JP2006307591A - Outside heat insulating method - Google Patents

Outside heat insulating method Download PDF

Info

Publication number
JP2006307591A
JP2006307591A JP2005133954A JP2005133954A JP2006307591A JP 2006307591 A JP2006307591 A JP 2006307591A JP 2005133954 A JP2005133954 A JP 2005133954A JP 2005133954 A JP2005133954 A JP 2005133954A JP 2006307591 A JP2006307591 A JP 2006307591A
Authority
JP
Japan
Prior art keywords
plate roof
heat insulating
folded
roof
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005133954A
Other languages
Japanese (ja)
Inventor
Shuichiro Koike
修一郎 小池
Tetsuji Kawanishi
哲司 川西
Toshihide Matsumoto
敏秀 松本
Masamichi Tsuboi
正道 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KY HOUSING KK
Fuji Kasei Kogyo Co Ltd
Original Assignee
KY HOUSING KK
Fuji Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KY HOUSING KK, Fuji Kasei Kogyo Co Ltd filed Critical KY HOUSING KK
Priority to JP2005133954A priority Critical patent/JP2006307591A/en
Publication of JP2006307591A publication Critical patent/JP2006307591A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outside heat insulating method which is excellent in durability without forming a protective layer outside and allows construction to be simply carried out, and also to provide a folded plate roof by the outside heat insulating method. <P>SOLUTION: The folded plate roof 2 is formed by unevenly processing a flat plate shaped steel plate to be an almost corrugated shape in a cross section, and the folded plate roof 2 is fixed on a beam 1 in a work site. When the unevenly processed folded plate roof 2 is fixed on the beam 1, an inorganic-based foamed body 3 is adhered on an upper face of the folded plate roof 2 by an adhesive. The inorganic-based foamed body 3 is adhered on the folded plate roof 2 without forming a space between the folded plate roof 2 and the inorganic-based foamed body 3. Accordingly, construction becomes simple and durability of the whole roof is improved without forming the protective layer such as a waterproof sheet outside the folded plate roof 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外断熱工法に関し、特に、工場や体育館などの折板屋根に好適な外断熱工法に関する。   The present invention relates to an outer heat insulating method, and more particularly, to an outer heat insulating method suitable for folded plate roofs of factories, gymnasiums, and the like.

従来から、建物の屋根部分には断熱性の材料が設けられている。この様な断熱工法として、内断熱工法と称せられる工法と外断熱工法と称せられる工法とが広く用いられている。内断熱工法では、建物の屋根材の下方(屋内側)に断熱材を設けており、外断熱工法では、建物の屋根材の上方(屋外側)に断熱材を設けている。そして、両工法とも、この断熱材により、建物内の温度が急激に上昇したり下降したりするのを防いで、建物内の温度を良好に保つことができる。   Conventionally, a heat insulating material has been provided on a roof portion of a building. As such a heat insulating method, a method called an inner heat insulating method and a method called an outer heat insulating method are widely used. In the inner heat insulating method, a heat insulating material is provided below the roof material of the building (indoor side), and in the outer heat insulating method, the heat insulating material is provided above the roof material of the building (outdoor side). And both construction methods can keep the temperature in a building favorable by preventing that the temperature in a building rises or falls rapidly by this heat insulating material.

内断熱工法の一例は、特許文献1に記載されており、外断熱工法の一例は、特許文献2に記載されている。
特開平8−120837号公報 特開平5−230952号公報
An example of the inner heat insulation method is described in Patent Document 1, and an example of the outer heat insulation method is described in Patent Document 2.
Japanese Patent Laid-Open No. 8-120837 Japanese Patent Laid-Open No. 5-230952

しかしながら、従来の技術では以下の問題点があった。
すなわち、上記特許文献1に記載の技術を含めて、従来の内断熱工法では、断熱材が屋内側に設けられていて、鋼板からなる屋根材が剥き出しになっているため、屋根材が雨風にさらされて傷みやすいといった問題点や、屋根材に直接雨風が当たるため、大きな騒音が生じるといった問題点があった。
However, the conventional technique has the following problems.
In other words, in the conventional inner heat insulation method including the technique described in Patent Document 1, the heat insulating material is provided on the indoor side, and the roof material made of a steel plate is exposed. There was a problem that it was exposed and easily damaged, and a problem that a big noise was generated because the wind and wind directly hit the roofing material.

また、上記特許文献2に記載の技術を含めて従来の外断熱工法では、断熱材が紫外線に弱くまた水も吸い込むため、断熱材の上面に保護板や防水シートといった保護層を設けねばならないという問題点や、作業が煩雑であるいった問題点があった。   In addition, in the conventional outer heat insulation method including the technique described in Patent Document 2, since the heat insulating material is weak to ultraviolet rays and sucks water, a protective layer such as a protective plate or a waterproof sheet must be provided on the upper surface of the heat insulating material. There were problems such as problems and complicated work.

特に、屋根材が、工場や体育館等の建造物に用いられる折板屋根の場合には、通常の問題点を含めて以下の問題点が知られている。
まず、従来の内断熱工法では、鋼板が屋外暴露される。従って、風雨により鋼板に錆が生じやすいという問題点があった。また、一日や季節の温度変化に伴い、鋼板が伸縮し、長期間にわたる使用の結果、鋼板がもろくなりやすいという問題点があった。
In particular, in the case where the roofing material is a folded plate roof used for buildings such as factories and gymnasiums, the following problems including the usual problems are known.
First, in the conventional inner heat insulation method, the steel sheet is exposed outdoors. Therefore, there is a problem that rust is easily generated on the steel sheet due to wind and rain. In addition, the steel sheet expands and contracts with changes in temperature during the day or season, and as a result of long-term use, the steel sheet tends to become brittle.

また、この様な折板屋根は大型部材であるので、長尺物として搬入するには限界があり、ロール状の鋼板を搬入し現場で凹凸加工し施工する場合がほとんどである。断熱屋根を構築する場合も同様であって、あらかじめ断熱材が貼り付けてあるロールを搬入し現場で施工する。   Moreover, since such a folded-plate roof is a large-sized member, there is a limit in carrying in as a long thing, and it is almost the case where a roll-shaped steel plate is carried in and processed by uneven | corrugated processing on-site. The same applies to the construction of a heat insulating roof, and a roll with a heat insulating material attached in advance is carried in and constructed on site.

図4は、断熱材が貼り付けてある折板屋根用の鋼板ロールの一例を示した概略図である。図示した様に、鋼板31の一方の面に断熱材32が貼り付けられており、鋼板31と断熱材32とは共にロール状に巻かれている。この様な荷姿として取り扱われるため、断熱材32の厚みlは必然的に薄くせざるを得ず、せいぜい5mm程度までである。従って、従来の折板屋根の内断熱工法では十分な断熱効果を得ることができないといった問題点があった。 FIG. 4 is a schematic view showing an example of a steel sheet roll for folded plate roof to which a heat insulating material is attached. As illustrated, a heat insulating material 32 is affixed to one surface of the steel plate 31, and both the steel plate 31 and the heat insulating material 32 are wound in a roll shape. Since it is handled as such a package, the thickness l 1 of the heat insulating material 32 inevitably becomes thin, and is at most about 5 mm. Therefore, there has been a problem that a sufficient heat insulation effect cannot be obtained by the conventional heat insulation method for folded plate roofs.

なお、鋼板と断熱材を別々に搬入し、現場で加工して厚みのある内断熱折板屋根を施工することも可能である。しかしながら、通常、グラスウールや木毛セメント板からなる断熱材は折板屋根に関しては取扱性が悪く、施工工程が大幅に増え、施工コストがかさみ、居住環境レベルまで要求されない工場屋根や体育館屋根としては事実上採用されない。   In addition, it is also possible to carry in a thick inner heat insulation folded-plate roof by carrying in a steel plate and a heat insulating material separately, and processing on-site. However, heat insulation made of glass wool or wood wool cement board is usually not easy to handle with respect to folded-plate roofs, significantly increases the construction process, increases construction costs, and is not required to the living environment level as a factory roof or gymnasium roof. Not practically adopted.

一方、外断熱工法では、次の様な問題点があった。まず、従来の外断熱工法による折板屋根の概要について説明する。図5は、従来の外断熱工法が用いられた建物の屋根の部分を示す断面図である。この建物には、長手形状の梁11と、梁11上に設けられた折板屋根12と、折板屋根12上に設けられた断熱材13とが備えられている。また、図示は省略するが、断熱材13の外側には、従来と同様に保護層が設けられている。   On the other hand, the outer insulation method has the following problems. First, the outline | summary of the folded-plate roof by the conventional external heat insulation construction method is demonstrated. FIG. 5 is a cross-sectional view showing a roof portion of a building in which a conventional outer heat insulating method is used. This building includes a longitudinal beam 11, a folded plate roof 12 provided on the beam 11, and a heat insulating material 13 provided on the folded plate roof 12. Moreover, although illustration is abbreviate | omitted, the protective layer is provided in the outer side of the heat insulating material 13 similarly to the past.

折板屋根12は、断面略波形の長尺の部材であって、水平方向に延びる梁11上に固定されている。断熱材13は、所定の厚みを有する平板状の部材であって、折板屋根12の上面に設けられている。また、図示されていないが、断熱材13は、ボルトやナット等により折板屋根12に固定されている。   The folded plate roof 12 is a long member having a substantially corrugated cross section, and is fixed on the beam 11 extending in the horizontal direction. The heat insulating material 13 is a flat plate member having a predetermined thickness, and is provided on the upper surface of the folded plate roof 12. Moreover, although not shown in figure, the heat insulating material 13 is being fixed to the folded-plate roof 12 with the volt | bolt, the nut, etc.

この様な構造であるので、折板屋根12と断熱材13との間には複数の大きな空間Aが生じることとなる。従って、例え断熱材自体が保水しない部材であったとしても、空間A部分の折板屋根12には結露点が構造的に存在し、この部分に結露が生じてしまうといった問題点がある。   Because of such a structure, a plurality of large spaces A are generated between the folded plate roof 12 and the heat insulating material 13. Therefore, even if the heat insulating material itself is a member that does not retain water, there is a problem in that a dew point is structurally present on the folded plate roof 12 in the space A portion, and dew condensation occurs in this portion.

また、折板屋根12と断熱材13とはボルトやナット等により固定されているので、この部分から錆が発生しやすいといった問題点がある。   Moreover, since the folded-plate roof 12 and the heat insulating material 13 are being fixed with the volt | bolt, the nut, etc., there exists a problem that rust tends to generate | occur | produce from this part.

また、外断熱工法において、断熱材を折板屋根の上面に沿う様に設けることが考えられるが、この場合にも、上述の場合と同様に断熱材および折板屋根をロール状に巻いて現場に運ぶことになるため、上述と同様の問題点が生じる。   Also, in the outer heat insulation method, it is conceivable to provide a heat insulating material along the upper surface of the folded plate roof, but in this case as well, the heat insulating material and the folded plate roof are wound into a roll shape in the same manner as described above. This causes the same problems as described above.

本発明は上記に鑑みてなされたものであって、外側に保護層を設けることなく、耐久性に優れ、簡便な施工作業を実現する外断熱工法ないし当該外断熱工法による折板屋根を提供することを目的とする。   The present invention has been made in view of the above, and provides an outer heat insulating method or a folded plate roof by the outer heat insulating method that has excellent durability and realizes simple construction work without providing a protective layer on the outside. For the purpose.

上記の目的を達成するために、請求項1に記載の外断熱工法は、建物の鋼板屋根の上方に断熱性の材料を設ける外断熱工法であって、板状の無機質系発泡体を、上記鋼板屋根の上面に沿って密接状態で取り付けることを特徴とする。   In order to achieve the above object, the outer heat insulating method according to claim 1 is an outer heat insulating method in which a heat insulating material is provided above a steel plate roof of a building, and the plate-like inorganic foam is It is characterized by being attached in close contact along the upper surface of the steel plate roof.

すなわち、請求項1にかかる発明は、鋼板屋根の上面(屋外側の面)に沿って板状の無機質系発泡体を設けるため、鋼板屋根と無機質系発泡体とが密着し、その間や無機質系発泡体内部に巨視的な空間が存在しないため結露点が生じず、結露の発生を防止できる。
また、無機質系素材を用いるので従来使用されている有機系素材に比して耐候性に優れ、たとえば、上面に防水シート等の保護層を設ける必要がなく、鋼板屋根の上面に剥き出しの状態で設けることができる。また、鋼板屋根に直接風雨が当たらないので、鋼板屋根の劣化を防ぎ、騒音が大きくなったりするのを防ぐことができる。加えて、発泡素材なので比重が軽く、切りそろえなどの現場加工が容易であるため、簡便な施工を実現可能とする。特に、既設の鋼板屋根に対しても、外断熱構造を簡便に実現可能となる。
That is, in the invention according to claim 1, in order to provide a plate-like inorganic foam along the upper surface (outdoor side surface) of the steel plate roof, the steel plate roof and the inorganic foam are in close contact with each other and between the inorganic foams. Since there is no macroscopic space inside the foam, no dew point is generated, and the occurrence of dew condensation can be prevented.
In addition, since inorganic material is used, it is superior in weather resistance compared to conventionally used organic materials, for example, it is not necessary to provide a protective layer such as a waterproof sheet on the upper surface, and it is exposed on the upper surface of the steel sheet roof Can be provided. Moreover, since a wind and rain does not hit a steel plate roof directly, deterioration of a steel plate roof can be prevented and it can prevent that a noise becomes large. In addition, since it is a foam material, its specific gravity is light and easy on-site processing, such as trimming, makes it possible to achieve simple construction. In particular, an outer heat insulating structure can be easily realized even for an existing steel sheet roof.

また、請求項2に記載の外断熱工法は、請求項1に記載の外断熱工法において、上記無機質系発泡体が、無機質充填材50〜95重量部に、発泡剤2〜20重量部、有機溶剤30〜120重量部、塩化ビニル樹脂5〜50重量部を加え、混練してコンパウンドとし、そのコンパウンドを型内で加熱発泡させることにより形成された耐火性能を有する発泡体であり、上記形成された無機質系発泡体を、上記鋼板屋根の上面に接着により取り付けることを特徴とする。   Further, the outer heat insulating method according to claim 2 is the outer heat insulating method according to claim 1, wherein the inorganic foam is in an amount of 50 to 95 parts by weight of an inorganic filler, 2 to 20 parts by weight of a foaming agent, and organic. A foam having fire resistance performance formed by adding 30 to 120 parts by weight of a solvent and 5 to 50 parts by weight of a vinyl chloride resin, kneading to make a compound, and heating and foaming the compound in a mold, which is formed as described above The inorganic foam is attached to the upper surface of the steel plate roof by adhesion.

すなわち、請求項2にかかる発明は、耐火性を備えた鋼板屋根構造を実現する。また、無機質系素材の比率が高いので耐候性が高くなり、有機系材料を用いた発泡構造により、水がはじきやすく素材自体が結露の発生を防止する。また、保水もしにくい。更に、型を用いた所望の厚み所望の形状の断熱材による鋼板屋根も構築できる。なお、接着による施工が可能であるので、水のしみこみによる鋼板屋根の劣化を防止できる。   That is, the invention according to claim 2 realizes a steel plate roof structure having fire resistance. In addition, since the ratio of the inorganic material is high, the weather resistance is high, and the foam structure using the organic material easily repels water and prevents the material itself from causing condensation. Also, it is difficult to retain water. Furthermore, a steel plate roof made of a heat insulating material having a desired thickness and a desired shape using a mold can be constructed. In addition, since construction by adhesion is possible, it is possible to prevent deterioration of the steel sheet roof due to water penetration.

また、請求項3にかかる発明は、請求項2に記載の外断熱工法において、上記無機質充填材として、炭酸カルシウム、タルク、および/または、蛇紋岩を用いることを特徴とする。   The invention according to claim 3 is characterized in that, in the outer heat insulating method according to claim 2, calcium carbonate, talc, and / or serpentine is used as the inorganic filler.

すなわち、請求項3にかかる発明は、不燃材としての性質も有する。   That is, the invention according to claim 3 also has a property as a non-combustible material.

請求項4に記載の外断熱工法は、請求項1,2または3に記載の外断熱工法において、上記鋼板屋根は、断面形状が略波形となる様に凹凸加工された折板屋根であり、上記無機質系発泡体を、上記折板屋根との間に空間が生じない様に、上記凹凸加工した後の折板屋根の上面に接着することを特徴とする。   The outer heat insulating method according to claim 4 is the outer heat insulating method according to claim 1, 2, or 3, wherein the steel plate roof is a folded plate roof that has been processed to be uneven so that the cross-sectional shape is substantially corrugated, The inorganic foam is bonded to the upper surface of the folded plate roof after the uneven processing so that no space is formed between the inorganic foam and the folded plate roof.

すなわち、請求項4にかかる発明は、折板屋根の上面(屋外側の面)に無機質系発泡体を接着するため、無機質系発泡体の厚みを大きくすることができる。詳しくは、施工においては、まず、現場において、平板状の鋼板を断面略波形に折り曲げる様に凹凸加工して折板屋根とし、その後、その折板屋根の上面に無機質系発泡体を接着するため、所望の厚みの無機質系発泡体を設けることができ、十分な断熱効果を得ることができる。
なお、この場合、無機質系発泡体の厚みは、たとえば、10〜20mmである。
That is, the invention according to claim 4 can increase the thickness of the inorganic foam since the inorganic foam is adhered to the upper surface (outdoor side surface) of the folded plate roof. Specifically, in the construction, first, in order to bond the inorganic foam to the upper surface of the folded plate roof, after that, on the site, the flat plate steel plate is processed into a concavo-convex shape such that it is folded into a substantially corrugated cross section. An inorganic foam having a desired thickness can be provided, and a sufficient heat insulating effect can be obtained.
In this case, the thickness of the inorganic foam is, for example, 10 to 20 mm.

以上の様に、本発明によれば、外側に保護層を設けることなく、耐久性に優れ、簡便な施工作業を実現する外断熱工法ないし当該外断熱工法による折板屋根を提供可能となる。   As described above, according to the present invention, without providing a protective layer on the outside, it is possible to provide an outer heat insulating method that is excellent in durability and realizes a simple construction work or a folded plate roof by the outer heat insulating method.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
図1は、この発明の一実施形態にかかる断熱工法を用いた建物の一部を示す斜視図である。また、図2は、図1に示す建物の断面状態を示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a part of a building using a heat insulation method according to an embodiment of the present invention. Moreover, FIG. 2 is a figure which shows the cross-sectional state of the building shown in FIG.

図1および図2には、建物の折板屋根の一部分の構造が示されている。すなわち、この建物には、長手形状の梁1と、梁1上に載置された折板屋根2と、折板屋根2上に設けられた無機質系発泡体3とが備えられている。この建物は、外断熱工法が採用され断熱材である無機質系発泡体3が折板屋根の屋外側である上方に設けられている。   1 and 2 show the structure of a part of a folded-plate roof of a building. That is, this building is provided with a longitudinal beam 1, a folded plate roof 2 placed on the beam 1, and an inorganic foam 3 provided on the folded plate roof 2. In this building, the outer heat insulating method is adopted, and the inorganic foam 3 which is a heat insulating material is provided above the folded roof of the folded roof.

梁1は、H形鋼で形成される長手の部材であって水平方向に延びている。梁1は、たとえば、図示しない鉛直方向に延びる柱の上に、ボルトやナット等で水平状態を保つ様に取り付けられている。なお、図1および図2においては、梁1は1つのみ示されているが、実際には複数の梁1が設けられている。   The beam 1 is a long member formed of H-shaped steel and extends in the horizontal direction. For example, the beam 1 is mounted on a pillar extending in a vertical direction (not shown) so as to maintain a horizontal state with a bolt, a nut, or the like. In FIG. 1 and FIG. 2, only one beam 1 is shown, but a plurality of beams 1 are actually provided.

折板屋根2は、断面略波形の長尺の部材であって、梁1上に密接する下面部21と、下面部21から立ち上がる縦面部22と、縦面部22の上方に位置する上面部23とが連続的に連なっている。
下面部21は、一定幅の面を構成する部分であって、梁1の長さ方向と直交する方向に延びている。そして、複数の下面部21が、梁1の長さ方向において一定間隔ごとに梁1の上面に密接している。
The folded plate roof 2 is a long member having a substantially corrugated cross section, and includes a lower surface portion 21 closely contacting the beam 1, a vertical surface portion 22 rising from the lower surface portion 21, and an upper surface portion 23 positioned above the vertical surface portion 22. Are continuously connected.
The lower surface portion 21 is a portion constituting a surface having a constant width and extends in a direction orthogonal to the length direction of the beam 1. The plurality of lower surface portions 21 are in close contact with the upper surface of the beam 1 at regular intervals in the length direction of the beam 1.

縦面部22は、下面部21の短手方向の両端から下面部21の上方へやや傾く様にして立ち上がる面である。
上面部23は、一定幅の面を構成する部分であって、その短手方向の両端が、隣り合う2つの縦面部22の上部に接合している。
すなわち、折板屋根2は、梁1の長さ方向に沿って、下面部21、縦面部22、上面部23、縦面部22、下面部21と順々になる様に、平板状の鋼板が略波形に折り曲げられることで構成されている。
そして、下面部21が、ボルトやナット等(図示せず)で梁1に取り付けられることで、折板屋根2が、梁1上に固定される。
なお、折板屋根2は、たとえば、ガルバリウム鋼板を折り曲げることにより形成されている。
The vertical surface portion 22 is a surface that rises from both ends of the lower surface portion 21 in the short direction so as to be slightly inclined upward from the lower surface portion 21.
The upper surface portion 23 is a portion constituting a surface having a constant width, and both ends in the short direction are joined to upper portions of two adjacent vertical surface portions 22.
That is, the folded plate roof 2 is made of a flat steel plate so that the lower surface portion 21, the vertical surface portion 22, the upper surface portion 23, the vertical surface portion 22, and the lower surface portion 21 are arranged in this order along the length direction of the beam 1. It is configured by being bent into a substantially waveform.
And the folded-plate roof 2 is fixed on the beam 1 by attaching the lower surface part 21 to the beam 1 with a volt | bolt, a nut, etc. (not shown).
The folded plate roof 2 is formed by, for example, bending a galvalume steel plate.

無機質系発泡体3は、無機質充填材を基材とし、これに塩化ビニル樹脂、発泡剤や有機溶剤等の添加剤を加えて混練し、更に、加熱発泡させることにより形成される断熱材である。
詳しくは、無機質系発泡体3は、無機質充填材50〜95重量部に、発泡剤2〜20重量部、有機溶剤30〜120重量部、塩化ビニル樹脂5〜50重量部を加え、混練してコンパウンドとし、そのコンパウンドを金型内で加熱発泡させることで形成される。
The inorganic foam 3 is a heat insulating material formed by using an inorganic filler as a base material, adding an additive such as a vinyl chloride resin, a foaming agent or an organic solvent, kneading, and further heating and foaming. .
Specifically, the inorganic foam 3 is kneaded by adding 2 to 20 parts by weight of a foaming agent, 30 to 120 parts by weight of an organic solvent, and 5 to 50 parts by weight of a vinyl chloride resin to 50 to 95 parts by weight of the inorganic filler. The compound is formed by heating and foaming the compound in a mold.

無機質系充填材としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、炭酸カルシウム、炭酸マグネシウム等の炭酸化合物、石膏、硫酸アルミニウム等の結晶水を有する化合物等が挙げられる他、アスベスト、タルク、ベンナイト、クレー等の化合物、あるいは珪酸塩、蛇紋岩等も挙げられる。そして、これらの化合物は、単独、または、2種以上を混合して用いることができる。なお、無機質充填材は、52〜90重量部が好ましく、54〜80重量部が更に好ましい。   Examples of inorganic fillers include hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, carbonate compounds such as calcium carbonate and magnesium carbonate, compounds having crystal water such as gypsum and aluminum sulfate, and the like. And compounds such as asbestos, talc, bennite and clay, or silicates and serpentine. And these compounds can be used individually or in mixture of 2 or more types. The inorganic filler is preferably 52 to 90 parts by weight, more preferably 54 to 80 parts by weight.

塩化ビニル樹脂としては、塩化ビニルを単量体の主成分とする重合体であればよく、一般の塩化ビニル系樹脂を広く用いることができる。なお、塩化ビニル樹脂は、10〜48重量部が好ましく、20〜46重量部が更に好ましい。   As the vinyl chloride resin, any polymer having vinyl chloride as a main component of the monomer may be used, and general vinyl chloride resins can be widely used. The vinyl chloride resin is preferably 10 to 48 parts by weight, more preferably 20 to 46 parts by weight.

発泡剤としては、有機発泡剤であるアゾジカルボンアミド、アゾビスイソブチルニトリル、ジニトロソペンタテトラミン、P−トルエンスルホニルヒドラジド、P,P’−オキシビス(ベンゼンスルホニルヒドラジド)等、無機発泡剤である重炭酸ソーダ,塩化アンモニウム等が挙げられる。なお、発泡剤は、5〜15重量部が好ましい。   Examples of the foaming agent include organic foaming agents azodicarbonamide, azobisisobutylnitrile, dinitrosopentatetramine, P-toluenesulfonyl hydrazide, P, P′-oxybis (benzenesulfonylhydrazide), etc., sodium bicarbonate, which is an inorganic foaming agent, Examples include ammonium chloride. The foaming agent is preferably 5 to 15 parts by weight.

有機溶剤としては、一般に用いられているものを広く利用できるが、特にトルエン,キシレン等が好ましい。なお、有機溶剤は、30〜100重量部が好ましく、40〜90重量部が更に好ましい。   As the organic solvent, commonly used ones can be widely used, but toluene, xylene and the like are particularly preferable. The organic solvent is preferably 30 to 100 parts by weight, more preferably 40 to 90 parts by weight.

なお、この他、可塑剤、金属、金属化合物、難燃剤、セラミック、鉱物等を添加することも可能である。たとえば、添加剤としてカーボンブラックを用いることができる。   In addition, plasticizers, metals, metal compounds, flame retardants, ceramics, minerals, and the like can be added. For example, carbon black can be used as an additive.

これら混合されたコンパウンドは、金型内に充填され、その後、たとえば、金型を140℃〜170℃に加熱し、金型内において十分に反応が行われた後、金型を室温まで冷却し、金型から生成物を取り出す。   These mixed compounds are filled in a mold, and then, for example, the mold is heated to 140 ° C. to 170 ° C., and after the reaction is sufficiently performed in the mold, the mold is cooled to room temperature. Remove the product from the mold.

金型から取り出された生成物は、常圧中で、オーブン等により再び加熱等された後、無機質系発泡体3となる。この様に、無機質系発泡体3は、金型成形されるので、型どおりに形成することができ、種々にその形を変化させて硬化させることが可能である。   The product taken out from the mold is heated again by an oven or the like under normal pressure, and then becomes an inorganic foam 3. Thus, since the inorganic foam 3 is molded by a mold, it can be formed as it is, and can be cured by changing its shape in various ways.

なお、ここで、無機質系発泡体3の一製法を挙げる。塩化ビニル樹脂40重量部、無機充填剤として炭酸カルシウム30重量部,タルク15重量部,蛇紋岩15重量部、発泡剤としてアゾビスイソブチルニトリル4重量部,ジニトロソペンタテトラミン4重量部、更に他の添加剤として尿素系発泡助剤4重量部をニーダーに入れて、5分間混合する。次いで、有機溶剤としてトルエン70重量部を、徐々に加えて1時間混練する。加圧状態のまま、混練によって得られたコンパウンドを金型に隙間なく充填し、上部に蓋をして、プレスにより加圧する。この状態で、加熱して塩化ビニル樹脂をゲル化させ、同時に発泡剤を分解させる。   Here, one manufacturing method of the inorganic foam 3 will be described. 40 parts by weight of vinyl chloride resin, 30 parts by weight of calcium carbonate as an inorganic filler, 15 parts by weight of talc, 15 parts by weight of serpentine, 4 parts by weight of azobisisobutylnitrile, 4 parts by weight of dinitrosopentatetramine, and other As an additive, 4 parts by weight of a urea foaming aid is placed in a kneader and mixed for 5 minutes. Next, 70 parts by weight of toluene as an organic solvent is gradually added and kneaded for 1 hour. The compound obtained by kneading is filled in the mold without any gaps in the pressurized state, and the upper part is covered and pressed by a press. In this state, the resin is heated to gel the vinyl chloride resin, and at the same time, the foaming agent is decomposed.

ゲル化・分解を十分にさせた後、加圧状態のまま金型を室温まで冷却し、製品を取り出す。常圧にて製品を再び加熱し、所定の寸法まで膨張させる。所定の寸法になった後、一旦、室温まで冷却し、再び徐々に加熱し、トルエンを製品の中から蒸発させ、完全に取り除く。この製法により得られた無機質系発泡体は、極めて容易にスライスすることが可能で、所望の寸法に容易に成形できる。なお、この無機質系発泡体は、再加熱することにより、容易に可塑化され、加熱プレス成形での後加工がおこなえる。   After sufficient gelation and decomposition, the mold is cooled to room temperature in a pressurized state and the product is taken out. The product is heated again at normal pressure and expanded to a predetermined size. After reaching the predetermined dimensions, it is once cooled down to room temperature and gradually heated again to evaporate toluene from the product and completely remove it. The inorganic foam obtained by this production method can be sliced very easily and can be easily molded to a desired size. This inorganic foam is easily plasticized by reheating and can be post-processed by hot press molding.

本実施の形態においては、無機質系発泡体3は、所定の厚みを持ち板状に形成された炭酸カルシウム系発泡板であり、この所定の厚みLとしては、たとえば、10〜20mmを採用することができる。また、上記の製法により製造されたものを含み、無機質系発泡体3は、無機質系素材の比率が高いので耐候性が高く、また、有機系材料を用いる点と発泡構造とが相まって、いわゆるぬれ性が悪く、水を吸い込まないという性質も併せ持つため、耐久性が高い。また、所定の素材を用いた炭酸カルシウム系発泡板にあっては、不燃材としての性質も有する。この様な無機質系発泡体3としては、具体的には、商品名ロックセルボード(フジ化成工業株式会社製)を挙げることができる。   In the present embodiment, the inorganic foam 3 is a calcium carbonate foam plate having a predetermined thickness and formed in a plate shape, and the predetermined thickness L is, for example, 10 to 20 mm. Can do. In addition, the inorganic foam 3 including those manufactured by the above-described manufacturing method has high weather resistance due to the high ratio of the inorganic material, and the combination of the point of using the organic material and the foam structure, so-called wetting. It is not durable and has the property of not sucking water, so it is highly durable. In addition, a calcium carbonate foam plate using a predetermined material also has a property as a non-combustible material. Specific examples of such inorganic foam 3 include trade name Rock Cell Board (manufactured by Fuji Kasei Kogyo Co., Ltd.).

また、無機質系発泡体3は、発泡構造であるため加工性が高く、たとえば、カッター等で容易に切断して所望の形にすることもできる。すなわち、図1および図2においては、無機質系発泡体3は、板状の無機質系発泡体3を種々に加工して張り合わせることで、折板屋根2との間に巨視的な隙間を生じさせなくすることができる。これについては、後述する。   Moreover, since the inorganic foam 3 has a foamed structure, it has high workability and can be easily cut into a desired shape by, for example, a cutter. That is, in FIG. 1 and FIG. 2, the inorganic foam 3 produces a macroscopic gap with the folded plate roof 2 by variously processing and laminating the plate-like inorganic foam 3. It can be avoided. This will be described later.

図3は、断熱工法における施工手順を説明するための図である。
この断熱工法においては、まず、図示しない柱の上方に梁1が水平状態を保って固定される(図3(a)参照)。なお、図3においては、梁1は1つのみ示されているが、たとえば、複数の梁1が同様に水平状態を保って固定されていて、それらの梁1が所定間隔を保って並列している。
そして、現場において、平板状の鋼板が断面略波形となる様に凹凸加工されて折板屋根2が形成され、その折板屋根2が梁1上に載置される。このとき、折板屋根2は、下面部21が梁1の上面に密接し、かつ、その長手方向が梁1の長手方向に沿う様に設けられる。そして、折板屋根2の下面部21が梁1にボルトやナット等で固定されることで、梁1に折板屋根2が固定される(図3(b)参照)。
FIG. 3 is a diagram for explaining a construction procedure in the heat insulation method.
In this heat insulation method, first, the beam 1 is fixed in a horizontal state above a pillar (not shown) (see FIG. 3A). In FIG. 3, only one beam 1 is shown. For example, a plurality of beams 1 are similarly fixed in a horizontal state, and these beams 1 are arranged in parallel at a predetermined interval. ing.
Then, at the site, the plate-shaped steel plate is processed to be concavo-convex so as to have a substantially corrugated cross section to form the folded plate roof 2, and the folded plate roof 2 is placed on the beam 1. At this time, the folded plate roof 2 is provided such that the lower surface portion 21 is in close contact with the upper surface of the beam 1 and the longitudinal direction thereof is along the longitudinal direction of the beam 1. And the folded-plate roof 2 is fixed to the beam 1 because the lower surface part 21 of the folded-plate roof 2 is fixed to the beam 1 with a volt | bolt, a nut, etc. (refer FIG.3 (b)).

凹凸加工により形成された折板屋根2が梁1上に固定されると、次いで、無機質系発泡体3が、接着剤により折板屋根2の上面に接着される。接着剤としては、たとえば、耐候性を有するものが用いられる。このとき、折板屋根2と無機質系発泡体3との間に空間(隙間)が生じない様にして、折板屋根2に無機質系発泡体3が接着される(図3(c)参照)。   If the folded-plate roof 2 formed by uneven | corrugated processing is fixed on the beam 1, then the inorganic type foam 3 will be adhere | attached on the upper surface of the folded-plate roof 2 with an adhesive agent. As the adhesive, for example, an adhesive having weather resistance is used. At this time, the inorganic foam 3 is bonded to the folded plate roof 2 so that no space (gap) is generated between the folded plate roof 2 and the inorganic foam 3 (see FIG. 3C). .

詳しくは、折板屋根2は断面略波形であり、無機質系発泡体3は板状に成形されているため、たとえば、図3(c)に破線で示す様に、無機質系発泡体3を切断して、折板屋根2の下面部21、縦面部22および上面部23に沿う様な種々の形状の無機質系発泡体3を複数枚あらかじめ作成し、それらの無機質系発泡体3を、それぞれ、下面部21、縦面部22および上面部23に、接着剤により接着する。そして、それぞれの無機質系発泡体の接合面も接着する。   Specifically, the folded plate roof 2 has a substantially corrugated cross section, and the inorganic foam 3 is formed into a plate shape. For example, as shown by a broken line in FIG. Then, a plurality of inorganic foams 3 having various shapes along the lower surface portion 21, the vertical surface portion 22 and the upper surface portion 23 of the folded plate roof 2 are prepared in advance, and the inorganic foam bodies 3 are respectively The lower surface portion 21, the vertical surface portion 22, and the upper surface portion 23 are bonded with an adhesive. And the joint surface of each inorganic foam is also adhere | attached.

この様にして、折板屋根2と無機質系発泡体3との間に巨視的な空間を生じさせることなく、無機質系発泡体3が折板屋根2の上面に設けられる。
なお、上述の説明では、無機質系発泡体3は板状に成形されるとしたが、無機質系発泡体3を成形する金型の形状を、折板屋根2の上面に沿う形状としておき、成形後の無機質系発泡体3の形状が、そのまま折板屋根2の上面に隙間なく密接するものであってもよい。この様にすれば、無機質系発泡体3を切断しなくてもよいので、より容易に折板屋根2上に無機質系発泡体3を設けることができる。
In this way, the inorganic foam 3 is provided on the upper surface of the folded plate roof 2 without creating a macroscopic space between the folded plate roof 2 and the inorganic foam 3.
In the above description, the inorganic foam 3 is formed into a plate shape. However, the shape of the mold for molding the inorganic foam 3 is set to be a shape along the upper surface of the folded plate roof 2 and molded. The shape of the later inorganic foam 3 may be in close contact with the upper surface of the folded plate roof 2 without any gap. In this way, it is not necessary to cut the inorganic foam 3, so that the inorganic foam 3 can be provided on the folded plate roof 2 more easily.

以上の様に、この実施形態では、折板屋根2の上面に沿って板状の無機質系発泡体3を設けるため、折板屋根2と無機質系発泡体3とが密着し、その間や無機質系発泡体3内部に結露点が生じず、結露が生じるのを防ぐことができる。また、無機質系発泡体3が折板屋根2の上面に取り付けられているので、その上面に防水シート等の保護層を設ける必要がなく、折板屋根2の上面に剥き出しの状態で設けることができる。よって、施工を簡素化にすることができる。また、折板屋根2に直接風雨が当たらないので、折板屋根2に錆が生じたり、騒音が大きくなったりするのを防ぐことができる。   As described above, in this embodiment, since the plate-like inorganic foam 3 is provided along the upper surface of the folded-plate roof 2, the folded-plate roof 2 and the inorganic foam 3 are in close contact with each other and between the inorganic foams. A dew point is not generated inside the foam 3, and it is possible to prevent dew condensation. Further, since the inorganic foam 3 is attached to the upper surface of the folded plate roof 2, it is not necessary to provide a protective layer such as a waterproof sheet on the upper surface, and it is provided in an exposed state on the upper surface of the folded plate roof 2. it can. Therefore, construction can be simplified. Moreover, since wind and rain do not directly hit the folded-plate roof 2, it is possible to prevent the folded-plate roof 2 from being rusted or becoming noisy.

また、無機質系発泡体3を、接着剤により折板屋根2の上面に接着するので、無機質系発泡体3を容易に折板屋根2に取り付けることができ、施工をより簡便におこなうことができる。また、無機質系発泡体3が破損した際等は、その破損した部位を折板屋根2から剥がして、無機質系発泡体3を接着すればよいので、容易に補修をおこなうことができる。また、無機質系発泡体3は、耐候性が高く、水を吸い込まないといった性能を有しているので、耐久性の優れた断熱材となる。また、ボルトやナット等の部品を用いないので、折板屋根2に錆が生じず、屋根全体として耐久性に優れている。   Moreover, since the inorganic foam 3 is bonded to the upper surface of the folded plate roof 2 with an adhesive, the inorganic foam 3 can be easily attached to the folded plate roof 2, and the construction can be performed more easily. . Further, when the inorganic foam 3 is damaged, the damaged portion may be peeled off from the folded roof 2 and the inorganic foam 3 may be bonded, so that the repair can be easily performed. Moreover, since the inorganic foam 3 has high weather resistance and has the performance of not sucking water, it becomes a heat insulating material with excellent durability. Moreover, since parts, such as a volt | bolt and a nut, are not used, rust does not arise in the folded-plate roof 2, but it is excellent in durability as the whole roof.

また、鋼板を凹凸加工して折板屋根2とした後、その折板屋根2の上面に無機質系発泡体3を接着するため、所望の厚みの無機質系発泡体3を設けることができ、十分な断熱効果を得ることができる。
また、無機質系発泡体3を上方とし、折板屋根2を下方とする積層構造が折板屋根2の全域に拡がるので、断熱効果をより高めることができる。
この発明は、以上説明した実施形態に限定されるものではなく、請求項に記載の範囲内において種々の変更が可能である。
Moreover, after making the unevenness | corrugation of a steel plate into the folded-plate roof 2, in order to adhere | attach the inorganic type foam 3 on the upper surface of the folded-plate roof 2, the inorganic type foam 3 of desired thickness can be provided, and it is enough A good heat insulation effect.
Moreover, since the laminated structure with the inorganic foam 3 as the upper side and the folded plate roof 2 as the lower side extends over the entire area of the folded plate roof 2, the heat insulation effect can be further enhanced.
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims.

この発明の一実施形態にかかる断熱工法を用いた建物の一部を示す斜視図である。It is a perspective view which shows a part of building using the heat insulation construction method concerning one Embodiment of this invention. 図1に示す建物の断面状態を示す図である。It is a figure which shows the cross-sectional state of the building shown in FIG. 断熱工法における施工手順を説明するための図である。It is a figure for demonstrating the construction procedure in a heat insulation construction method. 断熱材が貼り付けてある折板屋根用の鋼板ロールの一例を示した概略図である。It is the schematic which showed an example of the steel plate roll for folded-plate roof to which the heat insulating material was affixed. 従来の外断熱工法が用いられた建物の屋根の部分を示す断面図である。It is sectional drawing which shows the part of the roof of the building where the conventional outside heat insulation construction method was used.

符号の説明Explanation of symbols

2 折板屋根
3 無機質系発泡体

2 Folded roof 3 Inorganic foam

Claims (4)

建物の鋼板屋根の上方に断熱性の材料を設ける外断熱工法であって、
板状の無機質系発泡体を、上記鋼板屋根の上面に沿って密接状態で取り付けることを特徴とする外断熱工法。
It is an outer heat insulation construction method in which a heat insulating material is provided above the steel plate roof of the building,
A plate-like inorganic foam is attached in an intimate state along the upper surface of the steel plate roof.
上記無機質系発泡体は、無機質充填材50〜95重量部に、発泡剤2〜20重量部、有機溶剤30〜120重量部、塩化ビニル樹脂5〜50重量部を加え、混練してコンパウンドとし、そのコンパウンドを型内で加熱発泡させることにより形成された耐火性能を有する発泡体であり、
上記形成された無機質系発泡体を、上記鋼板屋根の上面に接着により取り付けることを特徴とする請求項1に記載の外断熱工法。
The inorganic foam is added to 50 to 95 parts by weight of an inorganic filler, 2 to 20 parts by weight of a foaming agent, 30 to 120 parts by weight of an organic solvent, and 5 to 50 parts by weight of a vinyl chloride resin, and kneaded to form a compound. It is a foam having fire resistance formed by heating and foaming the compound in a mold,
The outer heat insulating method according to claim 1, wherein the formed inorganic foam is attached to the upper surface of the steel plate roof by adhesion.
上記無機質充填材として、炭酸カルシウム、タルク、および/または、蛇紋岩を用いることを特徴とする請求項2に記載の外断熱工法。   The outer heat insulating method according to claim 2, wherein calcium carbonate, talc, and / or serpentine are used as the inorganic filler. 上記鋼板屋根は、断面形状が略波形となる様に凹凸加工された折板屋根であり、
上記無機質系発泡体を、上記折板屋根との間に空間が生じない様に、上記凹凸加工した後の折板屋根の上面に接着することを特徴とする請求項1,2または3に記載の外断熱工法。
The steel plate roof is a folded plate roof that has been concavo-convex processed so that the cross-sectional shape is substantially corrugated,
4. The inorganic foam according to claim 1, 2 or 3, wherein the inorganic foam is bonded to the upper surface of the folded-plate roof after the uneven processing so that no space is formed between the folded-plate roof. Outside insulation method.
JP2005133954A 2005-05-02 2005-05-02 Outside heat insulating method Pending JP2006307591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133954A JP2006307591A (en) 2005-05-02 2005-05-02 Outside heat insulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133954A JP2006307591A (en) 2005-05-02 2005-05-02 Outside heat insulating method

Publications (1)

Publication Number Publication Date
JP2006307591A true JP2006307591A (en) 2006-11-09

Family

ID=37474782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133954A Pending JP2006307591A (en) 2005-05-02 2005-05-02 Outside heat insulating method

Country Status (1)

Country Link
JP (1) JP2006307591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233079B1 (en) 2011-01-10 2013-02-14 주식회사 화인텍 a roof panel use for building and method of production thereof
JP2017095869A (en) * 2015-11-18 2017-06-01 旭化成ホームズ株式会社 Folded-plate roof structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233079B1 (en) 2011-01-10 2013-02-14 주식회사 화인텍 a roof panel use for building and method of production thereof
JP2017095869A (en) * 2015-11-18 2017-06-01 旭化成ホームズ株式会社 Folded-plate roof structure

Similar Documents

Publication Publication Date Title
JP4226588B2 (en) Method for constructing heat shield building and heat shield building
JP2006307591A (en) Outside heat insulating method
JP2981196B2 (en) Roof
JP2007146412A (en) Wet finishing structure
JP2007126828A (en) Heat insulating panel, and exterior wall structure using it
KR20160109312A (en) Exterior finishing method for sandwich panel wall and the structures thereof
RU59050U1 (en) HEAT INSULATION PLATE
JP3993673B2 (en) Wall structure
JP3448628B2 (en) Exterior wall panels and exterior wall structures
JPS6233378B2 (en)
JP5736097B2 (en) Method for constructing heat shield building and heat shield building
JPH0780270B2 (en) Composite heat insulating panel and manufacturing method thereof
JP5959599B2 (en) Method for constructing heat shield building and heat shield building
JPH07317168A (en) External facing structure
JP5659034B2 (en) Roof structure
JP2012172349A (en) Connection structure of control panels
JP2009228385A (en) Heat insulating panel and heat insulating wall structure
JP5184254B2 (en) Roof panel
JP3057044B2 (en) Roof
JPH1096274A (en) Light-weight heat-insulating panel
JP2007177398A (en) Flat plate-combined form panel
JP2013057224A (en) Construction method for heat shielding building, and the heat shielding building
JP5607007B2 (en) Heat-shielding building construction method, heat-shielding building and aluminum heat ray reflector
JP3036820U (en) Lightweight insulation panel
JP4416639B2 (en) Seismic retrofit structure for existing exterior walls