tank (11) for control tends to drop, so the air valve (16) is decompressed. Keep this state and use it as a reduced pressure supply source when necessary for control. In this case, the decompression force becomes a negative pressure corresponding to the weight of the water of the water level difference, and the atmospheric pressure is the standard. Underwater drive control is performed using these pressure sources. The drive pipe (13) is piped from the cylinder unit (14) of the piston cylinder structure shown in Fig. 4. When this drive pipe (13) is connected to an air valve (16) pressurized on water, the pressure in the drive cylinder (14) rises and the slide valve (15) can be moved. Next, the decompression control shown in Fig. 5 is that when the drive pipe (13) and the control pressurized tank (10) are connected, the water level maintenance tank (17) can be pulled to move the underwater drive unit. . If there is no water level maintenance tank (17) at that time, the water level rises due to pressurization, so the pressure will decrease due to the difference in water level. This is the same for pressure control. The reason why operating pressure is sent from the surface to the water by using this method is that it is difficult to break down because the device underwater has only the shape and functions, and the maintenance underwater is reduced.

図6に示す様に、給水弁(3)排水弁(4)とエアーバルブ(16)を閉じた状態の、増圧制御用減圧タンク(18)の水中と増圧制御用加圧タンク(19)の水中を繋げ、制御用加圧タンク(10)の排気口を増圧制御用減圧タンク(18)の吸気口に接続すると増圧制御用加圧タンク(19)の排気口からは3倍の圧力が取り出せます。これは2基のタンクの水中を繋げる事によって大気圧との縁を切り、水中の繋がったタンク内の水位差の位置エネルギーでのみ加圧するから、この様な装置が可能になります。制御用加圧タンク(10)は高水位水源(5)の大気圧に押されていますが、増圧制御用減圧タンク(18)と増圧制御用加圧タンク(19)は大気とは無縁と言う事です。タンク内の水面は増圧制御用減圧タンク(18)と増圧制御用加圧タンク(19)の場合、お互いの水面が揃う位置が加減圧修了時水位(20)になります。すなわち、3基のタンクが同時に加減圧終了になるには、増圧制御用減圧タンク(18)と増圧制御用加圧タンク(19)が制御用加圧タンク(10)の倍の容量が必要になります。この装置は、増圧制御用減圧タンク(18)と増圧制御用加圧タンク(19)を多段に連結しさらに増圧する事も可能です。ただ、この方式はタンク半分の位置で水面が止まる為に、制御用として使えますが、発電を行うには連続性がなく不向きであります。As shown in FIG. 6, the water in the pressure-increasing control decompression tank (18) and the pressure-increasing control pressure tank (19) with the water supply valve (3), the drain valve (4) and the air valve (16) closed. ), And the exhaust port of the control pressure tank (10) is connected to the intake port of the pressure increase control decompression tank (18). Pressure can be taken out. This is possible by connecting the two tanks underwater, cutting the edge from the atmospheric pressure, and pressurizing only with the potential energy of the water level difference in the tanks connected underwater. The pressurized tank for control (10) is pushed by the atmospheric pressure of the high water level water source (5), but the decompression tank for pressure increase control (18) and the pressure increase tank for pressure increase control (19) are unrelated to the atmosphere. It is to say. In the case of the decompression tank (18) for pressure increase control and the pressure tank (19) for pressure increase control, the water level in the tank is the water level (20) at the completion of pressurization and decompression. That is, in order to finish the pressure increase / decrease of the three tanks at the same time, the pressure increase control pressure reducing tank (18) and the pressure increase control pressure tank (19) need to have double the capacity of the control pressure tank (10). Become. This device can be connected to multiple pressure reducing tanks (18) and pressure increasing pressure tanks (19) to increase pressure. However, this method can be used for control because the water surface stops at half the tank position, but it is not suitable for power generation because there is no continuity.

水中のスライド式の圧力弁駆動において、図7の様に圧力弁の閉鎖時は圧力が一方に掛かっており、摩擦の為に弁を動かす為には大きな力が必要になります。そこで図8の様に、その摩擦力を減らすために別の圧力出入路を作り、弁板面に掛かる圧力通路1(54)の圧力のベクトルを打ち消す様に反対方向の圧力通路2(55)と圧力通路3(56)を設けます。すなわち、図9、図10の様に、スライド弁(15)の片面に圧力入力通路(22)と圧力出力通路(23)が両方存在する為に、圧力入出力通路の配管はスライド弁(15)を囲む様な形になります。この手法であれば開閉途中でも圧力のベクトルはバランスしていて、摩擦力を減らしスライド弁(15)の動きをスムーズにする事が出来ます。図9、図10に示す様に、閉時にスライド弁(15)に掛かる圧力がバランスされている事が解かります。また圧力差で駆動部の接触面の隙間に少量の水流が発生し接触面が離れる効果もあり摩擦力が大幅に改善される効果があります。また、圧力制御等により、スライド弁(15)の自重をも打ち消すようにスライド弁(15)の下方向にも圧力面を設けるとスライド弁(15)の無接触の状態を作る事も可能であります。このスライド弁(15)は大量の水量を流すのには不向きですが高信頼の圧力制御弁としての特徴があります。次に、駆動管の原理を応用し、スライド弁(15)の移動位置を検出します。図11の様に、スライド弁(15)が圧力検出口(25)を塞ぎ、スライド弁(15)が移動して検出位置に達した時に圧力検出口(25)を開放する位置検出用圧力バイパス穴(24)を配置します。図12にある様に、あらかじめ検出管の圧力を水深の圧力ではないように設定しておくと、圧力検出口(25)と位置検出用圧力バイパス穴(24)が重なった時に、水上の検出管の上部口のセンサーで圧力の変化を検知できます。次は水中での駆動装置を暴走させない為の手法で、図13の様に、規定位置で駆動装置シリンダー部(14)の圧力がシリンダー静止用圧力バイパス口(26)により、外に抜けスライド弁(15)が静止します。この手法は、加圧時の駆動に利用できます。この機能は駆動装置の誤動作保護機能として有効な手段になります。ただ、この状態で減圧制御動作は出来ず、復帰するには、自重などでスライド弁(15)が戻る構造か、スライド弁(15)の反対側に駆動装置シリンダー部(14)が必要になります。次に、駆動時の衝突の衝撃吸収機能として、衝突直前に圧力密封構造を作る手法で、図14の場合、減圧駆動でスライド弁(15)に慣性力があったとしても駆動装置シリンダー部(14)の端が圧力密閉構造になっている為にスライド弁(15)と駆動装置シリンダー部(14)が衝突しない構造になります。水中のメンテナンスは非常に困難な為に、この様な、形状に多くの機能を持つ構造が重要になります。また、コンクリートの様な水の中で耐久性のある素材に機能を持たせて装置として使える長所があります。In underwater slide type pressure valve drive, as shown in Fig. 7, when the pressure valve is closed, pressure is applied to one side, and a large force is required to move the valve due to friction. Therefore, as shown in FIG. 8, another pressure inlet / outlet passage is formed to reduce the frictional force, and the pressure passage 2 (55) in the opposite direction so as to cancel the pressure vector of the pressure passage 1 (54) applied to the valve plate surface. And pressure passage 3 (56). That is, as shown in FIGS. 9 and 10, since both the pressure input passage (22) and the pressure output passage (23) exist on one side of the slide valve (15), the piping of the pressure input / output passage is connected to the slide valve (15 ). With this method, the pressure vector is balanced even during opening and closing, reducing the frictional force and making the slide valve (15) move smoothly. As shown in Fig. 9 and Fig. 10, it can be seen that the pressure applied to the slide valve (15) when it is closed is balanced. In addition, a small amount of water flow is generated in the gap between the contact surfaces of the drive unit due to the pressure difference, and the contact surfaces are separated, and the frictional force is greatly improved. In addition, it is possible to create a non-contact state of the slide valve (15) by providing a pressure surface in the downward direction of the slide valve (15) so as to cancel the dead weight of the slide valve (15) by pressure control or the like. There is. This slide valve (15) is not suitable for flowing a large amount of water, but has a feature as a highly reliable pressure control valve. Next, apply the principle of the drive tube to detect the moving position of the slide valve (15). As shown in FIG. 11, a pressure bypass for position detection opens the pressure detection port (25) when the slide valve (15) closes the pressure detection port (25) and the slide valve (15) moves to reach the detection position. Place hole (24). As shown in FIG. 12, if the pressure of the detection tube is set in advance so as not to be the pressure of the water depth, when the pressure detection port (25) and the position detection pressure bypass hole (24) overlap, detection on the water is performed. Changes in pressure can be detected with the sensor at the top of the tube. Next is a method to prevent the drive unit from running away underwater. As shown in FIG. 13, the pressure of the drive unit cylinder part (14) is released to the outside through the cylinder static pressure bypass port (26) at a specified position as shown in FIG. (15) stops. This method can be used for driving during pressurization. This function is an effective means for protecting the malfunction of the drive unit. However, the pressure reduction control operation cannot be performed in this state, and in order to return, the slide valve (15) returns due to its own weight or the drive cylinder portion (14) is required on the opposite side of the slide valve (15). The Next, as a shock absorbing function for collision during driving, a method of creating a pressure-sealing structure immediately before the collision, in the case of FIG. 14, even if there is inertia force in the slide valve (15) in the reduced pressure drive, Since the end of 14) has a pressure-tight structure, the slide valve (15) and the drive unit cylinder (14) do not collide. Since underwater maintenance is very difficult, it is important to have a structure that has many functions in shape. In addition, there is an advantage that it can be used as a device by giving a function to a durable material in water like concrete.

水中の圧力弁において、図15、図16に示す、扇柱圧力弁(27)の回転軸の扇柱圧力弁支持部(28)で圧力を支え扇状の円弧面で圧力を塞ぐ構造です。扇状の埋まっている部分がピストンシリンダーの役割をします。駆動装置シリンダー部(14)に駆動管(13)から配管し圧力で扇柱圧力弁(27)の昇降を行います。この扇柱圧力弁(27)の長所は回転軸で圧力を支えている為に、圧力から受ける摩擦は回転軸であり、圧力制御は回転の外側の扇部になるので、モーメントの法則で駆動を妨げる摩擦に対し圧力制御が有利になるからであります。次に、この扇柱圧力弁(27)特徴を生かし密閉度の高い大流量型スライド弁(52)の開閉補助を行います。図7と同様に、圧力で塞がった大流量型スライド弁(52)は摩擦で開閉が困難なのですが、図17の様に、扇柱圧力弁(27)で一旦、密室を作り、そこに圧力を注入して大流量型スライド弁(52)の圧力による摩擦をなくします。その事により大流量型スライド弁(52)の開閉が容易となります。弁の開閉回数の多いこの発電装置では弁の性能が重要になってきます。この方式であれば装置の負担が少なく装置の高寿命化が実現できます。扇柱圧力弁(27)は密閉度が少し良くない程度で大容量開閉弁の主機能としての役割を果たす事も充分可能です。The underwater pressure valve has a structure that supports the pressure with the fan column pressure valve support (28) of the rotating shaft of the fan column pressure valve (27) and closes the pressure with a fan-shaped arc surface as shown in Figs. The fan-shaped buried part acts as a piston cylinder. Piping from the drive pipe (13) to the drive cylinder part (14), the fan column pressure valve (27) is raised and lowered by pressure. The advantage of this fan column pressure valve (27) is that the pressure is supported by the rotating shaft, so the friction received from the pressure is the rotating shaft, and the pressure control is the fan part outside the rotation, so it is driven by the law of moment. This is because pressure control is advantageous against friction that hinders friction. Next, we make use of the feature of the fan column pressure valve (27) to assist in opening and closing the large flow type slide valve (52) with a high degree of sealing. As with Fig. 7, the large-flow type slide valve (52) closed with pressure is difficult to open and close due to friction, but as shown in Fig. 17, a fan chamber pressure valve (27) once created a closed chamber, Pressure is injected to eliminate friction caused by the pressure of the large flow type slide valve (52). This makes it easy to open and close the large flow type slide valve (52). Valve performance is important in this generator with many valve opening and closing times. With this method, the life of the device can be extended with less burden on the device. The fan column pressure valve (27) can play a role as the main function of a large capacity on-off valve with a little poor sealing.

潮位差で水源を確保する水門において、図18の様にシーソーの原理で水門閉水部(29)が水門重量バランス部(31)により水門回転部(30)でバランスされていて、水位差に反応じ開閉する水門になります。図20、図21で解る様に水門の水門閉水部(29)が水圧や水流に反応して、塞き止めたい側の水位が上がると水流で蓋をして、さらに水圧で密閉度を上げる事になります。基本的には水門回転部(30)の回転軸が水平でも垂直でも動作可能ですが、水位が水門より下がる場合は、自重による摩擦で動作しにくくなる為に回転軸が水平の方が回転軸を水中に配置する環境を作り易くなります。水門の水門閉水部(29)が蓋をする瞬間に大きな衝撃が発生しますが、図18、図22で示す様に、水門閉鎖時衝撃吸収部(32)と圧力封入ビット(37)で塞がる瞬間に水を密閉する構造を作り蓋が閉じる瞬間の速度を遅くする事ができます。また、水門重量バランス部(31)と駆動装置シリンダー部(14)にピストンシリンダー構造を作ると圧力制御により開閉する事ができます。またシリンダー部に圧力を開放する弁を付けると圧力制御と自然開閉の両方の機能を持つ事ができます。次に、この開閉弁が水中のみの動作環境であるなら、材料の比重を水に近くした場合に、図23の様に水門重量バランス部(31)を外しても、水の比重に近いと、水中では漂う様に自重による摩擦もなく、水流に反応する様になります。わずかの比重の差で水門閉水部(29)と水門回転部(30)が重いなら、水圧の差がなく水流のない状態で、水門閉水部(29)と水門回転部(30)は自重で自然に蓋をする事になります。In the sluice that secures the water source by the tide level difference, the sluice closing part (29) is balanced by the sluice weight balance part (31) at the sluice rotary part (30) by the principle of seesaw as shown in FIG. It becomes a sluice that opens and closes in response. As shown in FIGS. 20 and 21, the sluice closing part (29) of the sluice reacts to water pressure and water flow, and when the water level on the side to be blocked rises, it is covered with water flow and further sealed with water pressure. Will be raised. Basically, the rotary shaft of the sluice rotation part (30) can be operated both horizontally and vertically, but when the water level falls below the sluice gate, it becomes difficult to operate due to friction due to its own weight. This makes it easier to create an environment for placing underwater. A large impact is generated at the moment when the sluice closing part (29) of the sluice is covered, but as shown in FIGS. 18 and 22, the impact absorbing part (32) and the pressure sealing bit (37) when the sluice is closed The structure that seals water at the moment of closing can be made and the speed at the moment of closing the lid can be slowed down. Moreover, if a piston cylinder structure is made in the sluice weight balance part (31) and the drive unit cylinder part (14), it can be opened and closed by pressure control. If a valve that releases pressure is attached to the cylinder, it can have both pressure control and natural opening and closing functions. Next, if this open / close valve is an underwater-only operating environment, when the specific gravity of the material is close to that of water, even if the sluice weight balance portion (31) is removed as shown in FIG. As it drifts in the water, it will react to the water flow without friction due to its own weight. If the sluice closing part (29) and the sluice rotating part (30) are heavy with a slight difference in specific gravity, the sluice closing part (29) and the sluice rotating part (30) It will naturally cover with its own weight.

潮位差を利用する発電の場合に図24の様に水門の開閉により、大潮期の満潮時に多段式最高水位水源(38)を確保し、干潮時に多段式最低水位水源(41)を確保し水門を閉じ、大潮期でない場合もその潮位差の程度による多段式高水位水源(39)と多段式最低水位水源(41)を確保します。そして、多段式タンク内最高水位水面(42)の給水のみを多段式最高水位水源(38)にし、多段式タンク内最低水位水面(45)の排水のみを多段式最低水位水源(41)にする事により水源の節約を行います。この手法は、潮位差発電にかかわらず、水源確保の高水位差が得難い環境で有効な手法になります。In the case of power generation using the tide level difference, the sluice gate is opened and closed as shown in Fig. 24 to secure the multi-stage maximum water level water source (38) at high tide during the high tide and to secure the multi-stage minimum water level water source (41) at low tide. The multi-stage high water level water source (39) and the multi-stage minimum water level water source (41) are secured according to the level of the tide level even when it is not in the high tide period. Then, only the water supply of the highest water level (42) in the multistage tank is used as the multistage highest water level (38), and only the drainage of the lowest water level (45) in the multistage tank is used as the multistage lowest water level (41). We save water source by things. This method is effective in an environment where it is difficult to obtain a high water level difference to secure a water source regardless of tidal level power generation.

本発明上記の内容を連動して行うには、当然の事ながら人による制御は無理があります。給排水弁、給排気弁、タービン、その他の駆動制御やセンサー情報などを総合的に管理する電子制御装置が必要になります。In order to perform the above-described contents in conjunction with the present invention, it is natural that human control is impossible. An electronic control unit that comprehensively manages the drive control and sensor information of the water supply / drainage valve, air supply / exhaust valve, turbine, etc. is required.

図25における様な潮位差発電において、上記発明の様に多くの装置を使うのではなく、発電用タンクを海中に置き海中部を開放にし、潮位の上下によってのみ発電するもので、発電効率は悪く大潮期にしか大きな電力を得られませんが、海岸施設の追加機能であれば実用性が出て来ます。In the tide difference power generation as shown in FIG. 25, a large number of devices are not used as in the above invention, but a power generation tank is placed in the sea, the underwater part is opened, and power is generated only by raising and lowering the tide level. It is bad, and you can get a large amount of electricity only during the spring tide, but if it is an additional function of the coastal facility, it will be practical.

二つの水位差の水源があるところに、タンク上部は高い水位の水面、タンク下部は低い水位の水面より低くなるように発電用タンク(1)を設置します。高水位水源(5)の水中に給水弁(3)を設置し、低水位水源(6)の水中に排水弁(4)を設置します。そして発電用タンク(1)の上部に発電用タービン(2)を配置します。The power generation tank (1) is installed where there is a water source with two water level differences, so that the upper tank level is lower than the lower water level. A water supply valve (3) is installed in the water of the high water level water source (5), and a drain valve (4) is installed in the water of the low water level water source (6). The power generation turbine (2) is placed above the power generation tank (1).

満水で減圧状態の発電用タンク(8)の吸気口と減水で加圧状態の発電用タンク(9)の排気口の間に発電用タービン(2)を配置します。A power generation turbine (2) is placed between the intake port of the power generation tank (8) that is full and depressurized and the exhaust port of the power generation tank (9) that is depressurized and low in water.

制御用加圧タンク
発明の実施の形態0019と同様構造で、制御用加圧タンク(10)と制御用減圧タンク(11)の上部は発電用タービン(2)からエアーバルブ(16)に変わります。ピストンシリンダー構造のスライド弁(15)の駆動装置シリンダー部(14)内から駆動管(13)を配管します。この駆動管(13)を水上で加減圧されたエアーバルブ(16)に接続します。駆動管(13)の水面の位置に水面維持タンク(17)を付けます。
Pressure tank for control The structure is the same as that of the embodiment of the invention. The upper part of the pressure tank for control (10) and the pressure reduction tank for control (11) is changed from the turbine for power generation (2) to the air valve (16). . The drive pipe (13) is piped from the inside of the drive cylinder section (14) of the piston cylinder structure slide valve (15). Connect this drive pipe (13) to an air valve (16) that has been pressurized and decompressed on water. Attach the water surface maintenance tank (17) to the water surface position of the drive pipe (13).

増圧制御用減圧タンク(18)の水中と増圧制御用加圧タンク(19)の水中をつなげ、制御用加圧タンク(10)の排気口を増圧制御用減圧タンク(18)の吸気口に接続し、増圧制御用加圧タンク(19)の排気口を圧力計に接続します。The water in the pressure-increasing control decompression tank (18) and the water in the pressure-increasing control pressurizing tank (19) are connected, and the exhaust port of the pressure-increasing control tank (10) is connected to the intake of the pressure-increasing control decompression tank (18). Connect the exhaust port of the pressure increase tank (19) for pressure increase control to the pressure gauge.

スライド弁(15)の圧力通路1(54)に対し逆方向の圧力通路2(55)、圧力通路3(56)をスライド弁(15)のスライド方向に対し直角の両方向に1/2の断面積で均等に配置する。すなわち、スライド弁(15)の片面に圧力入力通路(22)と圧力出力通路(23)が両方存在する為に、圧力入出力通路の配管はスライド弁(15)を囲む様な形になります。次に位置検出装置には、スライド弁(15)の規定位置に圧力検出口(25)と位置検出用圧力バイパス穴(24)が重なるように配置。スライド弁(15)の駆動源には、発明の実施の形態0021の手法で制御します。次にスライド弁(15)の暴走防止構造には、規定位置で駆動装置シリンダー部(14)の圧力が抜ける様にシリンダー静止用圧力バイパス口(26)を配置します。次に、スライド弁(15)の衝突防止構造には、規定位置より駆動装置シリンダー部(14)とスライド弁(15)に圧力の抜け道がない様な形状を構成する。The pressure passage 2 (55) and the pressure passage 3 (56) in the opposite direction to the pressure passage 1 (54) of the slide valve (15) are cut in half in both directions perpendicular to the slide direction of the slide valve (15). Arrange evenly by area. That is, because both the pressure input passage (22) and the pressure output passage (23) exist on one side of the slide valve (15), the pressure input / output passage piping is shaped to surround the slide valve (15). . Next, the position detection device is arranged so that the pressure detection port (25) and the position detection pressure bypass hole (24) overlap the specified position of the slide valve (15). The drive source of the slide valve (15) is controlled by the method of the embodiment 0021 of the invention. Next, in the structure for preventing runaway of the slide valve (15), a cylinder static pressure bypass port (26) is arranged so that the pressure of the drive unit cylinder (14) is released at the specified position. Next, the anti-collision structure of the slide valve (15) is configured so that there is no passage of pressure between the drive cylinder portion (14) and the slide valve (15) from the specified position.

扇柱圧力弁開閉部(27)の円弧面で水流を塞ぎ、扇柱圧力弁支持部(28)の回転軸で回転し水圧を支えます。扇状の埋まっている部分をピストンシリンダー構造にします。大流量型スライド弁(52)の開閉潤滑装置には、大流量型スライド弁(52)の低圧側の空間を塞ぐ様に扇柱圧力弁開閉部(27)を配置し、その空間に発明の実施の形態0023の圧力路を配管する。The water flow is blocked by the circular arc surface of the fan column pressure valve opening / closing part (27), and it rotates on the rotation axis of the fan column pressure valve support part (28) to support the water pressure. The fan-shaped buried part has a piston-cylinder structure. The open / close lubrication device for the large flow type slide valve (52) is provided with a fan column pressure valve opening / closing part (27) so as to close the low pressure side space of the large flow type slide valve (52), The pressure path of the embodiment 0023 is piped.

シーソーの原理で水門閉水部(29)と水門重量バランス部(31)が水門回転部(30)で重量バランスされています。水門重量バランス部(31)と駆動装置シリンダー部(14)でピストンシリンダー構造を形成します。駆動装置シリンダー部(14)に駆動管(13)を配管する。また、水門閉水部(29)と水門回転部(30)を海水もしくは水の比重と近い素材や構造で構成し、水門重量バランス部(31)を省略する。Due to the seesaw principle, the sluice closing part (29) and the sluice weight balance part (31) are weight balanced by the sluice rotation part (30). Piston cylinder structure is formed by sluice weight balance part (31) and drive cylinder part (14). A drive pipe (13) is piped to the drive cylinder section (14). Moreover, the sluice closing part (29) and the sluice rotation part (30) are comprised with the raw material and structure close | similar to the specific gravity of seawater or water, and a sluice weight balance part (31) is abbreviate | omitted.

多段式水源発電用タンク(53)の多段式最高水位水源(38)は最高水位水源用給水弁(46)で給水する。多段式高水位水源(39)は高水位水源用給水弁(47)で給水する。多段式低水位水源(40)は低水位水源用排水弁(48)で排水する。多段式最低水位水源(41)は最低水位水源用排水弁(49)で排水する様に配置。  The multi-stage maximum water level water source (38) of the multi-stage water source power generation tank (53) is supplied by the maximum water level water source water supply valve (46). The multi-stage high water level water source (39) is supplied by a high water level water source water supply valve (47). The multistage low water level water source (40) is drained by a low water level water source drain valve (48). The multi-stage lowest water level water source (41) is arranged to drain by the lowest water level water source drain valve (49).

発電用タンク(1)を海中に置き海中部を開放にします。Place the power generation tank (1) in the sea and open the sea.

発明の効果The invention's effect

新しい発電方法で自然エネルギー利用の範囲を増やす事が出来る。  New power generation methods can increase the range of natural energy use.

発電用タンクを用いた排水時発電図  Power generation diagram during drainage using a power generation tank 発電用タンクを用いた給水時発電図  Power generation diagram during water supply using power generation tank 発電用タンクを2連にした水力発電装置図  Hydroelectric power generator with two power generation tanks 加圧の水中駆動制御図  Pressurized underwater drive control diagram 減圧の水中駆動制御図  Decompression underwater drive control diagram タンクを3連にした増圧装置図  Booster diagram with three tanks スライド弁が圧力で開かない状態の図  Illustration of slide valve not opening due to pressure スライド弁の水流の見取図  A sketch of the water flow of the slide valve スライド弁開放時の水流と圧力図  Water flow and pressure when the slide valve is open スライド弁閉鎖時の水流と圧力図  Water flow and pressure diagram when slide valve is closed スライド弁の駆動制御装置図  Slide valve drive controller diagram 水中制御の位置センサー図  Position sensor diagram for underwater control 水中制御のリミッター図  Limiter diagram for underwater control 水中制御の衝突防止図  Underwater control collision prevention diagram 扇柱圧力弁の見取図  Layout of fan column pressure valve 扇柱圧力弁の動作図  Operational diagram of fan column pressure valve スライド弁の開閉補助をする扇柱圧力弁の動作図  Operational diagram of fan column pressure valve that assists in opening and closing the slide valve 重量バランス構造の水門の見取図  Outline drawing of sluice gate with weight balance structure 重量バランス構造の水門の動作図  Operation diagram of sluice with weight balance structure 重量バランス構造の水門の開門動作図  Opening operation diagram of sluice gate with weight balance structure 重量バランス構造の水門の閉門動作図  Closed operation diagram of sluice gate with weight balance structure 重量バランス構造の水門の閉門時の衝撃吸収の動作図  Action diagram of shock absorption when closing a sluice gate with weight balance structure 重量バランス構造を省略した開閉弁の見取図  A sketch of the on-off valve without the weight balance structure 多段水位式水源の発電用タンクの水位図  Water level diagram of power generation tank of multistage water source 満潮、干潮の水位変化のみで発電する装置図  Equipment diagram that generates electricity only by changing the water level at high tide and low tide

符号の説明Explanation of symbols

1 、発電用タンク
2 、発電用タービン
3 、給水弁
4 、排水弁
5 、高水位水源
6 、低水位水源
7 、発電用タンク内水位
8 、満水で減圧状態の発電用タンク
9 、減水で加圧状態の発電用タンク
10 、制御用加圧タンク
11 、制御用減圧タンク
12 、制御用タンク内水位
13 、駆動管
14 、駆動装置シリンダー部
15 、スライド弁
16 、エアーバルブ
17 、水面維持タンク
18 、増圧制御用減圧タンク
19 、増圧制御用加圧タンク
20 、加減圧修了時水位
21 、タンク間水路制御バルブ
22 、圧力入力通路
23 、圧力出力通路
24 、位置検出用圧力バイパス穴
25 、圧力検出口
26 、シリンダー静止用圧力バイパス口
27 、扇柱圧力弁開閉部
28 、扇柱圧力弁支持部
29 、水門閉水部
30 、水門回転部
31 、水門重量バランス部
32 、水門閉鎖時衝撃吸収部
33 、圧力制御及び圧力開放部
34 、増水位側水源
35 、減水位側水源
36 、水門閉水部並側板
37 、圧力封入ビット
38 、多段式最高水位水源
39 、多段式高水位水源
40 、多段式低水位水源
41 、多段式最低水位水源
42 、多段式タンク内最高水位水面
43 、多段式タンク内高水位水面
44 、多段式タンク内低水位水面
45 、多段式タンク内最低水位水面
46 、最高水位水源用給水弁
47 、高水位水源用給水弁
48 、低水位水源用排水弁
49 、最低水位水源用排水弁
50 、満潮時水位
51 、干潮時水位
52 、大流量型スライド弁
53 、多段式水源発電用タンク
54 、圧力通路1
55 、圧力通路2
56 、圧力通路3
1, Power generation tank 2, Power generation turbine 3, Water supply valve 4, Drain valve 5, High water level water source 6, Low water level water source 7, Water level in power generation tank 8, Power generation tank 9 in full and depressurized state Pressure generating tank 10, control pressurized tank 11, control decompression tank 12, control tank water level 13, drive pipe 14, drive cylinder section 15, slide valve 16, air valve 17, water surface maintenance tank 18 , Pressure increase control decompression tank 19, pressure increase control pressurization tank 20, water level 21 upon completion of pressure increase / decrease, inter-tank water passage control valve 22, pressure input passage 23, pressure output passage 24, position detection pressure bypass hole 25, Pressure detection port 26, cylinder static pressure bypass port 27, fan column pressure valve opening / closing unit 28, fan column pressure valve support unit 29, sluice gate closing unit 30, sluice rotary unit 31, sluice weight balance Part 32, sluice closing shock absorber 33, pressure control and pressure release part 34, increased water level side water source 35, reduced water level side water source 36, sluice closed part parallel side plate 37, pressure sealing bit 38, multistage maximum water level water source 39 , Multi-stage type high water level water source 40, multi-stage type low water level water source 41, multi-stage type low water level water source 42, multi-stage type tank high water level surface 43, multi-stage type tank high water level water level 44, multi-stage type tank low water level water level 45, multi-stage type Water level valve 46 for the highest water level, water supply valve 48 for the high water level water source, drain valve 49 for the low water level water source, drain valve 50 for the lowest water level water source, water level 51 at high tide, water level 52 at low tide, Large flow type slide valve 53, multistage water source power generation tank 54, pressure passage 1
55, pressure passage 2
56, pressure passage 3

Claims (17)

二つの水位の水源がある水力発電において、水位の高低の範囲に発電用タンクを配置し、高水位側の水中に給水弁を持ち、低水位側の水中に排水弁を持ち発電用タンクの上部給排気口に発電用タービンを接続し、給水時は給水弁を開け排水弁を止める。排水時は給水弁を止め排水弁を止める。この給水時と排水時のタンク内の気圧の変化で発電用タービンを回転させ、水力発電をおこなう装置。In hydropower generation with two water sources, a power generation tank is placed in the high and low water range, a water supply valve is provided in the high water level, a drainage valve is provided in the low water level, and the upper part of the power generation tank. A turbine for power generation is connected to the air supply / exhaust port. When water is supplied, the water supply valve is opened and the drain valve is stopped. When draining, stop the water supply valve and stop the drain valve. A device that performs hydroelectric power generation by rotating the turbine for power generation according to the change in atmospheric pressure in the tank during water supply and drainage. 請求項1の発電において、発電用タンク2基の給排気口を連結させた間に発電タービンを配置し、2基の発電用タンクの給水と排水が逆になる様に、水力発電をおこなう装置。2. The power generation apparatus according to claim 1, wherein a power generation turbine is arranged while the supply and exhaust ports of the two power generation tanks are connected, and hydroelectric power generation is performed so that water supply and drainage of the two power generation tanks are reversed. . 請求項1、請求項2において、請求項1の発電用タンクと同じ原理のタンクを用いて、タンクの給排気口からの圧力を利用し圧力制御を行う装置。3. The apparatus according to claim 1, wherein the pressure control is performed by using a tank having the same principle as that of the power generation tank according to claim 1 and utilizing a pressure from a supply / exhaust port of the tank. 請求項1、請求項2、請求項3の発電用のタンクと制御用のタンクにおいて、請求項1の発電用タンクと同じ原理のタンク2器を用いて、1基を満水で弁を全て閉鎖し、もう1基を排水済みで弁を全て閉鎖されたタンクの状態の組合せで、2基の水中を接続し、このどちらかのタンクの給排気口に対し、加圧の排気口と減圧の吸気口の組合せで、請求項1のタンクと接続し、圧力を増圧させる装置。さらに、本請求項の水中を接続した2基のタンクを多段に組合せて圧力を増圧させる装置。In the power generation tank and the control tank according to claim 1, claim 2 and claim 3, using two tanks of the same principle as the power generation tank according to claim 1, one valve is full and all valves are closed. Then, a combination of the state of the tank that has already been drained and the valves are all closed, and two submersible waters are connected. A device connected to the tank of claim 1 to increase pressure by a combination of intake ports. Furthermore, the apparatus which increases pressure by combining two tanks which connected the underwater of this claim in multiple stages. 請求項3の圧力による駆動の配管で水中の装置の加減圧駆動において、水中装置を動かす事により配管内の水面が上下し駆動装置に送る圧力が低下するのを防ぐ為に駆動管の水面位置の配管内の体積を増やす事により圧力駆動時の配管内の水面の移動を低減する装置。In the pressure-increasing and depressurization driving of the underwater device with the pipe driven by the pressure according to claim 3, the water surface position of the drive pipe is prevented in order to prevent the water level in the pipe from moving up and down by moving the underwater device and reducing the pressure sent to the driving device. A device that reduces the movement of the water surface in the pipe during pressure driving by increasing the volume in the pipe. 請求項3、請求項5の圧力開閉弁駆動において、多方向の圧力入出路を持ち、その圧力入出路の大きさと方向により、開閉時の圧力開閉部に掛かる圧力ベクトルをバランスさせ、圧力開閉弁の開閉時の摩擦を減らしたもので、請求項1の制御の用途に特定しない液体中と気体中の圧力弁潤滑駆動装置。6. The pressure on / off valve drive according to claim 3, wherein the pressure on / off valve has a multi-directional pressure inlet / outlet path, and the pressure vector applied to the pressure on / off portion at the time of opening / closing is balanced according to the size and direction of the pressure inlet / outlet path. A pressure valve lubrication drive device in liquid and gas, in which friction at the time of opening and closing is reduced and not specified for the control application of claim 1. 請求項3、請求項4、請求項5、請求項6の圧力駆動において、圧力駆動部および圧力非駆動部に施工された形状が、検出位置以外では検出用配管の口を塞ぐ状態であったのが、駆動部の回転や移動で検出したい位置で、検出用配管の口が水中に繋がる事により、圧力の変化を水上で検出するものであり、請求項1の制御の用途に特定しない水中の位置検出装置。In the pressure driving according to claim 3, claim 4, claim 5, and claim 6, the shape constructed in the pressure driving portion and the pressure non-driving portion is in a state of closing the mouth of the detection pipe except at the detection position. In this case, a change in pressure is detected on the water by connecting the mouth of the detection pipe to the water at a position where it is desired to detect the rotation or movement of the drive unit. Position detector. 請求項3、請求項4、請求項5、請求項6、請求項7の圧力駆動装置において、圧力が掛けられても停止させたい位置で、駆動部や非駆動部に施工された形状で駆動部の回転や移動で、シリンダー構造の内部から外部の水中に圧力がバイパスされる構造により、駆動部を静止させる事の出来るもので、請求項1の制御の用途に特定しない水中の圧力駆動静止装置。The pressure driving device according to any one of claims 3, 4, 5, 6, and 7 is driven at a position where it is desired to stop even if pressure is applied, in a shape applied to a driving part or a non-driving part. The drive unit can be stopped by a structure in which the pressure is bypassed from the inside of the cylinder structure to the outside water by the rotation and movement of the part, and the pressure driven stationary in water not specified for the control application of claim 1 apparatus. 請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項10、請求項11、請求項12、請求項13において、水中駆動の接触時の衝撃を和らげたいところに、駆動部が接触する手前に圧力封入構造を作り、圧力封入構造の容積とそこから洩れる量を施工された形状で設定する事で駆動部の接触スピードを落し衝撃を和らげるもので、請求項1の制御の用途に特定しない液体中の衝撃吸収装置。In claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 10, claim 11, claim 13, the shock at the time of underwater drive contact is alleviated. The pressure sealing structure is made just before the drive part comes in contact, and the volume of the pressure sealing structure and the amount of leakage from the pressure sealing structure are set in the installed shape to reduce the contact speed of the drive part and reduce the impact. A shock absorber in liquid not specified for the control application according to claim 1. 請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項12、請求項13、請求項14において、扇柱の回転軸で水の圧力をささえ、扇柱の円弧面で水の圧力を塞ぎ、扇柱の回転方向のピストン構造で駆動制御を行うものであり、請求項1の制御の用途に特定しない液体中の圧力弁。In claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, claim 12, claim 13, and claim 14, the water pressure at the rotation axis of the fan column. The pressure valve in the liquid which does not specify the use of the control of Claim 1 which block | closes the pressure of water with the circular arc surface of a fan pillar, and performs drive control with the piston structure of the rotation direction of a fan pillar. 請求項3、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、請求項12、請求項13、請求項14において、高圧側から蓋をする構造の圧力弁を開ける場合に、圧力弁の高圧側もしくは低圧側から請求項10の扇状開閉弁と上記圧力弁の間に一時的に圧力密室を作り、この圧力密室の圧力を制御する事により上記圧力弁の開閉を容易にしたもので、請求項1の制御の用途に特定しない液体中の圧力弁潤滑開閉装置。In claim 3, claim 5, claim 6, claim 7, claim 8, claim 9, claim 10, claim 13, claim 14, the pressure of the structure that covers from the high pressure side When the valve is opened, a pressure tight chamber is temporarily formed between the fan-shaped on-off valve of claim 10 and the pressure valve from the high pressure side or the low pressure side of the pressure valve, and the pressure valve is controlled by controlling the pressure in the pressure tight chamber. A pressure valve lubrication switching device in liquid which is easy to open and close and which is not specified for the control application of claim 1. 請求項1、請求項2、請求項3、請求項4の開閉弁において、シーソー構造を持ち、シーソーの片側で給排水の開閉機能を持ち、シーソーの反対側で重量をバランスしていて、開閉機能側は水圧と水流に反応して動き、給水もしくは排水の流れを一方方向に自然開閉で行えるもので、請求項1の用途に特定しない水中開閉装置。The open / close valve according to claim 1, having a seesaw structure, having an open / close function of water supply / drainage on one side of the seesaw, and balancing the weight on the opposite side of the seesaw. The underwater switchgear which is not specified for the application according to claim 1, wherein the side moves in response to water pressure and water flow, and can open or close the water supply or drainage flow in one direction. 請求項12の重量のバランス側でピストンシリンダー構造を構成し、圧力による制御を可能にした装置で、請求項1の用途に特定しない水中開閉装置。The underwater switchgear which does not specify the use of Claim 1 with the apparatus which comprised the piston cylinder structure on the balance side of the weight of Claim 12, and enabled control by pressure. 請求項13において、圧力制御を圧力切替え弁の圧力開放により請求項12の機能を持ち、圧力切替え弁を圧力の制御側に接続し、請求項13の機能の両方の機能が共存するもので、請求項1の用途に特定しない水中開閉装置。In claim 13, the pressure control has the function of claim 12 by releasing the pressure of the pressure switching valve, the pressure switching valve is connected to the pressure control side, and both functions of claim 13 coexist. The underwater switchgear which is not specified for the use of Claim 1. 請求項12において、開閉動作を液体中に特定し、開閉弁を構成する素材および空洞構造で液体の比重と近くする事により、請求項12の重量のバランスをさせている部分を省略し、開閉部と回転軸のみで構成される開閉弁で、開閉機能側は水圧と水流に反応して動き、給水もしくは排水の流れを一方方向に自然開閉で行えるもので、請求項1の用途に特定しない水中開閉装置。In claim 12, the opening / closing operation is specified in the liquid, and the material and the cavity structure constituting the opening / closing valve are made close to the specific gravity of the liquid, thereby omitting the weight-balancing portion of claim 12. An on-off valve composed of only a part and a rotating shaft, the on-off function side moves in response to water pressure and water flow, and can perform water supply or drainage flow in one direction by natural opening and closing, and is not specified for use in claim 1 Underwater switchgear. 請求項1、請求項2、請求項4の発電を行う為の水源の水位差確保手段において、環境の変化に合わせ段階的に水位差の違う水源を確保し、発電用タンクの給排水において、発電用タンク内の水位に合わせ給排水する水源を切り替える事により、高水位差の水源の節約を行う、水源節約装置。In the means for ensuring the difference in water level of the water source for power generation according to claim 1, claim 2, and claim 4, water sources with different water level differences are secured step by step in accordance with environmental changes, and Water source conserving device that saves water source with high water level difference by switching the water source to supply and drain according to the water level in the tank. 請求項1の発電用タンクを海中に置き海中部を開放にしておき潮位の上下によってのみ発電する潮位差発電装置。A tide difference power generation apparatus that generates electricity only by raising and lowering the tide level with the power generation tank according to claim 1 placed in the sea and the undersea portion opened.
JP2005154588A 2005-04-25 2005-04-25 Slide valve Expired - Fee Related JP4151907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154588A JP4151907B2 (en) 2005-04-25 2005-04-25 Slide valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154588A JP4151907B2 (en) 2005-04-25 2005-04-25 Slide valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008128885A Division JP4304641B2 (en) 2008-05-15 2008-05-15 Pressure generating device, pressure generating method, and water source manufacturing method

Publications (3)

Publication Number Publication Date
JP2006307818A true JP2006307818A (en) 2006-11-09
JP2006307818A5 JP2006307818A5 (en) 2008-04-03
JP4151907B2 JP4151907B2 (en) 2008-09-17

Family

ID=37474978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154588A Expired - Fee Related JP4151907B2 (en) 2005-04-25 2005-04-25 Slide valve

Country Status (1)

Country Link
JP (1) JP4151907B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095464A1 (en) * 2009-02-23 2010-08-26 Ikemura Masahiro Device for power generation with large flow rate by small water-level difference
CN104454294A (en) * 2013-09-18 2015-03-25 蒋承国 Hydraulic water pumped storage power generation device
JP7178753B1 (en) * 2022-06-23 2022-11-28 雄三郎 伊東 Power generator using tidal force and gravitational force

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103615349A (en) * 2013-12-13 2014-03-05 哈尔滨北方通用机电设备工程有限公司 Riverbed non-dam type hydroelectric generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095464A1 (en) * 2009-02-23 2010-08-26 Ikemura Masahiro Device for power generation with large flow rate by small water-level difference
CN104454294A (en) * 2013-09-18 2015-03-25 蒋承国 Hydraulic water pumped storage power generation device
JP7178753B1 (en) * 2022-06-23 2022-11-28 雄三郎 伊東 Power generator using tidal force and gravitational force

Also Published As

Publication number Publication date
JP4151907B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
AU2018293589B9 (en) Improved reversible pump-turbine installation
US4464080A (en) High volume tidal or current flow harnessing system
US7199483B2 (en) Tidal power generation
US9752452B2 (en) Turbine manifold assembly
CN103485971A (en) Ocean island wave power generation device
JP2006307818A (en) Tank water supply and drainage type hydroelectric power generation and tidal power generation
CN101260857A (en) Generating set for levitating force switching to pressure
JP2006307818A5 (en)
US10662926B2 (en) Floating wind energy harvesting apparatus with braking arrangement, and a method of controlling a rotational speed of the apparatus
KR20100046701A (en) Turbine for tidal current power plant with a generator sealed by air
JP4304641B2 (en) Pressure generating device, pressure generating method, and water source manufacturing method
CN203670088U (en) Tidal power generating device
TW201104070A (en) Power generation
CN107152425B (en) Pressure-releasing type anti-swing control device and method in revolution positioning braking process
KR20090108198A (en) A hydraulic shutting device for floodgate
US9541055B2 (en) Water pressure power-generating system
WO2022041094A1 (en) Internal energy power generation device
RU2214530C1 (en) Hydrogas power plant
JP2015222024A (en) Floating power generation device and floating wind power generation device
EP4184002A1 (en) Hydropower barge
US20100313563A1 (en) Hydraulic engine
RU2127373C1 (en) Hydroelectric power plant
JP5015022B2 (en) Pump equipment and flap equipment flap prevention method for pump equipment
EP3645794A1 (en) Improved reversible pump-turbine installation
KR100662055B1 (en) Flow power generating system using wave power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees