JP2006307737A - Starting control device of cylinder injection internal combustion engine - Google Patents

Starting control device of cylinder injection internal combustion engine Download PDF

Info

Publication number
JP2006307737A
JP2006307737A JP2005131000A JP2005131000A JP2006307737A JP 2006307737 A JP2006307737 A JP 2006307737A JP 2005131000 A JP2005131000 A JP 2005131000A JP 2005131000 A JP2005131000 A JP 2005131000A JP 2006307737 A JP2006307737 A JP 2006307737A
Authority
JP
Japan
Prior art keywords
fuel
injection
fuel pressure
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005131000A
Other languages
Japanese (ja)
Inventor
Osamu Fukazawa
修 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005131000A priority Critical patent/JP2006307737A/en
Publication of JP2006307737A publication Critical patent/JP2006307737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a sudden change in starting time by a little difference in the cooling water temperature, in a system for controlling a boosting start. <P>SOLUTION: This starting control device performs " the boosting start " for taking preference of a fuel pressure increase by prohibiting starting time fuel injection in the whole temperature area, regardless of the detecting cooling water temperature of a cooling water temperature sensor 32, when detecting fuel pressure of a fuel pressure sensor 29 is predetermined injection allowable fuel pressure or less in starting. Afterwards, when starting the fuel injection when the detecting fuel pressure of the fuel pressure sensor 29 exceeds the injection allowable fuel pressure, a determination is made on to which of three temperature areas of the low temperature, the medium temperature and the high temperature the detecting cooling water temperature of the cooling water temperature sensor 32 corresponds, and the starting time injection timing is set to an intake stroke in a low temperature area and a high temperature area, and the starting time injection timing is set to a compression stroke in a medium temperature area. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、始動時に燃圧を早期に上昇させる機能を備えた筒内噴射式の内燃機関の始動制御装置に関する発明である。   The present invention relates to a start control device for an in-cylinder injection type internal combustion engine having a function of increasing the fuel pressure early at the start.

気筒内に燃料を直接噴射する筒内噴射エンジンは、吸気ポートに噴射する吸気ポート噴射エンジンと比較して、噴射から燃焼までの時間が短く、噴射燃料を霧化させる時間を十分に稼ぐことができないため、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、筒内噴射エンジンでは、燃料タンクから低圧ポンプで汲み上げた燃料を、エンジンのカム軸で駆動する高圧ポンプにより高圧にして燃料噴射弁へ圧送するようにしている。   An in-cylinder injection engine that directly injects fuel into a cylinder has a shorter time from injection to combustion than an intake port injection engine that injects fuel into an intake port, and can earn enough time to atomize injected fuel. Therefore, it is necessary to atomize the injected fuel by increasing the injection pressure. For this reason, in the cylinder injection engine, the fuel pumped up from the fuel tank by the low pressure pump is increased in pressure by the high pressure pump driven by the cam shaft of the engine and is pumped to the fuel injection valve.

エンジン停止中は、高圧ポンプや低圧ポンプも停止するため、時間の経過とともに燃料配管内の燃圧が低下する。このため、エンジン停止時間が長くなると、燃圧がほとんど0MPaの状態まで低下するため、始動時に、燃圧が始動に適した高燃圧領域に上昇するまでに暫く時間がかかる。その結果、始動時には低燃圧で燃料を噴射することになるため、噴射燃料の微粒化が不十分となって燃焼性が悪化したり、筒内ウエットが増加して、始動性が悪くなると共に、始動時のエミッションも悪くなる。   Since the high-pressure pump and the low-pressure pump are also stopped while the engine is stopped, the fuel pressure in the fuel pipe decreases with time. For this reason, when the engine stop time becomes long, the fuel pressure decreases to almost 0 MPa, and therefore it takes some time for the fuel pressure to rise to a high fuel pressure region suitable for starting at the time of starting. As a result, since the fuel is injected at a low fuel pressure at the time of starting, the atomization of the injected fuel is insufficient and the combustibility is deteriorated, the in-cylinder wet is increased, the startability is deteriorated, Emissions at start-up also get worse.

この対策として、筒内噴射エンジンの始動制御では、特許文献1(特開平11−270385号公報)、特許文献2(特開2004−218615号公報)に記載されているように、始動初期の所定期間に噴射を停止させて、その噴射停止期間中に高圧ポンプによって燃圧を始動に適した高燃圧領域に上昇させてから噴射を開始させる昇圧始動を行うようにしたものがある。   As a countermeasure against this, in the start control of the cylinder injection engine, as described in Patent Document 1 (Japanese Patent Laid-Open No. 11-270385) and Patent Document 2 (Japanese Patent Laid-Open No. 2004-218615), a predetermined value at the initial stage of starting is described. In some cases, the injection is stopped during the period, and during the injection stop period, the fuel pressure is raised to a high fuel pressure region suitable for the start by the high pressure pump, and then the boost start is performed to start the injection.

このような昇圧始動制御では、始動時に圧縮行程噴射を実施することで、更なるエミッションの改善が可能となるが、図3に示すように、始動時の冷却水温が低温のときには、スモーク発生や始動フィーリング悪化の問題を回避するために、圧縮行程噴射、昇圧始動を禁止して吸気行程噴射で始動し、また、始動時の冷却水温が高温のときには、噴射量が少なくなるため、燃焼しやすい成層混合気の形成が困難になる等の理由から圧縮行程噴射、昇圧始動を禁止して吸気行程噴射で始動するようにしている。
特開平11−270385号公報(第1頁等) 特開2004−218615号公報(第6頁〜第7頁等)
In such boost start-up control, it is possible to further improve the emission by performing the compression stroke injection at the start. However, as shown in FIG. 3, when the cooling water temperature at the start is low, smoke generation and In order to avoid the problem of deterioration of the start feeling, the compression stroke injection and the pressure boost start are prohibited and the intake stroke injection is started, and when the cooling water temperature at the time of start is high, the injection amount decreases, so The compression stroke injection and the pressure boost start are prohibited and the intake stroke injection is started for the reason that it becomes difficult to form a stratified mixture which is easy.
JP-A-11-270385 (first page, etc.) JP-A-2004-218615 (pages 6 to 7 etc.)

上記従来(図3)のように、冷却水温に応じて昇圧始動の有無を切り換えると、その切換温度付近では、少しの冷却水温の違いによって始動時間が急変して運転者に違和感を与えてしまう(図3の点線で囲んだ部分)。つまり、昇圧始動では、燃圧を噴射許可燃圧に昇圧するまでの昇圧時間中は燃料噴射が停止されるため、吸気行程噴射による通常始動と比較して始動時間が長くなることは避けられない。従って、低水温時や高水温時に、全面的に昇圧始動を禁止すると、低水温時の始動であるにも拘らず、始動時間が急に短くなったり、高水温側では、少し冷却水温が高くなっただけで始動時間が急に短くなったりすることがあり、これが運転者に違和感を与える原因となる。   When the presence or absence of boosting start is switched according to the cooling water temperature as in the conventional case (FIG. 3), the start time suddenly changes due to a slight difference in the cooling water temperature in the vicinity of the switching temperature, and the driver feels uncomfortable. (Part surrounded by a dotted line in FIG. 3). That is, in the boosting start, since the fuel injection is stopped during the boosting time until the fuel pressure is increased to the injection permitted fuel pressure, it is inevitable that the starting time becomes longer than the normal starting by the intake stroke injection. Therefore, if the boosting start is completely prohibited at low water temperature or high water temperature, the start-up time is suddenly shortened despite the low water temperature starting, or the cooling water temperature is slightly higher on the high water temperature side. The starting time may be suddenly shortened just by becoming, which causes the driver to feel uncomfortable.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、昇圧始動制御を行うシステムにおいて、少しの冷却水温の違いによって始動時間が急変することを防止できて、運転者の違和感を無くすことができる筒内噴射式の内燃機関の始動制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to prevent a start time from changing suddenly due to a slight difference in cooling water temperature in a system that performs boost start-up control. It is an object of the present invention to provide a start control device for a cylinder injection type internal combustion engine that can eliminate the discomfort.

上記目的を達成するために、請求項1に係る発明は、燃料噴射弁に供給される燃料の圧力(以下「燃圧」という)を検出する燃圧検出手段と、内燃機関の冷却水温を検出する冷却水温検出手段とを備え、始動制御手段は、始動時に燃圧検出手段の検出燃圧が所定燃圧以下のときに冷却水温検出手段の検出冷却水温とは関係なく始動時の燃料噴射を禁止して燃圧上昇を優先させ、燃圧検出手段の検出燃圧が所定燃圧を越えてから燃料噴射を開始する際に、冷却水温検出手段の検出冷却水温が所定温度以下のときには始動時の噴射時期を吸気行程に設定し、それ以外のときには始動時の噴射時期を圧縮行程に設定するようにしたものである。このようにすれば、始動時に、燃料噴射を禁止して燃圧上昇を優先させる“昇圧始動”を冷却水温とは関係なく全温度領域で実行できると共に、冷却水温に適した噴射方式で燃料を噴射して始動を行うことができる。これにより、少しの冷却水温の違いによって始動時間が急変することを防止できて、運転者の違和感を無くすことができると共に、低水温時のスモーク発生や始動フィーリング悪化の問題も吸気行程噴射によって解消することができる。   In order to achieve the above object, the invention according to claim 1 is directed to a fuel pressure detecting means for detecting the pressure of fuel supplied to the fuel injection valve (hereinafter referred to as “fuel pressure”), and a cooling for detecting the cooling water temperature of the internal combustion engine. A water temperature detecting means is provided, and the start control means prohibits fuel injection at the start and increases the fuel pressure regardless of the detected cooling water temperature of the cooling water temperature detecting means when the detected fuel pressure of the fuel pressure detecting means is below a predetermined fuel pressure at the time of starting. When starting fuel injection after the fuel pressure detected by the fuel pressure detection means exceeds the predetermined fuel pressure, if the cooling water temperature detected by the cooling water temperature detection means is lower than the predetermined temperature, the injection timing at start is set to the intake stroke. In other cases, the injection timing at the start is set to the compression stroke. In this way, at the time of start-up, “pressure boost start” that prohibits fuel injection and prioritizes increase in fuel pressure can be executed in the entire temperature range regardless of the coolant temperature, and fuel is injected by an injection method suitable for the coolant temperature. Can be started. As a result, it is possible to prevent the start time from changing suddenly due to a slight difference in cooling water temperature, to eliminate the driver's uncomfortable feeling, and to cause problems of smoke generation at low water temperature and deterioration of the start feeling by the intake stroke injection. Can be resolved.

ところで、圧縮行程噴射では、点火プラグの周辺に成層混合気を集めるために、噴射時期を圧縮TDC(上死点)付近まで遅角するため、点火時期も大幅に遅角する必要がある。低水温時には、始動後も、触媒早期暖機のために点火時期の遅角を継続することになるが、高水温時には、既に触媒が暖まっていて触媒早期暖機(点火時期の遅角)が不要であるため、始動後に直ちに点火時期を大きく進角させる必要があり、その際にトルクショックが発生する。また、圧縮行程噴射によって点火プラグの周辺に燃焼しやすい成層混合気を形成するためには、ある程度の噴射量が必要となるが、高水温時には、噴射量が少なくなるため、燃焼しやすい成層混合気の形成が困難になるという事情もある。   By the way, in the compression stroke injection, in order to collect the stratified mixture around the spark plug, the injection timing is retarded to the vicinity of the compression TDC (top dead center), and therefore, the ignition timing must be significantly retarded. When the water temperature is low, the ignition timing will continue to be retarded for early catalyst warm-up even after startup. However, at high water temperature, the catalyst is already warmed and the catalyst early warm-up (ignition timing retarded) Since it is not necessary, it is necessary to advance the ignition timing greatly immediately after starting, and torque shock occurs at that time. In addition, in order to form a stratified mixture that is easy to burn around the spark plug by compression stroke injection, a certain amount of injection is required, but at high water temperatures, the amount of injection decreases, so stratified mixing that is easy to burn There is also a situation where the formation of qi becomes difficult.

この対策として、請求項2のように、始動時に燃圧検出手段の検出燃圧が所定燃圧以下のときに冷却水温検出手段の検出冷却水温とは関係なく始動時の燃料噴射を禁止して燃圧上昇を優先させ、燃圧検出手段の検出燃圧が所定燃圧を越えてから燃料噴射を開始する際に、冷却水温検出手段の検出冷却水温が低温・中温・高温の3つの温度領域のいずれに該当するかを判定し、低温領域と高温領域では始動時の噴射時期を吸気行程に設定し、中温領域では始動時の噴射時期を圧縮行程に設定するようにしても良い。このようにすれば、前記請求項1と同様の効果を得ることができる上に、高温領域では始動時に吸気行程噴射を行うため、圧縮行程噴射とは異なり、始動時の点火時期を大幅に遅角する必要がなくなる。このため、始動後に点火時期を大幅に進角させる必要がなくなり、始動後の点火時期の進角によるトルクショックの問題を解消できると共に、高温領域で燃焼しやすい成層混合気の形成が困難になるという問題も、吸気行程噴射とすることで解消することができる。   As a countermeasure against this, as in claim 2, when the detected fuel pressure of the fuel pressure detecting means is equal to or lower than a predetermined fuel pressure at the start, fuel injection at the start is prohibited and the fuel pressure rises regardless of the detected coolant temperature of the coolant temperature detecting means. Priority is given to whether the detected coolant temperature of the coolant temperature detection means falls into one of three temperature ranges: low temperature, medium temperature, or high temperature when fuel injection is started after the detected fuel pressure of the fuel pressure detection means exceeds the predetermined fuel pressure. Determination may be made so that the injection timing at the start is set to the intake stroke in the low temperature region and the high temperature region, and the injection timing at the start is set to the compression stroke in the intermediate temperature region. In this way, the same effect as in the first aspect can be obtained, and in addition, since the intake stroke injection is performed at the start in the high temperature region, the ignition timing at the start is greatly delayed unlike the compression stroke injection. There is no need to horn. For this reason, it is not necessary to advance the ignition timing significantly after starting, which can solve the problem of torque shock due to the advance of the ignition timing after starting, and it becomes difficult to form a stratified mixture that easily burns in a high temperature region. This problem can be solved by using the intake stroke injection.

また、請求項3のように、始動時に燃圧検出手段の検出燃圧が所定燃圧以下のときに冷却水温検出手段の検出冷却水温とは関係なく始動時の燃料噴射を禁止して燃圧上昇を優先させ、燃圧検出手段の検出燃圧が所定燃圧を越えてから燃料噴射を開始する際に、冷却水温検出手段の検出冷却水温が極低温・低温・中温・高温の4つの温度領域のいずれに該当するかを判定し、極低温領域と高温領域では始動時の噴射時期を吸気行程に設定し、中温領域では始動時の噴射時期を圧縮行程に設定し、低温領域では吸気行程及び/又は圧縮行程で燃料を複数回に分割して噴射するようにしても良い。要するに、冷却水温が低くても、分割噴射を利用すれば、低燃費、低エミッションを実現できる温度領域が存在するため、低温側の温度領域を極低温領域と低温領域に分け、極低温領域では吸気行程噴射を行い、低温領域では吸気行程及び/又は圧縮行程で分割噴射を行うようにしたものであり、これにより、低温領域で燃焼性を向上させて低燃費、低エミッションを実現することができる。   Further, as in claim 3, when the detected fuel pressure of the fuel pressure detecting means is less than a predetermined fuel pressure at the start, fuel injection at the start is prohibited regardless of the detected coolant temperature of the cooling water temperature detecting means to give priority to an increase in fuel pressure. When the fuel injection is started after the fuel pressure detected by the fuel pressure detecting means exceeds the predetermined fuel pressure, the cooling water temperature detected by the cooling water temperature detecting means falls into one of the four temperature ranges of extremely low temperature, low temperature, medium temperature, and high temperature. In the extremely low temperature region and the high temperature region, the injection timing at the start is set to the intake stroke, in the intermediate temperature region, the injection timing at the start is set to the compression stroke, and in the low temperature region, the fuel is taken in the intake stroke and / or the compression stroke. May be divided into a plurality of times for injection. In short, even if the cooling water temperature is low, there is a temperature range that can achieve low fuel consumption and low emissions if split injection is used.Therefore, the temperature range on the low temperature side is divided into a cryogenic region and a low temperature region. The intake stroke injection is performed, and the split injection is performed in the intake stroke and / or the compression stroke in the low temperature region, thereby improving the combustibility in the low temperature region and realizing low fuel consumption and low emission. it can.

ところで、極低温時には、昇圧始動を行っても、要求噴射量が多いため、噴射毎に燃圧が大幅に低下して燃圧が脈動し、その影響で、実際の噴射量が不安定となって失火する可能性がある。   By the way, at extremely low temperatures, even if a boost start is performed, the required injection amount is large, so the fuel pressure drops significantly at each injection and the fuel pressure pulsates, causing the actual injection amount to become unstable and misfire. there's a possibility that.

この対策として、請求項4のように、始動時の要求噴射量を要求噴射量算出手段により算出し、この要求噴射量に基いて噴射による燃圧低下量を推定し、この燃圧低下量が所定値以上の場合には燃圧検出手段の検出燃圧とは関係なく始動時の燃料噴射を実行するようにしても良い。このようにすれば、噴射による燃圧低下量が大きいと判断される場合に、昇圧始動を行わずに始動時の燃料噴射が実行されるため、始動時にフィード圧(高圧ポンプに燃料を供給する電動ポンプの吐出圧)付近で燃料噴射を実行することになり、結果的に、始動時の燃圧脈動が少なくなって実際の噴射量が安定し、失火し難くなる効果が得られる。   As a countermeasure against this, as in claim 4, the required injection amount at the time of start is calculated by the required injection amount calculation means, the fuel pressure decrease amount due to injection is estimated based on this required injection amount, and this fuel pressure decrease amount is a predetermined value. In the above case, fuel injection at start-up may be executed regardless of the detected fuel pressure of the fuel pressure detecting means. In this way, when it is determined that the amount of fuel pressure reduction due to injection is large, fuel injection at start-up is performed without performing boost start-up, so that the feed pressure (electric motor that supplies fuel to the high-pressure pump is The fuel injection is performed in the vicinity of the pump discharge pressure). As a result, the fuel pressure pulsation at the time of starting is reduced, the actual injection amount is stabilized, and the effect of making it difficult to misfire is obtained.

この場合、要求噴射量に基いて噴射による燃圧低下量を推定する処理を省略して、請求項5のように、要求噴射量が所定値以上の場合に、噴射による燃圧低下量が大きいと判断して、燃圧検出手段の検出燃圧とは関係なく始動時の燃料噴射を実行するようにしても良い。   In this case, the process of estimating the fuel pressure decrease amount due to injection based on the required injection amount is omitted, and it is determined that the fuel pressure decrease amount due to injection is large when the required injection amount is a predetermined value or more as in claim 5. Then, fuel injection at the start may be executed regardless of the detected fuel pressure of the fuel pressure detecting means.

また、請求項6のように、始動時に高圧ポンプの1サイクル当たりの燃料吐出量と噴射による燃料消費量とを推定し、燃料吐出量が噴射による燃料消費量よりも少ない場合には燃圧検出手段の検出燃圧とは関係なく始動時の燃料噴射を実行するようにしても良い。要するに、噴射による燃料消費量が燃料吐出量がよりも多い場合には、噴射による燃圧低下量が大きいと判断して、燃圧検出手段の検出燃圧とは関係なく始動時の燃料噴射を実行するものである。   According to another aspect of the present invention, the fuel discharge amount per cycle of the high-pressure pump and the fuel consumption amount due to the injection are estimated at the start, and when the fuel discharge amount is smaller than the fuel consumption amount due to the injection, the fuel pressure detecting means The fuel injection at start-up may be executed regardless of the detected fuel pressure. In short, when the amount of fuel consumed by injection is greater than the amount of fuel discharged, it is determined that the amount of fuel pressure reduction due to injection is large, and fuel injection at start-up is executed regardless of the fuel pressure detected by the fuel pressure detection means It is.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図9に基づいて説明する。まず、図1に基づいて筒内噴射エンジンの燃料供給システム全体の構成を説明する。燃料を貯留する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12のフィード圧(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分は燃料戻し管16により燃料タンク11内に戻されるようになっている。   A first embodiment of the present invention will be described with reference to FIGS. First, the configuration of the entire fuel supply system of the direct injection engine will be described with reference to FIG. A low-pressure pump 12 that pumps up fuel is installed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the pressure regulator 15 regulates the feed pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure. Is returned to the fuel tank 11 by a fuel return pipe 16.

図2に示すように、高圧ポンプ14は、円筒状のポンプ室18内でピストン19を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン19は、エンジンのカム軸20に嵌着されたカム21の回転運動によって駆動される。この高圧ポンプ14の吸入口23側には、常開型の電磁弁からなる燃圧制御弁22が設けられている。高圧ポンプ14の吸入行程(ピストン19の下降時)においては、燃圧制御弁22が開弁されてポンプ室18内に燃料が吸入され、吐出行程(ピストン19の上昇時)においては、燃圧制御弁22の閉弁時間(閉弁開始時期からピストン19の上死点までの閉弁状態の時間)を制御することで、高圧ポンプ14の吐出量を制御して燃圧(吐出圧力)を制御する。つまり、燃圧を上昇させるときには、燃圧制御弁22の閉弁開始時期(通電時期)を進角させることで燃圧制御弁22の閉弁時間を長くして高圧ポンプ14の吐出量を増加させ、逆に、燃圧を低下させるときには、燃圧制御弁22の閉弁開始時期(通電時期)を遅角させることで燃圧制御弁22の閉弁時間を短くして、高圧ポンプ14の吐出量を減少させる(図9参照)。   As shown in FIG. 2, the high-pressure pump 14 is a piston pump that sucks / discharges fuel by reciprocating a piston 19 in a cylindrical pump chamber 18. The piston 19 is fitted to a camshaft 20 of the engine. It is driven by the rotational movement of the cam 21. On the suction port 23 side of the high-pressure pump 14, a fuel pressure control valve 22 comprising a normally open type electromagnetic valve is provided. During the intake stroke of the high-pressure pump 14 (when the piston 19 is lowered), the fuel pressure control valve 22 is opened and fuel is sucked into the pump chamber 18, and during the discharge stroke (when the piston 19 is raised), the fuel pressure control valve. By controlling the valve closing time 22 (the valve closing time from the valve closing start time to the top dead center of the piston 19), the discharge amount of the high-pressure pump 14 is controlled to control the fuel pressure (discharge pressure). That is, when raising the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 22 is advanced to extend the valve closing time of the fuel pressure control valve 22 and increase the discharge amount of the high-pressure pump 14. In addition, when the fuel pressure is reduced, the valve closing start time (energization timing) of the fuel pressure control valve 22 is retarded, thereby shortening the valve closing time of the fuel pressure control valve 22 and reducing the discharge amount of the high pressure pump 14 ( (See FIG. 9).

一方、高圧ポンプ14の吐出口24側には、吐出した燃料の逆流を防止する逆止弁25が設けられている。高圧ポンプ14から吐出された燃料は、高圧燃料配管26を通してデリバリパイプ27に送られ、このデリバリパイプ27からエンジンのシリンダヘッドに気筒毎に取り付けられた燃料噴射弁28に高圧の燃料が分配される。高圧燃料配管26には、燃圧を検出する燃圧センサ29(燃圧検出手段)が設けられ、この燃圧センサ29の出力信号がエンジン制御回路(以下「ECU」と表記する)30に入力される。   On the other hand, a check valve 25 for preventing the backflow of discharged fuel is provided on the discharge port 24 side of the high-pressure pump 14. The fuel discharged from the high-pressure pump 14 is sent to a delivery pipe 27 through a high-pressure fuel pipe 26, and high-pressure fuel is distributed from the delivery pipe 27 to a fuel injection valve 28 attached to each cylinder head of the engine for each cylinder. . The high pressure fuel pipe 26 is provided with a fuel pressure sensor 29 (fuel pressure detecting means) for detecting a fuel pressure, and an output signal of the fuel pressure sensor 29 is input to an engine control circuit (hereinafter referred to as “ECU”) 30.

このECU30は、マイクロコンピュータを主体として構成され、エンジンの冷却水温を検出する冷却水温センサ32(冷却水温検出手段)や、エンジン回転速度、吸気管圧力(又は吸入空気量)等のエンジン運転状態を検出する各種センサの出力信号を読み込んで、要求噴射時期や要求噴射量と要求点火時期等を演算し、要求噴射時期に合わせて燃料噴射弁28を駆動して燃料噴射を実行すると共に、要求点火時期に合わせて点火プラグに高電圧を印加して点火を実行する。   The ECU 30 is mainly composed of a microcomputer, and is used to monitor engine operating conditions such as a cooling water temperature sensor 32 (cooling water temperature detecting means) for detecting the cooling water temperature of the engine, engine rotation speed, intake pipe pressure (or intake air amount), and the like. The output signals of various sensors to be detected are read, the required injection timing, the required injection amount, the required ignition timing, etc. are calculated, the fuel injection valve 28 is driven in accordance with the required injection timing, and fuel injection is performed. Ignition is performed by applying a high voltage to the spark plug according to the timing.

更に、このECU30は、内蔵のROM(記憶媒体)に記憶された後述する昇圧始動制御用の各ルーチンを実行することで、始動時に燃圧センサ29の検出燃圧が所定の噴射許可燃圧以下のときに、冷却水温センサ32の検出冷却水温とは関係なく始動時の燃料噴射を禁止して燃圧上昇を優先させる“昇圧始動”を実行し、燃圧センサ29の検出燃圧が噴射許可燃圧を越えてから燃料噴射を開始する際に、冷却水温センサ32の検出冷却水温が低温・中温・高温の3つの温度領域のいずれに該当するかを判定し、低温領域と高温領域では始動時の噴射時期を吸気行程に設定し、中温領域では始動時の噴射時期を圧縮行程に設定する。   Further, the ECU 30 executes each routine for boosting start control described later stored in a built-in ROM (storage medium), so that when the detected fuel pressure of the fuel pressure sensor 29 is equal to or lower than a predetermined injection permission fuel pressure at the start. The fuel pressure is detected after the fuel pressure detected by the fuel pressure sensor 29 exceeds the fuel pressure permitted for injection regardless of the coolant temperature detected by the coolant temperature sensor 32 and fuel injection at the start is prohibited to give priority to the increase in fuel pressure. When the injection is started, it is determined whether the detected coolant temperature of the coolant temperature sensor 32 corresponds to one of the three temperature ranges of low temperature, medium temperature, and high temperature, and the injection timing at the start is taken in the intake stroke in the low temperature region and the high temperature region. In the middle temperature region, the injection timing at the start is set to the compression stroke.

ところで、従来の昇圧始動を行うシステムでは、図3に示すように、始動時の冷却水温が低温のときには、スモーク発生や始動フィーリング悪化の問題を回避するために、圧縮行程噴射、昇圧始動を禁止して吸気行程噴射で始動し、また、始動時の冷却水温が高温のときには、噴射量が少なくなるため、燃焼しやすい成層混合気の形成が困難になる等の理由から圧縮行程噴射、昇圧始動を禁止して吸気行程噴射で始動するようにしている。   By the way, in a conventional system that performs boosting start-up, as shown in FIG. 3, when the cooling water temperature at the time of starting is low, compression stroke injection and boosting start-up are performed in order to avoid problems such as smoke generation and start feeling deterioration. Start with intake stroke injection with prohibition, and when the cooling water temperature is high at the time of start-up, the injection amount decreases, so it becomes difficult to form a stratified mixture that is easy to burn, etc. Starting is prohibited and intake stroke injection is started.

しかし、冷却水温に応じて昇圧始動の有無を切り換えると、その切換温度付近では、少しの冷却水温の違いによって始動時間が急変して運転者に違和感を与えてしまう(図3の点線で囲んだ部分)。つまり、昇圧始動では、燃圧を噴射許可燃圧に昇圧するまでの昇圧時間中は燃料の噴射が停止されるため、吸気行程噴射による通常始動と比較して始動時間が長くなることは避けられない。従って、低水温時や高水温時に、全面的に昇圧始動を禁止すると、低水温時の始動であるにも拘らず、始動時間が急に短くなったり、高水温側では、少し冷却水温が高くなっただけで始動時間が急に短くなったりすることがあり、これが運転者に違和感を与える原因となる。   However, if the boosting start / stop operation is switched according to the cooling water temperature, the start time suddenly changes due to a slight difference in the cooling water temperature in the vicinity of the switching temperature, giving the driver a sense of incongruity (enclosed by the dotted line in FIG. 3). portion). That is, in the boost start, since the fuel injection is stopped during the boost time until the fuel pressure is increased to the injection permitted fuel pressure, it is inevitable that the start time becomes longer than the normal start by the intake stroke injection. Therefore, if the boosting start is completely prohibited at low water temperature or high water temperature, the start-up time is suddenly shortened despite the low water temperature starting, or the cooling water temperature is slightly higher on the high water temperature side. The starting time may be suddenly shortened just by becoming, which causes the driver to feel uncomfortable.

そこで、本実施例1では、図3に示すように、始動時の冷却水温とは関係なく、全温度領域で昇圧始動を実行し、燃料噴射を開始する際に、低温領域と高温領域では吸気行程噴射で始動し、中温領域では圧縮行程噴射で始動するようにしている。   Therefore, in the first embodiment, as shown in FIG. 3, regardless of the cooling water temperature at the time of starting, the boost start is executed in the entire temperature range, and when the fuel injection is started, the intake air is taken in the low temperature range and the high temperature range. The engine is started with stroke injection, and is started with compression stroke injection in the intermediate temperature range.

本実施例1の昇圧始動制御は、ECU30によって図5及び図6の各ルーチンに従って実行される。以下、各ルーチンの処理内容を説明する。   The boost start control according to the first embodiment is executed by the ECU 30 according to the routines shown in FIGS. The processing contents of each routine will be described below.

図5の昇圧始動制御ルーチンは、IGスイッチのON期間中に所定周期(例えば8ms周期)で起動され、特許請求の範囲でいう始動制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、後述する図6の昇圧始動前提条件判定ルーチンの処理結果に基づいて昇圧始動前提条件が成立しているか否かを判定し、昇圧始動前提条件が成立していなければ、ステップ108に進み、噴射を許可し、次のステップ109で、始動時の噴射モードを吸気行程噴射モードに設定する。この場合は、昇圧始動を行わずに、吸気行程噴射で始動する。   The boost start control routine of FIG. 5 is started at a predetermined cycle (for example, 8 ms cycle) during the ON period of the IG switch, and serves as a start control means in the claims. When this routine is started, first, at step 101, it is determined whether or not the boost start precondition is satisfied based on the processing result of the boost start precondition determining routine of FIG. If not, the routine proceeds to step 108 where the injection is permitted, and at the next step 109, the injection mode at the start is set to the intake stroke injection mode. In this case, the boosting start is not performed but the intake stroke injection is started.

一方、上記ステップ101で、昇圧始動前提条件が成立していると判定されれば、ステップ102に進み、燃圧センサ29の検出燃圧が噴射許可燃圧よりも低いか否かを判定し、検出燃圧が噴射許可燃圧よりも低ければ、ステップ107に進み、始動時の燃料噴射を禁止して燃圧上昇を優先させる“昇圧始動”を実行する。   On the other hand, if it is determined in step 101 that the boost start precondition is satisfied, the process proceeds to step 102, in which it is determined whether the detected fuel pressure of the fuel pressure sensor 29 is lower than the injection permission fuel pressure. If it is lower than the injection permission fuel pressure, the routine proceeds to step 107, where "pressure increase start" is executed in which fuel injection at the start is prohibited and priority is given to the increase in fuel pressure.

その後、検出燃圧が噴射許可燃圧以上になった時点で、ステップ103に進み、始動後所定時間が経過したか否か判定し、始動後所定時間が経過していれば、始動時の噴射制御が終了していると判断して、本ルーチンを終了する。   After that, when the detected fuel pressure becomes equal to or higher than the injection permitted fuel pressure, the routine proceeds to step 103, where it is determined whether or not a predetermined time has elapsed after the start, and if the predetermined time has elapsed after the start, the injection control at the start is performed. It is determined that the processing has ended, and this routine ends.

これに対して、上記ステップ103で、始動後所定時間が経過していないと判定されれば、ステップ104に進み、冷却水温センサ32で検出した冷却水温が所定の温度範囲内[TWL(例えば0℃)<冷却水温<TWH(例えば40℃)]であるか否かを判定し、冷却水温が所定の温度範囲内(中温領域)であれば、ステップ105に進み、始動時の噴射モードを圧縮行程噴射モードに設定して始動する。また、上記ステップ104で、冷却水温が所定の温度範囲外(つまりTWL以下の低温領域又はTWH以上の高温領域)と判定されれば、ステップ106に進み、始動時の噴射モードを吸気行程噴射モードに設定して始動する。   On the other hand, if it is determined in step 103 that the predetermined time has not elapsed since the start, the process proceeds to step 104 where the cooling water temperature detected by the cooling water temperature sensor 32 is within a predetermined temperature range [TWL (eg, 0 ° C) <cooling water temperature <TWH (for example, 40 ° C.)], and if the cooling water temperature is within a predetermined temperature range (medium temperature region), the process proceeds to step 105 to compress the injection mode at the start Set to stroke injection mode and start. If it is determined in step 104 that the cooling water temperature is outside the predetermined temperature range (that is, a low temperature region below TWL or a high temperature region above TWH), the process proceeds to step 106 and the injection mode at the start is changed to the intake stroke injection mode. Set to start.

図6の昇圧始動前提条件判定ルーチンは、IGスイッチのON期間中に所定周期(例えば8ms周期)で起動され、昇圧始動前提条件の成否を次のようにして判定する。本ルーチンが起動されると、まずステップ110で、ECU30に実装された自己診断機能の診断結果に基づいて高圧系が正常であるか否かを判定し、もし、高圧系が異常と判定されれば、ステップ115に進み、昇圧始動前提条件が不成立であると判定して本ルーチンを終了する。   The boost start precondition determination routine of FIG. 6 is started at a predetermined cycle (for example, 8 ms cycle) during the ON period of the IG switch, and determines whether the boost start precondition is met or not as follows. When this routine is started, first, in step 110, it is determined whether or not the high-pressure system is normal based on the diagnosis result of the self-diagnosis function implemented in the ECU 30, and if the high-pressure system is determined to be abnormal. If YES, the routine proceeds to step 115, where it is determined that the boost start prerequisite is not satisfied, and this routine is terminated.

これに対して、上記ステップ110で、高圧系が正常と判定されれば、ステップ111に進み、冷却水温センサ32で検出した始動時の冷却水温を読み込んで、ステップ112に進み、図7の始動時要求噴射量の算出マップを用いて、始動時の冷却水温に応じた始動時要求噴射量Qstを算出する。図7の始動時要求噴射量の算出マップは、始動時の冷却水温が低くなるほど、始動時要求噴射量Qstが増加するように設定されている。このステップ112の処理が特許請求の範囲でいう要求噴射量算出手段としての役割を果たす。   On the other hand, if it is determined in step 110 that the high-pressure system is normal, the process proceeds to step 111, the cooling water temperature at the time of start detected by the cooling water temperature sensor 32 is read, the process proceeds to step 112, and the start of FIG. A required start injection amount Qst corresponding to the cooling water temperature at the start is calculated using the required injection amount calculation map. The calculation map of the required injection amount at start in FIG. 7 is set so that the required injection amount Qst at start increases as the coolant temperature at the start decreases. The processing in step 112 serves as a required injection amount calculation means in the claims.

この後、ステップ113に進み、図8の燃圧低下量の算出マップを用いて、始動時要求噴射量Qstに応じた燃圧低下量PRdownを算出する。この燃圧低下量PRdownは、始動時要求噴射量Qstの燃料噴射によって発生する燃圧低下量である。図8の燃圧低下量の算出マップは、始動時要求噴射量Qstが多くなるほど、燃圧低下量PRdownが大きくなるように設定されている。   Thereafter, the process proceeds to step 113, and the fuel pressure decrease amount PRdown corresponding to the start required injection amount Qst is calculated using the fuel pressure decrease amount calculation map of FIG. This fuel pressure decrease amount PRdown is a fuel pressure decrease amount that is generated by fuel injection at the start required injection amount Qst. The fuel pressure decrease amount calculation map of FIG. 8 is set so that the fuel pressure decrease amount PRdown increases as the starting required injection amount Qst increases.

燃圧低下量PRdownの算出後、ステップ114に進み、燃圧低下量PRdownが所定値P0よりも大きいか否かを判定し、燃圧低下量PRdownが所定値P0よりも大きければ、ステップ115に進み、昇圧始動前提条件が不成立であると判定する。昇圧始動前提条件が不成立の場合は、燃圧センサ29の検出燃圧とは関係なく、昇圧始動が禁止され、昇圧始動を行わずに始動時の燃料噴射が実行される。   After calculating the fuel pressure reduction amount PRdown, the routine proceeds to step 114, where it is determined whether or not the fuel pressure reduction amount PRdown is larger than the predetermined value P0. If the fuel pressure reduction amount PRdown is larger than the predetermined value P0, the routine proceeds to step 115, where the pressure rises. It is determined that the starting precondition is not satisfied. When the boosting start precondition is not satisfied, boosting startup is prohibited regardless of the fuel pressure detected by the fuel pressure sensor 29, and fuel injection at startup is executed without boosting startup.

一方、ステップ114で、燃圧低下量PRdownが所定値P0以下と判定されれば、ステップ116に進み、昇圧始動前提条件が成立していると判定する。昇圧始動前提条件が成立の場合は、燃圧センサ29の検出燃圧が噴射許可燃圧よりも低ければ、始動時の燃料噴射が禁止され、昇圧始動が実行される。   On the other hand, if it is determined in step 114 that the fuel pressure decrease amount PRdown is equal to or less than the predetermined value P0, the process proceeds to step 116, and it is determined that the boost start prerequisite is satisfied. When the boosting start precondition is satisfied, if the detected fuel pressure of the fuel pressure sensor 29 is lower than the injection permission fuel pressure, the fuel injection at the start is prohibited and the boosting start is executed.

以上説明した本実施例1では、始動時に燃圧センサ29の検出燃圧が噴射許可燃圧以下のときに、始動時の冷却水温とは関係なく、全温度領域で昇圧始動を実行し、燃圧センサ29の検出燃圧が噴射許可燃圧を越えてから燃料噴射を開始する際に、低温領域と高温領域では吸気行程噴射で始動し、中温領域では圧縮行程噴射で始動するようにしたので、少しの冷却水温の違いによって始動時間が急変することを防止できて、運転者の違和感を無くすことができると共に、低水温時のスモーク発生や始動フィーリング悪化の問題も吸気行程噴射によって解消することができる。   In the first embodiment described above, when the detected fuel pressure of the fuel pressure sensor 29 is equal to or lower than the injection permission fuel pressure at the start, the boost start is executed in the entire temperature range regardless of the coolant temperature at the start, and the fuel pressure sensor 29 When the fuel injection is started after the detected fuel pressure exceeds the permitted fuel pressure, the engine is started with the intake stroke injection in the low temperature region and the high temperature region, and is started with the compression stroke injection in the intermediate temperature region. It is possible to prevent the start time from changing suddenly due to the difference, and to eliminate the driver's uncomfortable feeling, and it is possible to solve the problem of smoke generation at low water temperature and deterioration of the start feeling by the intake stroke injection.

しかも、高温領域では始動時の吸気行程噴射を行うため、圧縮行程噴射とは異なり、始動時の点火時期を大幅に遅角する必要がなくなる。このため、始動後に点火時期を大幅に進角させる必要がなくなり、始動後の点火時期の進角によるトルクショックの問題を解消できると共に、高温領域で燃焼しやすい成層混合気の形成が困難になるという問題も、吸気行程噴射とすることで解消することができる。   In addition, since the intake stroke injection at the start is performed in the high temperature region, unlike the compression stroke injection, it is not necessary to significantly retard the ignition timing at the start. For this reason, it is not necessary to advance the ignition timing significantly after starting, which can solve the problem of torque shock due to the advance of the ignition timing after starting, and it becomes difficult to form a stratified mixture that easily burns in a high temperature region. This problem can be solved by using the intake stroke injection.

ところで、始動時要求噴射量Qstが多い場合は、昇圧始動を行っても、噴射毎に燃圧が大幅に低下して燃圧が脈動し、その影響で、実際の噴射量が不安定となって失火する可能性がある。   By the way, when the required injection amount Qst at the start is large, even if the boosting start is performed, the fuel pressure is greatly reduced and the fuel pressure pulsates for each injection, and the actual injection amount becomes unstable and misfires due to the influence. there's a possibility that.

これに対して、本実施例1では、始動時要求噴射量Qstの燃料噴射による燃圧低下量PRdownが所定値P0よりも大きいと判断される場合に、燃圧センサ29の検出燃圧とは関係なく、昇圧始動を行わずに始動時の燃料噴射が実行されるため、始動時にフィード圧(高圧ポンプ14に燃料を供給する低圧ポンプ12の吐出圧)付近で燃料噴射を実行することになり、結果的に、始動時の燃圧脈動が少なくなって実際の噴射量が安定し、失火し難くなる効果が得られる。   On the other hand, in the first embodiment, when it is determined that the fuel pressure reduction amount PRdown due to the fuel injection of the required injection amount Qst at the start is larger than the predetermined value P0, regardless of the detected fuel pressure of the fuel pressure sensor 29, Since the fuel injection at the start is executed without performing the boosting start, the fuel injection is executed near the feed pressure (the discharge pressure of the low pressure pump 12 that supplies fuel to the high pressure pump 14) at the start. In addition, the fuel pressure pulsation at the start is reduced, the actual injection amount is stabilized, and the effect of making it difficult to misfire is obtained.

この場合、始動時要求噴射量Qstに応じた燃圧低下量PRdownを算出する処理を省略して、始動時要求噴射量Qstが所定値以上の場合に、噴射による燃圧低下量PRdownが大きいと判断して、燃圧センサ29の検出燃圧とは関係なく始動時の燃料噴射を実行するようにしても良い。   In this case, the process of calculating the fuel pressure decrease amount PRdown corresponding to the startup required injection amount Qst is omitted, and when the startup required injection amount Qst is equal to or greater than a predetermined value, it is determined that the fuel pressure decrease amount PRdown due to injection is large. Thus, fuel injection at start-up may be executed irrespective of the fuel pressure detected by the fuel pressure sensor 29.

尚、低温領域、中温領域、高温領域を区分する温度TWL、TWHは、適宜変更しても良いことは言うまでもない。   Needless to say, the temperatures TWL and TWH for dividing the low temperature region, the intermediate temperature region, and the high temperature region may be changed as appropriate.

上記実施例1では、始動時要求噴射量Qstの燃料噴射による燃圧低下量PRdownが所定値P0よりも大きい場合に、燃圧センサ29の検出燃圧とは関係なく、昇圧始動を行わずに始動時の燃料噴射を実行するようにしたが、図10に示す本発明の実施例2では、始動時に高圧ポンプ14の1サイクル(360℃A)当たりの燃料吐出量Qpumpと噴射による燃料消費量Qstsumとを算出し、噴射による燃料消費量Qstsumが燃料吐出量Qpumpがよりも多い場合には、燃圧センサ29の検出燃圧とは関係なく、昇圧始動を行わずに始動時の燃料噴射を実行するようにしている。要するに、噴射による燃料消費量Qstsumが燃料吐出量Qpumpがよりも多い場合には、噴射による燃圧低下量が大きいと判断して昇圧始動を行わずに始動時の燃料噴射を実行するものである。   In the first embodiment, when the fuel pressure decrease amount PRdown due to the fuel injection of the required injection amount Qst at the time of start is larger than the predetermined value P0, regardless of the fuel pressure detected by the fuel pressure sensor 29, the boost start is not performed and In the second embodiment of the present invention shown in FIG. 10, the fuel discharge amount Qpump per cycle (360 ° C. A) of the high-pressure pump 14 and the fuel consumption amount Qstsum by injection are calculated at the start. When the calculated fuel consumption amount Qstsum is larger than the fuel discharge amount Qpump, the fuel injection at the start is executed without performing the boost start regardless of the fuel pressure detected by the fuel pressure sensor 29. Yes. In short, when the fuel consumption amount Qstsum by injection is larger than the fuel discharge amount Qpump, it is determined that the fuel pressure decrease amount by injection is large, and fuel injection at the time of starting is executed without performing boosting start.

本実施例2では、図10の昇圧始動前提条件判定ルーチンをIGスイッチのON期間中に所定周期(例えば8ms周期)で実行する。本ルーチンが起動されると、まずステップ210で、ECU30に実装された自己診断機能の診断結果に基づいて高圧系が正常であるか否かを判定し、もし、高圧系が異常と判定されれば、ステップ217に進み、昇圧始動前提条件が不成立であると判定して本ルーチンを終了する。   In the second embodiment, the boost start prerequisite condition determination routine of FIG. 10 is executed at a predetermined cycle (for example, 8 ms cycle) during the ON period of the IG switch. When this routine is started, first, at step 210, it is determined whether or not the high-pressure system is normal based on the diagnosis result of the self-diagnosis function implemented in the ECU 30, and if the high-pressure system is determined to be abnormal. If so, the process proceeds to step 217, where it is determined that the boost start prerequisite is not satisfied, and this routine is terminated.

これに対して、上記ステップ210で、高圧系が正常と判定されれば、ステップ211に進み、冷却水温センサ32で検出した始動時の冷却水温を読み込んで、ステップ212に進み、図7の始動時要求噴射量の算出マップを用いて、始動時の冷却水温に応じた始動時要求噴射量Qstを算出する。   On the other hand, if it is determined in step 210 that the high-pressure system is normal, the process proceeds to step 211, the cooling water temperature at the time of start detected by the cooling water temperature sensor 32 is read, the process proceeds to step 212, and the start of FIG. A required start injection amount Qst corresponding to the cooling water temperature at the start is calculated using the required injection amount calculation map.

この後、ステップ213に進み、高圧ポンプ14の通電時期TPon(燃圧制御弁22の開弁開始時期)を読み込み、次のステップ214で、この高圧ポンプ14の通電時期TPonに基づいて高圧ポンプ14の1サイクル(360℃A)当たりの燃料吐出量Qpumpを図9の高圧ポンプ吐出量の算出マップにより算出する。   Thereafter, the process proceeds to step 213, where the energization timing TPon of the high-pressure pump 14 (opening start timing of the fuel pressure control valve 22) is read. In the next step 214, the high-pressure pump 14 is turned on based on the energization timing Tpon of the high-pressure pump 14. The fuel discharge amount Qpump per cycle (360 ° C. A) is calculated using the high pressure pump discharge amount calculation map shown in FIG.

そして、次のステップ215で、高圧ポンプ14の1サイクル(360℃A)当たりの噴射による燃料消費量Qstsumを算出する。例えば、4気筒エンジンでは、高圧ポンプ14の1サイクル(360℃A)当たり2回の噴射が行われるため、燃料消費量Qstsumは、前記ステップ212で算出した始動時要求噴射量Qstの2噴射分となる。
Qstsum=Qst×2
In the next step 215, the fuel consumption amount Qstsum by the injection per cycle (360 ° C. A) of the high-pressure pump 14 is calculated. For example, in a four-cylinder engine, injection is performed twice per cycle (360 ° C. A) of the high-pressure pump 14, so the fuel consumption amount Qstsum is equal to two injections of the required injection amount Qst at start calculated in step 212. It becomes.
Qstsum = Qst × 2

この後、ステップ216に進み、燃料吐出量Qpumpが燃料消費量Qstsumよりも少ないか否かを判定し、燃料吐出量Qpumpが燃料消費量Qstsumよりも少なければ、ステップ217に進み、昇圧始動前提条件が不成立であると判定する。昇圧始動前提条件が不成立の場合は、燃圧センサ29の検出燃圧とは関係なく、昇圧始動が禁止され、昇圧始動を行わずに始動時の燃料噴射が実行される。   Thereafter, the process proceeds to step 216, where it is determined whether or not the fuel discharge amount Qpump is smaller than the fuel consumption amount Qstsum. If the fuel discharge amount Qpump is smaller than the fuel consumption amount Qstsum, the flow proceeds to step 217 and the boost start precondition Is determined to be not established. When the boosting start precondition is not satisfied, boosting startup is prohibited regardless of the fuel pressure detected by the fuel pressure sensor 29, and fuel injection at startup is executed without boosting startup.

一方、ステップ216で、燃料吐出量Qpumpが燃料消費量Qstsum以上と判定されれば、ステップ218に進み、昇圧始動前提条件が成立していると判定する。昇圧始動前提条件が成立の場合は、燃圧センサ29の検出燃圧が噴射許可燃圧よりも低ければ、始動時の燃料噴射が禁止され、昇圧始動が実行される。その他の処理は、前記実施例1と同じである。
以上説明した本実施例2においても、前記実施例1と同様の効果を得ることができる。
On the other hand, if it is determined in step 216 that the fuel discharge amount Qpump is equal to or greater than the fuel consumption amount Qstsum, the flow proceeds to step 218, where it is determined that the boost start-up precondition is satisfied. When the boosting start precondition is satisfied, if the detected fuel pressure of the fuel pressure sensor 29 is lower than the injection permission fuel pressure, the fuel injection at the start is prohibited and the boosting start is executed. Other processes are the same as those in the first embodiment.
Also in the second embodiment described above, the same effect as in the first embodiment can be obtained.

前記実施例1では、燃圧センサ29の検出燃圧が噴射許可燃圧を越えてから燃料噴射を開始する際に、冷却水温センサ32の検出冷却水温が低温・中温・高温の3つの温度領域のいずれに該当するかを判定し、低温領域と高温領域では始動時の噴射時期を吸気行程に設定し、中温領域では始動時の噴射時期を圧縮行程に設定するようにしたが、図11に示す本発明の実施例3では、燃圧センサ29の検出燃圧が噴射許可燃圧を越えてから燃料噴射を開始する際に、冷却水温センサ32の検出冷却水温が極低温・低温・中温・高温の4つの温度領域のいずれに該当するかを判定し、極低温領域と高温領域では始動時の噴射時期を吸気行程に設定し、中温領域では始動時の噴射時期を圧縮行程に設定し、低温領域では吸気行程及び/又は圧縮行程で燃料を複数回に分割して噴射するようにしている。   In the first embodiment, when the fuel injection is started after the detected fuel pressure of the fuel pressure sensor 29 exceeds the injection permission fuel pressure, the detected coolant temperature of the coolant temperature sensor 32 falls into any of the three temperature ranges of low temperature, medium temperature, and high temperature. In the low temperature region and the high temperature region, the injection timing at the start is set to the intake stroke, and in the intermediate temperature region, the injection timing at the start is set to the compression stroke. In the third embodiment, when the fuel injection is started after the detected fuel pressure of the fuel pressure sensor 29 exceeds the injection permission fuel pressure, the detected coolant temperature of the coolant temperature sensor 32 is four temperature ranges of extremely low temperature, low temperature, medium temperature, and high temperature. In the extremely low temperature region and the high temperature region, the injection timing at the start is set to the intake stroke, in the intermediate temperature region, the injection timing at the start is set to the compression stroke, and in the low temperature region, the intake stroke and / Or compression process By dividing the fuel a plurality of times are to be injected.

要するに、冷却水温が低くても、分割噴射を利用すれば、低燃費、低エミッションを実現できる温度領域が存在するため、低温側の温度領域を極低温領域と低温領域に分け、極低温領域では吸気行程噴射を行い、低温領域では吸気行程及び/又は圧縮行程で分割噴射を行うようにしたものであり、これにより、低温領域で燃焼性を向上させて低燃費、低エミッションを実現することができる。   In short, even if the cooling water temperature is low, there is a temperature range that can achieve low fuel consumption and low emissions if split injection is used.Therefore, the temperature range on the low temperature side is divided into a cryogenic region and a low temperature region. The intake stroke injection is performed, and the split injection is performed in the intake stroke and / or the compression stroke in the low temperature region, thereby improving the combustibility in the low temperature region and realizing low fuel consumption and low emission. it can.

本実施例3で実行する図11の昇圧始動制御ルーチンは、前記実施例1で説明した図5の昇圧始動制御ルーチンに対して、ステップ104aとステップ106aの処理を追加したものであり、それ以外の処理は同じである。   The boost start control routine of FIG. 11 executed in the third embodiment is obtained by adding the processing of step 104a and step 106a to the boost start control routine of FIG. 5 described in the first embodiment. The process is the same.

図11の昇圧始動制御ルーチンでは、燃圧センサ29の検出燃圧が噴射許可燃圧を越えて燃料噴射を開始する際に、ステップ104で、冷却水温センサ32で検出した冷却水温が中温領域[TWL(例えば0℃)<冷却水温<TWH(例えば40℃)]であるか否かを判定し、冷却水温が中温領域であれば、ステップ105に進み、始動時の噴射モードを圧縮行程噴射モードに設定して始動する。   In the boost start control routine of FIG. 11, when the fuel pressure detected by the fuel pressure sensor 29 exceeds the injection permission fuel pressure and the fuel injection is started, the cooling water temperature detected by the cooling water temperature sensor 32 in step 104 is the medium temperature region [TWL (for example, 0 ° C) <cooling water temperature <TWH (for example, 40 ° C)], and if the cooling water temperature is in the middle temperature range, the process proceeds to step 105, and the injection mode at the start is set to the compression stroke injection mode. Start.

また、上記ステップ104で、冷却水温が中温領域でないと判定されれば、ステップ104aに進み、冷却水温が低温領域[TWLL(例えば−10℃)<冷却水温<TWL(例えば0℃)]であるか否かを判定し、冷却水温が低温領域であれば、ステップ106aに進み、始動時の噴射モードを分割噴射モードに設定して始動する。この分割噴射モードでは、次の(1) 〜(3) のいずれかの分割噴射を行う。   If it is determined in step 104 that the cooling water temperature is not in the intermediate temperature region, the process proceeds to step 104a, where the cooling water temperature is in the low temperature region [TWLL (eg, −10 ° C.) <Cooling water temperature <TWL (eg, 0 ° C.)]. If the cooling water temperature is in the low temperature range, the process proceeds to step 106a, and the injection mode at the start is set to the divided injection mode and the engine is started. In this divided injection mode, any one of the following divided injections (1) to (3) is performed.

(1) 吸気行程と圧縮行程とに跨がって燃料を複数回に分割して噴射する。
(2) 吸気行程で燃料を複数回に分割して噴射する。
(3) 圧縮行程で燃料を複数回に分割して噴射する。
(1) The fuel is divided into a plurality of times and injected over the intake stroke and the compression stroke.
(2) The fuel is divided into multiple injections during the intake stroke.
(3) The fuel is divided into multiple injections during the compression stroke.

これに対して、上記ステップ104aで、「No」と判定された場合、つまり冷却水温がTWLL(例えば−10℃)以下の極低温領域又はTWH(例えば40℃)以上の高温領域である場合は、ステップ106に進み、始動時の噴射モードを吸気行程噴射モードに設定して始動する。その他の処理は、前記実施例1と同じである。   On the other hand, when it is determined as “No” in step 104a, that is, when the cooling water temperature is a very low temperature region of TWLL (for example, −10 ° C.) or lower or a high temperature region of TWH (for example, 40 ° C.) or higher. Then, the routine proceeds to step 106, where the start-up injection mode is set to the intake stroke injection mode and the start is started. Other processes are the same as those in the first embodiment.

以上説明した本実施例3では、冷却水温が低くても、分割噴射を利用すれば、低燃費、低エミッションを実現できる温度領域(低温領域)で、分割噴射を行うようにしたので、低温領域で燃焼性を向上させて低燃費、低エミッションを実現することができる。   In the third embodiment described above, even if the coolant temperature is low, if the divided injection is used, the divided injection is performed in the temperature range (low temperature range) where low fuel consumption and low emission can be realized. This can improve flammability and achieve low fuel consumption and low emissions.

尚、極低温領域、低温領域、中温領域、高温領域を区分する温度TWLL、TWL、TWHは、適宜変更しても良いことは言うまでもない。
その他、本発明は、圧縮行程噴射による成層混合気の形成能力が優れたエンジンでは、高温領域でも圧縮行程噴射を行うようにしても良い等、種々変更して実施できる。
Needless to say, the temperatures TWLL, TWL, and TWH for dividing the extremely low temperature region, the low temperature region, the intermediate temperature region, and the high temperature region may be appropriately changed.
In addition, the present invention can be implemented with various modifications such as an engine having an excellent ability to form a stratified mixture by compression stroke injection, such that compression stroke injection may be performed even in a high temperature region.

本発明の実施例1における燃料噴射システム全体の概略構成を示す図である。It is a figure which shows schematic structure of the whole fuel-injection system in Example 1 of this invention. 高圧ポンプの構成図である。It is a block diagram of a high pressure pump. 従来の始動時冷却水温と始動時間との関係を説明する図である。It is a figure explaining the relationship between the conventional cooling water temperature at the time of starting, and starting time. 実施例1の始動時冷却水温と始動時間との関係を説明する図である。It is a figure explaining the relationship between the cooling water temperature at the time of start of Example 1, and start time. 実施例1の昇圧始動制御ルーチンの処理の流れを示すフローチャートである。3 is a flowchart illustrating a processing flow of a boost start control routine according to the first embodiment. 実施例1の昇圧始動前提条件判定ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a processing flow of a boost start prerequisite condition determination routine according to the first embodiment. 実施例1の始動時冷却水温をパラメータとして始動時要求噴射量Qstを算出するマップの一例を示す図である。It is a figure which shows an example of the map which calculates the starting injection quantity Qst at the time of the cooling water temperature at the start of Example 1 as a parameter. 実施例1の始動時要求噴射量Qstをパラメータとして燃圧低下量PRdownを算出するマップの一例を示す図である。It is a figure which shows an example of the map which calculates fuel pressure fall amount PRdown by using the injection quantity Qst at the time of start of Example 1 as a parameter. 実施例1の高圧ポンプの流量制御弁の通電時期TPonをパラメータとして高圧ポンプの燃料吐出量を算出するマップの一例を示す図である。It is a figure which shows an example of the map which calculates the fuel discharge amount of a high pressure pump by making into energization timing Tpon of the flow control valve of the high pressure pump of Example 1 a parameter. 実施例2の昇圧始動前提条件判定ルーチンの処理の流れを示すフローチャートである。7 is a flowchart illustrating a processing flow of a boost start prerequisite condition determination routine according to a second embodiment. 実施例3の昇圧始動制御ルーチンの処理の流れを示すフローチャートである。12 is a flowchart illustrating a processing flow of a boost start control routine according to a third embodiment.

符号の説明Explanation of symbols

11…燃料タンク、12…低圧ポンプ、14…高圧ポンプ、15…プレッシャレギュレータ、19…ピストン、20…カム軸、21…カム、22…燃圧制御弁、25…逆止弁、27…デリバリパイプ、28…燃料噴射弁、29…燃圧センサ(燃圧検出手段)、30…ECU(始動制御手段)、32…冷却水温センサ(冷却水温検出手段)   DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Low pressure pump, 14 ... High pressure pump, 15 ... Pressure regulator, 19 ... Piston, 20 ... Cam shaft, 21 ... Cam, 22 ... Fuel pressure control valve, 25 ... Check valve, 27 ... Delivery pipe, 28 ... Fuel injection valve, 29 ... Fuel pressure sensor (fuel pressure detecting means), 30 ... ECU (starting control means), 32 ... Cooling water temperature sensor (cooling water temperature detecting means)

Claims (6)

高圧ポンプにより燃料を高圧にして燃料噴射弁に供給し、この燃料噴射弁から燃料を気筒内に直接噴射する筒内噴射式の内燃機関の始動制御装置において、
前記燃料噴射弁に供給される燃料の圧力(以下「燃圧」という)を検出する燃圧検出手段と、
内燃機関の冷却水温を検出する冷却水温検出手段と、
始動時に前記燃圧検出手段の検出燃圧が所定燃圧以下のときに前記冷却水温検出手段の検出冷却水温とは関係なく始動時の燃料噴射を禁止して燃圧上昇を優先させ、前記燃圧検出手段の検出燃圧が所定燃圧を越えてから燃料噴射を開始する際に、前記冷却水温検出手段の検出冷却水温が所定温度以下のときには始動時の噴射時期を吸気行程に設定し、それ以外のときには始動時の噴射時期を圧縮行程に設定する始動制御手段と
を備えていることを特徴とする筒内噴射式の内燃機関の始動制御装置。
In the in-cylinder injection type internal combustion engine start control device in which fuel is made high pressure by a high pressure pump and supplied to the fuel injection valve, and fuel is directly injected into the cylinder from the fuel injection valve.
Fuel pressure detecting means for detecting the pressure of fuel supplied to the fuel injection valve (hereinafter referred to as “fuel pressure”);
Cooling water temperature detecting means for detecting the cooling water temperature of the internal combustion engine;
When the detected fuel pressure of the fuel pressure detecting means is less than a predetermined fuel pressure at the start, the fuel injection at the start is prohibited regardless of the coolant temperature detected by the cooling water temperature detecting means to prioritize the increase of the fuel pressure, and the detection of the fuel pressure detecting means When the fuel injection starts after the fuel pressure exceeds the predetermined fuel pressure, if the detected coolant temperature of the coolant temperature detecting means is below the predetermined temperature, the injection timing at the start is set to the intake stroke, and otherwise, And a start control means for setting the injection timing to a compression stroke. A start control device for a cylinder injection type internal combustion engine, comprising:
高圧ポンプにより燃料を高圧にして燃料噴射弁に供給し、この燃料噴射弁から燃料を気筒内に直接噴射する筒内噴射式の内燃機関の始動制御装置において、
前記燃料噴射弁に供給される燃料の圧力(以下「燃圧」という)を検出する燃圧検出手段と、
内燃機関の冷却水温を検出する冷却水温検出手段と、
始動時に前記燃圧検出手段の検出燃圧が所定燃圧以下のときに前記冷却水温検出手段の検出冷却水温とは関係なく始動時の燃料噴射を禁止して燃圧上昇を優先させ、前記燃圧検出手段の検出燃圧が所定燃圧を越えてから燃料噴射を開始する際に、前記冷却水温検出手段の検出冷却水温が低温・中温・高温の3つの温度領域のいずれに該当するかを判定し、低温領域と高温領域では始動時の噴射時期を吸気行程に設定し、中温領域では始動時の噴射時期を圧縮行程に設定する始動制御手段と
を備えていることを特徴とする筒内噴射式の内燃機関の始動制御装置。
In the in-cylinder injection type internal combustion engine start control device in which fuel is made high pressure by a high pressure pump and supplied to the fuel injection valve, and fuel is directly injected into the cylinder from the fuel injection valve.
Fuel pressure detecting means for detecting the pressure of fuel supplied to the fuel injection valve (hereinafter referred to as “fuel pressure”);
Cooling water temperature detecting means for detecting the cooling water temperature of the internal combustion engine;
When the detected fuel pressure of the fuel pressure detecting means is less than a predetermined fuel pressure at the start, the fuel injection at the start is prohibited regardless of the coolant temperature detected by the cooling water temperature detecting means to prioritize the increase of the fuel pressure, and the detection of the fuel pressure detecting means When fuel injection is started after the fuel pressure exceeds the predetermined fuel pressure, it is determined whether the detected coolant temperature of the coolant temperature detection means falls into one of the three temperature ranges of low temperature, medium temperature, and high temperature, and the low temperature region and the high temperature region are detected. And a start control means for setting the injection timing at the start to the intake stroke in the region and the injection timing at the start to the compression stroke in the intermediate temperature region. Control device.
高圧ポンプにより燃料を高圧にして燃料噴射弁に供給し、この燃料噴射弁から燃料を気筒内に直接噴射する筒内噴射式の内燃機関の始動制御装置において、
前記燃料噴射弁に供給される燃料の圧力(以下「燃圧」という)を検出する燃圧検出手段と、
内燃機関の冷却水温を検出する冷却水温検出手段と、
始動時に前記燃圧検出手段の検出燃圧が所定燃圧以下のときに前記冷却水温検出手段の検出冷却水温とは関係なく始動時の燃料噴射を禁止して燃圧上昇を優先させ、前記燃圧検出手段の検出燃圧が所定燃圧を越えてから燃料噴射を開始する際に、前記冷却水温検出手段の検出冷却水温が極低温・低温・中温・高温の4つの温度領域のいずれに該当するかを判定し、極低温領域と高温領域では始動時の噴射時期を吸気行程に設定し、中温領域では始動時の噴射時期を圧縮行程に設定し、低温領域では吸気行程及び/又は圧縮行程で燃料を複数回に分割して噴射する始動制御手段と
を備えていることを特徴とする筒内噴射式の内燃機関の始動制御装置。
In the in-cylinder injection type internal combustion engine start control device in which fuel is made high pressure by a high pressure pump and supplied to the fuel injection valve, and fuel is directly injected into the cylinder from the fuel injection valve.
Fuel pressure detecting means for detecting the pressure of fuel supplied to the fuel injection valve (hereinafter referred to as “fuel pressure”);
Cooling water temperature detecting means for detecting the cooling water temperature of the internal combustion engine;
When the detected fuel pressure of the fuel pressure detecting means is less than a predetermined fuel pressure at the start, the fuel injection at the start is prohibited regardless of the coolant temperature detected by the cooling water temperature detecting means to prioritize the increase of the fuel pressure, and the detection of the fuel pressure detecting means When fuel injection is started after the fuel pressure exceeds a predetermined fuel pressure, it is determined whether the detected coolant temperature of the coolant temperature detection means falls into one of four temperature ranges of extremely low temperature, low temperature, medium temperature, and high temperature. In the low temperature region and the high temperature region, the injection timing at the start is set to the intake stroke, in the intermediate temperature region, the injection timing at the start is set to the compression stroke, and in the low temperature region, the fuel is divided into multiple times in the intake stroke and / or the compression stroke. A start control device for in-cylinder injection type internal combustion engine.
始動時の要求噴射量を算出する要求噴射量算出手段を備え、
前記始動制御手段は、前記要求噴射量に基いて噴射による燃圧低下量を推定し、この燃圧低下量が所定値以上の場合には前記燃圧検出手段の検出燃圧とは関係なく始動時の燃料噴射を実行することを特徴とする請求項1乃至3のいずれかに記載の筒内噴射式の内燃機関の始動制御装置。
Equipped with a required injection amount calculating means for calculating a required injection amount at the start,
The start control means estimates a fuel pressure decrease amount due to injection based on the required injection amount, and when the fuel pressure decrease amount is equal to or greater than a predetermined value, fuel injection at start is performed regardless of the detected fuel pressure of the fuel pressure detection means. The start control device for a cylinder injection type internal combustion engine according to any one of claims 1 to 3, wherein:
始動時の要求噴射量を算出する要求噴射量算出手段を備え、
前記始動制御手段は、前記要求噴射量が所定値以上の場合には前記燃圧検出手段の検出燃圧とは関係なく始動時の燃料噴射を実行することを特徴とする請求項1乃至3のいずれかに記載の筒内噴射式の内燃機関の始動制御装置。
Equipped with a required injection amount calculating means for calculating a required injection amount at the start,
4. The fuel injection system according to claim 1, wherein when the required injection amount is equal to or greater than a predetermined value, the start control unit executes fuel injection at the start regardless of the detected fuel pressure of the fuel pressure detecting unit. A start-up control device for an in-cylinder internal combustion engine as described in 1.
前記始動制御手段は、始動時に前記高圧ポンプの1サイクル当たりの燃料吐出量と噴射による燃料消費量とを推定し、噴射による燃料消費量が燃料吐出量がよりも多い場合には前記燃圧検出手段の検出燃圧とは関係なく始動時の燃料噴射を実行することを特徴とする請求項1乃至5のいずれかに記載の筒内噴射式の内燃機関の始動制御装置。   The start control means estimates a fuel discharge amount per cycle of the high-pressure pump and a fuel consumption amount by injection at the start, and when the fuel consumption amount by injection is larger than the fuel discharge amount, the fuel pressure detection means 6. The start control device for a cylinder injection type internal combustion engine according to claim 1, wherein fuel injection at the time of start is executed irrespective of the detected fuel pressure.
JP2005131000A 2005-04-28 2005-04-28 Starting control device of cylinder injection internal combustion engine Pending JP2006307737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131000A JP2006307737A (en) 2005-04-28 2005-04-28 Starting control device of cylinder injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131000A JP2006307737A (en) 2005-04-28 2005-04-28 Starting control device of cylinder injection internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006307737A true JP2006307737A (en) 2006-11-09

Family

ID=37474908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131000A Pending JP2006307737A (en) 2005-04-28 2005-04-28 Starting control device of cylinder injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006307737A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065598A (en) * 2008-09-10 2010-03-25 Mitsubishi Motors Corp Cylinder injection type internal combustion engine
JP2011208521A (en) * 2010-03-29 2011-10-20 Honda Motor Co Ltd Engine control device
JP2014051929A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Electric spark ignition type direct-injection engine
JP2014066202A (en) * 2012-09-26 2014-04-17 Mazda Motor Corp Control device of engine
JP2014152677A (en) * 2013-02-07 2014-08-25 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065598A (en) * 2008-09-10 2010-03-25 Mitsubishi Motors Corp Cylinder injection type internal combustion engine
JP2011208521A (en) * 2010-03-29 2011-10-20 Honda Motor Co Ltd Engine control device
JP2014051929A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Electric spark ignition type direct-injection engine
JP2014066202A (en) * 2012-09-26 2014-04-17 Mazda Motor Corp Control device of engine
JP2014152677A (en) * 2013-02-07 2014-08-25 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4148233B2 (en) Engine fuel injection control device
US6474294B2 (en) Direct injection type internal combustion engine control apparatus and control method of the same
JP4333619B2 (en) In-cylinder injection type internal combustion engine start control device
EP1907682B1 (en) Control apparatus for internal combustion engine and engine system
JP4407827B2 (en) In-cylinder injection internal combustion engine control device
JP2013113163A (en) Start control device of compression self-ignition engine
JP2007218144A (en) Fuel pressure control device for cylinder injection internal combustion engine
WO2006100826A1 (en) Control apparatus for internal combustion engine
JP2008025502A (en) Fuel injection control device of internal combustion engine
JPH11270385A (en) Fuel injection device of internal combustion engine
JP3090073B2 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JP2009079514A (en) Fuel pressure control device for cylinder injection type internal combustion engine
JP2006307737A (en) Starting control device of cylinder injection internal combustion engine
JP5321844B2 (en) Fuel injection control device for internal combustion engine
US6978759B2 (en) Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
JP3289472B2 (en) Fuel injection control device
JP2013057254A (en) Spark ignition type direct injection engine
JP2007032326A (en) Controller of internal combustion engine
JP2011202597A (en) High-pressure pump control device for internal combustion engine
JP5332871B2 (en) Fuel injection control device for spark ignition internal combustion engine
JP5831168B2 (en) Start control device for compression self-ignition engine
JPH09166039A (en) Fuel injector for inter-cylinder direct injection type spark ignition internal combustion engine
JP2005155462A (en) Start control device of internal combustion engine
JP2001342873A (en) Fuel injection control device of internal combustion engine
JP2007071095A (en) Starting control device of cylinder injection type internal combustion engine