JP2006307319A - Method for transporting mantel of furnace bottom for blast furnace - Google Patents

Method for transporting mantel of furnace bottom for blast furnace Download PDF

Info

Publication number
JP2006307319A
JP2006307319A JP2005363618A JP2005363618A JP2006307319A JP 2006307319 A JP2006307319 A JP 2006307319A JP 2005363618 A JP2005363618 A JP 2005363618A JP 2005363618 A JP2005363618 A JP 2005363618A JP 2006307319 A JP2006307319 A JP 2006307319A
Authority
JP
Japan
Prior art keywords
blast furnace
mantel
furnace
furnace bottom
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005363618A
Other languages
Japanese (ja)
Other versions
JP4822831B2 (en
Inventor
Kazumi Kurayoshi
和美 倉吉
Hiroshi Takasaki
洋 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005363618A priority Critical patent/JP4822831B2/en
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to KR1020077024652A priority patent/KR100949854B1/en
Priority to CN2006800109510A priority patent/CN101155934B/en
Priority to EP06730932A priority patent/EP1865078B1/en
Priority to BRPI0609604-2A priority patent/BRPI0609604B1/en
Priority to PCT/JP2006/306984 priority patent/WO2006104229A1/en
Priority to TW095110707A priority patent/TWI325014B/en
Publication of JP2006307319A publication Critical patent/JP2006307319A/en
Application granted granted Critical
Publication of JP4822831B2 publication Critical patent/JP4822831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/02Internal forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/12Shells or casings; Supports therefor
    • F27B1/14Arrangements of linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1694Breaking away the lining or removing parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/18Door frames; Doors, lids, removable covers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably transporting the mantel of the furnace bottom for a blast furnace, which has increased weight after brick has been mounted thereon previously at a place other than the base of the blast furnace, onto the base of the blast furnace. <P>SOLUTION: This transporting method comprises the steps of: arranging a balance beam 16 with a thickness (A) of 700 to 2,200 mm, and mounting a laying beam 12 with a thickness (H) of 480 to 1,000 mm on the top face, when constructing the mantel of the furnace bottom for the blast furnace at the place other than the base of the blast furnace; constructing the mantel of the furnace bottom on the laying beam 12; and mounting bricks 9 and 10 on the mantel of the furnace bottom. When transporting it onto the base of the blast furnace, a bending amount of the top face of the bricks constructed in the furnace is controlled to 3 mm or less per meter of a mantel radius. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉基礎以外の場所で事前に高炉炉体を構築し、既存炉体の解体後、その基礎上に高炉を搬送する搬送方法で、特にレンガを事前に施工した高炉用炉底マンテルを高炉基礎まで搬送する高炉用炉底マンテルの搬送方法に関する。   The present invention is a transfer method of constructing a blast furnace body in advance in a place other than the blast furnace foundation, and transporting the blast furnace onto the foundation after dismantling of the existing furnace body. The present invention relates to a method for transporting a bottom mantel for a blast furnace that transports a blast furnace to a blast furnace foundation.

従来の高炉改修に際しては、古くなった高炉(旧高炉)を小片に分割して高炉基礎上から撤去した後に、その基礎上で短冊形の鉄皮を一枚一枚溶接接合して新たな高炉本体を据え付け、その後に炉内にレンガ積みを実施する工法、換言すると一から新たな高炉を構築する工法を採っていた。このため、従来の工法では改修に長期間を要するとともに、高炉本体の据え付け後にステーブクーラや冷却配管等の冷却装置を取り付ける高所作業が必要となり、安全保安上や工事品質上の問題もあった。   In the conventional blast furnace refurbishment, an old blast furnace (old blast furnace) is divided into small pieces and removed from the blast furnace foundation, and then a new blast furnace is formed by welding the strip-shaped iron skins one by one on the foundation. The main body was installed, and then a method of building bricks in the furnace was adopted, in other words, a method of constructing a new blast furnace from scratch. For this reason, the conventional construction method requires a long time for refurbishment, and it is necessary to install a cooling device such as a stave cooler or cooling pipe after installation of the blast furnace body, which has problems in terms of safety and security and construction quality. .

一方、近年においては工期短縮を図るべく、旧高炉の操業と並行して、近くの別の場所(地組場)で新しい高炉を複数のリング状ブロックに分割して各ブロックを一斉に組み立て始め、旧高炉を基礎上から完全に撤去した後に、これらのブロックをドーリー等の大規模重量物搬送台車を用いて搬入し、ジャッキやクレーン等で吊り上げて設置し、各ブロックが接する部分の鉄皮や配管などを溶接接合して一体化する、いわゆるブロック工法が採用されている(例えば、特許文献1〜3参照)。
例えば、特許文献1には、高炉を炉底部、朝顔部、炉腹部、炉胸部、炉口部等に分割し、その分割した各部を夫々高炉周辺の各部分毎に移動用足場を用いて順次横方向に移動して積み重ね、全体を結合して一体に構成し、高炉の建設工期を短縮することが開示されている。
On the other hand, in recent years, in order to shorten the construction period, in parallel with the operation of the old blast furnace, the new blast furnace is divided into a plurality of ring-shaped blocks at another nearby location (ground assembly site) and the blocks are assembled at the same time. After the old blast furnace has been completely removed from the foundation, these blocks are loaded using a large-scale heavy-duty carriage such as a dolly and are installed by lifting them with jacks, cranes, etc. A so-called block construction method is adopted in which a pipe and a pipe are integrated by welding (for example, see Patent Documents 1 to 3).
For example, Patent Document 1 discloses that a blast furnace is divided into a furnace bottom part, morning glory part, furnace belly part, furnace chest part, furnace port part, and the like, and each of the divided parts is sequentially used for each part around the blast furnace. It has been disclosed to move and stack in the horizontal direction and combine them together to form a single unit, thereby shortening the construction period of the blast furnace.

上記のように高炉改修における工期短縮は古くから検討されている技術ではあるが、大型構造物および大重量物であるため実機への適用が難しく、現在もなお各社種々の検討を行い、特許出願も多数されている。例えば、特許文献2には、既存高炉の解体または再建をするに当たり、(a)炉体を、その炉頂部から炉底部まで数個のリング状ブロックに分割し、それぞれ高炉基礎以外の場所で建造すること、(b)上記リング状ブロックのうち、最下段の炉底部ブロックを除くブロックにそれぞれ、レンガ積み部の反りやひずみの防止手段および真円度の確保手段を付与すること、(c)他方、炉底部ブロックは、その下端に設置される炉底板の上にレンガを積んでおくこと、(d)炉底部ブロックを除くリング状ブロックは、横送りで該基礎上に搬送した後リフトアップ工法により炉頂部から順次リフトアップしつつ互いに接合すること、(e)炉底部ブロックは高炉基礎レベルを横送りで該基礎上に搬送設置した後、上部ブロックと接合することの工程により高炉の短期改修・建設方法が開示されている。   As mentioned above, shortening the work period in blast furnace refurbishment is a technology that has been studied for a long time, but it is difficult to apply to actual equipment because it is a large structure and heavy weight, and various companies still consider various methods and apply for patents. There are also many. For example, in Patent Document 2, when dismantling or rebuilding an existing blast furnace, (a) the furnace body is divided into several ring-shaped blocks from the top to the bottom of the furnace, and each is constructed at a place other than the blast furnace foundation. (B) Giving a brick stacking part warp and distortion prevention means and a roundness securing means to the blocks other than the bottom furnace bottom block among the ring-shaped blocks, (c) On the other hand, bricks are piled on the bottom plate installed at the lower end of the furnace bottom block, and (d) the ring block except the furnace bottom block is lifted up after being transported on the foundation by lateral feed. (E) The furnace bottom block is transported and installed on the foundation by cross feed, and then joined to the upper block. Short-term renovation and construction method of the blast furnace has been disclosed by the extent.

また、特許文献3には、高炉の既存炉体をその炉頂部から炉底部まで複数のリングブロックに分割して解体し、また同様のリングブロックを作成して高炉基礎上でリングブロックを組み上げる高炉炉体構築方法において、高炉基礎以外の場所に炉体のリングブロックを昇降させる吊り換え装置を設置し、リングブロックを高炉基礎レベルに積荷レベルを合わせるように積荷レベル調整用架構を載荷した輸送台車に移し、前記吊り換え装置へ輸送し吊り換え装置で前記リングブロックを支持した後、前記積荷レベル調整用架構を除去し、搬送台車が最小限上架可能なレベルまでリングブロックをリフトダウンして輸送台車により置き台へ輸送し、一方、輸送台車が最小限上架可能な低いレベルでリングブロックを建造し、輸送台車により前記吊り換え装置まで輸送し、吊り換え装置で前記リングブロックを支持して高炉基礎レベル上へ移動可能なレベルまでリフトアップし、積荷レベル調整用架構を載荷して高炉基礎レベルに積荷レベルを合わせた輸送台車に上架して高炉基礎上まで搬送する高炉炉体の構築方法が開示されている。
特公昭47−1846号公報 特開平09−143521号公報 特開平10−102778号公報
Patent Document 3 discloses a blast furnace in which an existing furnace body of a blast furnace is divided into a plurality of ring blocks from the top of the furnace to the bottom of the furnace and disassembled, and a similar ring block is created to assemble a ring block on a blast furnace foundation. In the method of building a furnace body, a lifting device that raises and lowers the ring block of the furnace body is installed in a place other than the blast furnace foundation, and a carriage that loads the load level adjustment frame so that the load level is matched with the blast furnace foundation level. After transporting to the suspension device and supporting the ring block by the suspension device, the load level adjustment frame is removed, and the ring block is lifted down to a level at which the carriage can be lifted to the minimum. On the other hand, a ring block is constructed at a low level at which the transport cart can be mounted at a minimum, and is suspended by the transport cart. Transport to the changer, lift up to a level where it can move to the blast furnace foundation level by supporting the ring block with the suspension unit, and load the load level adjustment frame to match the load level to the blast furnace foundation level. A method for constructing a blast furnace furnace body that is carried on a cart and transported to a blast furnace foundation is disclosed.
Japanese Patent Publication No. 47-1846 JP 09-143521 A JP-A-10-102778

特許文献1に記載の方法は、分割した各々のブロックを組み立て完成高さと同じ高さの足場上で施工し、完成後部分毎に移動足揚を用いて移動させ、完成させる方法である。高炉本体の高さが100m程度あり、この炉体を分割して、分割高さ毎に足場を組んでこの足場の上でブロックを施工することになる。分割したブロックでも重量は数千トンに達し、この重量に耐える剛性が必要となり、また、分割ブロック毎にこの足場が必要となり、この足場の製作費用が高いため実現しなかった。   The method described in Patent Document 1 is a method in which each divided block is constructed on a scaffold having the same height as the assembly completion height, and is moved and completed for each part after completion using a moving scaffold. The height of the blast furnace body is about 100 m, and the furnace body is divided, and a scaffold is constructed for each divided height and a block is constructed on the scaffold. Even with the divided blocks, the weight reaches several thousand tons, and it is necessary to have a rigidity that can withstand this weight. Further, this scaffold is necessary for each divided block, and the production cost of this scaffold is high.

特許文献2に記載の方法においては、リング状にブロック化された炉体を高炉基礎上まで移動し、リフトアップしてそれぞれのリングを接合し、最後に炉底ブロックを移動させて、炉底ブロックに載置接合して完成する。この時炉底ブロックには炉底板の上にレンガを積んでおくと記載されている。しかし、高炉の炉底は、直径で10〜20mもあり、炉底にレンガを積む場合、炉底の変形が最も重要な課題であるが、本参考文献にはこの重要課題が一斉開示されていない。従って、炉底ブロックにレンガを積んでおくという発想はあったものの、具体的にどのように上記課題を解決するのか当業者間でも懸案事項であり実現されていないのが実情であった。   In the method described in Patent Document 2, the furnace body that is blocked in a ring shape is moved to the base of the blast furnace, lifted up to join the rings, and finally the furnace bottom block is moved. Complete by mounting on the block. At this time, it is described that bricks are piled on the bottom plate of the furnace bottom block. However, the bottom of the blast furnace has a diameter of 10 to 20 m, and when bricks are stacked on the bottom of the furnace, deformation of the bottom of the furnace is the most important issue, but this important issue is disclosed all at once in this reference. Absent. Therefore, although there was an idea of placing bricks on the furnace bottom block, it was a matter of concern among those skilled in the art how to specifically solve the above problem, and the actual situation was not realized.

また、特許文献3においては、高炉基礎以外の場所に炉体のリングブロックを昇降させる吊り換え装置を設置し、リングブロックを高炉基礎レベルに積荷レベルを合わせるように積荷レベル調整用架構を載荷した輸送台車により高炉基礎へ移動する方法が開示されているが、ブロック化された炉体へのレンガの事前施工等については一切開示されていない。   Further, in Patent Document 3, a suspension changing device for raising and lowering the ring block of the furnace body is installed at a place other than the blast furnace foundation, and a load level adjustment frame is loaded so that the load level is matched with the blast furnace foundation level. Although the method of moving to a blast furnace foundation by a transportation carriage is disclosed, no prior construction of bricks on a blocked furnace body is disclosed at all.

このように、高炉のブロック化施工は工期短縮に必須の技術であるが、ブロック化が進めば進むほどブロックごとの重量が増し、高度な搬送技術が必要とされるところ、上記文献等にはこれに関する記載が一切ない。   In this way, blast furnace block construction is an essential technology for shortening the work period, but as block construction progresses, the weight of each block increases, and advanced transport technology is required. There is no mention about this.

本発明は、上記課題を解決すべく本発明者が誠意検討した結果、完成されたものであり、その要旨とするところは以下の通りである。
(1)高炉基礎以外の場所で事前に高炉炉底マンテルを建設し、該炉底マンテルにレンガを施工して高炉基礎上まで搬送する炉底マンテルの搬送方法において、炉内に施工したレンガ上面の撓み量をマンテル半径1m当たり3mm以下として搬送することを特徴とする高炉用炉底マンテルの搬送方法。
(2)前記炉底マンテルの下面に厚さAが700mm以上2200mm以下のバランスビームを設置したことを特徴とする前記(1)に記載の高炉用炉底マンテルの搬送方法。
The present invention has been completed as a result of sincerity studies by the inventor in order to solve the above-described problems, and the gist thereof is as follows.
(1) In the method of transporting the bottom mantel, a blast furnace bottom mantel is constructed in advance in a place other than the blast furnace foundation, and bricks are constructed on the bottom mantel and transported to the top of the blast furnace base. The bottom mantle for blast furnace is transported with a bend amount of 3 mm or less per 1 meter of mantel radius.
(2) The method of transporting a blast furnace bottom mantel according to (1) above, wherein a balance beam having a thickness A of 700 mm or more and 2200 mm or less is installed on the lower surface of the furnace bottom mantel.

(3)前記炉底マンテルの下面に厚さHが480mm以上1000mm以下の敷きビームを設置し、且つ、前記敷きビームの下面に厚さAが700mm以上2200mm以下のバランスビームを設置したことを特徴とする前記(1)に記載の高炉用炉底マンテルの搬送方法。
(4)ドーリーを長手方向に連結して複数のドーリー列を形成し、該ドーリー列を前記バランスビームと地表面との間に形成した間隙内に並列に引き込み、各ドーリー列の長さを中央列から端列にいくに従い減少させて配置することを特徴とする前記(1)〜(3)のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
(3) A laying beam having a thickness H of 480 mm to 1000 mm is installed on the lower surface of the furnace bottom mantel, and a balance beam having a thickness A of 700 mm to 2200 mm is installed on the lower surface of the laying beam. The method for transporting the blast furnace bottom mantel according to (1) above.
(4) A dolly is connected in the longitudinal direction to form a plurality of dolly rows, and the dolly rows are drawn in parallel into the gap formed between the balance beam and the ground surface, and the length of each dolly row is set to the center. The method of transporting a bottom mantle for a blast furnace according to any one of (1) to (3), wherein the method is arranged such that the number of the bottom mantle is decreased from the row to the end row.

(5)前記バランスビームの形状を引き込むドーリー列の長さに応じた形状とすることを特徴とする前記(1)〜(4)のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
(6)前記ドーリーに設置された油圧シリンダ間距離Pが2.5m以内となるように前記ドーリー列を並列に配置したことを特徴とする前記(1)〜(5)のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
(7)炉底マンテルに施工されたレンガ上面の任意位置にレーザー発信器を設置し、同じくレンガ上面の任意位置に複数のレーザー受信器を直線上に配置し、受信するレーザーの鉛直方向変位量を検出して得られるレンガ上面の撓み量を測定しながら炉底マンテルを搬送することを特徴とする前記(1)〜(6)のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
(8)前記レーザー受信器により検出した鉛直方向変位量から、レンガ上面の撓みに起因するレーザー発信器の傾きによって生ずる誤差をキャンセルする補正を行い、当該補正後の鉛直方向変位量を真の撓み量とすることを特徴とする前記(7)に記載の高炉用炉底マンテルの搬送方法。
(5) The method for transporting a blast furnace bottom mantel according to any one of (1) to (4), wherein the balance beam has a shape corresponding to a length of a dolly row to which the shape of the balance beam is drawn. .
(6) In any one of (1) to (5), the dolly rows are arranged in parallel so that a distance P between hydraulic cylinders installed in the dolly is 2.5 m or less. The method for transporting the blast furnace bottom mantel as described.
(7) A laser transmitter is installed at an arbitrary position on the top surface of the brick constructed in the furnace bottom mantel, and a plurality of laser receivers are arranged in a straight line at an arbitrary position on the top surface of the brick. The furnace bottom mantel for conveying a blast furnace according to any one of (1) to (6), wherein the furnace bottom mantel is conveyed while measuring a bending amount of a brick upper surface obtained by detecting .
(8) From the amount of vertical displacement detected by the laser receiver, correction is performed to cancel an error caused by the inclination of the laser transmitter caused by bending of the upper surface of the brick, and the corrected vertical displacement is true deflection. The method for transporting a bottom mantel for a blast furnace as described in (7) above, characterized in that the amount is an amount.

本発明によれば、高炉の基礎以外の場所で事前にレンガを施工して重量が増大した炉底マンテルであっても、レンガの目地切れ等生じることなく高炉基礎上まで安定して搬送することができる。   According to the present invention, even if it is a bottom mantel whose weight has been increased by constructing bricks in advance in a place other than the foundation of the blast furnace, it can be stably transported to the foundation of the blast furnace without causing breaks in the joints of the bricks. Can do.

以下、図1〜図17を参照して、本発明を実施するための最良の形態を説明する。
図1において、高炉の解体改修は、高炉の炉体2を水平方向に切断して垂直方向に複数段に分割して高炉基礎上から高炉基礎外に搬出される。一方、新設される炉体2は高炉基礎以外の場所(地組場)であらかじめ設定されたブロック数で構築される。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
In FIG. 1, the blast furnace disassembly and repair is performed by cutting a blast furnace body 2 in a horizontal direction, dividing the blast furnace body 2 into a plurality of stages in the vertical direction, and then carrying the blast furnace foundation out of the blast furnace foundation. On the other hand, the newly established furnace body 2 is constructed with a preset number of blocks at a place other than the blast furnace foundation (ground assembly site).

図2はブロック化され、地組場で構築された炉底マンテル1を搬送するときの状態を示す図で、炉体を事前に構築する地組場では、バランスビーム16を地表より立設し、このバランスビーム16の上面に敷きビーム12を載置する。敷きビーム12とバランスビーム16の間には敷きビームを浮上させるエアーキャスタ18が内蔵できるようになっている。このように構成した敷きビーム12の上面に炉底マンテル1を構築していく。なお、図4および図12にエアーキャスタ18の配置例の一態様を示すが、エアーキャスタ18の配置方法はこれに限定されるものではない。   FIG. 2 is a diagram showing a state in which the bottom mantel 1 constructed in the building site is transported in a block. In the building site where the furnace body is built in advance, the balance beam 16 is erected from the ground surface. The spread beam 12 is placed on the upper surface of the balance beam 16. Between the spread beam 12 and the balance beam 16, an air caster 18 for floating the spread beam can be incorporated. The furnace bottom mantel 1 is constructed on the upper surface of the laying beam 12 configured as described above. 4 and 12 show one aspect of the arrangement example of the air casters 18, the arrangement method of the air casters 18 is not limited to this.

詳述すると、炉底板6に鉄皮7を立設し、鉄皮7の内側にはステーブクーラ8を張設し、炉底板6の上面に目地材11を介して炉床レンガ9を施工する。そして、この炉床レンガ9の上面に目地を介してカーボンレンガ10を施工する。この状態で炉底マンテル1の重量は約1000トン以上となり、地組場に設置したバランスビーム16上でこの炉底マンテル1を構築するには、バランスビーム16に剛性を持たせて、炉底マンテルの変形を防止する必要がある。
しかし、具体的にどのように防止してよいのか開示された技術は一切無かった。そこで、本発明者らは有限要素法による数値解析および実験を重ね、炉底マンテル1に施工されるカーボンレンガ10の上面でマンテル半径lm当たりの撓み量を3mmに抑えて搬送することで、高炉基礎上に載置して、そのまま使用することができる知見を得た。
More specifically, an iron skin 7 is erected on the furnace bottom plate 6, a stave cooler 8 is stretched inside the iron skin 7, and a hearth brick 9 is constructed on the upper surface of the furnace bottom plate 6 via a joint material 11. . And the carbon brick 10 is constructed on the upper surface of this hearth brick 9 via a joint. In this state, the weight of the bottom mantel 1 is about 1000 tons or more. In order to construct the bottom mantel 1 on the balance beam 16 installed in the assembly ground, the balance beam 16 is made rigid, It is necessary to prevent mantel deformation.
However, there has been no technology disclosed specifically how to prevent it. Therefore, the present inventors have repeated numerical analysis and experiments by the finite element method, and transported the upper surface of the carbon brick 10 applied to the furnace bottom mantel 1 while suppressing the amount of deflection per mantel radius lm to 3 mm. The knowledge which can be mounted on a foundation and used as it is was obtained.

実験用では図3に示すように、炉底板6にスタンプ材25を介して炉床レンガ9を施工し、この炉床レンガ9の上面にスタンプ材25を介してカーボンレンガ10を施工した、ミニモデルを採用した。図3に示すようにミニモデルの炉底マンテルの下部にジャッキ24を設置し、ジャッキを作動させて、カーボンレンガ間に施工した目地やスタンプ材25との隙間の状態を観察した。その結果を表1に示す。   In the experiment, as shown in FIG. 3, a miniature brick in which a hearth brick 9 is constructed on a furnace bottom plate 6 via a stamp material 25 and a carbon brick 10 is constructed on the upper surface of the hearth brick 9 via a stamp material 25. The model was adopted. As shown in FIG. 3, the jack 24 was installed in the lower part of the furnace bottom mantel of the mini model, the jack was operated, and the state of the gap between the joint and the stamp material 25 constructed between the carbon bricks was observed. The results are shown in Table 1.

Figure 2006307319
Figure 2006307319

表1の結果から撓みが3mm/mを超えると目地t部に隙間が発生し、3mm/m以下では目地の伸縮により目地切れが発生することは無かった。したがって、カーボンレンガ上面での撓みを3mm/m以下に抑えるため、具体的に検討を実施した。   From the results of Table 1, when the deflection exceeds 3 mm / m, a gap is generated at the joint t, and when the deflection is 3 mm / m or less, there is no occurrence of joint breakage due to expansion and contraction of the joint. Therefore, in order to suppress the deflection on the upper surface of the carbon brick to 3 mm / m or less, a specific study was conducted.

高炉炉底部は、敷きビーム12を持つタイプの高炉と炉底板を直接基礎に設置するタイプの2通りがあり、図2は前者の敷きビームに炉底マンテルを載置した炉体を搬送する概略図である。高炉基礎上には炉底マンテルと敷きビームが設置される。このため敷きビーム12に剛性を持たせる必要がある。   There are two types of blast furnace bottoms: a blast furnace with a spread beam 12 and a type in which a furnace bottom plate is installed directly on the foundation. FIG. 2 is a schematic diagram of conveying the furnace body with the bottom mantel mounted on the former spread beam. FIG. On the blast furnace foundation, a bottom mantel and a spread beam will be installed. For this reason, the laying beam 12 needs to have rigidity.

敷きビーム12の構造について図4に示す。図4(a)および(b)に示すように、敷きビーム12はH形鋼を井桁状または格子状に組んで、耐火コンクリート15を流し込んで剛性をアップしている。このように構成した敷きビームの撓み量を示したものを図5に示す。敷ビームの厚さHが480mm以上なければ実験で求めた撓み量3mm/mを超えてしまい、敷ビームの厚さHが480mm以上必要であることが判明した。また1000mmを超えると重量が増えるだけで経済的ではない。   The structure of the spread beam 12 is shown in FIG. As shown in FIGS. 4 (a) and 4 (b), the laying beam 12 is made of H-beams arranged in a cross-beam shape or a lattice shape, and poured in refractory concrete 15 to increase rigidity. FIG. 5 shows the amount of bending of the laying beam configured as described above. If the thickness H of the laying beam is not 480 mm or more, the bending amount 3 mm / m determined in the experiment is exceeded, and it has been found that the laying beam thickness H is required to be 480 mm or more. Moreover, if it exceeds 1000 mm, only a weight will increase and it is not economical.

次に図2では敷きビームはバランスビーム上に載置されている。したがって、バランスビーム16は炉底マンテル1と敷きビーム12を支持し、炉底マンテル内のカーボンレンガ上面の撓みを3mm/m以下に抑えるための剛性が必要となる。
撓みを3mm/m以下に抑えるためには、図6および図7に示すように、バランスビームの厚さAは700mm以上が必要で、700mm以上であればカーボンレンガ上面の撓みを3mm/m以下に抑えることはできるが、バランスビームを含む炉底マンテル及び敷きビームを搬送するためのドーリーに限界があり、バランスビームの高さAは2200mm以下となる。
Next, in FIG. 2, the laying beam is placed on the balance beam. Therefore, the balance beam 16 needs to support the furnace bottom mantel 1 and the laying beam 12 and have rigidity for suppressing the deflection of the upper surface of the carbon brick in the furnace bottom mantel to 3 mm / m or less.
In order to suppress the deflection to 3 mm / m or less, as shown in FIGS. 6 and 7, the thickness A of the balance beam needs to be 700 mm or more, and if it is 700 mm or more, the deflection of the upper surface of the carbon brick is 3 mm / m or less. However, there is a limit to the dolly for transporting the bottom mantel including the balance beam and the spread beam, and the height A of the balance beam is 2200 mm or less.

次に地組場から高炉基礎横までの搬送は、図8(b)に示すように大規模重量物搬送台車であるドーリー17を使用する。すなわち、ドーリー17を搬送方向(長手方向)に連結して複数のドーリー列を形成し、形成した複数のドーリー列を並列に前記バランスビームと地表面との間に形成された間隙内に引き込み、ドーリーの油圧を操作してバランスビーム16を上昇させ、高炉基礎横まで搬送する。なお、図8(a)は、地組場でレンガを施工した炉底マンテル、(b)はドーリー搬送される炉底マンテル、(c)はエアーキャスタを用いて搬送される炉底マンテルを示す図である。   Next, as shown in FIG. 8B, a dolly 17 that is a large-scale heavy-duty conveyance cart is used for conveyance from the assembly site to the side of the blast furnace foundation. That is, the dolly 17 is connected in the transport direction (longitudinal direction) to form a plurality of dolly rows, and the plurality of dolly rows formed are drawn in parallel into the gap formed between the balance beam and the ground surface, The balance beam 16 is raised by operating the hydraulic pressure of the dolly and conveyed to the side of the blast furnace base. FIG. 8 (a) shows a furnace bottom mantel constructed with bricks at a building site, (b) shows a furnace bottom mantel conveyed by dolly, and (c) shows a furnace bottom mantel conveyed using an air caster. FIG.

並列に配列した各ドーリー列の長さについては、図9(a)に示すように、中央列から端列にいくにしたがって列の長さを減少させて配置している。炉底マンテル1は円筒状のため、中央部から端部にむかつてドーリー列の長さを減少させることで、ドーリーにかかる荷重をバランスよく吸収することができる。また、ドーリー列の配列としてドーリー間の距離を2.5m以内とすることで、ドーリーに配置されているシリンダ間距離Pが2.5m以下となり、バランスビーム16を支持する距離が2.5m以下となる。このバランスビームの支持点を2.5m以下とすることで、バランスビームの撓みも最小限に抑えることができ、炉底マンテル外径からはみ出す部分を極力抑えることができる。
なお、図9(b)に示すように、従来は各ドーリー列の長さを揃えるのが一般的であるが、この場合には、炉底板中心からの距離が遠くなる部分ほど、その他の部分と比較して炉底マンテル1およびその下面に設置される敷きビーム12やバランスビーム16からの荷重が乗らないことから、バランスビームを介して炉底マンテルを大きく変形させてしまう。
About the length of each dolly row | line | column arrange | positioned in parallel, as shown to Fig.9 (a), it has arrange | positioned reducing the length of a row | line | column as it goes to a terminal row from a center row | line. Since the bottom mantel 1 has a cylindrical shape, the load applied to the dolly can be absorbed in a balanced manner by reducing the length of the dolly line from the center to the end. Further, by setting the distance between the dollies within 2.5 m as the arrangement of the dolly rows, the distance P between the cylinders arranged in the dolly becomes 2.5 m or less, and the distance for supporting the balance beam 16 is 2.5 m or less. It becomes. By setting the support point of the balance beam to 2.5 m or less, it is possible to minimize the deflection of the balance beam and to suppress the portion protruding from the outer diameter of the furnace bottom mantel as much as possible.
As shown in FIG. 9 (b), conventionally, the lengths of the respective dolly rows are generally aligned, but in this case, as the distance from the center of the furnace bottom plate increases, the other parts As compared with the above, since the load from the floor beam 12 and the balance beam 16 installed on the bottom surface of the furnace bottom mantel 1 and the balance beam 16 is not applied, the furnace bottom mantel is greatly deformed through the balance beam.

さらには、バランスビーム16の形状を、引き込むドーリー列の長さに応じた形状にするのが望ましい。このような形状にすれば、ドーリーにかかる荷重を均等に分散させることが可能となり、ひいては搬送時の撓み量を低減させることができる。   Furthermore, it is desirable that the balance beam 16 has a shape corresponding to the length of the dolly row to be pulled. With such a shape, it is possible to evenly distribute the load applied to the dolly, thereby reducing the amount of bending during conveyance.

図10は補強リング19の概略図で、炉底マンテル1の上方外周に配置している。炉底マンテル内へのレンガの事前施工部分が炉床レンガ9及びカーボンレンガ10であれば、炉底マンテルの鉄皮部分があるため、この部分の撓みによる炉底マンテル鉄皮の変形(内側への倒れ)を防止する。   FIG. 10 is a schematic view of the reinforcing ring 19 and is disposed on the upper outer periphery of the furnace bottom mantel 1. If the pre-construction part of the brick into the furnace bottom mantel is the hearth brick 9 and the carbon brick 10, since there is an iron skin part of the furnace bottom mantel, the deformation of the furnace bottom mantel iron skin due to the bending of this part (inward) Fall).

図11は炉底マンテル内面に設置したステー材21の概略図で、ステー材21は放射状に配置している。炉底マンテル内に施工したカーボンレンガ上部近傍に配置する。これは、カーボンレンガ上面の撓みを極力防止するため、できるだけカーボンレンガ10の上面に近い方がよい。   FIG. 11 is a schematic view of the stay material 21 installed on the inner surface of the furnace bottom mantel, and the stay materials 21 are arranged radially. It is placed near the top of the carbon brick constructed in the furnace bottom mantel. This is preferably as close to the top surface of the carbon brick 10 as possible in order to prevent bending of the top surface of the carbon brick as much as possible.

以上、説明したように本発明は、高炉の基礎以外の場所で事前にレンガを施工して重量が増大した炉底マンテル1であっても、炉内に施工したレンガ上面の撓み量をマンテル半径1m当たり3mm以下として搬送すれば、レンガの目地切れ等生じることなく高炉基礎上まで安定して搬送することができるという従来技術には存在しない新規かつ有用な技術的知見に基づいて完成した発明である。したがって、当該安定した搬送をより確実なものとすべく、ドーリー17やエアーキャスタ18を用いて炉底マンテル1を搬送する際には、所定の測定機器を用いてレンガ上面の撓み量を測定しながら搬送することが望ましい。   As described above, the present invention can determine the amount of bending of the brick upper surface constructed in the furnace even if it is a furnace bottom mantel 1 in which the brick is pre-constructed in a place other than the foundation of the blast furnace and the weight is increased. It is an invention completed based on new and useful technical knowledge that does not exist in the prior art that it can be stably transported to the blast furnace foundation without causing breaks in the joints of bricks if transported as 3 mm or less per meter. is there. Therefore, when the furnace bottom mantel 1 is transported using the dolly 17 or the air caster 18 in order to make the stable transport more reliable, the deflection amount of the brick upper surface is measured using a predetermined measuring device. It is desirable to carry it.

レンガ上面の撓み量を測定するためには、レーザー発信器26と該レーザー発信器が発信したレーザー28を受信する複数のレーザー受信器27を炉底マンテル1に施工されたレンガ上面に設置することが望ましい。本来、変形する対象物の撓み量を測定しようとする場合は、図17に示すようにレーザー等の発信器は固定点に設置し、かつ固定点の一箇所に不動の基準点を設け、基準点との相対比較で測定点における鉛直方向変位量を求めるのが一般的である。しかしながら、炉底マンテル1に施工されたレンガ上面の撓み量を測定しようとする場合、測定する対象物が鉄皮7で囲まれた内部に位置しており、外部の固定点から測定点を観測することは困難である。また、対象物も数十〜数百m移動することから、発信器を固定点に置くことは受信器の受信能力の観点からも不可能といえる。また、炉内に人が入って撓み量を測定することも可能ではあるが、搬送中に炉内に入ることは極めて危険である。さらには、レンガ上面の撓みは時々刻々と変化しており、人力で瞬時に測定することは不可能である。   In order to measure the amount of bending of the brick upper surface, a laser transmitter 26 and a plurality of laser receivers 27 for receiving the laser 28 transmitted by the laser transmitter are installed on the brick upper surface constructed in the furnace bottom mantel 1. Is desirable. Originally, when measuring the amount of deformation of the object to be deformed, a transmitter such as a laser is installed at a fixed point as shown in FIG. 17, and a fixed reference point is provided at one fixed point. Generally, the amount of vertical displacement at a measurement point is obtained by relative comparison with the point. However, when measuring the amount of deflection of the brick upper surface constructed in the furnace bottom mantel 1, the object to be measured is located inside the iron shell 7, and the measurement point is observed from an external fixed point. It is difficult to do. In addition, since the object moves from several tens to several hundreds of meters, it can be said that it is impossible to place the transmitter at a fixed point from the viewpoint of the reception capability of the receiver. Although it is possible to measure the amount of bending by a person entering the furnace, it is extremely dangerous to enter the furnace during transportation. Furthermore, the deflection of the brick upper surface changes every moment, and it is impossible to measure it instantaneously by human power.

したがって、図13(a)に示すように炉底マンテル1に施工されたレンガ上面の任意位置にレーザー発信器26を設置し、同じくレンガ上面の任意位置に複数のレーザー受信器27を設置することが望ましい。これにより各レーザー受信器27が受信するレーザーの鉛直方向変位量、すなわちマンテル搬送前と比較して各レーザー受信器27におけるレーザー受信位置がどのくらい鉛直方向に変位したかを検出することによって、レンガ上面の撓み量を測定することができる。この場合、複数のレーザー受信器27を直線上に配置することが望ましい。直線上に配置することにより、図13(b)に示すように当該線上における鉛直方向変位量、すなわちレンガ上面の撓み量を正確に測定することができる。   Therefore, as shown in FIG. 13A, a laser transmitter 26 is installed at an arbitrary position on the brick upper surface constructed in the furnace bottom mantel 1, and a plurality of laser receivers 27 are also installed at arbitrary positions on the brick upper surface. Is desirable. Thus, by detecting the amount of vertical displacement of the laser received by each laser receiver 27, that is, how much the laser reception position in each laser receiver 27 is displaced in the vertical direction compared to before the mantel transport, the upper surface of the brick is detected. Can be measured. In this case, it is desirable to arrange a plurality of laser receivers 27 on a straight line. By arranging on a straight line, as shown in FIG. 13B, the amount of vertical displacement on the line, that is, the amount of bending of the brick upper surface can be accurately measured.

レーザー発信器26としては特に限定されるものではなく、図13(a)に示す回転レーザーを用いることができる。回転レーザーを用いることにより、時々刻々と変化する鉛直方向変位量を瞬時に検出することができる。同様にレーザー受信器27としても特に限定されるものではなく、回転レーザー用変位測定器を用いることができる。
また、図示しないが無線又は有線による通信手段によって各レーザー受信器27におけるレーザー受信位置データが炉外の作業者に伝達できることが望ましい。例えば、無線又は有線による通信手段によって各レーザー受信器27と炉外に設置された計算機(コンピュータ)を接続することにより、マンテル搬送によって時々刻々と変化する各レーザー受信器における鉛直方向変位量、すなわち撓み量を随時確認することができる。
なお、鉛直方向変位量の検出は、マンテル搬送前におけるレーザー受信位置を記憶することができるとともに時々刻々と変化するレーザー受信位置との差分を演算できるレーザー受信器27を使用する場合にはレーザー受信器自体が行ってもよいし、無線又は有線による通信手段によって接続した計算機(コンピュータ)によって前記差分を演算してもよい。
The laser transmitter 26 is not particularly limited, and a rotating laser shown in FIG. 13A can be used. By using the rotating laser, it is possible to instantaneously detect the amount of vertical displacement that changes every moment. Similarly, the laser receiver 27 is not particularly limited, and a rotary laser displacement measuring device can be used.
Although not shown, it is desirable that the laser reception position data in each laser receiver 27 can be transmitted to an operator outside the furnace by wireless or wired communication means. For example, by connecting each laser receiver 27 and a computer (computer) installed outside the furnace by wireless or wired communication means, the amount of vertical displacement in each laser receiver that changes momentarily by mantel transport, The amount of deflection can be confirmed at any time.
The detection of the vertical displacement amount can be performed by using the laser receiver 27 that can store the laser reception position before the mantel transport and can calculate the difference from the laser reception position that changes every moment. The difference itself may be calculated by a computer (computer) connected by wireless or wired communication means.

前記したように本発明においてはレーザー発信器26とレーザー受信器27を炉底マンテルに施工されたレンガ上面に設置しているため、図14に示すようにレンガ上面に撓みが生ずると、レーザー発信器26に傾きが生じ、これに伴い各レーザー受信器27におけるレーザー受信位置、ひいては検出する鉛直方向変位量に誤差が含まれることとなる。当該誤差は図14に示すようにレーザー発信器26と各レーザー受信器27との距離に比例して大きくなる。すなわち、炉底マンテル1の半径が大きくなるほど、また撓み量が大きくなるほど当該測定誤差は無視できなくなるおそれがある。図15は、レーザー発信器26とレーザー受信器27の配置例の他の形態を示す説明図であり、このように配置することによりレンガ上面の撓みに起因するレーザー発信器26の傾きによって生ずる誤差をキャンセルする補正を行うことができる。   As described above, in the present invention, the laser transmitter 26 and the laser receiver 27 are installed on the upper surface of the brick constructed on the furnace bottom mantel. Therefore, when the upper surface of the brick is bent as shown in FIG. As a result, an inclination is generated in the detector 26, and an error is included in the laser receiving position in each laser receiver 27, and thus in the detected vertical displacement. The error increases in proportion to the distance between the laser transmitter 26 and each laser receiver 27 as shown in FIG. That is, there is a possibility that the measurement error cannot be ignored as the radius of the furnace bottom mantel 1 is increased and the deflection amount is increased. FIG. 15 is an explanatory view showing another form of the arrangement example of the laser transmitter 26 and the laser receiver 27, and an error caused by the inclination of the laser transmitter 26 due to the bending of the upper surface of the brick by arranging in this way. It is possible to perform correction for canceling.

この方法は、複数のレーザー受信器27を同一直線上に配置し、検出した鉛直方向変位量から、レンガ上面の撓みに起因するレーザー発信器26の傾きによって生ずる誤差をキャンセルする補正を行い、当該補正後の鉛直方向変位量を真の撓み量とするものであり、具体的には表2に示すように直線上に配置した最端部のレーザー受信器A(測定点A)を常に0基準とする。そして、反対側の最端部に設置したレーザー受信器Bの値を読み取り、その間に設置した受信器の値を設置距離Lにより補正する方法である。当該方法によれば、図16に示すようにレンガ上面の撓みに起因するレーザー発信器26の傾きによって生ずる誤差をキャンセルすることができ、これにより炉底マンテル1の搬送をより安定したものとすることができる。   In this method, a plurality of laser receivers 27 are arranged on the same straight line, and a correction for canceling an error caused by the inclination of the laser transmitter 26 due to the deflection of the brick upper surface is performed from the detected vertical displacement amount. The corrected vertical displacement amount is used as the true deflection amount. Specifically, as shown in Table 2, the laser receiver A (measurement point A) located on the straight line is always set to zero reference. And Then, the value of the laser receiver B installed at the extreme end on the opposite side is read, and the value of the receiver installed in the meantime is corrected by the installation distance L. According to the method, as shown in FIG. 16, it is possible to cancel an error caused by the inclination of the laser transmitter 26 due to the bending of the brick upper surface, thereby making the transportation of the furnace bottom mantel 1 more stable. be able to.

Figure 2006307319
Figure 2006307319

高炉の概略説明図である。It is a schematic explanatory drawing of a blast furnace. 本発明に係る炉底マンテルの施工概略図である。It is a construction schematic diagram of a furnace bottom mantel according to the present invention. 実験用ミニモデルの概略説明図である。It is a schematic explanatory drawing of the experimental mini model. 敷きビームの構造を模式的に示す断面図である。It is sectional drawing which shows the structure of a spread beam typically. 敷きビームの厚さと撓み量の関係を示すグラフである。It is a graph which shows the relationship between the thickness of a spread beam, and the amount of bending. バランスビームの構造を模式的に示す断面図である。It is sectional drawing which shows the structure of a balance beam typically. バランスビームの厚さと撓み量の関係を示すグラフである。It is a graph which shows the relationship between the thickness of a balance beam, and the amount of bending. (a)は地組場で煉瓦を施工した炉底マンテル、(b)はドーリー搬送される炉底マンテル、(c)はエアーキャスタを用いて搬送される炉底マンテルを示す図である。(A) is a furnace bottom mantel in which bricks are constructed at a building site, (b) is a furnace bottom mantel that is transported in a dolly, and (c) is a view showing a furnace bottom mantel that is transported using an air caster. (a)は本発明に係るドーリーの配置方法を示す説明図であり、(b)は従来の配置方法を示す説明図である。(A) is explanatory drawing which shows the arrangement | positioning method of the dolly based on this invention, (b) is explanatory drawing which shows the conventional arrangement | positioning method. (a)は補強リングの設置方法の一例を示す説明図であり、(b)は補強リングの拡大図である。(A) is explanatory drawing which shows an example of the installation method of a reinforcement ring, (b) is an enlarged view of a reinforcement ring. (a)はステー材の設置方法の一例を示す説明図であり、(b)はステー材の拡大図である。(A) is explanatory drawing which shows an example of the installation method of a stay material, (b) is an enlarged view of a stay material. エアーキャスタの配置例の一態様を示す模式図である。It is a schematic diagram which shows one aspect | mode of the example of arrangement | positioning of an air caster. (a)はレーザー発信器とレーザー受信器の配置例の一形態を示す説明図であり、(b)はレンガ上面の撓み量を示す説明図である。(A) is explanatory drawing which shows one form of the example of arrangement | positioning of a laser transmitter and a laser receiver, (b) is explanatory drawing which shows the deflection amount of a brick upper surface. レンガ上面の撓みに起因するレーザー発信器の傾きによって生ずる誤差を示す説明図である。It is explanatory drawing which shows the error produced by the inclination of the laser transmitter resulting from the bending of a brick upper surface. レーザー発信器とレーザー受信器の配置例の他の形態を示す説明図である。It is explanatory drawing which shows the other form of the example of arrangement | positioning of a laser transmitter and a laser receiver. レンガ上面の撓みに起因するレーザー発信器の傾きによって生ずる誤差をキャンセルする補正方法を示す説明図である。It is explanatory drawing which shows the correction method which cancels the error which arises by the inclination of the laser transmitter resulting from the bending of a brick upper surface. 炉底マンテルに施工されたレンガ上面に測定機器を設置する技術的意義を説明するための模式図である。It is a schematic diagram for demonstrating the technical significance which installs a measuring apparatus on the brick upper surface constructed in the furnace bottom mantel.

符号の説明Explanation of symbols

1 炉底マンテル 2 炉体
3 炉体支持柱 4 環状管
5 基礎 6 炉底板
7 鉄皮 8 ステーブクーラ
9 炉床レンガ 10 カーボンレンガ
11 目地 12 敷きビーム
15 耐火コンクリート 16 バランスビーム
17 ドーリー 18 エアーキャスタ
19 補強リング 20 リブ
21 ステー材 22 固定プレート
23 締結部材 24 ジャッキ
25 スタンプ材 26 レーザー発信器
27 レーザー受信器 28 レーザー
A バランスビームの厚さ H 敷きビームの厚さ
P 油圧シリンダ間距離 t モルタルの厚さ
DESCRIPTION OF SYMBOLS 1 Furnace bottom mantel 2 Furnace body 3 Furnace body support pillar 4 Annular pipe 5 Foundation 6 Furnace bottom plate 7 Iron skin 8 Stave cooler 9 Hearth brick 10 Carbon brick 11 Joint 12 Laying beam 15 Refractory concrete 16 Balance beam 17 Dolly 18 Air caster 19 Reinforcing ring 20 Rib 21 Stay material 22 Fixing plate 23 Fastening member 24 Jack 25 Stamp material 26 Laser transmitter 27 Laser receiver 28 Laser A Thickness of balance beam H Thickness of spread beam P Distance between hydraulic cylinders t Thickness of mortar

Claims (8)

高炉基礎以外の場所で事前に高炉炉底マンテルを建設し、該炉底マンテルにレンガを施工して高炉基礎上まで搬送する炉底マンテルの搬送方法において、炉内に施工したレンガ上面の撓み量をマンテル半径1m当たり3mm以下として搬送することを特徴とする高炉用炉底マンテルの搬送方法。
In the method of transporting the bottom mantel where a blast furnace bottom mantel is constructed in advance at a place other than the blast furnace base, bricks are applied to the bottom mantle and transported to the top of the blast furnace base, the amount of deflection of the top surface of the brick constructed in the furnace Is transported at a mantel radius of 1 mm or less at a rate of 3 mm or less.
前記炉底マンテルの下面に厚さAが700mm以上2200mm以下のバランスビームを設置したことを特徴とする請求項1に記載の高炉用炉底マンテルの搬送方法。
The method for transporting a blast furnace bottom mantel according to claim 1, wherein a balance beam having a thickness A of 700 mm or more and 2200 mm or less is installed on a lower surface of the furnace bottom mantel.
前記炉底マンテルの下面に厚さHが480mm以上1000mm以下の敷きビームを設置し、且つ、前記敷きビームの下面に厚さAが700mm以上2200mm以下のバランスビームを設置したことを特徴とする請求項1に記載の高炉用炉底マンテルの搬送方法。
A laying beam having a thickness H of 480 mm or more and 1000 mm or less is installed on the lower surface of the furnace bottom mantel, and a balance beam having a thickness A of 700 mm or more and 2200 mm or less is installed on the lower surface of the laying beam. Item 2. A method for conveying a bottom mantle for a blast furnace according to Item 1.
ドーリーを長手方向に連結して複数のドーリー列を形成し、該ドーリー列を前記バランスビームと地表面との間に形成した間隙内に並列に引き込み、各ドーリー列の長さを中央列から端列にいくに従い減少させて配置することを特徴とする請求項1〜3のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
A plurality of dolly rows are formed by connecting the dollies in the longitudinal direction, the dolly rows are drawn in parallel into the gap formed between the balance beam and the ground surface, and the length of each dolly row is extended from the center row. 4. The method of transporting a blast furnace bottom mantel according to claim 1, wherein the blast furnace mantle is arranged in a reduced manner as it goes in a row. 5.
前記バランスビームの形状を引き込むドーリー列の長さに応じた形状とすることを特徴とする請求項1〜4のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
5. The method for transporting a blast furnace bottom mantel according to claim 1, wherein the balance beam has a shape corresponding to a length of a dolly line to which the shape of the balance beam is drawn.
前記ドーリーに設置された油圧シリンダ間距離Pが2.5m以内となるように前記ドーリー列を並列に配置したことを特徴とする請求項1〜5のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
The furnace bottom for a blast furnace according to any one of claims 1 to 5, wherein the dolly rows are arranged in parallel so that a distance P between hydraulic cylinders installed in the dolly is 2.5 m or less. Mantel transport method.
炉底マンテルに施工されたレンガ上面の任意位置にレーザー発信器を設置し、同じくレンガ上面の任意位置に複数のレーザー受信器を直線上に配置し、受信するレーザーの鉛直方向変位量を検出して得られるレンガ上面の撓み量を測定しながら炉底マンテルを搬送することを特徴とする請求項1〜6のいずれか1項に記載の高炉用炉底マンテルの搬送方法。
A laser transmitter is installed at an arbitrary position on the upper surface of the brick constructed in the furnace bottom mantel, and a plurality of laser receivers are arranged in a straight line at an arbitrary position on the upper surface of the brick to detect the vertical displacement of the received laser. The furnace bottom mantel according to any one of claims 1 to 6, wherein the furnace bottom mantel is conveyed while measuring the amount of bending of the brick upper surface obtained in this way.
前記レーザー受信器により検出した鉛直方向変位量から、レンガ上面の撓みに起因するレーザー発信器の傾きによって生ずる誤差をキャンセルする補正を行い、当該補正後の鉛直方向変位量を真の撓み量とすることを特徴とする請求項7に記載の高炉用炉底マンテルの搬送方法。

From the amount of vertical displacement detected by the laser receiver, correction is performed to cancel an error caused by the inclination of the laser transmitter caused by the bending of the brick upper surface, and the corrected vertical displacement is set as the true amount of bending. The method for conveying a blast furnace bottom mantel according to claim 7.

JP2005363618A 2005-03-29 2005-12-16 Conveying method of bottom mantel for blast furnace Active JP4822831B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005363618A JP4822831B2 (en) 2005-03-29 2005-12-16 Conveying method of bottom mantel for blast furnace
CN2006800109510A CN101155934B (en) 2005-03-29 2006-03-27 Method of carrying bottom mantel for blast furnace
EP06730932A EP1865078B1 (en) 2005-03-29 2006-03-27 Method of carrying a bottom mantel for a blast furnace
BRPI0609604-2A BRPI0609604B1 (en) 2005-03-29 2006-03-27 OVEN BACKGROUND BLANK TRANSPORT METHOD
KR1020077024652A KR100949854B1 (en) 2005-03-29 2006-03-27 Method of carrying bottom mantel for blast furnace
PCT/JP2006/306984 WO2006104229A1 (en) 2005-03-29 2006-03-27 Method of carrying bottom mantel for blast furnace
TW095110707A TWI325014B (en) 2005-03-29 2006-03-28 Method for transporting furnace bottom mantel for blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005094898 2005-03-29
JP2005094898 2005-03-29
JP2005363618A JP4822831B2 (en) 2005-03-29 2005-12-16 Conveying method of bottom mantel for blast furnace

Publications (2)

Publication Number Publication Date
JP2006307319A true JP2006307319A (en) 2006-11-09
JP4822831B2 JP4822831B2 (en) 2011-11-24

Family

ID=37053483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363618A Active JP4822831B2 (en) 2005-03-29 2005-12-16 Conveying method of bottom mantel for blast furnace

Country Status (7)

Country Link
EP (1) EP1865078B1 (en)
JP (1) JP4822831B2 (en)
KR (1) KR100949854B1 (en)
CN (1) CN101155934B (en)
BR (1) BRPI0609604B1 (en)
TW (1) TWI325014B (en)
WO (1) WO2006104229A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054443A1 (en) * 2007-10-26 2009-04-30 Nippon Steel Engineering Co., Ltd. Blast furnace bottom structure
JP2009209427A (en) * 2008-03-05 2009-09-17 Nippon Steel Engineering Co Ltd Structure for fitting iron-shell reinforcing member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102896456B (en) * 2011-07-26 2014-07-16 上海宝钢工业技术服务有限公司 Metal mixed lorry furnace shell down-warping correction and repair method
KR20180121490A (en) * 2015-12-30 2018-11-07 다니엘리 코루스 베뷔 Furnace construction method and assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222420A (en) * 1991-02-27 1993-08-31 Kawasaki Steel Corp Method for intermediate reconstruction of blast furnace
JPH09143521A (en) * 1995-11-28 1997-06-03 Kawasaki Steel Corp Method for reconstructing and constructing blast furnace in short time
JPH10102778A (en) * 1996-09-27 1998-04-21 Kawasaki Steel Corp Blast furnace furnace body coonstruction method
JP2001131617A (en) * 1999-10-29 2001-05-15 Sumitomo Metal Ind Ltd Method for repairing blast furnace
JP2005054236A (en) * 2003-08-05 2005-03-03 Jfe Steel Kk Reinforcing structure of iron-shell in furnace bottom block for blast furnace
JP2005314735A (en) * 2004-04-28 2005-11-10 Jfe Steel Kk Method for constructing blast furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539885B2 (en) * 1999-03-31 2004-07-07 Jfeスチール株式会社 Mobile suspension apparatus for furnace body ring block, blast furnace body dismantling method, and blast furnace body construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222420A (en) * 1991-02-27 1993-08-31 Kawasaki Steel Corp Method for intermediate reconstruction of blast furnace
JPH09143521A (en) * 1995-11-28 1997-06-03 Kawasaki Steel Corp Method for reconstructing and constructing blast furnace in short time
JPH10102778A (en) * 1996-09-27 1998-04-21 Kawasaki Steel Corp Blast furnace furnace body coonstruction method
JP2001131617A (en) * 1999-10-29 2001-05-15 Sumitomo Metal Ind Ltd Method for repairing blast furnace
JP2005054236A (en) * 2003-08-05 2005-03-03 Jfe Steel Kk Reinforcing structure of iron-shell in furnace bottom block for blast furnace
JP2005314735A (en) * 2004-04-28 2005-11-10 Jfe Steel Kk Method for constructing blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054443A1 (en) * 2007-10-26 2009-04-30 Nippon Steel Engineering Co., Ltd. Blast furnace bottom structure
JP2009209427A (en) * 2008-03-05 2009-09-17 Nippon Steel Engineering Co Ltd Structure for fitting iron-shell reinforcing member

Also Published As

Publication number Publication date
EP1865078A1 (en) 2007-12-12
KR100949854B1 (en) 2010-03-25
JP4822831B2 (en) 2011-11-24
EP1865078A4 (en) 2009-10-21
CN101155934A (en) 2008-04-02
KR20070116920A (en) 2007-12-11
BRPI0609604A2 (en) 2010-04-20
BRPI0609604B1 (en) 2014-06-24
CN101155934B (en) 2011-04-27
TWI325014B (en) 2010-05-21
TW200700561A (en) 2007-01-01
WO2006104229A1 (en) 2006-10-05
EP1865078B1 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
CN103801921B (en) Vertical sleeve kiln kiln shell installation method
JP4822831B2 (en) Conveying method of bottom mantel for blast furnace
JP6024898B2 (en) Spherical tank transport method and spherical tank transport device used therefor
CN101748800A (en) Hydraulic lifting reverse method of chimney steel inner cylinder
JP2010053441A (en) Method for constructing and repairing blast furnace body
CN107267165B (en) A kind of dry coke quenching furnace body is circular layout pre-embedded bolt fixed structure and installation method
CN107489163A (en) A kind of metallurgical industry body of heater annular bolt installation method
JP6102827B2 (en) Rolling mill installation method
US6403021B1 (en) Method of constructing a blast furnace body and lifting transfer apparatus
CN101831916B (en) Method for mounting large-size sleeve bolt framework in combined type
JP4984493B2 (en) Blast furnace demolition method and blast furnace construction method
JP4885259B2 (en) Precast balcony slide method and precast balcony slide rollers and rails
JP4472115B2 (en) Blast furnace assembly method
CN105382784B (en) Change the frock of mixed iron blast base and roller-way
JP4592860B2 (en) Blast furnace component installation method
JP4349173B2 (en) Method for assembling annular tube and supporting structure thereof
JP2005314735A (en) Method for constructing blast furnace
JP3873549B2 (en) Blast furnace repair method
CN212926723U (en) Vertical steel bar locator of silo
JP4583536B2 (en) Ring mantel centering method
JP4368659B2 (en) Slide method for precast balcony
CN115283990A (en) Large-scale equipment air pairing and hoisting method
CN117418057A (en) Device for controlling masonry quality of carbon bricks for overhauling blast furnace and application method of device
CN115555844A (en) Gasification furnace on-site assembly construction method
CN109610531A (en) A kind of one pile for one column steel column positioning and plumbing system and construction method based on contrary sequence method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4822831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350