JP2006307293A - Method for collecting copper by floatation - Google Patents

Method for collecting copper by floatation Download PDF

Info

Publication number
JP2006307293A
JP2006307293A JP2005132039A JP2005132039A JP2006307293A JP 2006307293 A JP2006307293 A JP 2006307293A JP 2005132039 A JP2005132039 A JP 2005132039A JP 2005132039 A JP2005132039 A JP 2005132039A JP 2006307293 A JP2006307293 A JP 2006307293A
Authority
JP
Japan
Prior art keywords
copper
converter
amount
smelting
flotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005132039A
Other languages
Japanese (ja)
Other versions
JP4751100B2 (en
Inventor
Moritomo Hashimoto
守友 橋本
Takamitsu Mimura
隆満 三村
Kimihiro Shimokawa
公博 下川
Shintaro Udo
慎太郎 有働
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005132039A priority Critical patent/JP4751100B2/en
Publication of JP2006307293A publication Critical patent/JP2006307293A/en
Application granted granted Critical
Publication of JP4751100B2 publication Critical patent/JP4751100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collecting method for increasing a quantity of collected copper by floatation. <P>SOLUTION: This collecting method comprises the steps of: finishing a reaction of producing white matte in a slag-making period; reducing an amount of supplied oxygen, namely, inhibiting overblowing; subsequently discharging converter slag by tilting a copper converter; feeding the converter slag to a concentration facility; and subjecting the converter slag to a floatation in the concentration facility. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅製錬を行なう際に用いる転炉(以下、銅転炉という)で発生する転炉からみに含まれる銅を回収する方法に関するものである。   The present invention relates to a method for recovering copper contained in a converter generated in a converter (hereinafter referred to as a copper converter) used when performing copper smelting.

一般に銅製錬においては、図1に示すように、乾燥した銅精鉱を自熔炉1で溶錬してかわ6(いわゆるマット,銅含有量55〜70質量%程度)とからみ5(いわゆるスラグ)に分離し、さらにかわ6を銅転炉2に装入して吹精を行なう。なお自熔炉1で生じるからみ5を、後述する銅転炉で生じるからみと区別するために、自熔炉からみ5と記す。
この自熔炉からみ5は水砕設備へ送給され、水砕からみとして処分される。
In general, in copper smelting, as shown in FIG. 1, dry copper concentrate is smelted in a self-smelting furnace 1 and glue 6 (so-called mat, copper content 55 to 70% by mass) and entanglement 5 (so-called slag) In addition, the glue 6 is charged into the copper converter 2 and blown. In addition, in order to distinguish the leash 5 generated in the auto-smelting furnace 1 from the leash generated in the copper converter described later, it is referred to as the auto-melting furnace leash 5.
This melting furnace tang 5 is fed to the granulation facility and disposed of as a pulverized trash.

自熔炉1で得られた溶融状態のかわ6を銅転炉2に収容して、吹精を行なうにあたって、炉体に設けられた複数の羽口(図示せず)から、空気あるいは酸素富化空気等の酸素含有ガスを吹き込む。このようにして造かん期においてかわ6中の不純物を酸化して、SO2 ガス,からみ7および白かわに分離し、さらに造銅期において白かわを精製して粗銅8(銅含有量98〜99質量%程度)が得られる。なお銅転炉2で生じるからみ7を、上記の自熔炉からみ5と区別するために、転炉からみ7と記す。 When the molten furnace 6 obtained in the self-melting furnace 1 is accommodated in the copper converter 2 and blown, air or oxygen is enriched from a plurality of tuyere (not shown) provided in the furnace body. Blow in an oxygen-containing gas such as air. In this way, impurities in the glue 6 are oxidized in the canning period and separated into SO 2 gas, entanglement 7 and white glue. Further, in the copper making period, the white glue is purified to obtain crude copper 8 (copper content 98 to 98%). 99% by mass) is obtained. In addition, in order to distinguish the leash 7 generated in the copper converter 2 from the self-melting furnace leash 5 described above, it is referred to as the converter leash 7.

粗銅8は、精製炉4にてさらに純度を高めた後、鋳銅機(図示せず)にて鋳型に注入されて陽極板となる。
一方、転炉からみ7は、造かん期が終了した後、造銅期の製錬を開始する前に銅転炉2を傾動させて、炉口9から排出される。銅転炉2から排出された転炉からみ7は、選鉱設備3にて浮遊選鉱を行ない、銅精鉱と鉄精鉱に分離される。
The crude copper 8 is further purified in the refining furnace 4 and then injected into a mold by a cast copper machine (not shown) to form an anode plate.
On the other hand, after the forging period is completed, the converter ring 7 is discharged from the furnace port 9 by tilting the copper converter 2 before starting the smelting of the copper making period. The converter rod 7 discharged from the copper converter 2 is subjected to flotation with the beneficiation equipment 3 and separated into copper concentrate and iron concentrate.

選鉱設備3は、液体の浮力を利用して銅精鉱と鉄精鉱を分離する(すなわち浮遊選鉱を行なう)設備である。銅精鉱と鉄精鉱を分離する液体(以下、分離液という)には起泡剤および捕収剤が添加されており、常に気泡が分離液中を浮上している。その分離液に転炉からみ7を投入すれば、捕収剤により硫化銅鉱の粒子は気泡に付着して分離液面に浮上する。一方、それ以外の粒子は分離液底に沈降する。このようにして分離液面に浮上した粒子は銅の含有量が大きい銅精鉱であり、分離液底に沈降した粒子は鉄の含有量が大きい鉄精鉱である。   The beneficiation facility 3 is a facility that separates copper concentrate and iron concentrate using liquid buoyancy (that is, performs flotation). A foaming agent and a collecting agent are added to a liquid for separating copper concentrate and iron concentrate (hereinafter referred to as a separation liquid), and bubbles are always floating in the separation liquid. If the separator 7 is put into the separated liquid, the copper sulfide ore particles adhere to the bubbles by the collector and float on the separated liquid surface. On the other hand, other particles settle to the bottom of the separation liquid. The particles floating on the surface of the separation liquid in this way are copper concentrates having a large copper content, and the particles settled on the bottom of the separation liquid are iron concentrates having a large iron content.

銅精鉱は、乾燥した後、再び自熔炉1に装入されるので、銅精鉱に含まれる銅は陽極板の原料として有効に回収できる。
ところが鉄精鉱は所外へ販売され、主にセメントの原料として使用されるので、鉄精鉱に含まれる銅は回収できない。
たとえば特許文献1には、起泡剤に加えて捕収剤を添加した分離液を使用する技術が開示されている。この技術によれば、捕収剤によって転炉からみ7の(特にメタル銅)粒子が気泡に付着しやすくなり、銅精鉱の回収量が増加する。しかしながら特許文献1に開示された技術は、原鉱に含まれるメタル銅の抑制は行なっていないことから、浮遊選鉱による銅(特にメタル銅)の回収量の大幅な増加は期待できない。
特開昭52-65104号公報
After the copper concentrate is dried, it is charged again into the self-melting furnace 1, so that the copper contained in the copper concentrate can be effectively recovered as a raw material for the anode plate.
However, because iron concentrate is sold outside and is mainly used as a raw material for cement, copper contained in iron concentrate cannot be recovered.
For example, Patent Document 1 discloses a technique that uses a separated liquid in which a collection agent is added in addition to a foaming agent. According to this technique, the particles of the converter tang 7 (particularly metal copper) easily adhere to the bubbles by the collector, and the amount of copper concentrate recovered increases. However, since the technique disclosed in Patent Document 1 does not suppress the metal copper contained in the ore, a significant increase in the recovered amount of copper (particularly metal copper) by flotation cannot be expected.
JP 52-65104 A

本発明は上記のような問題を解消し、浮遊選鉱による銅の回収量を著しく増加させる回収方法を提供することを目的とする。   An object of the present invention is to provide a recovery method that solves the above problems and significantly increases the amount of copper recovered by flotation.

発明者らは、銅転炉における製錬反応について研究し、造かん期後にて排出された転炉からみの冷却によりメタル銅が生成されることを見出した。すなわち、造かん期の製錬反応は下記の (1)式で表わされる。ここで、 Cu2S・2FeSがかわであり、 Cu2Sが白かわである。またO2 は、空気あるいは酸素富化空気等の酸素含有ガスによって供給される。
Cu2S・2FeS+3O2 →2FeO+2SO2 + Cu2S ・・・ (1)
この造かん期の製錬反応が終了すると、銅転炉を傾動させて、炉口から転炉からみを排出する。このとき、転炉からみの粘性が低いほど、炉口から容易に排出できる。そのため、造かん期の製錬反応が終了した後さらに酸素含有ガスを供給(以下、オーバーブローという)して酸素を燃焼させ、転炉からみを昇温することによって、転炉からみの粘性を低下させるのが一般的である。
The inventors have studied a smelting reaction in a copper converter and found that metal copper is produced by cooling from the converter discharged after the slagging period. In other words, the smelting reaction during the smelting period is expressed by the following equation (1). Here, Cu 2 S · 2FeS is the cute and Cu 2 S is the white. O 2 is supplied by an oxygen-containing gas such as air or oxygen-enriched air.
Cu 2 S · 2FeS + 3O 2 → 2FeO + 2SO 2 + Cu 2 S (1)
When the smelting reaction during this smelting period is completed, the copper converter is tilted to discharge only the converter from the furnace port. At this time, the lower the viscosity from the converter, the easier it can be discharged from the furnace port. Therefore, after completion of the smelting reaction in the smelting period, oxygen-containing gas is supplied (hereinafter referred to as overblow) to burn oxygen and lower the temperature of the converter, thereby reducing the viscosity of the converter. It is common to make it.

ところがオーバーブローを行なうと、転炉からみにマグネタイトが発生し、下記の (2)式に示すようにマグネタイトと、転炉からみと同時に排出されてしまった一部の白かわとが反応して、メタル銅が生成される。ここで Fe34 がマグネタイトである。
Fe34 +1/2 Cu2S→Cu+3FeO+1/2SO2 ・・・ (2)
造かん期の製錬反応が終了した後のオーバーブローによって供給される酸素量を削減すれば、マグネタイトを減少させ、メタル銅の生成を抑制できる。したがってメタル銅が減少するので、転炉からみの浮遊選鉱を行なう際にメタル銅に対して回収能力のある捕収剤を使用しなくても銅の回収量を著しく増加できる。
However, when overblowing is performed, magnetite is generated only from the converter, and the magnetite reacts with some of the white glue that is discharged at the same time as the converter, as shown in the following equation (2). Metal copper is produced. Here, Fe 3 O 4 is magnetite.
Fe 3 O 4 +1/2 Cu 2 S → Cu + 3FeO + 1 / 2SO 2 (2)
If the amount of oxygen supplied by overblowing after the smelting reaction in the smelting period is reduced, magnetite can be reduced and the production of metal copper can be suppressed. Accordingly, since the amount of metal copper is reduced, the amount of copper recovered can be significantly increased without using a collection agent capable of recovering metal copper when performing flotation from the converter.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、銅転炉を用いた銅の製錬によって発生する転炉からみに含まれる銅の回収方法において、造かん期にて白かわの生成反応が終了した後、オーバーブローを抑制し、酸素の供給量を削減し、次いで銅転炉を傾動して転炉からみを排出し、転炉からみを選鉱設備へ送給し、選鉱設備にて浮遊選鉱を行なうことによって転炉からみに含まれる銅を回収する回収方法である。
The present invention has been made based on such knowledge.
That is, the present invention is a method for recovering copper contained in a converter tangled by a copper smelting process using a copper converter, and suppresses overblow after completion of the reaction to produce white glue during the slagging period. , Reducing the oxygen supply, then tilting the copper converter to discharge it from the converter, feeding the converter to the beneficiation facility, and performing flotation at the beneficiation facility, so that it is included in the converter This is a recovery method for recovering copper.

なお、浮遊選鉱によって回収される銅とは、転炉からみから分離された銅精鉱に含有される銅を指す。つまり銅精鉱は乾燥して再び自熔炉に装入されるので、銅精鉱に含有される銅は陽極板の原料として有効に利用される。
本発明の銅の回収方法では、オーバーブローの所要時間を5分以内とすることが好ましい。
In addition, the copper collect | recovered by a flotation means the copper contained in the copper concentrate isolate | separated from the converter. That is, since the copper concentrate is dried and charged again into the self-melting furnace, the copper contained in the copper concentrate is effectively used as a raw material for the anode plate.
In the copper recovery method of the present invention, it is preferable that the time required for overblowing is within 5 minutes.

さらに転炉からみの浮遊選鉱にて捕収剤を使用する場合には、捕収剤として、ドデシルメルカプタンと2−メルカプトベンゾチアゾールとを使用することが好ましい。また、その混合比率は、ドデシルメルカプタンの使用量M1 (kg)と2−メルカプトベンゾチアゾールの使用量M2 (kg)の混合比率が、M1 /(M1 +M2 )の値に換算して、0.25〜0.75の範囲内を満足することが好ましい。 Furthermore, when using a collection agent in the flotation from the converter, it is preferable to use dodecyl mercaptan and 2-mercaptobenzothiazole as the collection agent. The mixing ratio of the amount of dodecyl mercaptan used M 1 (kg) and the amount of 2-mercaptobenzothiazole used M 2 (kg) is converted to the value of M 1 / (M 1 + M 2 ). Therefore, it is preferable to satisfy the range of 0.25 to 0.75.

本発明によれば、銅転炉を用いて銅を製錬する際に発生する転炉からみに浮遊選鉱を施して、銅の回収量を著しく増加させることができる。   According to the present invention, the amount of copper recovered can be remarkably increased by applying flotation to the converter generated when smelting copper using a copper converter.

本発明の銅の回収方法について図1を参照して説明する。
かわ6を収容した銅転炉2に、羽口(図示せず)を介して酸素含有ガスを吹き込む。銅転炉2にて (1)式に示す造かん期の製錬反応が終了した後、さらにオーバーブローを行ない、転炉からみ7を昇温することによって、転炉からみ7の粘性を低下させる。ただしオーバーブローを行なう際には、マグネタイトの生成量を低減することによって (2)式によるメタル銅の生成を抑制するために、酸素の供給量を削減する必要がある。
The copper recovery method of the present invention will be described with reference to FIG.
An oxygen-containing gas is blown into the copper converter 2 containing the glue 6 through a tuyere (not shown). After the smelting reaction shown in the formula (1) is completed in the copper converter 2, the overblow is further performed to raise the temperature of the converter 7, thereby reducing the viscosity of the converter 7. . However, when overblowing is performed, it is necessary to reduce the supply amount of oxygen in order to suppress the production of metal copper according to equation (2) by reducing the production amount of magnetite.

オーバーブローによって供給される酸素量は、酸素含有ガス中の酸素濃度とオーバーブローの所要時間とによって変化する。したがって下記の (a)または (b)の方法によって、オーバーブローの酸素の供給量を削減することが可能である。
(a) 酸素含有ガス中の酸素濃度を低減し、製錬反応が終了する時に目的温度に達するよう吹精する。
(b) 酸素含有ガス中の酸素濃度は従来と同様にする一方、オーバーブローの所要時間を短縮する。
The amount of oxygen supplied by overblowing varies depending on the oxygen concentration in the oxygen-containing gas and the time required for overblowing. Therefore, it is possible to reduce the supply amount of overblow oxygen by the following method (a) or (b).
(a) Reduce the oxygen concentration in the oxygen-containing gas and blow to reach the target temperature when the smelting reaction ends.
(b) The oxygen concentration in the oxygen-containing gas is set to be the same as the conventional one, while the time required for overblowing is shortened.

銅転炉2の操業では、酸素含有ガスの酸素濃度を操業中に変更するのは難しい。もし上記の (a)の方法を行なった場合、造かん期および造銅期においても酸素濃度の低い酸素含有ガスを使用せざるを得なくなる。その結果、銅転炉2における吹精時間が延長され、生産性の低下を招く。
したがって、上記の (b)の方法を採用するのが好ましい。従来は約20分程度のオーバーブローを行なっているが、銅転炉2内の保温性を維持すれば、オーバーブローを5分以内に短縮しても転炉からみ7を炉口9から支障なく排出できる。銅転炉2内の保温性を高い水準で維持できれば、オーバーブローの時間がゼロ(すなわちオーバーブローを行なわない)であっても転炉からみ7を排出することは可能である。
In the operation of the copper converter 2, it is difficult to change the oxygen concentration of the oxygen-containing gas during the operation. If the above method (a) is carried out, an oxygen-containing gas having a low oxygen concentration must be used during the steelmaking and coppermaking periods. As a result, the blowing time in the copper converter 2 is extended, leading to a decrease in productivity.
Therefore, it is preferable to employ the above method (b). Conventionally, overblow for about 20 minutes has been performed. However, if the heat insulation in the copper converter 2 is maintained, the converter tang 7 can be removed from the furnace port 9 even if the overblow is shortened to within 5 minutes. Can be discharged. If the heat retaining property in the copper converter 2 can be maintained at a high level, the converter 7 can be discharged even if the overblow time is zero (that is, overblow is not performed).

ただし、銅転炉2の操業中に酸素含有ガスの酸素濃度を容易に変更できる場合は、上記の (a)の方法で、オーバーブローによる酸素の供給量を削減しても良い。
このようにして転炉からみ7にマグネタイトが発生するのを抑制すれば、 (2)式の反応によるメタル銅の生成を抑制できる。その転炉からみ7を選鉱設備へ送給して、選鉱設備にて浮遊選鉱を行ない、銅精鉱を回収することによって、従来の捕収剤の使用のみで、銅の回収量を著しく増加できる。つまり、メタル銅の生成を抑制することによって、銅精鉱の銅含有量が増加するのである。
However, when the oxygen concentration of the oxygen-containing gas can be easily changed during the operation of the copper converter 2, the amount of oxygen supplied by overblowing may be reduced by the method (a).
By suppressing the generation of magnetite in the converter 7 in this way, it is possible to suppress the production of metal copper due to the reaction of formula (2). By sending the waste from the converter 7 to the beneficiation facility, flotation is performed at the beneficiation facility, and the copper concentrate is recovered, so that the amount of copper recovered can be significantly increased only by using conventional collectors. . That is, the copper content of the copper concentrate increases by suppressing the production of metal copper.

また、浮遊選鉱を行なう際に、分離液に従来使用していた捕収剤に新たな捕収剤を添加すれば、銅精鉱の回収量が増加するので、銅の回収量をさらに増加することが可能である。捕収剤を使用する場合は、従来から知られている捕収剤(たとえばザンセート類,ジチオフォスフェート類,ジチオカーバメイト類,メルカプタン類,ジサントゲン類等)を使用すれば良い。ただし、浮遊選鉱におけるメタル銅の回収量を増加させるためには、ドデシルメルカプタンと2−メルカプトベンゾチアゾールとを併用することが好ましい。   In addition, when flotation is performed, if a new collection agent is added to the collection agent conventionally used in the separation liquid, the amount of copper concentrate recovered increases, so the amount of copper recovered further increases. It is possible. When a collector is used, a conventionally known collector (for example, xanthates, dithiophosphates, dithiocarbamates, mercaptans, disantogens, etc.) may be used. However, in order to increase the recovery amount of metal copper in flotation, it is preferable to use dodecyl mercaptan and 2-mercaptobenzothiazole together.

ドデシルメルカプタンと2−メルカプトベンゾチアゾールとを併用する場合には、下記の (3)式で算出される混合比率が0.25未満あるいは0.75超えの場合、協同効果としての能力が抑制されるため、メタル銅の回収は困難である。したがって、混合比率は0.25〜0.75の範囲内を満足することが好ましい。
混合比率=M1 /(M1 +M2 ) ・・・ (3)
1 :ドデシルメルカプタンの使用量(kg)
2 :2−メルカプトベンゾチアゾールの使用量(kg)
転炉からみ7は、細かく粉砕(いわゆる磨鉱)された後、浮遊選鉱に供される。浮遊選鉱は、
(A) 予選:1次浮選を行なう工程
(B) 粗選:2次浮選を行なう工程
(C) 清掃:3次浮選を行なう工程
の3段階の工程からなる選別法であり、いずれの工程も分離液の浮力を利用する。ドデシルメルカプタンと2−メルカプトベンゾチアロールは、 (A)〜(C) のいずれの工程においても捕収剤として使用できる。
When dodecyl mercaptan and 2-mercaptobenzothiazole are used in combination, if the mixing ratio calculated by the following formula (3) is less than 0.25 or more than 0.75, the ability as a cooperative effect is suppressed. Recovery is difficult. Therefore, the mixing ratio preferably satisfies the range of 0.25 to 0.75.
Mixing ratio = M 1 / (M 1 + M 2 ) (3)
M 1 : Use amount of dodecyl mercaptan (kg)
M 2 : Amount of 2-mercaptobenzothiazole used (kg)
The converter tang 7 is finely pulverized (so-called grinding) and then subjected to flotation. Flotation is
(A) Qualifying: The process of performing the first flotation
(B) Coarse selection: the process of performing secondary flotation
(C) Cleaning: A screening method comprising three stages of processes for performing third-stage flotation, and each process uses the buoyancy of the separation liquid. Dodecyl mercaptan and 2-mercaptobenzothialol can be used as a collector in any of the steps (A) to (C).

しかし、分離液に添加する捕収剤としてドデシルメルカプタンと2−メルカプトベンゾチアゾールとを併用する場合は、メタル銅の比率が高い清掃工程で使用するのが好ましい。   However, when dodecyl mercaptan and 2-mercaptobenzothiazole are used in combination as a collecting agent to be added to the separation liquid, it is preferably used in a cleaning process in which the ratio of metal copper is high.

図1に示す一連の設備を用いて銅製錬を行なった。すなわち、乾燥した銅精鉱を自熔炉1で溶錬してかわ6と自熔炉からみ5に分離し、さらにかわ6を銅転炉2に装入して吹精を行ない、白かわを経て粗銅8を製造した。
自熔炉1で得られた溶融状態のかわ6を銅転炉2に収容して、吹精を行なうにあたって、炉体に設けられた複数の羽口(図示せず)から、酸素富化空気を吹き込んだ。このようにして造かん期においてかわ6中の不純物を酸化して、SO2 ガス,転炉からみ7および白かわに分離した。造かん期の吹精を行ないながら、作業員が鉄製のサンプル棒を銅転炉2内に挿入した後、鉄製のサンプル棒を抜き出し、鉄製のサンプル棒に付着した転炉からみ7の色や外観を目視で検査して、造かん期における白かわの生成反応(すなわち (1)式の反応)の終了を判定した。
Copper smelting was performed using a series of facilities shown in FIG. That is, the dried copper concentrate is smelted in the auto-smelting furnace 1 and separated into the glue 6 and the auto-smelting furnace 5, and the glue 6 is charged into the copper converter 2 and blown, and the white copper is used to make the crude copper. 8 was produced.
When the molten furnace 6 obtained in the self-melting furnace 1 is accommodated in the copper converter 2 and blown, oxygen-enriched air is supplied from a plurality of tuyere (not shown) provided in the furnace body. Infused. In this way, impurities in the glue 6 were oxidized during the preparation period, and separated into SO 2 gas, converter scrap 7 and white glue. The operator inserts the iron sample rod into the copper converter 2 while performing the squirting process, and then pulls out the iron sample rod and the color and appearance of the converter rod 7 attached to the iron sample rod. Was visually inspected to determine the end of the reaction of white glue formation (ie, the reaction of formula (1)) during the period of making.

造かん期の反応が終了した後、さらにオーバーブローを5分間行なった。なお、オーバーブローに用いた酸素富化空気およびその供給条件は、造かん期の吹精と同じである。
次いで、造銅期の製錬を開始する前に銅転炉2を傾動させて、転炉からみ7を炉口9から排出した。この転炉からみ7を選鉱設備3に送給して浮遊選鉱を行ない、鉄精鉱と銅精鉱に分離した。
After completion of the reaction during the preparation period, overblow was further performed for 5 minutes. Note that the oxygen-enriched air used for overblowing and the supply conditions thereof are the same as in blowing during the preparation period.
Next, the copper converter 2 was tilted before starting the smelting of the copper making stage, and the converter scissors 7 were discharged from the furnace port 9. The converter 7 was fed to the beneficiation equipment 3 for flotation and separated into iron concentrate and copper concentrate.

浮遊選鉱の清掃工程では、捕収剤としてドデシルメルカプタンと2−メルカプトベンゾチアゾールとを添加した。その混合比率(すなわち (3)式で算出した値)は0.50とした。
以上を発明例とする。
一方、比較例として、オーバーブローを20分間行なった。また、捕収剤はドデシルメルカプタンを使用した。その他の手順は、発明例と同様にして銅製錬を行なった。
In the flotation cleaning process, dodecyl mercaptan and 2-mercaptobenzothiazole were added as collection agents. The mixing ratio (that is, the value calculated by equation (3)) was 0.50.
The above is an invention example.
On the other hand, as a comparative example, overblow was performed for 20 minutes. Further, dodecyl mercaptan was used as the collection agent. Other procedures were the same as in the inventive examples, and copper smelting was performed.

発明例と比較例の銅製錬によって得られた鉄精鉱の銅含有量を調査したところ、発明例では 0.5質量%,比較例では1質量%であった。このデータは、本発明を転炉からみ7の浮遊選鉱に適用することよって銅の回収量が増加することを示している。   When the copper content of the iron concentrate obtained by the copper smelting of the inventive example and the comparative example was investigated, it was 0.5% by mass in the inventive example and 1% by mass in the comparative example. This data shows that the amount of recovered copper is increased by applying the present invention to the floatation of the converter rod 7.

銅製錬の自熔炉,銅転炉,選鉱設備の工程を示すフロー図である。It is a flowchart which shows the process of the auto smelting furnace of copper smelting, a copper converter, and a beneficiation equipment.

符号の説明Explanation of symbols

1 自熔炉
2 銅転炉
3 選鉱設備
4 精製炉
5 自熔炉からみ
6 かわ
7 転炉からみ
8 粗銅
9 炉口
DESCRIPTION OF SYMBOLS 1 Self-melting furnace 2 Copper converter 3 Beneficiation equipment 4 Refinement furnace 5 Seen from self-melting furnace 6 Kawa 7 Seen from converter 8 Crude copper 9 Furnace

Claims (4)

銅転炉を用いた銅の製錬によって発生する転炉からみに含まれる銅の回収方法において、造かん期にて白かわの生成反応が終了した後、オーバーブローを抑制し、酸素の供給量を削減し、次いで前記銅転炉を傾動して転炉からみを排出し、前記転炉からみを選鉱設備へ送給し、前記選鉱設備にて浮遊選鉱を行なうことによって前記転炉からみに含まれる銅を回収することを特徴とする銅の回収方法。   In the method of recovering copper contained in the converter tangled by the copper smelting using the copper converter, after the white-ring formation reaction is completed during the slagging period, the overblow is suppressed and the oxygen supply amount , Then tilting the copper converter to discharge the waste from the converter, supplying the waste from the converter to a beneficiation facility, and performing floating flotation at the beneficiation facility, thereby being included in the converter A method for recovering copper, comprising recovering copper. 前記オーバーブローの所要時間を5分以内とすることを特徴とする請求項1に記載の銅の回収方法。   The copper recovery method according to claim 1, wherein the time required for the overblow is 5 minutes or less. 前記浮遊選鉱で用いる捕収剤として、ドデシルメルカプタンと2−メルカプトベンゾチアゾールとを使用することを特徴とする請求項1または2に記載の銅の回収方法。   The method for recovering copper according to claim 1 or 2, wherein dodecyl mercaptan and 2-mercaptobenzothiazole are used as a collecting agent used in the flotation. 前記ドデシルメルカプタンの使用量M1 (kg)と前記2−メルカプトベンゾチアゾールの使用量M2 (kg)の混合比率が、M1 /(M1 +M2 )の値に換算して、0.25〜0.75の範囲内を満足することを特徴とする請求項3に記載の銅の回収方法。
The mixing ratio of the amount M 2 (kg) of the 2-mercaptobenzothiazole amount M 1 and (kg) of the dodecyl mercaptan, in terms of the value of the M 1 / (M 1 + M 2), 0.25~0.75 The copper recovery method according to claim 3, wherein the copper content satisfies the following range.
JP2005132039A 2005-04-28 2005-04-28 Copper recovery method by flotation Active JP4751100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132039A JP4751100B2 (en) 2005-04-28 2005-04-28 Copper recovery method by flotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132039A JP4751100B2 (en) 2005-04-28 2005-04-28 Copper recovery method by flotation

Publications (2)

Publication Number Publication Date
JP2006307293A true JP2006307293A (en) 2006-11-09
JP4751100B2 JP4751100B2 (en) 2011-08-17

Family

ID=37474506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132039A Active JP4751100B2 (en) 2005-04-28 2005-04-28 Copper recovery method by flotation

Country Status (1)

Country Link
JP (1) JP4751100B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962142A (en) * 2012-12-13 2013-03-13 中南大学 Collecting agent for copper converter slag flotation and use method thereof
CN102974453A (en) * 2012-11-28 2013-03-20 浙江和鼎铜业有限公司 Technology for processing copper melting converting furnace slag
CN105238938A (en) * 2015-11-03 2016-01-13 赤峰金峰冶金技术发展有限公司 Three continuous furnace technology for continuous production of anode copper with copper concentrate
JP7299592B2 (en) 2019-11-05 2023-06-28 国立大学法人九州大学 beneficiation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342335A (en) * 1986-08-07 1988-02-23 Sumitomo Metal Mining Co Ltd Treatment of slag concentrate of copper converter
JPH08325650A (en) * 1995-06-01 1996-12-10 Sumitomo Metal Mining Co Ltd Floatation method of converter slag
JP2003193144A (en) * 2001-12-25 2003-07-09 Nippon Mining & Metals Co Ltd Operating method in slag-making stage in copper converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342335A (en) * 1986-08-07 1988-02-23 Sumitomo Metal Mining Co Ltd Treatment of slag concentrate of copper converter
JPH08325650A (en) * 1995-06-01 1996-12-10 Sumitomo Metal Mining Co Ltd Floatation method of converter slag
JP2003193144A (en) * 2001-12-25 2003-07-09 Nippon Mining & Metals Co Ltd Operating method in slag-making stage in copper converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974453A (en) * 2012-11-28 2013-03-20 浙江和鼎铜业有限公司 Technology for processing copper melting converting furnace slag
CN102962142A (en) * 2012-12-13 2013-03-13 中南大学 Collecting agent for copper converter slag flotation and use method thereof
CN105238938A (en) * 2015-11-03 2016-01-13 赤峰金峰冶金技术发展有限公司 Three continuous furnace technology for continuous production of anode copper with copper concentrate
JP7299592B2 (en) 2019-11-05 2023-06-28 国立大学法人九州大学 beneficiation method

Also Published As

Publication number Publication date
JP4751100B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
CN106676281B (en) A kind of technique of Copper making liquid slag ore phase reconstruction Recovering Copper, iron
CN101827951B (en) Recovery of residues containing copper and other valuable metals
RU2510419C1 (en) Method of making blister copper directly from copper concentrate
CN116732344A (en) Lithium-rich metallurgical slag
EP2839045B1 (en) Method for processing slags of non-ferrous metallurgy
CN111566234B (en) Improved pyrometallurgical process
CN101871050B (en) Method for eliminating magnetic iron oxide furnace accretion produced in copper sulfide concentrate pyrometallurgical process
CN108359814B (en) Antimony sulfide gold ore oxygen-enriched molten pool smelting method
JP2012067375A (en) Dry processing method and system for converter slag in copper smelting
CN114774703A (en) Improvements in copper/tin/lead production
KR100929520B1 (en) Production method of crude or high quality mat
CN111601903A (en) Improved copper production process
JP4751100B2 (en) Copper recovery method by flotation
CN109477161B (en) Method for continuously converting nickel-containing copper sulfide material
CN106332549B (en) Process for converting copper-containing materials
JP7463511B2 (en) Pyrometallurgical process for the recovery of nickel, manganese, and cobalt
WO2008155451A1 (en) Method for processing cobalt-containing copper concentrate
US4521245A (en) Method of processing sulphide copper- and/or sulphide copper-zinc concentrates
JP3682166B2 (en) Method for smelting copper sulfide concentrate
CN103937992A (en) Method for recycling copper scum during top-blown furnace smelting lead refining process
TW202336239A (en) Energy-efficient pyrometallurgical process for treating li-ion batteries
SU1735408A1 (en) Process for treating slags for production of heavy nonferrous metals
JP5726618B2 (en) Method for treating tin-containing copper
JP2001335856A (en) Continuous copper smelting furnace and method of continuously smelting copper
JPS61531A (en) Method for smelting copper sulfide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Ref document number: 4751100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250