JP2006307034A - Solidifying material for high organic soil - Google Patents

Solidifying material for high organic soil Download PDF

Info

Publication number
JP2006307034A
JP2006307034A JP2005132088A JP2005132088A JP2006307034A JP 2006307034 A JP2006307034 A JP 2006307034A JP 2005132088 A JP2005132088 A JP 2005132088A JP 2005132088 A JP2005132088 A JP 2005132088A JP 2006307034 A JP2006307034 A JP 2006307034A
Authority
JP
Japan
Prior art keywords
cement
organic
soil
mass
solidified material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005132088A
Other languages
Japanese (ja)
Inventor
Tatsushi Akiyama
達志 秋山
Makoto Shirai
白井  誠
Seiya Kamei
誠也 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2005132088A priority Critical patent/JP2006307034A/en
Publication of JP2006307034A publication Critical patent/JP2006307034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solidifying material for high organic soil which has an enhanced organic-adsorbing capability, causes no inhibition of the hardening reaction of cement, is inexpensive and easy to produce and can treat organic-rich soil rapidly and stably. <P>SOLUTION: The material is a cement type solidifying material containing C<SB>3</SB>S, C<SB>2</SB>S and pore phases as a clinker mineral composition but is free of C<SB>3</SB>A and gypsum. Preferably, the pore phases are free of C<SB>3</SB>A and consist of a continuous solid solution having an average composition ranging from C<SB>4</SB>AF to C<SB>6</SB>AF<SB>2</SB>, the content of Fe<SB>2</SB>O<SB>3</SB>in the clinker mineral is ≥4.0 mass%, and the Fe<SB>2</SB>O<SB>3</SB>/Al<SB>2</SB>O<SB>3</SB>mol ratio is ≥1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高有機質土壌用固化材に関し、特に、浚渫土等のような高有機質の土壌に混入した際に、優れた固化性能を有する、高有機質土壌用固化材に関する。   The present invention relates to a solidified material for highly organic soil, and more particularly to a solidified material for highly organic soil having excellent solidification performance when mixed in highly organic soil such as dredged soil.

一般に地盤改良材には、ポルトランドセメント、高炉スラグとポルトランドセメントとの混合物、ジェットセメントやアーウィン、石灰、又はそれらを主成分としているものが用いられており、特に、ポルトランドセメントをベースとし、これに石膏やスラグ等を混合したポルトランドセメント系の固化材が一般に広く使用されている。
しかし、地盤の土壌の種類は多種多様にわたり、例えば有機質土の地盤に用いる場合、有機質土に含有されるフミン酸等の有機酸物の含有機物率が高いため、一般的なポルトランドセメント系の固化材では固化が困難である。
In general, ground improvement materials include Portland cement, a mixture of blast furnace slag and Portland cement, jet cement, Irwin, lime, or those based on them, especially based on Portland cement. Portland cement-based solidified materials mixed with plaster, slag, etc. are generally widely used.
However, there are a wide variety of soil types. For example, when it is used for organic soils, the content of organic acids such as humic acid contained in organic soils is high. Hard to solidify with wood.

これは、有機質土壌の固化に、一般的なポルトランドセメントを用いても、これらの有機質土に含有される有機成分が、ポルトランドセメントの表面に吸着されてしまい、セメントの水和反応を遅延させて硬化を阻害し、したがって固化強度や強度発現性を劣化させているからである。   This is because even when general Portland cement is used to solidify organic soil, the organic components contained in these organic soil are adsorbed on the surface of Portland cement, delaying the hydration reaction of the cement. This is because it inhibits curing and thus deteriorates the solidification strength and strength development.

上記点に鑑み、地盤改良材の水和反応を促進させて上記のような硬化阻害を抑制するために、石膏等を多量に加えたり、スラグを添加したりして、エトリンガイト水和物を生成させて固化性能及び強度発現の改善を図っている。   In view of the above points, ettringite hydrate is produced by adding a large amount of gypsum or the like or adding slag in order to promote the hydration reaction of the ground improvement material and suppress the above-mentioned inhibition of hardening. Thus, the solidification performance and strength development are improved.

このような例として、特開平11−279551号公報には、有機質土用の地盤改良材として、SOが4.5〜15質量%、CAが8〜20質量%、及びCSが40〜70質量%含有された粉末度4300〜8000cm/gのセメント組成物100質量部と、石膏10〜300質量部、高炉スラグ10〜500質量部とからなる地盤改良材が開示されている。 As such an example, Japanese Patent Application Laid-Open No. 11-279551 discloses SO 3 4.5 to 15% by mass, C 3 A 8 to 20% by mass, and C 3 S as a ground improvement material for organic soil. A ground improvement material comprising 100 parts by mass of a cement composition having a fineness of 4300 to 8000 cm 2 / g, 10 to 300 parts by mass of gypsum, and 10 to 500 parts by mass of blast furnace slag is disclosed. Yes.

また、このような有機物を吸着する性能を高め、高強度を有する地盤改良材として、特開2004−155833号公報には、カルシウムアルミネートを10質量%以上含みかつ3CaO・SiO含有量が5質量%未満である硬化材と石膏等の硫酸塩化合物とを含む固化材と、3CaO・SiO含有量が5質量%以上であるセメント組成物とを含有した地盤改良材や、カルシウムアルミネートを10質量%以上含みかつ3CaO・SiO含有量が5質量%未満である速硬性硬化材と、石膏等の硫酸塩化合物と、3CaO・SiO含有量が5質量%以上であるセメント組成物とを均一混合して、含有されるカルシウムアルミネートを10質量%以上とし、かつ3CaO・SiOを5〜20質量%に調製して得られる地盤改良材が記載されている。 Moreover, as a ground improvement material which improves the performance of adsorbing such organic substances and has high strength, Japanese Patent Application Laid-Open No. 2004-155833 includes 10 mass% or more of calcium aluminate and a 3CaO · SiO 2 content of 5 a solidifying material comprising a sulfate compound such as stiffeners and gypsum is less than mass%, and soil improvement material containing a cement composition 3CaO · SiO 2 content is 5 mass% or more, a calcium aluminate A fast-curing hardener containing 10% by mass or more and having a 3CaO · SiO 2 content of less than 5% by mass, a sulfate compound such as gypsum, and a cement composition having a 3CaO · SiO 2 content of 5% by mass or more; the uniformly mixed, the calcium aluminate contained by 10 mass% or more and 3CaO · SiO 2 the soil improvement material obtained by preparing a 5 to 20% by weight It has been mounting.

一方、ポルトランドセメントは、クリンカ鉱物として3CaO・SiO(CS)、2CaO・SiO(CS)、3CaO・Al(CA)及び4CaO・Al・Fe(CAF)を含有するが、前記鉱物の中のひとつである4CaO・Al・Fe(CAF)に代表される鉄を含有するフェライト相にも比較的高い有機物吸着能があることが知られている。 Meanwhile, Portland cement, 3CaO · SiO 2 (C 3 S) as a clinker minerals, 2CaO · SiO 2 (C 2 S), 3CaO · Al 2 O 3 (C 3 A) and 4CaO · Al 2 O 3 · Fe 2 O 3 is containing (C 4 AF), relatively to a ferrite phase containing iron as typified by a one 4CaO · Al 2 O 3 · Fe 2 O 3 (C 4 AF) in the mineral It is known to have a high organic matter adsorption capacity.

AF等を多く含むものとして、特開平10−330135号公報にはセメントクリンカ中のAl/Fe比が0.52〜0.62で、当該クリンカに、SO量で2質量%となるように石膏を添加して得られたセメント組成物が開示されている。
しかしながら、CAF等の有機物吸着能は、石膏共存下ではSO 2−イオンの影響により低下してしまうことも知られており、上記のセメント組成物は有機分吸着能の点では満足できるものではなかった。
As containing a large amount of C 4 AF or the like, with Al 2 O 3 / Fe 2 O 3 ratio in the cement clinker in JP-A-10-330135 is 0.52 to 0.62, in the clinker, SO 3 weight A cement composition obtained by adding gypsum to 2% by mass is disclosed.
However, it is also known that the organic matter adsorption capacity such as C 4 AF decreases due to the influence of SO 3 2- ion in the presence of gypsum, and the above cement composition is satisfactory in terms of the organic content adsorption capacity. It was not a thing.

なお、JISに規定されているポルトランドセメントは、SO 2−イオンの非存在下では瞬結して強度発現性が損なわれてしまうため、凝結時間を調節して瞬結を抑制するためにSO 2−イオンの供給源として石膏を添加することが不可欠である。
従って、強度発現性を確保しつつCAF等の有機分吸着能を高めたセメント組成物を得ることは困難であり、CAF等の有機分吸着能高めた高有機質土壌用固化材を得る技術は存在していなかった。
特開平11−279551号公報 特開2004−155833号公報 特開平10−330135号公報
Incidentally, Portland cement specified in JIS, since is impaired strength developing property and Madokayui in the absence of SO 3 2-ion, SO in order to suppress the Madokayui adjust the setting time 3 It is essential to add gypsum as a source of 2- ions.
Therefore, it is difficult to obtain a cement composition having enhanced organic component adsorption capacity such as C 4 AF while ensuring strength development, and a high organic soil solidifying material with enhanced organic component adsorption capacity such as C 4 AF is required. There was no technology to gain.
JP-A-11-279551 JP 2004-155833 A Japanese Patent Laid-Open No. 10-330135

従って、本発明の目的は、上記問題点を解決し、強度発現性を確保しつつ、CAF等の有機分の吸着能を高めた、高有機質土壌用固化材を提供することである。 Accordingly, an object of the present invention is to provide a solidified material for highly organic soil that solves the above-described problems and has enhanced the ability to adsorb organic components such as C 4 AF while ensuring strength development.

本発明は、セメント系固化材中に含まれるクリンカ鉱物を特定のものとすることにより、石膏が非含有であっても強度発現性を確保することが可能であることを見出し、これによりSO 2−イオン非存在の環境を実現し、CAF等の有機分吸着能が高められた高有機質土壌用固化材に至ったものである。 The present invention finds that by making the clinker mineral contained in the cement-based solidified material specific, it is possible to ensure strength development even when gypsum is not contained, and thus SO 3. This is a solidified material for highly organic soil that realizes an environment free of 2- ions and has an increased ability to adsorb organic components such as C 4 AF.

すなわち、本発明の高有機質土壌用固化材は、クリンカ鉱物組成としてCS、CS及び間隙相を含有し、かつCAを含有せず、石膏を含まないセメント系固化材であることを特徴とする。
また、好適には、上記本発明の高有機質土壌用固化材において、上記間隙相はCAを含有しないものであり、かつ平均組成がCAF乃至CAFの範囲に含まれる連続固溶体であることを特徴とする。
更に、好適には、上記本発明の高有機質土壌用固化材において、クリンカ鉱物中のFe含有量が4.0質量%以上であって、Fe/Alがモル比で1以上であることを特徴とする。
That is, the solidified material for highly organic soil of the present invention is a cement-based solidified material that contains C 3 S, C 2 S and a gap phase as a clinker mineral composition, does not contain C 3 A, and does not contain gypsum. It is characterized by that.
Preferably, in the solidified material for highly organic soil according to the present invention, the interstitial phase does not contain C 3 A, and the average composition is continuously included in the range of C 4 AF to C 6 AF 2. It is a solid solution.
Further preferably, in the solidified material for highly organic soil of the present invention, the content of Fe 2 O 3 in the clinker mineral is 4.0% by mass or more, and Fe 2 O 3 / Al 2 O 3 is mol. The ratio is 1 or more.

本発明の高有機質土壌用固化材は、クリンカ鉱物として、CS、CS及び間隙相を含有し、CAを含有しない特定のセメントクリンカを製造して、これを主成分として用いることで、凝結遅延材としての石膏を用いなくても、初期水和における瞬結が起こらず、高流動性を保持することができる。 The solidified material for highly organic soil according to the present invention produces a specific cement clinker containing C 3 S, C 2 S and a gap phase as a clinker mineral and not containing C 3 A, and using this as a main component. Thus, even if gypsum as a setting retarder is not used, instantaneous hydration does not occur and high fluidity can be maintained.

また石膏を含まないため、CAF等の鉄を含有する鉱物相の有機物質吸着量が大きく、硬化阻害の原因となる有機遅延物質を、CAF等の鉄を含有するフェライト相が吸着固定するため、十分な硬化が達成され、強度発現性を確保することができる。 In addition, since it does not contain gypsum, the amount of organic substances adsorbed in mineral phases containing iron such as C 4 AF is large, and organic retarding substances that cause hardening inhibition are adsorbed in ferrite phases containing iron such as C 4 AF. Since it fixes, sufficient hardening is achieved and intensity | strength expression can be ensured.

本発明を次の好適例により説明するが、これらに限定されるものではない。
本発明の高有機質土壌用固化材は、クリンカ鉱物組成としてCS、CS及び間隙相を含有し、かつCAを含有せず、石膏を含まないセメント系固化材であり、当該セメント系固化材において、好ましくはクリンカ鉱物中のFe含有量が4.0質量%以上であって、Fe/Alがモル比で1以上である。
このような組成とすることで、セメントの硬化反応を阻害する有機物を吸着して硬化反応を促進することができるとともに、石膏を添加しなくても、初期水和反応における瞬結の発生を抑制することができる。
また、かかる組成とすることにより、有機質を多量に含む土壌に対し、エーライト(CS)の初期水和の遅延を起すことなく、優れた強度発現性を有することが可能となる。
The present invention is illustrated by the following preferred examples, but is not limited thereto.
The solidified material for highly organic soil of the present invention is a cement-based solidified material that contains C 3 S, C 2 S and a gap phase as a clinker mineral composition, does not contain C 3 A, and does not contain gypsum. In the cement-based solidified material, the Fe 2 O 3 content in the clinker mineral is preferably 4.0% by mass or more, and Fe 2 O 3 / Al 2 O 3 is 1 or more in molar ratio.
By adopting such a composition, it is possible to accelerate the curing reaction by adsorbing organic matter that inhibits the cement curing reaction, and to suppress the occurrence of instantaneous setting in the initial hydration reaction without the addition of gypsum. can do.
Further, by adopting such a composition, to soil containing an organic large amount, without causing the delay of initial hydration of alite (C 3 S), it is possible to have excellent strength development.

まず、本発明の高有機質土壌用固化材は、クリンカ鉱物相として、CS、CS及び間隙相を含有し、CAを含有しないものである。
ここで、間隙相はCAを含有しないものであり、特に、平均組成がCAF乃至CAFの範囲に含まれる連続固溶体であることが好ましい。
高有機質土壌用固化材中にCAが存在すると、かかるCAは水和反応性が高く、水和発熱量も多いことが知られており、石膏が存在しない環境下ではCAが瞬結し、その後の水和反応を阻害してしまうので、強度発現性を確保することができないからである。
First, the solidified material for highly organic soil of the present invention contains C 3 S, C 2 S and a gap phase as a clinker mineral phase, and does not contain C 3 A.
Here, the interstitial phase does not contain C 3 A, and is particularly preferably a continuous solid solution having an average composition in the range of C 4 AF to C 6 AF 2 .
It is known that when C 3 A is present in the solidified material for highly organic soil, such C 3 A is known to have high hydration reactivity and a large amount of hydration heat, and in an environment where there is no gypsum, C 3 A This is because the instantly freezes and inhibits the subsequent hydration reaction, so that strength development cannot be ensured.

クリンカ鉱物相の組成割合は、特に、CS量が50質量%、好ましくは60質量%以上、間隙相量が18〜21質量%であることが好ましい。
S量が50質量%以上であれば、強度発現性を十分得ることができる。
また、間隙相量が18〜21質量%の範囲であれば、クリンカ製造時に操業面及び品質面共に安定した焼成を行うことが可能となる。
As for the composition ratio of the clinker mineral phase, it is particularly preferable that the C 3 S amount is 50% by mass, preferably 60% by mass or more, and the interstitial phase amount is 18 to 21% by mass.
If the amount of C 3 S is 50% by mass or more, sufficient strength development can be obtained.
Further, if the interstitial phase amount is in the range of 18 to 21% by mass, stable firing can be performed in terms of both operation and quality during clinker production.

上記のセメント系固化材を効率的に得るためには、クリンカ鉱物相中の化学組成として、Feが4.0質量%以上、特に4.5〜9質量%であることが好ましい。
Feの割合が4質量%未満では、CAが生成してしまう場合があり、また9質量%を越えると、セメント組成物の水和活性が低下する場合があり、またクリンカ製造時に操業の安定化させるのが困難となってしまう場合も生じうるからである。
In order to efficiently obtain the cement-based solidified material, it is preferable that Fe 2 O 3 is 4.0% by mass or more, particularly 4.5 to 9% by mass as the chemical composition in the clinker mineral phase.
When the proportion of Fe 2 O 3 is less than 4% by mass, C 3 A may be generated, and when it exceeds 9% by mass, the hydration activity of the cement composition may be reduced. This is because sometimes it may be difficult to stabilize the operation.

さらに、クリンカ鉱物相中の化学組成である、FeとAlとの割合は、Fe/Alモル比が、1以上のものであることが好ましい。
Fe/Alモル比が約1付近で、ボーグ式で計算した場合の間隙相は、フェライト(CAF)のみとなり、CAが計算上生成しなくなる。
さらに、該モル比を増加させることにより、間隙相はCAF組成のフェライトへと変化する。
Furthermore, the ratio of Fe 2 O 3 and Al 2 O 3 , which is the chemical composition in the clinker mineral phase, is preferably such that the Fe 2 O 3 / Al 2 O 3 molar ratio is 1 or more.
When the Fe 2 O 3 / Al 2 O 3 molar ratio is about 1 and the Borg calculation is performed, the interstitial phase is only ferrite (C 4 AF), and C 3 A is not generated in the calculation.
Furthermore, by increasing the molar ratio, the interstitial phase is changed to ferrite having a C 6 AF 2 composition.

これにより、平均組成がCAF乃至CAFの範囲に含まれる連続固溶体で形成される間隙相を効率的に得ることができ、水和反応性が高く水和発熱量も多いCAが生成しないようになる。
これによって石膏を用いない環境下において、有機物質量をかかる間隙相のフェライト類が吸着性能を十分に発揮するとともに、水和開始時の瞬結を生じることなく、強度発現性を確保することができる。
更に、Fe/Alモル比が増大するにつれて、セメントの水和発熱量が低下し、流動性が向上する。
As a result, a gap phase formed of a continuous solid solution having an average composition in the range of C 4 AF to C 6 AF 2 can be efficiently obtained, and C 3 having a high hydration reactivity and a large amount of hydration heat generation. A will not be generated.
As a result, in an environment where gypsum is not used, the ferrite in the interstitial phase, which takes up the amount of the organic substance, can sufficiently exhibit the adsorption performance, and can ensure the strength development without causing instantaneous setting at the start of hydration. .
Furthermore, as the Fe 2 O 3 / Al 2 O 3 molar ratio increases, the hydration heat value of the cement decreases and the fluidity improves.

このように石膏を用いない環境下において、フェライト相が有機物質を効率的に吸着するとともに、CAが含有されないことにより瞬結が起こらず、エーライト(CS)の初期水和活性が阻害されることなく強度発現性を確保することができるので、これにより有機物を含んでいても、優れた強度発現性を有することができる。 In such an environment where gypsum is not used, the ferrite phase efficiently adsorbs organic substances and does not contain C 3 A, so there is no instantaneous setting, and the initial hydration activity of alite (C 3 S) Since strength development can be ensured without being inhibited, it can have excellent strength development even if it contains an organic substance.

かかるセメント系固化材に含まれるクリンカは、具体的には、例えば石灰石、珪酸質原料、アルミナ質原料及び鉄原料の混合物を焼成して得られる。
このようにして得られたクリンカを粉砕することにより、あるいはこれに必要に応じて石膏以外のセメント混和材を添加することにより、本発明の高有機質土壌用固化材が得られる。
石膏以外のセメント混和材としては、高炉スラグ、フライアッシュ、石灰石微粉末等が挙げられる。
Specifically, the clinker contained in the cement-based solidified material is obtained, for example, by firing a mixture of limestone, siliceous material, alumina material and iron material.
The solidified material for highly organic soil of the present invention can be obtained by pulverizing the clinker thus obtained or adding a cement admixture other than gypsum to the clinker as necessary.
Examples of cement admixtures other than gypsum include blast furnace slag, fly ash, and limestone fine powder.

また、得られたセメント系固化材の粉末度は特に限定されないが、好適には、2500〜4500cm/g、特に好適には、2800〜4000cm/gであることが望ましい。
これは2500cm/g未満であると、十分な強度が得られない場合があり、また、4500cm/gを超えると、製造コストがかさみ不経済であるからである。
Further, the fineness of the obtained cementitious solidified material is not particularly limited, but preferably 2500 to 4500 cm 2 / g, and particularly preferably 2800 to 4000 cm 2 / g.
This is because if it is less than 2500 cm 2 / g, sufficient strength may not be obtained, and if it exceeds 4500 cm 2 / g, the production cost is bulky and uneconomical.

一般に、有機質を高含有率で含む場合には、セメントの水和反応を著しく遅延するが、本発明の組み合わせにおいて促進される水和反応は、かかる有機質の影響を受けないため、速やかに強度を発現することができる。
これは、CAFやCAF等の鉄を含有するフェライト相やその水和物であるカルシウムアルミネートハイドレート等により、フミン酸やフルボ酸などの有機酸が吸着されるため、3CaO・SiOの水和遅延を起す作用が軽減されることになるからである。
また、かかるセメント系固化材を高有機質土壌用固化材として利用することで、重金属の吸着量が増大し、クロム等の重金属の土壌中への溶出を防止することができる。
In general, when the organic matter is included at a high content, the hydration reaction of the cement is significantly delayed. However, the hydration reaction promoted in the combination of the present invention is not affected by the organic matter, so that the strength is quickly increased. Can be expressed.
This is because an organic acid such as humic acid or fulvic acid is adsorbed by a ferrite phase containing iron such as C 4 AF or C 6 AF 2 or calcium aluminate hydrate which is a hydrate thereof. This is because the action of causing SiO 2 hydration delay is reduced.
Moreover, by using such a cement-based solidifying material as a solidifying material for highly organic soils, the amount of heavy metal adsorbed increases, and elution of heavy metals such as chromium into the soil can be prevented.

上記したような本発明の高有機質土壌用固化材は、有機分を多量に含む軟弱地盤や建設発生土、浚渫土等の、高有機質土壌土等に用いられ、当該高有機質土壌用固化材の土壌への添加量としては、土壌の種類によって異なるものの、例えば、土壌1mあたり50〜600kg程度が好適に使用できる。 The solidified material for highly organic soil of the present invention as described above is used for highly organic soil soil, such as soft ground containing a large amount of organic content, construction generated soil, dredged soil, and the like. Although the amount added to the soil varies depending on the type of soil, for example, about 50 to 600 kg per 1 m 3 of soil can be suitably used.

本発明を次の実施例、比較例及び試験例に基づき説明する。
実施例1〜3、比較例1
各試薬を用いてセメントクリンカの原料を調合した混合物を、電気炉にて1450℃で1時間焼成後、当該電気炉より取り出して空気中で急冷して、表1に示す各組成を有するクリンカを得た。
The present invention will be described based on the following examples, comparative examples and test examples.
Examples 1-3, Comparative Example 1
The mixture prepared from the raw materials of cement clinker using each reagent was baked at 1450 ° C. for 1 hour in an electric furnace, then taken out from the electric furnace and rapidly cooled in the air to obtain clinker having each composition shown in Table 1. Obtained.

Figure 2006307034
Figure 2006307034

得られたクリンカをX線回析装置(理学電機(株)製;RAD−rC)を用いて回析し、得られた鉱物組成結果を、表2に示す。
また、鉱物フェライト相中のFe/Alのモル比も、同様に表2に示す。
The obtained clinker was diffracted using an X-ray diffraction device (manufactured by Rigaku Corporation; RAD-rC), and the obtained mineral composition results are shown in Table 2.
The molar ratio of Fe / Al in the mineral ferrite phase is also shown in Table 2.

Figure 2006307034
Figure 2006307034

次いで、上記クリンカ1〜3を、ブレーン比表面積で粉末度3300cm/gに粉砕して、実施例1〜3のセメント系固化材を得た。
また、上記クリンカ4には、二水石膏を3質量%添加して、ブレーン比表面積で粉末度を3300cm/gに粉砕して、比較例1のセメント系固化材を得た。
Next, the clinker 1 to 3 were pulverized with a Blaine specific surface area to a fineness of 3300 cm 2 / g to obtain cement-based solidified materials of Examples 1 to 3.
Further, 3% by mass of dihydrate gypsum was added to the clinker 4 and pulverized with a Blaine specific surface area to a fineness of 3300 cm 2 / g to obtain a cement-based solidified material of Comparative Example 1.

各セメント系固化材にグルコン酸ナトリウムを0.2質量%添加し、さらに水を水セメント比が50質量%となるように添加して、有機遅延物質入りのモルタルを得た。
得られたモルタルについて、JIS R 5201−1997「セメントの物理試験方法:(5)強さ試験」に準拠して材齢7日のモルタル強さを測定した。
その結果を表3に示す。
0.2% by mass of sodium gluconate was added to each cement-based solidified material, and water was further added so that the water-cement ratio was 50% by mass to obtain a mortar containing an organic retardation substance.
About the obtained mortar, the mortar strength of material age 7 days was measured based on JISR5201-1997 "Physical test method of cement: (5) Strength test".
The results are shown in Table 3.

Figure 2006307034
Figure 2006307034

表3より、実施例1〜3のセメント系固化材は、石膏を含まないものであるにもかかわらず良好な強度発現性を示しており、有機遅延物質入りの条件下で比較例1よりも高い強度が得られていることがわかる。   From Table 3, the cement-based solidified materials of Examples 1 to 3 showed good strength development despite the fact that they did not contain gypsum, and compared with Comparative Example 1 under conditions containing an organic retardation substance. It can be seen that high strength is obtained.

本発明の高有機質土壌用固化材は、高い有機物吸着性能を有するため、有機質土用固化材として、有機質分を多量に含有する土壌に有効に適用することが可能となる。
Since the solidified material for highly organic soil of the present invention has high organic matter adsorption performance, it can be effectively applied to soil containing a large amount of organic matter as the solidified material for organic soil.

Claims (3)

クリンカ鉱物組成としてCS、CS及び間隙相を含有し、かつCAを含有せず、石膏を含まないセメント系固化材であることを特徴とする、高有機質土壌用固化材。 A solidified material for highly organic soil, characterized in that it is a cement-based solidified material containing C 3 S, C 2 S and a gap phase as a clinker mineral composition, not containing C 3 A, and containing no gypsum. 請求項1記載の高有機質土壌用固化材において、上記間隙相はCAを含有しないものであり、かつ平均組成がCAF乃至CAFの範囲に含まれる連続固溶体であることを特徴とする、高有機質土壌用固化材。 In high organic soil for solidifying material according to claim 1, in that the gap phase are those not containing C 3 A, and a continuous solid solution having an average composition is in the range of C 4 AF or C 6 AF 2 A solidified material for highly organic soil. 請求項1または2記載の高有機質土壌用固化材において、クリンカ鉱物中のFe含有量が4.0質量%以上であって、Fe/Alがモル比で1以上であることを特徴とする、高有機質土壌用固化材。
The solidified material for highly organic soil according to claim 1 or 2, wherein the Fe 2 O 3 content in the clinker mineral is 4.0 mass% or more, and Fe 2 O 3 / Al 2 O 3 is 1 in molar ratio. A solidified material for highly organic soil, characterized by the above.
JP2005132088A 2005-04-28 2005-04-28 Solidifying material for high organic soil Pending JP2006307034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132088A JP2006307034A (en) 2005-04-28 2005-04-28 Solidifying material for high organic soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132088A JP2006307034A (en) 2005-04-28 2005-04-28 Solidifying material for high organic soil

Publications (1)

Publication Number Publication Date
JP2006307034A true JP2006307034A (en) 2006-11-09

Family

ID=37474289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132088A Pending JP2006307034A (en) 2005-04-28 2005-04-28 Solidifying material for high organic soil

Country Status (1)

Country Link
JP (1) JP2006307034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079100A (en) * 2007-09-26 2009-04-16 Taiheiyo Cement Corp Solidifying material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225688A (en) * 1986-03-25 1987-10-03 内藤 幸雄 Method of tunnel excavation construction of wealk ground
JPH02229743A (en) * 1989-03-03 1990-09-12 Sumitomo Cement Co Ltd Low-heat cement clinker and its production
JPH0853835A (en) * 1995-07-31 1996-02-27 Nippon Cement Co Ltd Deep mixing method of soil stabilization for soft ground, and hardener
JPH10330135A (en) * 1997-05-27 1998-12-15 Sumitomo Osaka Cement Co Ltd Cement clinker and cement composition
JP2005105234A (en) * 2003-10-02 2005-04-21 Sumitomo Osaka Cement Co Ltd Ground improving material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225688A (en) * 1986-03-25 1987-10-03 内藤 幸雄 Method of tunnel excavation construction of wealk ground
JPH02229743A (en) * 1989-03-03 1990-09-12 Sumitomo Cement Co Ltd Low-heat cement clinker and its production
JPH0853835A (en) * 1995-07-31 1996-02-27 Nippon Cement Co Ltd Deep mixing method of soil stabilization for soft ground, and hardener
JPH10330135A (en) * 1997-05-27 1998-12-15 Sumitomo Osaka Cement Co Ltd Cement clinker and cement composition
JP2005105234A (en) * 2003-10-02 2005-04-21 Sumitomo Osaka Cement Co Ltd Ground improving material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079100A (en) * 2007-09-26 2009-04-16 Taiheiyo Cement Corp Solidifying material

Similar Documents

Publication Publication Date Title
JPH11217253A (en) Ultrarapid hardening cement composition
JP6137850B2 (en) Hydraulic composition
JP2011093738A (en) Cement-based solidifying material
JP2012046704A (en) Solidification material
JP2004352515A (en) High interstitial phase type cement composition
JP2006193971A (en) Soil improvement method
JP2008222503A (en) Concrete composition, concrete hardened body and expansive admixture
JP6897918B2 (en) Method for promoting hydration reaction of blast furnace slag in cement-based hydrohard composition
JP3936933B2 (en) Grout cement composition, grout mortar composition, and grout material
JP4585753B2 (en) Ground improvement material
JP4809278B2 (en) Intumescent material, cement composition, and hardened cement body using the same
JP4786219B2 (en) High iron oxide type cement composition
JP2004352516A (en) High interstitial phase type cement composition
JP2006307034A (en) Solidifying material for high organic soil
JP2004292568A (en) Soil solidifying material
JPH11199285A (en) Quick-hardening material and its production
JP4617073B2 (en) Quick hardening material and quick hardening cement composition
JP2001316143A (en) Treatment of furnace slag, method for manufacturing material for usderground structure and material for harbor facility
JP2010083726A (en) Cementous material
JP2008266132A (en) Concrete composition and concrete hardened body
JP2006168305A (en) Adding method of water reducing agent for cement
JP2005008450A (en) Method of producing cement slurry
JP2003146725A (en) Water-hardenable composition
JP4157720B2 (en) Slow-hardening type solidification material for soil improvement
WO2005003060A1 (en) Chemical admixture for cementitious compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080313

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110302