JP2006307283A - Method for recovering noble metal - Google Patents
Method for recovering noble metal Download PDFInfo
- Publication number
- JP2006307283A JP2006307283A JP2005131134A JP2005131134A JP2006307283A JP 2006307283 A JP2006307283 A JP 2006307283A JP 2005131134 A JP2005131134 A JP 2005131134A JP 2005131134 A JP2005131134 A JP 2005131134A JP 2006307283 A JP2006307283 A JP 2006307283A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- noble metal
- metal
- separated
- recovering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
本発明は、各種の分野から廃棄される貴金属を含有する廃棄材料から効率よく貴金属を回収、リサイクルすることができる貴金属の回収方法に関する。 The present invention relates to a method for recovering a noble metal capable of efficiently recovering and recycling the noble metal from a waste material containing the noble metal discarded from various fields.
貴金属を含有する廃棄材料は、各種の分野に及んでおり、その一部を列記すると、例えば廃基板、廃触媒、貴金属製品屑、貴金属メッキ廃液、貴金属含有ブラスト粉等があり、その形態も、固体状、フィルム状、液状等多岐に及んでいる。 Waste materials containing precious metals are in various fields, and some of them are listed, for example, waste substrates, waste catalysts, precious metal product waste, precious metal plating waste liquid, precious metal-containing blast powder, etc. It covers a wide variety such as solid, film, and liquid.
これらの廃棄材料から貴金属を回収する代表的な方法として、例えば鉱山等にて用いられてきた湿式法がある。この湿式法は、廃棄材料を必要に応じて焼成、粉砕、篩、薬品還元等の前処理を施した後、王水や硝酸等に酸溶解させ、その成分割合を分析した後、まず銅を金属銅として回収し、各貴金属成分を回収する方法である。
一方、特許文献1〜8には、乾式法として、白金属含有物質を含有する廃触媒等を炉内で金属銅又は酸化銅と共に溶融処理して溶融銅メタル中に白金族を移行させ、得られた白金族を含む溶融銅メタルから銅をある程度酸化する条件にて酸化処理し、ニッケルや鉄、インジウム等の溶融酸化物と白金族元素が濃縮した溶融メタルとに相分離する方法が提案されている。
On the other hand, in Patent Documents 1 to 8, as a dry process, a waste catalyst containing a white metal-containing substance is melted together with metal copper or copper oxide in a furnace to transfer the platinum group into the molten copper metal, and obtained. A method has been proposed in which a molten copper metal containing platinum group is oxidized under conditions that oxidize copper to some extent, and phase separation is performed between molten oxides such as nickel, iron and indium and molten metal enriched with platinum group elements. ing.
しかしながら、前記湿式法では、銅の回収を優先的に実施するため、その後の貴金属、特に白金族の回収率が悪く、また多量の酸を用いる必要があって、回収率やコストの問題があり、実用的ではなかった。
これに対し、前記特許文献1〜8に記載の乾式法では、上記湿式法に比べて回収率が高く、しかも湿式法に比べて低コストで白金族を回収できるという利点を有しているが、以下のような解決すべき問題があった。
この乾式法では、得られた溶融銅メタルは、ほとんどが銅であって、白金属の量は1%程度或いはそれ以下の極微量に過ぎず、電解法等にて銅をまず回収した後、白金属を回収するので、銅の回収を優先的に実施する点では湿式法と同様であり、この銅を分離するための電解法(銅電解)には、99%以上の含有率の銅合金にて実施する必要があり、電気コスト及び薬品コストが多大にかかり、処理速度も遅いという問題があった。そして、白金属の回収は、その後の処理になるため、総じてコストは極めて膨大であった。
However, in the wet method, since copper is preferentially recovered, the subsequent precious metals, particularly the platinum group, are poorly recovered, and a large amount of acid must be used. It was not practical.
In contrast, the dry methods described in Patent Documents 1 to 8 have advantages that the recovery rate is higher than that of the wet method and that the platinum group can be recovered at a lower cost than the wet method. There were the following problems to be solved.
In this dry method, the obtained molten copper metal is mostly copper, and the amount of white metal is only a very small amount of about 1% or less, and after first recovering copper by an electrolytic method, Since white metal is recovered, it is the same as the wet method in that copper is preferentially recovered. The electrolytic method for separating copper (copper electrolysis) has a copper alloy with a content of 99% or more. There is a problem that the electric cost and the chemical cost are very high and the processing speed is slow. And since collection | recovery of a white metal becomes a subsequent process, generally the cost was very huge.
そこで、本発明は、前記従来の処理方法の問題点を解消し、各種の廃棄材料から効率よく貴金属を回収、リサイクルすることができる貴金属の回収方法を提案することを目的とする。 Therefore, an object of the present invention is to propose a method for recovering a noble metal that solves the problems of the conventional processing method and can efficiently recover and recycle the noble metal from various waste materials.
本発明は、上記に鑑み提案されたもので、貴金属含有廃棄材料と銀含有廃棄材料にフラックスを加えて溶融炉内で混合、溶融してガラス質スラグとメタルとに分離した後、分離したメタルを酸化炉に移し、酸化炉内にてフラックスを加え、酸化処理して酸化物スラグと貴金属含有銀合金とに分離し、分離した貴金属含有銀合金を、必要に応じて組成を調整し、鋳造した後、銀電解して電着銀として銀を回収し、電解汚泥から貴金属を湿式処理して段階的に回収することを特徴とする貴金属の回収方法に関するものである。
即ち本発明の貴金属の回収方法は、
(1)貴金属含有廃棄材料と銀含有廃棄材料にフラックスを加えて溶融炉内で混合、溶融してガラス質スラグとメタルとに分離する工程と、
(2)分離したメタルを酸化炉に移すと共にフラックスを加え、酸化炉内にて酸化処理して酸化物スラグと貴金属含有銀合金とに分離する工程と、
(3)分離した貴金属含有銀合金を、必要に応じて組成を調整し、鋳造する工程と、
(4)鋳造後の貴金属含有銀合金を銀電解して電着銀として銀を回収する工程と、
(5)電解汚泥から貴金属を湿式処理して段階的に回収する工程と
を含むものである。
The present invention has been proposed in view of the above, and after adding flux to precious metal-containing waste material and silver-containing waste material, mixing and melting in a melting furnace to separate into glassy slag and metal, the separated metal Is transferred to an oxidation furnace, flux is added in the oxidation furnace, and oxidation treatment is performed to separate the oxide slag and the noble metal-containing silver alloy, and the composition of the separated noble metal-containing silver alloy is adjusted as necessary. Then, the present invention relates to a method for recovering noble metal, characterized in that silver electrolysis is performed to recover silver as electrodeposited silver, and the noble metal is wet-treated from electrolytic sludge and recovered stepwise.
That is, the method for recovering a noble metal of the present invention includes:
(1) adding flux to noble metal-containing waste material and silver-containing waste material, mixing and melting in a melting furnace, and separating into vitreous slag and metal;
(2) transferring the separated metal to an oxidation furnace, adding a flux, oxidizing in the oxidation furnace and separating it into oxide slag and a noble metal-containing silver alloy;
(3) a step of adjusting the composition of the separated noble metal-containing silver alloy as necessary and casting;
(4) a step of recovering silver as electrodeposited silver by subjecting the noble metal-containing silver alloy after casting to silver electrolysis;
(5) including a step of wet-treating noble metal from electrolytic sludge and recovering it stepwise.
また、上記貴金属の回収法において、銀含有廃棄材料は、感材リサイクル処理で得られた銀であることを特徴とする方法をも提案する。 Moreover, in the said noble metal collection | recovery method, the silver containing waste material proposes the method characterized by being the silver obtained by the photosensitive material recycling process.
さらに、上記貴金属の回収法において、貴金属含有廃棄材料は、低品位貴金属含有廃棄材料などを浮遊選鉱により分離した粉体であることを特徴とする方法をも提案する。 Furthermore, in the method for recovering precious metals, a method is also proposed in which the precious metal-containing waste material is a powder obtained by separating low-grade precious metal-containing waste material or the like by flotation.
また、上記貴金属の回収法において、酸化炉から取り出された貴金属含有銀合金は、Ag及び貴金属が80〜95%であり、Cuを含む卑金属が5〜20%であることを特徴とする方法をも提案する。 Moreover, in the said noble metal collection | recovery method, the noble metal containing silver alloy taken out from the oxidation furnace, Ag and a noble metal are 80 to 95%, The base metal containing Cu is 5 to 20%, The method characterized by the above-mentioned. I also propose.
さらに、本発明は、Ag40〜94%−Cuを含む卑金属5〜40%−貴金属1〜30%である貴金属含有銀合金を銀電解して銀を回収する工程を含むことを特徴とする貴金属の回収方法をも提案する。 Further, the present invention includes a step of recovering silver by silver electrolysis of a noble metal-containing silver alloy of 40 to 94% Ag-base metal containing 40 to 94% Cu and 1 to 30% noble metal. A collection method is also proposed.
本発明の貴金属の回収方法は、銀含有廃棄材料中に含まれる銀、例えば感材リサイクル処理で得られた銀に、各種貴金属を吸収させて回収するため、従来の湿式法に比べて製造コストを低く抑えることができ、処理スピードも早くなる。
また、銀を循環させて用いているため、前記特許文献1〜8などの銅を循環させる乾式法に比べて融点が低く、貴金属の取り込みが容易になる。特に粘性の影響もあり、貴金属の固溶化が行われやすい。また、銀材の投入を循環させることが可能であり、銀の正味添加量を削減することが可能である。銀の消費抑制にもつながる。さらに、銀電解は、銅電解のように高含有率で実施しなくてもよく、電気コスト及び薬品コストが低く、処理速度も速いという利点もある。
The recovery method of the noble metal of the present invention is a production cost as compared with the conventional wet method, because various precious metals are absorbed and recovered by silver contained in the silver-containing waste material, for example, silver obtained by the photosensitive material recycling process. Can be kept low, and the processing speed is also increased.
Moreover, since silver is circulated and used, the melting point is lower than that of the dry method in which copper is circulated such as in Patent Documents 1 to 8, and precious metals can be easily taken up. In particular, there is an influence of viscosity, so that noble metals are easily solidified. Moreover, it is possible to circulate the introduction of the silver material, and it is possible to reduce the net addition amount of silver. It also leads to curbing silver consumption. Furthermore, silver electrolysis does not have to be carried out at a high content like copper electrolysis, and has the advantages of low electrical and chemical costs and high processing speed.
貴金属含有廃棄材料として、低品位貴金属含有廃棄材料などを浮遊選鉱により分離された粉体を用いた場合、貴金属を中心とする有用貴金属の選択的な濃縮ができ、これまでは乾式炉では処理が困難であった極低品位廃材でも前処理としての浮遊選鉱により一次濃縮が可能である。また、浮選試薬の選定により複数の低品位廃材を対象に分離濃縮することによって、貴金属の回収が促進される。 In the case of using precious metal-containing waste materials such as low-grade precious metal-containing waste materials separated by flotation, it is possible to selectively concentrate precious metals, mainly precious metals. Even extremely low-grade waste materials, which were difficult, can be primarily concentrated by flotation as pretreatment. Further, by collecting and concentrating a plurality of low-grade waste materials by selecting a flotation reagent, recovery of noble metals is promoted.
酸化炉から取り出された貴金属含有銀合金がAg及び貴金属が80〜95%であり、Cuを含む卑金属が5〜20%である場合、銀が含まれる又は銀を含まない貴金属と投入する銀との固溶体合金であれば、銀電解時に電着銀とスライムとして分離ができ、それぞれ精製することができる。また、電解前の特定組成として、粗銀を中心に高純度で存在する必要はなく、固溶体として濃縮することができる。 When the noble metal-containing silver alloy taken out from the oxidation furnace is 80 to 95% of Ag and noble metal, and the base metal containing Cu is 5 to 20%, silver to be added with noble metal containing or not containing silver and Can be separated as electrodeposited silver and slime during silver electrolysis, and can be purified respectively. Moreover, as a specific composition before electrolysis, it does not need to exist with high purity centering on crude silver, and it can concentrate as a solid solution.
本発明のAg40〜94%−Cuを含む卑金属5〜40%−貴金属1〜30%である貴金属含有銀合金を銀電解して銀を回収する工程を含む貴金属の回収方法では、銀が含まれる又は銀を含まない貴金属と投入する銀との固溶体合金であれば、銀電解時に電着銀とスライムとして分離ができ、それぞれ精製することができる。また、電解前の特定組成として、粗銀を中心に高純度で存在する必要はなく、固溶体として濃縮することによって銀電解の効率を上げることができる。 Silver is contained in the noble metal recovery method including the step of recovering silver by silver electrolysis of a noble metal-containing silver alloy of 40 to 94% -Cu containing a base metal of 5 to 40% -noble metal of 1 to 30% of the present invention. Or if it is a solid solution alloy of the noble metal which does not contain silver, and the silver to introduce | transduce, it can isolate | separate as an electrodeposition silver and a slime at the time of silver electrolysis, and can refine | purify, respectively. In addition, the specific composition before electrolysis does not need to be present with high purity centering on crude silver, and the efficiency of silver electrolysis can be increased by concentrating as a solid solution.
本発明の貴金属の回収法を構成する各工程について説明する。
(1)貴金属含有廃棄材料と銀含有廃棄材料にフラックスを加えて溶融炉内で混合、溶融してガラス質スラグとメタルとに分離する工程;
貴金属含有廃棄材料は、例えば廃基板、廃触媒、貴金属製品屑、貴金属メッキ廃液等の焼却灰を指し、一部有機物を含んでいてもよい。
その他にも、貴金属含有廃棄材料として、現状(湿式)処理からの移行品目としては宝飾関係では、一部の貴金属製品屑、バフ、リューターを適用でき、歯科材関係では撤去冠、石膏、石綿などを適用でき、廃基板、自動車/石油化学廃触媒、電子基板製造工程廃棄物、廃電子部品、ペースト/めっき(吸着樹脂)、サンドブラスト粉などを適用できる。
また、電子基板等の廃基板などの低品位貴金属含有廃棄材料などを粉砕して浮遊選鉱したものも、この貴金属含有廃棄材料とすることができる。
浮遊選鉱は、多くは鉱物類から資源選別を行う目的で実施されており、一般的に鉱物粒子の表面的性質の一つである疎水性、親水性に基づいて、鉱物相互の分離を行う選鉱法と定義される。即ち疎水性鉱物は水に濡れにくいが、その表面が気体又は油状物質などと親和性を有するため浮遊性を示す。反対に親水性鉱物は水に濡れやすいため水相にとどまり浮遊しにくい。このことを応用し、単に鉱物本来の表面的性質を利用するのみならず、種々の浮遊選鉱試薬を用い、鉱物粒子表面の本来の疎水性又は親水性を人為的に制御し、その浮遊性を変化させて相互の分離を行う。特に有用な泡沫浮遊選鉱法は、粉砕された微粒子を懸濁した液中に、適宜浮遊選鉱試薬を加えて微粒子の表面の性質を調節した後、細かい多数の気泡を発生又は導入し、その気泡表面に疎水性微粒子を付着させ、浮上させ分離回収することができる。これらの浮遊選鉱を実施する装置として、既にファーレンワルド型浮選機(FW型、デンバー・サブ・A型浮選機)、フェジャーグレン型浮選機、アジテヤ型浮選機、ワーマン型浮選機などの各種の浮遊選鉱機が市販されている。
銀含有廃棄材料は、一般的にフィルムや定着液或いは製造過程にて生ずる屑等を感材リサイクル処理で得られた銀、銀製品屑などを指す。尚、前記貴金属含有廃棄材料中に銀が含有されるものであれば、別途銀含有廃棄材料を添加する必要はない。即ち貴金属含有廃棄材料と銀含有廃棄材料は、一種の廃棄材料であってもよい。
フラックスとしては、シリカ、酸化カルシウム、炭酸カルシウム、硼砂等を使用することができる。
Each step constituting the noble metal recovery method of the present invention will be described.
(1) A step of adding flux to precious metal-containing waste material and silver-containing waste material, mixing and melting in a melting furnace, and separating into vitreous slag and metal;
The noble metal-containing waste material indicates, for example, incineration ash such as a waste substrate, a waste catalyst, a noble metal product waste, a noble metal plating waste liquid, and may partially contain organic matter.
In addition, as precious metal-containing waste materials, some precious metal product scraps, buffs, and leuters can be applied as jewelry-related transition items from the current (wet) treatment, and removed crowns, gypsum, asbestos, etc. Waste substrate, automobile / petrochemical waste catalyst, electronic substrate manufacturing process waste, waste electronic parts, paste / plating (adsorption resin), sandblasting powder, etc. can be applied.
In addition, low-grade precious metal-containing waste materials such as waste substrates such as electronic substrates can be pulverized and subjected to flotation, and this precious metal-containing waste material can also be used.
Flotation is often performed for the purpose of selecting resources from minerals, and is generally used to separate minerals based on hydrophobicity and hydrophilicity, which are one of the surface properties of mineral particles. Defined as law. That is, hydrophobic minerals are not easily wetted by water, but exhibit floating properties because their surfaces have affinity with gas or oily substances. On the other hand, hydrophilic minerals are easily wetted by water, so they remain in the water phase and do not float easily. By applying this, not only the surface properties inherent in minerals but also various flotation reagents are used to artificially control the original hydrophobicity or hydrophilicity of the mineral particle surface to control its floatability. Change them to separate each other. A particularly useful foam flotation method is to generate or introduce a large number of fine bubbles after adding a suitable flotation reagent to the suspension of pulverized fine particles and adjusting the surface properties of the fine particles. Hydrophobic fine particles can be attached to the surface, floated and separated and recovered. As equipment to carry out these flotation, there are already Fahrenwald type flotation machines (FW type, Denver Sub-A type flotation machines), Fegergren type flotation machines, Agiteya type flotation machines, Worman type flotation machines Various types of flotation beneficiators are commercially available.
The silver-containing waste material generally refers to silver, silver product waste, etc. obtained from a film, a fixing solution, or waste generated in the manufacturing process by a sensitive material recycling process. If silver is contained in the noble metal-containing waste material, it is not necessary to add a silver-containing waste material separately. That is, the noble metal-containing waste material and the silver-containing waste material may be a kind of waste material.
As the flux, silica, calcium oxide, calcium carbonate, borax or the like can be used.
これらの貴金属含有廃棄材料、銀含有廃棄材料は、後述する(4)の工程に特定の組成の銀−貴金属合金を提供し、これを銀電解するようにするために、予め処理割合を調整しておくことが望ましくい。即ち各廃棄材料をサンプリングして元素分析にかけ、それらの溶融炉への添加量を調整することが望ましい。具体的には銀と貴金属との割合が6:4程度になるように混合することが望ましい。 These precious metal-containing waste materials and silver-containing waste materials are provided with a silver-noble metal alloy having a specific composition in the step (4) to be described later, and in order to electrolyze the silver-noble metal alloy, the treatment ratio is adjusted in advance. It is desirable to keep it. That is, it is desirable to sample each waste material and subject it to elemental analysis to adjust the amount of addition to the melting furnace. Specifically, it is desirable to mix so that the ratio of silver and noble metal is about 6: 4.
そして、溶融炉では、前記貴金属含有廃棄材料及び銀含有廃棄材料にフラックスを加えて1200〜1700℃にて混合、溶融すると、比重差にてガラス質スラグとメタルとに分離される。メタルは、銀に、金、白金、パラジウム、ロジウム等の貴金属と銅や鉛等の卑金属などが含有されている。また、ガラス質スラグにはそれ以外の成分、例えばNaO,SiO2等のガラス質の成分が含まれる。このガラス質スラグは取り除かれる。 In the melting furnace, when the flux is added to the precious metal-containing waste material and the silver-containing waste material, and mixed and melted at 1200 to 1700 ° C., it is separated into glassy slag and metal due to the difference in specific gravity. The metal contains silver, noble metals such as gold, platinum, palladium and rhodium, and base metals such as copper and lead. Further, the vitreous slag contains other components, for example, vitreous components such as NaO and SiO 2 . This glassy slag is removed.
(2)メタルを酸化炉に移すと共にフラックスを加え、酸化炉内にて酸化処理して酸化物スラグと貴金属含有銀合金とに分離する工程;
この工程では、前記した(1)の工程で分離されたメタルを酸化炉に移し、フラックスを加えて酸化処理する。前記特許文献1〜8などの銅を循環させる乾式法における酸化処理と異なる点は、従来の乾式法では銅を酸化させない(銅をある程度酸化する)条件にて酸化処理し、銅より卑なる金属を酸化させて除去するのに対し、本発明では銀を酸化させない条件にて酸化処理し、銀より卑なる金属を酸化させて除去する点にあり、銀の存在により、銀より卑なる金属を酸化させて除去することにより、多量の銅が酸化物として分離できる。
酸化炉は、例えば傾動式で1300〜1600℃にて加熱可能であって、空気(酸素含有ガス)を炉内或いは溶湯中に導入することによって酸化処理できるものであり、この酸化処理により、メタル中の卑金属は酸化物スラグとなり、酸化されない貴金属含有銀合金と分離される。この場合、酸化物スラグは炉内の上方に、貴金属含有銀合金は炉内の下方(底部)に位置するように分離する。この貴金属含有銀合金には、銀及び貴金属合金の他に銅(少量)が含まれている。また、酸化物スラグには、鉄、ニッケル、銅(多量)、クロム、錫、鉛、亜鉛等の酸化物が含まれている。そして、この工程では、酸化炉から取り出された貴金属含有銀合金が、Ag及び貴金属が80〜95%、Cuを含む卑金属が5〜20%となるように酸化処理及び分離を行う。
(2) The step of transferring the metal to the oxidation furnace and adding the flux, and oxidizing it in the oxidation furnace to separate it into oxide slag and noble metal-containing silver alloy;
In this step, the metal separated in the step (1) is transferred to an oxidation furnace, and flux is added to oxidize the metal. The difference from the oxidation process in the dry method in which copper is circulated in Patent Documents 1 to 8 and the like is that the conventional dry method does not oxidize copper (oxidizes copper to some extent), and is a metal that is baser than copper. In the present invention, the oxidation treatment is performed under conditions that do not oxidize silver, and the metal that is lower than silver is oxidized and removed. By removing it by oxidation, a large amount of copper can be separated as an oxide.
The oxidation furnace is, for example, tiltable and can be heated at 1300 to 1600 ° C., and can be oxidized by introducing air (oxygen-containing gas) into the furnace or molten metal. The inside base metal becomes oxide slag and is separated from the noble metal-containing silver alloy which is not oxidized. In this case, the oxide slag is separated so as to be located above the inside of the furnace, and the noble metal-containing silver alloy is located below (bottom) inside the furnace. This noble metal-containing silver alloy contains copper (a small amount) in addition to silver and the noble metal alloy. The oxide slag contains oxides such as iron, nickel, copper (a large amount), chromium, tin, lead, and zinc. In this step, the noble metal-containing silver alloy taken out from the oxidation furnace is oxidized and separated so that Ag and noble metal are 80 to 95% and base metal containing Cu is 5 to 20%.
(3)分離した貴金属含有銀合金を、必要に応じて組成を調整し、鋳造する工程;
この工程では、以後の工程(4)にて銀電解を容易にするため、必要に応じて銀を添加するなど組成を調整し、その組成割合をAg40〜94%−Cuを含む卑金属5〜40%−貴金属1〜30%となるように調整する。その後、組成調整した合金より、次の(4)電解工程にて用いる電極プレート板(合金アノード板)を鋳造する。
(3) A step of adjusting the composition of the separated noble metal-containing silver alloy as necessary and casting;
In this step, in order to facilitate silver electrolysis in the subsequent step (4), the composition is adjusted, for example, by adding silver as necessary, and the composition ratio is 5 to 40 base metals containing Ag 40 to 94% -Cu. % —Adjust so that it is 1-30% of the noble metal. Thereafter, an electrode plate (alloy anode plate) used in the next (4) electrolysis step is cast from the alloy whose composition has been adjusted.
(4)鋳造後の貴金属含有銀合金を銀電解して銀を回収する工程
前記した(2)の工程で分離された貴金属含有銀合金を銀電解するには、前記した(3)の工程で得られた電極プレート板(合金アノード板)を用い、電解液として硝酸銀を用い、20g/L以上の銀濃度とし、好ましくは60g/Lとする。浴電圧は1〜3Vとし、好ましくは2.5Vとする。陰極電流密度は200〜300A/m2とし、好ましくは270A/m2とする。また、電解液の温度は常温でも可能である。
前記のようにこの工程で銀電解に供給される銀貴金属合金は、Ag40〜94%−Cuを含む卑金属5〜40%−貴金属1〜30%となるように調整されており、この範囲で行う銀電解の場合、カソードに貴金属が電着することはなく、純度が高く電気的にも効率の良い銀回収が行える。この範囲から逸脱する場合には、通電直後は、電解を行うが、電解汚泥がアノードに固着し、電解の妨げとなり、電解効率が落ち、電気が流れなくなる。また、カソードに他金属、貴金属の電着も起こりやすくなり、銀回収の電解効率が悪くなる。
(4) The step of recovering silver by silver electrolysis of the noble metal-containing silver alloy after casting In order to silver electrolyze the noble metal-containing silver alloy separated in the above-mentioned step (2), the above-mentioned step (3) Using the obtained electrode plate (alloy anode plate), silver nitrate is used as the electrolyte, and the silver concentration is 20 g / L or more, preferably 60 g / L. The bath voltage is 1-3V, preferably 2.5V. The cathode current density is 200 to 300 A / m 2 , preferably 270 A / m 2 . Further, the temperature of the electrolytic solution can be normal temperature.
As described above, the silver noble metal alloy supplied to the silver electrolysis in this step is adjusted so that the base metal containing Ag is 40 to 94% -Cu containing 5 to 40% and the noble metal is 1 to 30%. In the case of silver electrolysis, noble metal is not electrodeposited on the cathode, and silver can be recovered with high purity and high electrical efficiency. When deviating from this range, electrolysis is performed immediately after energization, but the electrolytic sludge adheres to the anode, hinders electrolysis, reduces electrolysis efficiency, and prevents electricity from flowing. In addition, electrodeposition of other metals and noble metals is likely to occur on the cathode, resulting in poor electrolytic efficiency of silver recovery.
(5)電解汚泥から貴金属を湿式処理して段階的に回収する工程;
前記した(4)の工程で銀のみを分離精製した後、その電解汚泥には金、白金、パラジウム、ロジウム等の貴金属が含まれている。これらの電解汚泥から貴金属を回収するには、湿式処理して段階的に貴金属を回収する。
(5) A step of wet-treating precious metal from electrolytic sludge and recovering it step by step;
After separating and purifying only silver in the step (4) described above, the electrolytic sludge contains noble metals such as gold, platinum, palladium and rhodium. In order to recover the precious metal from these electrolytic sludges, the precious metal is recovered stepwise by wet treatment.
尚、前記(2)の工程にて分離された酸化物スラグには、酸化鉄、酸化ニッケル、酸化銅、酸化クロム等が含まれていると説明したが、この中には極微量の銀及び貴金属も含まれている。そのため、この酸化物スラグから銅及び極微量の銀及び貴金属を回収するため、還元炉にて処理する。即ち酸化物スラグを還元炉に移し、フラックスと炭素質還元剤を加えて溶融還元する。炭素質還元剤としてはコークスを使用するのがよい。
この還元処理により、酸化物スラグ中の酸化銅は金属銅に還元され、銀及び貴金属もこの金属銅と同様に炉内の下方(底部)に溜まる。これらに対し、酸化鉄、酸化ニッケル、酸化クロムなどはほとんど還元されないため、酸化物スラグとして残存し、炉内の上方に位置して分離される。
分離された銅及び貴金属含有銀合金は、銅電解して金属銅として回収すると共に、その残渣を前記した(4)の工程の電解汚泥と共に湿式処理して段階的に貴金属を回収する。
The oxide slag separated in the step (2) has been described as containing iron oxide, nickel oxide, copper oxide, chromium oxide, etc. Precious metals are also included. Therefore, in order to collect | recover copper, a trace amount silver, and a noble metal from this oxide slag, it processes in a reduction furnace. That is, the oxide slag is transferred to a reducing furnace, and flux and a carbonaceous reducing agent are added to perform smelting reduction. Coke is preferably used as the carbonaceous reducing agent.
By this reduction treatment, the copper oxide in the oxide slag is reduced to metallic copper, and silver and noble metals also accumulate in the lower part (bottom part) of the furnace in the same manner as this metallic copper. On the other hand, iron oxide, nickel oxide, chromium oxide and the like are hardly reduced, so that they remain as oxide slag and are separated by being located above the furnace.
The separated copper and noble metal-containing silver alloy is recovered as metal copper by copper electrolysis, and the residue is wet-treated with the electrolytic sludge in the step (4) to recover the noble metal step by step.
図1に示す実施例では、貴金属含有廃棄材料として2種類のものを用い、そのうちの一種類(貴金属含有廃棄材料2)は浮遊選鉱を施した。
これら貴金属含有廃棄材料1,2と銀含有廃棄材料とを溶融炉にてフラックスを加えて1200〜1700℃に溶融し、ガラス質スラグとメタルとに分離した。ガラス質スラグは除去し、メタルは酸化炉に移し、フラックスを加えて1300〜1600℃で空気等を導入するなどして酸化処理し、酸化物スラグと貴金属含有銀合金とに分離した。
分離した貴金属含有銀合金は、必要に応じて組成を調整し、後段の銀電解で用いる電極プレート板に鋳造・成形した。この電極プレート板を用いて銀電解し、電着銀として銀を取り出した。
一方、分離した酸化スラグは還元炉に移され、還元処理され、多量の銅からなる成分とスラグに分離した後、銅電解して銅を取り出した。
そして、前述の銀電解、銅電解から回収される電解汚泥を併せ、貴金属を湿式処理して段階的に回収する。
In the example shown in FIG. 1, two types of noble metal-containing waste materials were used, and one of them (noble metal-containing waste material 2) was subjected to flotation.
These noble metal-containing waste materials 1 and 2 and silver-containing waste material were melted at 1200 to 1700 ° C. by adding flux in a melting furnace, and separated into vitreous slag and metal. The vitreous slag was removed, the metal was transferred to an oxidation furnace, added with flux, and oxidized by introducing air or the like at 1300 to 1600 ° C., and separated into oxide slag and a noble metal-containing silver alloy.
The separated noble metal-containing silver alloy was adjusted in composition as necessary, and was cast and formed into an electrode plate used in the subsequent silver electrolysis. Silver electrolysis was performed using this electrode plate, and silver was taken out as electrodeposited silver.
On the other hand, the separated oxidized slag was transferred to a reduction furnace, subjected to reduction treatment, separated into a large amount of copper components and slag, and then subjected to copper electrolysis to take out copper.
And the electrolytic sludge collect | recovered from the above-mentioned silver electrolysis and copper electrolysis is combined, and a noble metal is wet-processed and collect | recovered in steps.
〔浮遊選鉱による低品位貴金属含有廃棄材からの貴金属選別〕
焼成、粉砕処理後、60mesh(目開き250μm)の篩を通過した粒径の歯科廃材に対して浮遊選鉱処理を行なった。歯科廃材に関して、まず条件層にてパルプ濃度10%のスラリーを作った。次に撹拌中のスラリーに水硫化ソーダにより硫化処理を行なった。十分な撹拌を終えてから、pHを2以下に調整した。その後、浮選機にて捕収剤(n−アミルキサントゲン酸カリウム(KAX))50mg/lを投入した。さらに起泡剤(4−メチル−2−ペンタノール(MIBC))を微量添加した。
上記の条件でフロス、シンクを回収し、貴金属を分析したところ、得られたフロス(回収物)中の貴金属の回収率は88.2%であり、貴金属品位を0.15%から2.39%までに濃縮することができた。貴金属が濃縮されたフロス(回収物)は、酸溶解処理を行ない、微量の貴金属(11.8%)が残ったシンクは濾過、乾燥後に精錬処理となる。
[Selection of precious metals from low-grade precious metal-containing waste materials by flotation]
After the firing and pulverization treatment, a flotation treatment was performed on the dental waste material having a particle size that passed through a sieve of 60 mesh (aperture 250 μm). Regarding the dental waste material, first, a slurry having a pulp concentration of 10% was prepared in a condition layer. Next, the slurry being stirred was subjected to sulfurization treatment with sodium hydrosulfide. After sufficient stirring, the pH was adjusted to 2 or less. Thereafter, 50 mg / l of a collecting agent (potassium n-amylxanthate (KAX)) was added using a flotation machine. Further, a small amount of a foaming agent (4-methyl-2-pentanol (MIBC)) was added.
When the floss and the sink were collected under the above conditions and the precious metal was analyzed, the recovery rate of the precious metal in the obtained floss (recovered material) was 88.2%, and the precious metal quality was changed from 0.15% to 2.39. % Could be concentrated. The floss (recovered material) in which the precious metal is concentrated is subjected to an acid dissolution treatment, and the sink in which a trace amount of the precious metal (11.8%) remains is subjected to a refining treatment after filtration and drying.
〔酸化処理及び分離〕
酸化炉における酸化処理にて、メタルとして銀及び貴金属が濃縮され、銅などの卑金属が分離される一例を表1に示した。
Table 1 shows an example in which silver and noble metals are concentrated as metals and base metals such as copper are separated by oxidation treatment in an oxidation furnace.
〔第1の工程〕
貴金属含有(及び銀含有)廃棄材料100Kgを焼成して有機物を除去した後、その焼却灰(金属を含む)30Kgにフラックス成分(Na2BO4O7・10H2O:Na2CO3=6:4)13.8Kgを混合して溶融炉にて1350℃で溶融した。
メタルとガラス質スラグを分離し、得られたメタルを蛍光X線にて分析したところ、その合金は、貴金属が4%、Agが10%、それ以外が86%であった。
[First step]
After firing 100 kg of noble metal-containing (and silver-containing) waste material to remove organic substances, 30 kg of incinerated ash (including metal) is added to flux components (Na 2 BO 4 O 7 .10H 2 O: Na 2 CO 3 = 6). : 4) 13.8 kg was mixed and melted at 1350 ° C. in a melting furnace.
When the metal and the glassy slag were separated and the obtained metal was analyzed by fluorescent X-ray, the alloy was 4% noble metal, 10% Ag, and 86% other than that.
〔第2の工程〕
その後、分離したメタル20Kgを酸化炉に移し、フラックス(CaO:Na2CO3:Na2BO4O7・10H2O=1.5:1:1)5Kgを投入し、1350℃にて酸化処理及び分離を行い、貴金属含有銀合金(貴金属0.8Kg/Ag2Kg/Cuを含む卑金属1.2Kg)と酸化物スラグ(21Kg)に分離した。
[Second step]
Thereafter, 20 kg of the separated metal is transferred to an oxidation furnace, and 5 kg of flux (CaO: Na 2 CO 3 : Na 2 BO 4 O 7 .10H 2 O = 1.5: 1: 1) is charged and oxidized at 1350 ° C. It processed and isolate | separated and isolate | separated into the noble metal containing silver alloy (precious metal 0.8Kg / Ag2Kg / Cu containing base metal 1.2Kg) and oxide slag (21Kg).
〔第3の工程〕
その後、得られた銀含有機金属合金(Ag50%−Cuを含む卑金属30%−貴金属20%)を溶解炉にて偏析のない合金を鋳造し、次の銀電解工程にて用いる電極プレート板(合金アノード板)を作製した。
[Third step]
Thereafter, the obtained silver-containing machine metal alloy (Ag 50% —base metal 30% containing Cu—noble metal 20%) was cast into an alloy without segregation in a melting furnace, and used in the next silver electrolysis step ( Alloy anode plate) was prepared.
〔第4の工程〕
長さ340mm×幅120mm×深さ200mmの電解槽内に、電解液として硝酸銀(60g/L)を7L入れ、前記第3の工程にて製造した幅50mm×長さ120mm×厚さ7mmの合金アノード一枚と、SUS板幅50mm×長さ120mm×厚さ2mmのカソードを、極間が100mmになるよう二枚投入した。
浴電圧を2.5Vに固定し、陰極電流密度を250〜300A/m2の範囲で7時間通電した結果、電着銀中に貴金属が混入することなく、電解汚泥中に貴金属が濃縮された状態になって回収された。
[Fourth step]
7 L of silver nitrate (60 g / L) as an electrolytic solution is placed in an electrolytic cell having a length of 340 mm, a width of 120 mm, and a depth of 200 mm, and an alloy having a width of 50 mm, a length of 120 mm, and a thickness of 7 mm manufactured in the third step. Two pieces of an anode and a cathode with a SUS plate width of 50 mm × length of 120 mm × thickness of 2 mm were introduced so that the distance between the electrodes was 100 mm.
The bath voltage was fixed at 2.5 V, and the cathode current density was applied for 7 hours in the range of 250 to 300 A / m 2. As a result, noble metals were concentrated in the electrolytic sludge without mixing noble metals in the electrodeposited silver. Recovered in a state.
〔第5の工程〕
前記第3の工程で得られた電解汚泥を王水に溶解し、銀をろ別し、ろ液からAu、Pt、Pdを段階的に回収した。
[Fifth step]
The electrolytic sludge obtained in the third step was dissolved in aqua regia, silver was filtered off, and Au, Pt and Pd were recovered stepwise from the filtrate.
〔第4の工程の比較例〕
長さ340mm×幅120mm×深さ200mmの電解槽内に、電解液として硝酸銀(60g/L)を7L入れ、Ag35%−Cu35%−貴金属30%合金にて製造した幅50mm×長さ120mm×厚さ7mmの合金アノード一枚と、SUS板幅50mm×長さ120mm×厚さ2mmのカソードを、極間が100mmになるよう二枚投入した。
浴電圧を2.5V固定し、陰極電流密度を250〜300A/m2の範囲で7時間通電した結果、電解汚泥が合金アノードに固着し、電流密度が50A/m2に低下し、銀の電着が困難になってきた。
[Comparative example of the fourth step]
7L of silver nitrate (60g / L) as an electrolytic solution is placed in an electrolytic cell of length 340mm x width 120mm x depth 200mm, and the width is 50mm x length 120mm x produced by Ag35% -Cu35% -noble metal 30% alloy. Two pieces of an alloy anode having a thickness of 7 mm and a cathode having a width of SUS plate of 50 mm × length of 120 mm × thickness of 2 mm were introduced so that the distance between the electrodes was 100 mm.
The bath voltage was fixed at 2.5 V and the cathode current density was applied for 7 hours in the range of 250 to 300 A / m 2. As a result, the electrolytic sludge fixed to the alloy anode, the current density decreased to 50 A / m 2 , Electrodeposition has become difficult.
各種の分野から廃棄される貴金属含有廃棄材料から効率よく貴金属を回収、リサイクルすることができる。 Precious metals can be efficiently recovered and recycled from precious metal-containing waste materials discarded from various fields.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005131134A JP5031998B2 (en) | 2005-04-28 | 2005-04-28 | Precious metal recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005131134A JP5031998B2 (en) | 2005-04-28 | 2005-04-28 | Precious metal recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006307283A true JP2006307283A (en) | 2006-11-09 |
JP5031998B2 JP5031998B2 (en) | 2012-09-26 |
Family
ID=37474497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005131134A Expired - Fee Related JP5031998B2 (en) | 2005-04-28 | 2005-04-28 | Precious metal recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5031998B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009155678A (en) * | 2007-12-25 | 2009-07-16 | Mitsubishi Materials Corp | Method for recovering noble metal, and recovered noble metal |
JP2010506714A (en) * | 2006-10-20 | 2010-03-04 | テラ ノヴァ | Method for treating waste containing precious metals and apparatus for carrying out the method |
CN102168176A (en) * | 2011-03-10 | 2011-08-31 | 田文学 | Comprehensive recycling process for valuable metal roasting-cyaniding gold-containing tailing |
JP2012077337A (en) * | 2010-09-30 | 2012-04-19 | Jx Nippon Mining & Metals Corp | Electrolytic refining method for silver |
CN105714122A (en) * | 2016-03-08 | 2016-06-29 | 开封大学 | Method for recovering gold, iron and lead in cyanide tailings |
KR101685931B1 (en) * | 2016-07-14 | 2016-12-14 | 한국지질자원연구원 | Recovering method of concentrated precious metals using copper containing wastes |
WO2018012905A1 (en) * | 2016-07-14 | 2018-01-18 | 한국지질자원연구원 | Method for concentrating and recovering noble metals |
CN115125584A (en) * | 2022-07-15 | 2022-09-30 | 中山岚锜科技有限公司 | Efficient extraction method of nonferrous metals in waste circuit boards |
EP4124666A1 (en) * | 2021-07-29 | 2023-02-01 | Dowa Metals & Mining Co., Ltd. | Method for recovering platinum group metals |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316736A (en) * | 2000-03-03 | 2001-11-16 | Nippon Mining & Metals Co Ltd | Method for recovering silver |
JP2003293049A (en) * | 2002-04-08 | 2003-10-15 | Mitsubishi Materials Corp | Method for recovering silver from slag containing silver and lead |
-
2005
- 2005-04-28 JP JP2005131134A patent/JP5031998B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316736A (en) * | 2000-03-03 | 2001-11-16 | Nippon Mining & Metals Co Ltd | Method for recovering silver |
JP2003293049A (en) * | 2002-04-08 | 2003-10-15 | Mitsubishi Materials Corp | Method for recovering silver from slag containing silver and lead |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010506714A (en) * | 2006-10-20 | 2010-03-04 | テラ ノヴァ | Method for treating waste containing precious metals and apparatus for carrying out the method |
JP2009155678A (en) * | 2007-12-25 | 2009-07-16 | Mitsubishi Materials Corp | Method for recovering noble metal, and recovered noble metal |
JP2012077337A (en) * | 2010-09-30 | 2012-04-19 | Jx Nippon Mining & Metals Corp | Electrolytic refining method for silver |
CN102168176A (en) * | 2011-03-10 | 2011-08-31 | 田文学 | Comprehensive recycling process for valuable metal roasting-cyaniding gold-containing tailing |
CN105714122A (en) * | 2016-03-08 | 2016-06-29 | 开封大学 | Method for recovering gold, iron and lead in cyanide tailings |
KR101685931B1 (en) * | 2016-07-14 | 2016-12-14 | 한국지질자원연구원 | Recovering method of concentrated precious metals using copper containing wastes |
WO2018012905A1 (en) * | 2016-07-14 | 2018-01-18 | 한국지질자원연구원 | Method for concentrating and recovering noble metals |
JP2019527769A (en) * | 2016-07-14 | 2019-10-03 | コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ | Concentrating and recovering precious metals |
EP4124666A1 (en) * | 2021-07-29 | 2023-02-01 | Dowa Metals & Mining Co., Ltd. | Method for recovering platinum group metals |
CN115125584A (en) * | 2022-07-15 | 2022-09-30 | 中山岚锜科技有限公司 | Efficient extraction method of nonferrous metals in waste circuit boards |
CN115125584B (en) * | 2022-07-15 | 2023-08-08 | 中山岚锜科技有限公司 | Efficient extraction method of nonferrous metals in waste circuit boards |
Also Published As
Publication number | Publication date |
---|---|
JP5031998B2 (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5031998B2 (en) | Precious metal recovery method | |
US10988826B2 (en) | Hydrometallurgical treatment process for extraction of precious, base and rare elements | |
Barragan et al. | Copper and antimony recovery from electronic waste by hydrometallurgical and electrochemical techniques | |
JP5716867B2 (en) | Precious metal concentration recovery method from used mobile phone printed circuit board and waste automobile catalyst using waste non-ferrous slag | |
CN100469908C (en) | Method for the treatment of copper-bearing materials | |
JP4219947B2 (en) | How to recover lead | |
Burat et al. | Gold&silver recovery from jewelry waste with combination of physical and physicochemical methods | |
CN102459659A (en) | Method for processing precious metal source materials | |
US3772003A (en) | Process for the electrolytic recovery of lead, silver and zinc from their ore | |
CN110551897B (en) | Process for preparing pure copper powder by treating waste circuit board through mechanical and physical method | |
Panda et al. | Hydrometallurgical processing of waste integrated circuits (ICs) to recover Ag and generate mix concentrate of Au, Pd and Pt | |
JP2018145479A (en) | Recovery method of platinum group metals | |
US4892631A (en) | Recovery of precious metals from complex ores | |
JP2007270243A (en) | Dry type refining method for copper | |
JP2010235999A (en) | Method for concentrating gold from copper sulfide mineral | |
JP5196095B2 (en) | Precious metal recovery method and recovered precious metal | |
JP6744981B2 (en) | How to concentrate and recover precious metals | |
JP2009024200A (en) | Method for separation and recovery of noble metal | |
Kongolo et al. | The extractive metallurgy of gold | |
JP2005272955A (en) | Treatment method for fly ash | |
JP2004256363A (en) | Recovery method of sulfur from leach residue by atmospheric pressure method | |
JP2022114298A (en) | Method for recovering silver | |
JPS6348929B2 (en) | ||
TW201012940A (en) | Recycling of lead-free silver containing tin solder dross | |
Zhang et al. | Study on Pre-removal Antimony from Antimony–Gold Concentrate Using Slurry Electrolysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120605 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5031998 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |