JP2006306278A - Estimation method - Google Patents

Estimation method Download PDF

Info

Publication number
JP2006306278A
JP2006306278A JP2005131776A JP2005131776A JP2006306278A JP 2006306278 A JP2006306278 A JP 2006306278A JP 2005131776 A JP2005131776 A JP 2005131776A JP 2005131776 A JP2005131776 A JP 2005131776A JP 2006306278 A JP2006306278 A JP 2006306278A
Authority
JP
Japan
Prior art keywords
noise
main motor
value
actual measurement
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005131776A
Other languages
Japanese (ja)
Other versions
JP4676811B2 (en
Inventor
Yasuhiro Shimizu
康弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2005131776A priority Critical patent/JP4676811B2/en
Publication of JP2006306278A publication Critical patent/JP2006306278A/en
Application granted granted Critical
Publication of JP4676811B2 publication Critical patent/JP4676811B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately estimate the noise of a gear device where real condition of the noise can hardly be grasped by focusing attention on the under floor noise as a traveling noise of a railway rolling stock. <P>SOLUTION: An actual measurement value α of the noise in the vicinity of under floor of a truck of M vehicle, and the actual measurement value β of the noise in the vicinity of under floor of the truck of T vehicle are obtained from the travel test of the M vehicle and T vehicle, and the noise δ of the drive system is obtained based on the actual measurement value α and β. In a high speed area where aerodynamic sound is dominant as the noise of a main motor 1, the actual measurement value γ of the main motor noise obtained from a stationary test of the main motor 1 is corrected based on the difference between the measurement condition of the travel test and the measurement condition of the stationary test. The estimation value ε of the gear device body is obtained from the difference between the correction value of the actual measurement value γ and the noise δ of the stationary test. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電動車の歯車装置の騒音を推定する推定方法に関する。   The present invention relates to an estimation method for estimating noise of a gear device of an electric vehicle.

鉄道車両の走行に伴う騒音は、沿線や乗客に与える影響が大きい。このため、騒音レベルは鉄道車両の重要な設計条件の1つであり、住宅密集地を通過する路線において、騒音レベルが一定値以下となるように走行速度を規制した運転が行われている区間もある。   The noise caused by the running of railway vehicles has a great influence on the railway and passengers. For this reason, the noise level is one of the important design conditions of railway vehicles, and the section where the driving speed is regulated so that the noise level is below a certain value on the route passing through densely populated houses. There is also.

また実際の運転走行がなされる前には、走行試験において鉄道車両全体の騒音が測定され、JIS(日本工業規格)で規定された主電動機単体の騒音を測定するための定置試験も行われている。   In addition, before actual driving, the noise of the entire railway vehicle is measured in a running test, and a stationary test is performed to measure the noise of the main motor as defined by JIS (Japanese Industrial Standards). Yes.

なお、振動の大きさが騒音の大きさと一定の関係にあることに基づいて、振動の大きさを検出することで、車両のデファレンシャルギアの音を判定する技術が知られている(特許文献1参照)が、車両のデファレンシャルギアに着目した技術である。
特開平8−136407号公報
A technique is known in which the sound of a differential gear of a vehicle is determined by detecting the magnitude of vibration based on the fact that the magnitude of vibration has a certain relationship with the magnitude of noise (Patent Document 1). Is a technology that focuses on the differential gear of the vehicle.
JP-A-8-136407

しかしながら、鉄道車両全体の騒音は、複数の要因によって生じる。このため、個々の要因となっている音源それぞれを調査・峻別し、最も大きいものから優先的に対策を施したり、騒音に対する音源の寄与率に応じて対策を施す方法が望まれる。そこで、何よりも先ず、騒音の要因となっている音源それぞれの実態を明らかにすることが望まれる。   However, the noise of the entire railway vehicle is caused by a plurality of factors. For this reason, a method is desired in which each sound source that is an individual factor is investigated and distinguished, and measures are preferentially taken from the largest, or measures are taken according to the contribution ratio of the sound source to noise. Therefore, first of all, it is desirable to clarify the actual condition of each sound source that causes noise.

ところが、鉄道車両の床下騒音に着目したとしても、主電動機の騒音の他、転動騒音(車輪がレ−ル上を走行する際に生じる騒音)や歯車装置の騒音といった複数の音源がある。従って、主電動機単体の騒音を得るだけでは、他の音源の寄与率を正確に把握することができない。   However, even if attention is paid to the under-floor noise of the railway vehicle, there are a plurality of sound sources such as rolling noise (noise generated when the wheel travels on the rail) and gear device noise in addition to the noise of the main motor. Therefore, the contribution rate of other sound sources cannot be accurately grasped only by obtaining the noise of the main motor alone.

また、主電動機の定置試験は、無負荷状態の騒音を測定するものであり、走行時の負荷がかかった状態での主電動機の騒音を測定するものではない。即ち、定置試験は実際の主電動機の動作環境と異なる状況で測定を行うものであり、実際の走行中における電動機の騒音を知る上では、無負荷状態における測定結果は余り役に立たなかった。   Further, the stationary test of the main motor measures noise in a no-load state, and does not measure noise of the main motor in a state where a load is applied during traveling. That is, the stationary test is performed in a situation different from the actual operating environment of the main motor, and the measurement result in the no-load state is not very useful for knowing the noise of the motor during actual running.

このように鉄道車両走行時の騒音の要因となっている音源それぞれの実態を明らかにすることは困難であるが、各音源それぞれの実態を1つ1つ明らかにしていかないことには、効果的な騒音低減の対策を施すことができない。   As described above, it is difficult to clarify the actual condition of each sound source that is a cause of noise during running of a railway vehicle. However, it is effective to not clarify the actual condition of each sound source one by one. Measures for noise reduction cannot be taken.

そこで、鉄道車両走行時の騒音として、床下騒音に着目し、中でも騒音の実態が把握し難かった歯車装置の騒音を容易且つ正確に推定することを目的として本発明をなした。   Accordingly, the present invention has been made with the object of easily and accurately estimating the noise of the gear unit, which is difficult to grasp the actual state of the noise, focusing on the under-floor noise as the noise during running of the railway vehicle.

上記課題を解決するために、第1の発明は、
電動車の床下台車近傍騒音の実測値αと、付随車の床下台車近傍騒音の実測値βと、前記電動車の主電動機の定置試験の実測値γとに基づいて前記電動車の歯車装置の騒音を推定する推定方法であって、
前記主電動機の騒音として空力音が支配的となる高速域において、実測値αとβとの差から前記電動車の駆動系騒音を求め、求めた駆動系騒音と実測値γとの差から当該高速域における歯車装置の騒音を推定する推定方法である。
In order to solve the above problem, the first invention is:
Based on the measured value α of the noise near the undercarriage of the electric vehicle, the measured value β of the noise near the undercarriage of the accompanying vehicle, and the measured value γ of the stationary test of the main motor of the electric vehicle, the gear device of the electric vehicle An estimation method for estimating noise,
In a high speed range where aerodynamic noise is dominant as the noise of the main motor, the drive system noise of the electric vehicle is obtained from the difference between the measured values α and β, and the difference between the obtained drive system noise and the measured value γ This is an estimation method for estimating the noise of the gear device in a high speed range.

ここでいう空力音が支配的になる高速域とは、主電動機の騒音に含まれる空力音が、主電動機自身に起因する電磁音に対して一定以上の割合を占めることとなる主電動機の回転領域又は当該主電動機により駆動される電動車の速度領域をいう。   The high speed range where the aerodynamic noise is dominant here means that the aerodynamic noise included in the noise of the main motor occupies a certain ratio or more with respect to the electromagnetic noise caused by the main motor itself. An area or a speed area of an electric vehicle driven by the main motor.

また、実装値αとβとの差異から前記M車の駆動系騒音を求め、求めた駆動系騒音と実測値γとの差から当該高速域における歯車装置の騒音を推定する方法は、概念として下記演算式(1)のように端的に示すことができる。
歯車装置の騒音推定値=(α―β)−γ・・・(1)
一方、演算式(1)は、下記演算式(2),(3)と実質的に等価である。
α―(β+γ)・・・(2)
(α―γ)−β・・・(3)
従って、上述した第1の発明の推定方法を、演算式(2),(3)のような等価な方法に置き換えて歯車装置の騒音を推定する方法は、第1の発明の概念・思想に含まれるものであり、少なくとも均等である。
Further, the concept of obtaining the driving system noise of the M car from the difference between the mounted values α and β and estimating the noise of the gear device in the high speed range from the difference between the obtained driving system noise and the actual measurement value γ is as a concept. It can be simply shown as the following equation (1).
Estimated noise value of gear unit = (α−β) −γ (1)
On the other hand, the arithmetic expression (1) is substantially equivalent to the following arithmetic expressions (2) and (3).
α- (β + γ) (2)
(Α-γ) -β (3)
Therefore, a method for estimating the noise of the gear device by replacing the estimation method of the first invention described above with an equivalent method such as the arithmetic expressions (2) and (3) is based on the concept and idea of the first invention. It is included and at least equivalent.

第1の発明によれば、主電動機の騒音として空力音が支配的となる高速域において、実測値αとβとの差から前記電動車の駆動系騒音を求め、求めた駆動系騒音と実測値γとの差から当該高速域における歯車装置の騒音を推定することができる。従って、実測では測定が困難な歯車装置単体の騒音を容易に推定することができる。また、空力音が支配的となる高速域における主電動機の定置試験の実測値γに基づいて、当該歯車装置の騒音を推定することにより、精度の高い推定値を求めることができる。   According to the first invention, in the high speed range where aerodynamic noise is dominant as the noise of the main motor, the drive system noise of the electric vehicle is obtained from the difference between the measured values α and β, and the obtained drive system noise and the measured The noise of the gear device in the high speed range can be estimated from the difference from the value γ. Therefore, it is possible to easily estimate the noise of the gear unit that is difficult to measure by actual measurement. In addition, it is possible to obtain a highly accurate estimated value by estimating the noise of the gear device based on the actual measurement value γ of the stationary test of the main motor in a high speed range where aerodynamic noise is dominant.

第2の発明は、第1の発明の推定方法であって、
実測値αの測定条件と実測値γの測定条件との差異に基づいて実測値γを補正した上で、前記求めた駆動系騒音と当該補正済みの実測値γとの差から前記高速域における歯車装置の騒音を推定する推定方法である。
The second invention is the estimation method of the first invention,
After correcting the actual measurement value γ based on the difference between the measurement condition of the actual measurement value α and the measurement condition of the actual measurement value γ, the difference between the obtained drive system noise and the corrected actual measurement value γ is calculated in the high speed range. This is an estimation method for estimating the noise of a gear device.

第2の発明によれば、実測値αと、実測値γとの測定条件が異なる場合であっても、当該測定条件の差異に基づいて実測値γを補正した上で歯車装置の騒音を推定することができるため、正確な推定値を求めることができる。また、一方の測定条件に拘束されないため、電動車及び付随車の走行試験や主電動機の定置試験を容易に行うことができる。   According to the second invention, even when the measurement value α and the measurement value γ are different, the noise of the gear device is estimated after correcting the measurement value γ based on the difference in the measurement condition. Therefore, an accurate estimated value can be obtained. Moreover, since it is not restrained by one measurement condition, the running test of an electric vehicle and an accompanying vehicle and the stationary test of a main motor can be performed easily.

本発明によれば、歯車装置の騒音を容易かつ正確に算出することができる。これにより、鉄道車両の騒音に対する音源の実態を明らかにすることができ、各音源に応じた有効な騒音対策を講じる端緒とすることができる。   According to the present invention, the noise of the gear device can be calculated easily and accurately. Thereby, the actual state of the sound source with respect to the noise of the railway vehicle can be clarified, and it can be the beginning of taking effective noise countermeasures according to each sound source.

以下、図1〜図8を参照して本発明を実施するための最良の形態を説明する。ただし、発明の範囲は、図示例に限定されない。   Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. However, the scope of the invention is not limited to the illustrated examples.

1.歯車装置の速度乗則
一般に、音は速度依存性を持っている。つまり、鉄道車両の騒音であれば、鉄道車両の速度のベキ乗に従うとされ、ベキ乗の指数は音源の性質に依存することが知られている。そこで、走行試験の実測値から歯車装置の速度乗則を騒音特性として求めることを試みた。
1. Speed multiplication law of gear device Generally, sound has speed dependency. In other words, if it is a noise of a railway vehicle, it is assumed that it follows the power of the speed of the railway vehicle, and it is known that the power exponent depends on the nature of the sound source. Then, it tried to obtain | require the speed law of a gear apparatus as a noise characteristic from the measured value of a running test.

まず、走行試験において、車両床下の歯車装置上方近傍位置に測定点を設けて騒音測定を行うことにより、歯車装置近傍の騒音を実測値として求める。しかし、歯車装置は主電動機の近傍に載置される装置であり、歯車装置上方付近を測定点とした実測値が、歯車装置単体の騒音を正確に示しているかどうかは明らかではない。そこで、歯車装置の歯車の噛み合い周波数に一致するピークに着目して、得られた実測値のスペクトル分析を行った。   First, in a running test, noise is measured by providing a measurement point at a position near the upper part of the gear unit under the vehicle floor, thereby obtaining noise near the gear unit as an actual measurement value. However, the gear device is a device mounted in the vicinity of the main motor, and it is not clear whether the actual measurement value with the measurement point near the upper portion of the gear device accurately indicates the noise of the gear device alone. Therefore, focusing on the peak corresponding to the meshing frequency of the gear of the gear device, spectrum analysis of the obtained actual measurement value was performed.

図1(a)は、等速力行走行時の歯車装置上部近傍騒音の1/3オクターブバンドの解析結果を示すグラフである。図1(a)において、90km/h等速力行走行時周波数のスペクトル(図中、○で示すスペクトル)には、800Hzの周波数バンドにピークが確認できる。このピークは、計算値から求められる歯車噛み合い周波数(907Hz)に一致しており、歯車からの直接騒音と考えられる。また、130km/h等速力行走行時周波数のスペクトル(図中、△で示すスペクトル)には、1.25kHzの周波数バンドにピークが確認できる。このピークは、計算値から求められる歯車噛み合い周波数(1.3kHz)に一致しており、歯車からの直接騒音と考えられる。   FIG. 1A is a graph showing the analysis result of the 1/3 octave band of the noise near the top of the gear device during traveling at constant speed. In FIG. 1A, a peak in the frequency band of 800 Hz can be confirmed in the spectrum of the frequency during running at constant speed of 90 km / h (the spectrum indicated by ◯ in the figure). This peak corresponds to the gear meshing frequency (907 Hz) obtained from the calculated value, and is considered to be direct noise from the gear. In addition, a peak in the frequency band of 1.25 kHz can be confirmed in the spectrum of the frequency during traveling at a constant speed of 130 km / h (the spectrum indicated by Δ in the figure). This peak corresponds to the gear meshing frequency (1.3 kHz) obtained from the calculated value, and is considered to be direct noise from the gear.

そこで、90km/h及び130km/hの等速力行走行時における歯車からの直接騒音を示す騒音レベルから、歯車装置単体の速度乗則を算出した。図1(b)にその結果を示す。図1(b)に示すように、800Hzの周波数バンドにおけるピークの騒音レベルと、1.25kHzの周波数バンドにおけるピークの騒音レベルとの差は、8.15dBである。これらを下記式(4)に代入して、n乗則が得られる。
8.15=n×log(130/90)・・・(4)
Therefore, the speed multiplication law of the gear unit alone was calculated from the noise level indicating the direct noise from the gears during constant speed power running at 90 km / h and 130 km / h. The result is shown in FIG. As shown in FIG. 1B, the difference between the peak noise level in the 800 Hz frequency band and the peak noise level in the 1.25 kHz frequency band is 8.15 dB. By substituting these into the following equation (4), an n-th power law is obtained.
8.15 = n × log (130/90) (4)

上記式(4)から実測値に基づく歯車装置の騒音特性が5乗則として得られた。図1(b)に、5乗則における騒音レベルの理論値「7.98」を示すが、実測値「8.15」と略一致している。以上のことから歯車装置単体の騒音は、鉄道車両の速度の5乗則に従うことがわかった。   From the above equation (4), the noise characteristic of the gear unit based on the actually measured value was obtained as the fifth power law. FIG. 1B shows the theoretical value “7.98” of the noise level in the fifth power rule, which is substantially coincident with the actually measured value “8.15”. From the above, it was found that the noise of the gear unit alone follows the fifth power law of the railway vehicle.

2.走行試験時の騒音測定
次に、電動車(駆動装置を搭載した鉄道車両;以下、「M車」と呼ぶ)及び付随車(駆動装置を搭載しない鉄道車両;以下、「T車」と呼ぶ)の走行試験を行い、駆動系騒音(主電動機や歯車装置等の駆動装置から生じる騒音)と転動騒音(車輪がレール上を走行する際に生じる騒音)を求めることを試みた。
2. Measurement of noise during a running test Next, an electric vehicle (a rail vehicle equipped with a driving device; hereinafter referred to as “M vehicle”) and an accompanying vehicle (a rail vehicle not equipped with a driving device; hereinafter referred to as “T vehicle”). A driving test was conducted to determine drive system noise (noise generated from driving devices such as the main motor and gear device) and rolling noise (noise generated when the wheel traveled on the rail).

ここで、鉄道車両走行時の床下騒音の主なものとして、転動騒音と駆動系騒音とがある。転動騒音は、T車の床下台車近傍騒音を実測することで求められ、駆動系騒音は、M車の床下台車近傍騒音の実測値と転動騒音(即ち、T車の床下台車近傍騒音の実測値)との差分として求められる。そこで、M車、T車の走行試験を行い、各車両の床下台車近傍騒音を実測した。   Here, there are rolling noise and driving system noise as the main under-floor noise when the railway vehicle is running. The rolling noise is obtained by actually measuring the noise near the undercarriage of the T car, and the drive system noise is the measured value of the noise near the undercarriage of the M car and the rolling noise (that is, the noise near the undercarriage of the T car). It is obtained as a difference from the actual measurement value). Therefore, a running test was performed for M and T cars, and the noise near the under-floor carriage of each vehicle was measured.

図2を参照して、走行試験の測定条件について説明する。図2(a)は、M車に搭載された主電動機1の上面図であり、同図(b)は、主電動機1を前方から見た側面図であり、図中のXは、床下台車近傍騒音を測定するためのマイクロホンの概ねの設置位置を示している。なお、同図(b)にM車の床位置を示し他の各部については省略している。図2に示すように、位置Xは、概ね、主電動機1の上方約0.5m離れた位置に設置され、M車の床下に固定されている。また、T車の測定条件としては、M車のマイクロホン設置位置Xに対応するT車の床下位置にマイクロホンを設置した。また、この測定で用いた主電動機には、側面の出力軸側に、周方向に沿って開口された排気口1aが左右に有り、排気口1aの反対側の主電動機上部に吸気ダクト1bが有る。   With reference to FIG. 2, the measurement conditions of the running test will be described. 2A is a top view of the main motor 1 mounted on the M car, FIG. 2B is a side view of the main motor 1 as viewed from the front, and X in the figure is an underfloor carriage It shows the approximate installation position of the microphone for measuring the nearby noise. In addition, the floor position of M car is shown in the figure (b), and it abbreviate | omits about each other part. As shown in FIG. 2, the position X is generally installed at a position about 0.5 m above the main motor 1 and is fixed under the floor of the M car. In addition, as a measurement condition for the T car, a microphone was installed at a position below the floor of the T car corresponding to the microphone installation position X of the M car. Further, the main motor used in this measurement has exhaust ports 1a opened on the left and right sides on the output shaft side of the side surface, and an intake duct 1b on the upper side of the main motor opposite to the exhaust port 1a. Yes.

次に、床下台車近傍騒音の実測値に基づき、駆動系騒音を求める方法について説明する。図3(a)は、走行試験により得られたM車及びT車のデータを説明する図である。図3(a)に示すように、M車の床下台車近傍騒音の実測値は、床下騒音全体、即ち、駆動系騒音と転動騒音のパワー和であり、T車の床下台車近傍騒音の実測値は、転動騒音である。従って、図3(b)に示すように、床下騒音全体(M車走行試験の実測値)と転動騒音(T車走行試験の実測値)との差分から駆動系騒音が演算値として求められる。   Next, a method for obtaining drive system noise based on the measured value of the noise near the undercarriage truck will be described. FIG. 3A is a diagram for explaining data of M cars and T cars obtained by a running test. As shown in FIG. 3 (a), the measured value of the noise near the undercarriage of the M car is the total underfloor noise, that is, the sum of the power of the drive system noise and the rolling noise, and the actual noise of the noise near the undercarriage of the T car. The value is rolling noise. Therefore, as shown in FIG. 3B, the drive system noise is obtained as a calculated value from the difference between the entire underfloor noise (actual value of the M vehicle running test) and rolling noise (actual value of the T vehicle running test). .

4.主電動機1の騒音測定原理
得られた駆動系騒音は、主電動機1の騒音と、歯車装置の騒音とを主に含んだ騒音である。従って、求められた駆動系騒音を、更に主電動機1の騒音と歯車装置の騒音とに分離する必要がある。そこで、定置試験で主電動機1の騒音測定を行うことにより、主電動機1の騒音を実測値として求めることを試みた。
4). Principle of noise measurement of the main motor 1 The drive system noise obtained is a noise mainly including the noise of the main motor 1 and the noise of the gear unit. Therefore, it is necessary to further separate the obtained drive system noise into the noise of the main motor 1 and the noise of the gear unit. Then, it tried to obtain | require the noise of the main motor 1 as a measured value by measuring the noise of the main motor 1 by a stationary test.

ところで、既述のように、主電動機1の定置試験は、実際の電動機の動作環境と異なる状況で騒音を測定するものであるため、走行時の騒音状況を知る上では余り役に立たないと考えられていた。即ち、実際に鉄道車両に搭載される主電動機1は、出力軸に継ぎ手や車軸が接続され、主電動機1には機械的負荷が加わるため、電磁的な加振力が発生している。しかし、定置試験では、これらの負荷がかからない無負荷状態での測定であるため、測定された騒音の中には機械的負荷による電磁音が含まれず、その分精度が劣る値となっていた。しかしながら、一定の回転速度を保ちつつ、端子電圧として異なる電圧が印加された駆動状態で主電動機1の騒音をそれぞれ測定することにより、定置試験で測定される主電動機1の騒音が、一定の高速域においては、走行時における主電動機1単体の騒音として見なせることを見出した。   By the way, as described above, the stationary test of the main motor 1 measures noise in a situation different from the actual operating environment of the motor, so it is considered that it is not very useful for knowing the noise situation during traveling. It was. That is, in the main motor 1 that is actually mounted on a railway vehicle, a joint or an axle is connected to the output shaft, and a mechanical load is applied to the main motor 1, so that an electromagnetic excitation force is generated. However, since the stationary test is a measurement in a no-load state in which these loads are not applied, the measured noise does not include electromagnetic noise due to a mechanical load, and the accuracy is inferior. However, by measuring the noise of the main motor 1 in a driving state in which different voltages are applied as terminal voltages while maintaining a constant rotational speed, the noise of the main motor 1 measured in the stationary test is constant at a high speed. In the region, it was found that it can be regarded as noise of the main motor 1 alone during traveling.

4−1.測定条件
まず、定置試験における測定条件について説明する。図4は、主電動機1の騒音測定における騒音測定位置を説明するための図である。図4(a)は、主電動機1の平面図、図4(b)は、主電動機1を前方から見た側面図である。図中の位置A、B、C、D及びEは、主電動機1の騒音を測定するために設置するマイクロホンの位置を示す。また、図4(a)中に示すように、紙面左側を主電動機1の前方、右側を主電動機1の後方、上側を主電動機1の右側方、下側を主電動機1の左側方として以下説明する。また、図1(b)中に示すように、紙面左側を主電動機1の右側方、上側を主電動機1の上方、右側を主電動機1の左側方として以下説明する。なお、図中の位置Xは、比較のために、図2に示した走行試験におけるマイクロホンの設置位置を示すものである。
4-1. Measurement conditions First, the measurement conditions in the stationary test will be described. FIG. 4 is a diagram for explaining the noise measurement position in the noise measurement of the main motor 1. FIG. 4A is a plan view of the main motor 1, and FIG. 4B is a side view of the main motor 1 as viewed from the front. The positions A, B, C, D, and E in the figure indicate the positions of microphones that are installed to measure the noise of the main motor 1. Further, as shown in FIG. 4A, the left side of the page is the front side of the main motor 1, the right side is the rear side of the main motor 1, the upper side is the right side of the main motor 1, and the lower side is the left side of the main motor 1. explain. Further, as shown in FIG. 1B, the following description will be made with the left side of the drawing as the right side of the main motor 1, the upper side as the upper side of the main motor 1, and the right side as the left side of the main motor 1. Note that a position X in the figure indicates a microphone installation position in the running test shown in FIG. 2 for comparison.

位置A、B、C及びDは、主電動機1の軸中心線を含む水平面上にあり、位置Aは主電動機1本体の前方端部(軸を含まず)から1m離れた位置、位置Bは主電動機1本体の右側方端部から1m離れた位置である。位置Cは主電動機1本体の後方端部から1m離れた位置、位置Dは主電動機1本体の左側方端部から1m離れた位置である。位置Eは主電動機1本体の上方端部から鉛直方向に1m離れた位置である。このように合計5点の位置において騒音測定を行った。   Positions A, B, C, and D are on a horizontal plane that includes the axial center line of the main motor 1, the position A is a position that is 1 m away from the front end (not including the shaft) of the main body of the main motor 1, and the position B is It is a position 1 m away from the right side end of the main body of the main motor 1. Position C is a position 1 m away from the rear end of the main body of the main motor 1, and position D is a position 1 m away from the left end of the main body of the main motor 1. Position E is a position 1 m away from the upper end of the main body of the main motor 1 in the vertical direction. Thus, noise measurement was performed at a total of five positions.

4−2.測定原理
次に、主電動機騒音測定方法について説明する。主電動機1は、誘導電動機を用いた。主電動機1の定格回転数は2555回毎分であり、その前後の回転速度である1800回毎分及び2940回毎分について騒音測定を行った。また、主電動機1の電源はインバータ電源を用い、主電動機1を1800回毎分で回転させるときはインバータ電源のパルス出力パターンを多パルスモード、2940回毎分で回転させるときは1パルスモードとして電圧供給を行った。更に、インバータ電源に使われるPWM制御のデューティ比は一定とし、主電動機1に対する印加電圧のみを変化させた。
4-2. Measurement Principle Next, the main motor noise measurement method will be described. As the main motor 1, an induction motor was used. The rated rotation speed of the main motor 1 is 2555 times per minute, and noise measurement was performed for 1800 times per minute and 2940 times per minute, which are the rotation speeds before and after that. In addition, the power source of the main motor 1 is an inverter power source. When the main motor 1 is rotated 1800 times per minute, the pulse output pattern of the inverter power source is set to the multi-pulse mode, and when the main motor 1 is rotated 2940 times per minute, the single pulse mode is set. Voltage supply was performed. Further, the duty ratio of PWM control used for the inverter power source is constant, and only the voltage applied to the main motor 1 is changed.

図5(a)は、主電動機1の回転速度を1800回毎分及び2940回毎分としたときのそれぞれの端子電圧と端子電流との関係を示したグラフである。ここで、端子電流とは固定子電流のことである。図5(a)において、何れの回転速度においても、端子電圧が増加すると端子電流が増加することを示している。端子電流が大きいことは、筐体を加振する磁束の大きさが大きいことを表している。端子電圧の増加に対する端子電流の増加の程度は、低回転速度である1800回毎分の方が大きい。即ち、端子電圧を増加することに対する電磁加振力の増加分は、低回転速度の方が大きいと言える。   FIG. 5A is a graph showing the relationship between the terminal voltage and the terminal current when the rotation speed of the main motor 1 is 1800 times per minute and 2940 times per minute. Here, the terminal current is a stator current. FIG. 5A shows that the terminal current increases as the terminal voltage increases at any rotational speed. A large terminal current indicates that the magnitude of the magnetic flux that excites the casing is large. The degree of increase of the terminal current with respect to the increase of the terminal voltage is larger at 1800 times per minute, which is a low rotation speed. That is, it can be said that the increase in the electromagnetic excitation force with respect to the increase in the terminal voltage is larger at the low rotation speed.

また、一定の回転速度を保ちつつ、端子電圧として異なる電圧が印加された各駆動状態は、筐体を加振する磁束の大きさを変化させるため、電動機が異なる負荷運動をしている状態に発生する電磁加振力を作り出すことができると言える。即ち、負荷機が接続された状態の電磁加振力を模擬することができる。上述した騒音測定方法の原理によれば、測定端子電圧を変化させて騒音測定したが、測定端子電圧の変化は、負荷による磁束の大きさを変えていることに等しい。従って、本実施形態の騒音測定方法は負荷機を接続せずに主電動機1に電磁加振力を与え、実際の動作環境に近い状況での主電動機1の騒音を測定できるため、負荷機の必要がなく、主電動機1単体の騒音を測定する方法として有効である。   In addition, each driving state in which a different voltage is applied as the terminal voltage while maintaining a constant rotational speed changes the magnitude of the magnetic flux that excites the casing, so that the motor is in a different load motion. It can be said that the generated electromagnetic excitation force can be created. That is, it is possible to simulate the electromagnetic excitation force with the load machine connected. According to the principle of the noise measurement method described above, noise was measured by changing the measurement terminal voltage, but the change in the measurement terminal voltage is equivalent to changing the magnitude of the magnetic flux due to the load. Therefore, the noise measuring method of the present embodiment can apply the electromagnetic excitation force to the main motor 1 without connecting the load machine and measure the noise of the main motor 1 in a situation close to the actual operating environment. This is not necessary and is effective as a method for measuring the noise of the main motor 1 alone.

4−3.測定結果
次に、測定結果について説明する。図5(b)は、主電動機1の端子電圧と、主電動機1から発生する騒音の音圧レベルとの関係を示したグラフである。主電動機1を1800回毎分、2940回毎分のそれぞれの回転速度で駆動した時の位置Aと位置Bの音圧レベルについてグラフ化した。尚、位置Aは電動機の出力軸側、即ち負荷機を接続する側の測定位置(以下「負荷側」とする)である。そして、電動機の左右側方、後方及び上方の測定位置(以下、単に「側面側」とする)の代表として位置Bの音圧レベルを示す。
4-3. Measurement Result Next, the measurement result will be described. FIG. 5B is a graph showing the relationship between the terminal voltage of the main motor 1 and the sound pressure level of noise generated from the main motor 1. The sound pressure levels at position A and position B when the main motor 1 is driven at a rotational speed of 1800 times per minute and 2940 times per minute are graphed. The position A is a measurement position (hereinafter referred to as “load side”) on the output shaft side of the motor, that is, the side to which the load machine is connected. The sound pressure level at position B is shown as a representative of the measurement positions (hereinafter simply referred to as “side surfaces”) on the left and right side, rear and upper sides of the electric motor.

図5(b)に示すように、回転速度1800回毎分では、端子電圧の増加とともに音圧レベルが増加した。また、端子電圧の増加に対して、負荷側である位置Aよりも固定子側である側面側の位置Bの方が、音圧レベルが大きくなる傾向を示した。位置Bでは、端子電圧を増やすほど固定子コイルが加振されて円筒状の筐体表面からの電磁加振による音が放射されるので騒音が大きく、位置Aでは、出力軸側の筐体は、殆ど加振されないので端子電圧を増しても大きな騒音は発生しないと考えられる。
また、1800回毎分は鉄道車両の低い速度域に相当するため、鉄道車両の速度が低いときの騒音が一時的に大きくなる傾向と一致している。
As shown in FIG. 5B, the sound pressure level increased with increasing terminal voltage at a rotational speed of 1800 times per minute. Further, as the terminal voltage increased, the sound pressure level tended to increase at the side position B on the stator side rather than at the position A on the load side. At position B, as the terminal voltage is increased, the stator coil is vibrated and the sound generated by electromagnetic vibration from the surface of the cylindrical casing is radiated, so that the noise is large. At position A, the casing on the output shaft side is It is considered that no significant noise is generated even if the terminal voltage is increased because the vibration is hardly applied.
Further, since 1800 times per minute corresponds to a low speed range of the railway vehicle, it coincides with a tendency that noise when the speed of the railway vehicle is low temporarily increases.

更に、1800回毎分という低回転速度での駆動時は、回転子の回転速度も小さいため、回転子周りで発生する空力音が排気口1aから出力される量は小さい。従って、電動機を1800回毎分で駆動させた時に発生する騒音は電磁音によるものが大きな割合を占めると言える。   Further, when driving at a low rotational speed of 1800 times per minute, the rotational speed of the rotor is also low, so that the amount of aerodynamic sound generated around the rotor is output from the exhaust port 1a is small. Therefore, it can be said that the noise generated when the electric motor is driven 1800 times per minute accounts for a large proportion due to electromagnetic noise.

一方、図5(a)に示すように、同じ端子電圧を印加しても2940回毎分の方が1800回毎分より端子電流が小さい。すなわち、電圧を増やすほど電磁加振力は大きくなるが、その割合は1900回毎分より小さい。   On the other hand, as shown in FIG. 5A, even when the same terminal voltage is applied, the terminal current is 2940 times per minute smaller than 1800 times per minute. That is, as the voltage increases, the electromagnetic excitation force increases, but the rate is smaller than 1900 times per minute.

また、2940回毎分の高速回転時では、回転子の回転速度が上がり、回転子周りから、より多くの風切り音等が発生するため、主電動機1からは大きな空力音が発生する。位置A,B共に排気口1aからの空力音の影響を強く受ける。そして、この風切り音等は、排気口1aから出力されるため、側面側(位置B)より負荷側(位置A)の方が大きくなる。この結果、電圧を上げて電磁加振力を増しても円筒状の筐体表面からの電磁加振による音の放射は、空力音よりも小さいのでマスキングされてしまい変化となって現れない。尚、位置A,B共に空力音が大きいが、排気口1aにより近い位置Aの方がやや大きな騒音レベルを示している。   Further, at the high speed rotation of 2940 times per minute, the rotational speed of the rotor is increased, and more wind noise is generated around the rotor, so that a large aerodynamic sound is generated from the main motor 1. Both positions A and B are strongly influenced by aerodynamic sound from the exhaust port 1a. And since this wind noise etc. are output from the exhaust port 1a, the load side (position A) becomes larger than the side surface side (position B). As a result, even if the voltage is increased to increase the electromagnetic excitation force, the sound emission from the cylindrical casing surface is smaller than the aerodynamic sound and is masked and does not appear as a change. In addition, although the aerodynamic sound is loud at both positions A and B, the position A closer to the exhaust port 1a shows a slightly higher noise level.

以上のことから、一定の高速域(例えば、2940回毎分以上)においては、主電動機1から発生する騒音は、空力音による騒音の占める割合が大きく、電磁音による騒音はほとんど無視できる。つまり、主電動機1自身による電磁音が無視できる程度であるならば、機械的負荷により発生する電磁音も無視できる程度に小さいと考えられる。従って、高速域においては、定置試験における主電動機騒音の実測値を、実際の走行時における主電動機1の騒音と見なすことができる。   From the above, in a constant high speed range (for example, 2940 times or more per minute), the noise generated from the main motor 1 has a large proportion of noise due to aerodynamic sound, and the noise due to electromagnetic sound can be almost ignored. That is, if the electromagnetic noise generated by the main motor 1 itself is negligible, it is considered that the electromagnetic noise generated by the mechanical load is small enough to be ignored. Therefore, in the high speed range, the actual measured value of the main motor noise in the stationary test can be regarded as the noise of the main motor 1 during actual traveling.

なお、高速域を主電動機1の回転速度から定まる如く説明したが、主電動機1の回転速度は鉄道車両の速度と等価と考えられるため、走行速度から高速域を定めることとしても良い。   Although the description has been made so that the high speed range is determined from the rotation speed of the main motor 1, the rotation speed of the main motor 1 is considered to be equivalent to the speed of the railway vehicle, and therefore, the high speed range may be determined from the traveling speed.

5.歯車装置の騒音推定値の算出原理
以上より得られた駆動系騒音と、主電動機1の騒音とに基づいて、歯車装置の騒音推定値を算出する方法について説明する。図6(a)に示すように、駆動系騒音は、主電動機1の騒音と、歯車装置の騒音とを主に含む騒音である。従って、上記3で得られた駆動系騒音と、上記4で得られた主電動機1の騒音の差分から、歯車装置単体の騒音を推定することができる。
5. Principle of Calculation of Gear Device Noise Estimated Value A method of calculating the gear device noise estimated value based on the drive system noise obtained above and the noise of the main motor 1 will be described. As shown in FIG. 6A, the drive system noise is noise mainly including noise of the main motor 1 and noise of the gear device. Therefore, the noise of the gear unit alone can be estimated from the difference between the drive train noise obtained in 3 and the noise of the main motor 1 obtained in 4 above.

ここで、駆動系騒音の演算子となるM車及びT車の床下台車近傍騒音の測定条件と、主電動機騒音の測定条件とは、異なる測定条件である。従って、定置試験から得られた主電動機1の騒音実測値を測定条件の差異に基づき補正する必要がある。   Here, the measurement conditions for the noise near the undercarriage of the M car and T car, which are operators of the drive system noise, and the measurement conditions for the main motor noise are different measurement conditions. Therefore, it is necessary to correct the actual noise measurement value of the main motor 1 obtained from the stationary test based on the difference in measurement conditions.

即ち、図4に示すように、主電動機1とマイクロホンの設置位置間の距離は、定置試験の位置Eの場合に比べて、走行試験の位置Xの場合が2倍の距離となっている。そこで、この倍の距離差を補正するため、主電動機1の騒音実測値に「3dB」を加算する。また、走行試験においては、台車の床下にマイクロホンが設置されるため、床面からの反射音の影響を受けている。従って、この床面からの反射音の影響を補正するため、主電動機1の騒音実測値に「3dB」を加算する。つまり、主電動機1の騒音実測値に、合計6dBの補正値を加算することにより、測定条件の違いによる誤差を補正する。そして、図6(b)に示すように、補正した主電動機1の騒音実測値に基づき、歯車装置単体の騒音の推定値を算出することができる。   That is, as shown in FIG. 4, the distance between the installation position of the main motor 1 and the microphone is twice as long in the running test position X as compared with the stationary test position E. Therefore, in order to correct this double distance difference, “3 dB” is added to the actual noise measurement value of the main motor 1. In the running test, since the microphone is installed under the floor of the carriage, it is affected by the reflected sound from the floor surface. Therefore, in order to correct the influence of the reflected sound from the floor surface, “3 dB” is added to the noise actual measurement value of the main motor 1. That is, the error due to the difference in measurement conditions is corrected by adding a correction value of 6 dB in total to the noise actual measurement value of the main motor 1. Then, as shown in FIG. 6 (b), the estimated value of the noise of the gear unit alone can be calculated based on the corrected noise actual measurement value of the main motor 1.

図7(a)は、音源として床下騒音全体(実測値α)、転動騒音(実測値β)、駆動系騒音(演算値δ)、主電動機(補正後γ)、歯車装置(推定値ε)の騒音レベルと、鉄道車両の速度との関係を示している。即ち、音源別に見た騒音の速度依存を示している。   FIG. 7 (a) shows the whole floor noise (actual value α), rolling noise (actual value β), drive system noise (calculated value δ), main motor (corrected γ), gear device (estimated value ε) as sound sources. ) And the speed of the railway vehicle. That is, it shows the speed dependence of noise as seen by sound source.

また、得られた歯車装置の推定値εに基づき速度乗則を算出したところ、図7(b)に示すように、速度乗則は5乗則として得られた。つまり、上記1において歯車装置単体の実測値から得られた速度乗則と一致しており、歯車装置の騒音推定値εが信頼できる値であるといえる。   Further, when the speed power law was calculated based on the estimated value ε of the obtained gear device, the speed power law was obtained as the fifth power law as shown in FIG. In other words, in the above 1, the speed multiplication law obtained from the actual measurement value of the gear unit alone is in agreement, and it can be said that the estimated noise value ε of the gear unit is a reliable value.

尚、図7(a)においては、鉄道車両の走行速度80km/h以上における騒音レベルの値を示しているが、これは当該速度以上の速度が上述の高速域(例えば、主電動機1の電磁音が無視できる速度域)と見なせるためである。   In FIG. 7 (a), the value of the noise level at a traveling speed of 80 km / h or higher of the railway vehicle is shown. This is because the speed higher than the speed is the above-mentioned high speed range (for example, the electromagnetic of the main motor 1). This is because it can be considered as a speed range where sound can be ignored.

6.処理の流れ
次に、歯車装置の騒音推定方法の処理の流れについて説明する。図8は、歯車装置の騒音推定処理の流れを説明するためのフローチャートである。まず、図8において、M車の床下台車近傍騒音、即ち、M車の走行試験により得られた実測値αを取得する(ステップS2)。次いで、T車の床下台車近傍騒音、即ち、T車の走行試験により得られた実測値βを取得する(ステップS4)。
6). Processing Flow Next, a processing flow of the gear device noise estimation method will be described. FIG. 8 is a flowchart for explaining the flow of the noise estimation processing of the gear device. First, in FIG. 8, the noise near the undercarriage of the M car, that is, the actual measurement value α obtained by the running test of the M car is acquired (step S2). Next, the noise near the undercarriage of the T car, that is, the actual measurement value β obtained by the running test of the T car is acquired (step S4).

続いて、主電動機1の定置試験により得られた実測値γを取得する(ステップS6)。そして、得られた実測値γを、走行試験の測定条件と、定置試験の測定条件との差異に基づいて補正する(ステップS8)。具体的には、走行試験の測定条件は、主電動機1から0.5m離れた距離を測定位置とし、主電動機1の上部には床が設けられている。一方、定置試験の測定条件は、主電動機から1m離れた距離を測定位置とし、主電動機1の上部には何も設けられていない。従って、離間距離の比に対する補正として「+3dB」、主電動機1の上部に設けられた床面からの反射音による増幅に対する補正として「+3dB」、を実測値γに加算した値を補正後のγとする。   Subsequently, an actual measurement value γ obtained by a stationary test of the main motor 1 is acquired (step S6). Then, the obtained actual measurement value γ is corrected based on the difference between the measurement condition of the running test and the measurement condition of the stationary test (step S8). Specifically, the measurement condition for the running test is a distance 0.5 m away from the main motor 1 as a measurement position, and a floor is provided on the top of the main motor 1. On the other hand, the measurement condition of the stationary test is that a distance 1 m away from the main motor is a measurement position, and nothing is provided on the upper portion of the main motor 1. Therefore, “+3 dB” as a correction for the ratio of the separation distance, and “+3 dB” as a correction for the amplification by the reflected sound from the floor surface provided on the upper portion of the main motor 1 are added to the actual measurement value γ to obtain a corrected γ And

次に、走行試験の実測値α,βの差分から駆動系騒音δを算出する(ステップS10)。そして、駆動系騒音δと、補正後のγの差分から歯車装置の騒音の推定値εを演算する(ステップS12)。   Next, the drive system noise δ is calculated from the difference between the actually measured values α and β of the running test (step S10). Then, an estimated value ε of the gear unit noise is calculated from the difference between the drive system noise δ and the corrected γ (step S12).

7.作用・効果
以上のように、M車及びT車の走行試験から、M車の床下台車近傍騒音の実測値αと、T車の床下台車近傍騒音の実測値βとを求め、実測値α,βに基づいて駆動系騒音δを求める。また、主電動機1の騒音として空力音が支配的になる高速域において、主電動機1の定置試験から得られる主電動機騒音の実測値γを、走行試験の測定条件と定置試験の測定条件との差異に基づいて補正する。そして、実測値γの補正値と、駆動系騒音δとの差分から歯車装置単体の推定値εを求めることができる。
7). As described above, the measured value α of the noise near the undercarriage of the M car and the measured value β of the noise near the undercarriage of the T car are obtained from the running test of the M car and the T car. Drive system noise δ is obtained based on β. Further, in the high speed range where aerodynamic noise is dominant as the noise of the main motor 1, the measured value γ of the main motor noise obtained from the stationary test of the main motor 1 is the difference between the measurement condition of the running test and the measurement condition of the stationary test. Correct based on the difference. And the estimated value (epsilon) of a gear apparatus single-piece | unit can be calculated | required from the difference of the correction value of measured value (gamma), and drive system noise (delta).

これにより、実測では測定が困難な歯車装置単体の騒音を、M車及びT車の走行試験及び主電動機1の定置試験から得られる実測値に基づく演算から容易に推定することができる。また、高速域において、定置試験における主電動機の騒音実測値を、実際の走行中における電動機の騒音状況と見なして、歯車装置単体の騒音を推定することにより、高速域における精度の高い推定値を算出することができる。   Thereby, it is possible to easily estimate the noise of the gear unit alone, which is difficult to measure by actual measurement, from the calculation based on the actual measurement values obtained from the running test of the M and T cars and the stationary test of the main motor 1. In addition, in the high-speed range, the noise measurement value of the main motor in the stationary test is regarded as the noise status of the motor during actual running, and the noise of the gear unit alone is estimated. Can be calculated.

さらに、走行試験と定置試験の測定条件の差異に基づき、主電動機1の騒音実測値γを補正するため、測定条件が異なる場合であっても、主電動機1単体の騒音を正確に求めることができる。これにより、歯車装置単体の推定値を精度良く求めることができ、駆動系騒音に対する各音源の寄与率を正確に求めることができるようになる。また、一方の測定条件に拘束されないため、走行試験や定置試験を今まで通りの試験として行うことができる。   Furthermore, since the noise actual measurement value γ of the main motor 1 is corrected based on the difference between the measurement conditions of the running test and the stationary test, the noise of the main motor 1 alone can be accurately obtained even when the measurement conditions are different. it can. Thereby, the estimated value of the gear unit alone can be obtained with high accuracy, and the contribution ratio of each sound source to the drive system noise can be obtained accurately. Moreover, since it is not restrained by one measurement condition, a running test and a stationary test can be performed as usual.

以上のことから、鉄道車両の騒音に対する音源の実態を明らかにすることができ、各音源に応じた有効な騒音対策を講じる端緒とすることができる。   From the above, it is possible to clarify the actual state of the sound source with respect to the noise of the railway vehicle, and to start effective noise countermeasures according to each sound source.

8.変形例
以上、本発明を適用した実施の形態を説明したが、本発明は上述の実施の形態についてのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
8). The embodiment to which the present invention is applied has been described above, but the present invention is not limited only to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. Of course.

例えば、本実施形態では、電動機として誘導電動機を用いた場合について説明したが、同期電動機や直流電動機に対して適用してよいことは勿論である。   For example, in the present embodiment, the case where an induction motor is used as the motor has been described, but it is needless to say that the present invention may be applied to a synchronous motor or a DC motor.

また、走行試験と定置試験の測定条件の差異に基づき、主電動機の実測値γを補正する場合について説明したが、駆動系騒音δ、或いは、M車の床下台車近傍騒音α及びT車の床下台車近傍騒音βを補正しても良い。   Moreover, although the case where the measured value γ of the main motor is corrected based on the difference between the measurement conditions of the running test and the stationary test has been described, the drive system noise δ or the noise near the undercarriage of the M car and the under floor of the T car The near-bogie noise β may be corrected.

歯車装置近傍騒音から歯車装置騒音の速度乗則を求める方法を説明する図。The figure explaining the method of calculating | requiring the speed law of the gear apparatus noise from the gear apparatus vicinity noise. 鉄道車両の走行試験における主電動機の測定条件の一例を示す図。The figure which shows an example of the measurement conditions of the main motor in the running test of a rail vehicle. 鉄道車両の走行試験の実測値から得られる騒音を説明する図。The figure explaining the noise obtained from the measured value of the running test of a railway vehicle. 定置試験における主電動機の測定条件の一例を示す図。The figure which shows an example of the measurement conditions of the main motor in a stationary test. (a)主電動機の回転速度を一定としたときの端子電圧と端子電流の関係を示したグラフ、(b)主電動機の端子電圧と、そのとき主電動機から発生する騒音の音圧レベルの関係を示す図。(A) a graph showing the relationship between the terminal voltage and the terminal current when the rotation speed of the main motor is constant, (b) the relationship between the terminal voltage of the main motor and the sound pressure level of the noise generated from the main motor at that time FIG. 主電動機の定置試験から得られる騒音を説明する図。The figure explaining the noise obtained from the stationary test of the main motor. (a)音源別に見た騒音の速度依存を示す図、(b)音源別の速度乗側を示す図。(A) The figure which shows the speed dependence of the noise seen for every sound source, (b) The figure which shows the speed riding side for every sound source. 歯車装置の騒音推定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the noise estimation process of a gear apparatus.

符号の説明Explanation of symbols

1 主電動機
A、B、C、D、E、X 騒音測定位置
1 Main motor A, B, C, D, E, X Noise measurement position

Claims (2)

電動車の床下台車近傍騒音の実測値αと、付随車の床下台車近傍騒音の実測値βと、前記電動車の主電動機の定置試験の実測値γとに基づいて前記電動車の歯車装置の騒音を推定する推定方法であって、
前記主電動機の騒音として空力音が支配的となる高速域において、実測値αとβとの差から前記電動車の駆動系騒音を求め、求めた駆動系騒音と実測値γとの差から当該高速域における歯車装置の騒音を推定する推定方法。
Based on the measured value α of the noise near the undercarriage of the electric vehicle, the measured value β of the noise near the undercarriage of the accompanying vehicle, and the measured value γ of the stationary test of the main motor of the electric vehicle, the gear device of the electric vehicle An estimation method for estimating noise,
In a high speed range where aerodynamic noise is dominant as the noise of the main motor, the drive system noise of the electric vehicle is obtained from the difference between the measured values α and β, and the difference between the obtained drive system noise and the measured value γ An estimation method for estimating noise of a gear device in a high speed range.
実測値αの測定位置条件と実測値γの測定位置条件との位置条件の差異に基づいて実測値γを補正した上で、前記求めた駆動系騒音と当該補正済みの実測値γとの差から前記高速域における歯車装置の騒音を推定する請求項1に記載の推定方法。   After correcting the actual measurement value γ based on the difference between the measurement position condition of the actual measurement value α and the measurement position condition of the actual measurement value γ, the difference between the obtained drive system noise and the corrected actual measurement value γ The estimation method of Claim 1 which estimates the noise of the gear apparatus in the said high-speed area from.
JP2005131776A 2005-04-28 2005-04-28 Estimation method Expired - Fee Related JP4676811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131776A JP4676811B2 (en) 2005-04-28 2005-04-28 Estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131776A JP4676811B2 (en) 2005-04-28 2005-04-28 Estimation method

Publications (2)

Publication Number Publication Date
JP2006306278A true JP2006306278A (en) 2006-11-09
JP4676811B2 JP4676811B2 (en) 2011-04-27

Family

ID=37473660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131776A Expired - Fee Related JP4676811B2 (en) 2005-04-28 2005-04-28 Estimation method

Country Status (1)

Country Link
JP (1) JP4676811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126916A1 (en) * 2007-04-11 2008-10-23 Hitachi, Ltd. Sound source separating device and sound source separating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659184U (en) * 1993-01-27 1994-08-16 東洋電機製造株式会社 Gearbox for railway vehicles
JP2000155048A (en) * 1998-11-24 2000-06-06 Hitachi Ltd Analyzing method of sound source contribution
JP2002095110A (en) * 2000-07-11 2002-03-29 Mitsubishi Electric Corp Vehicle drive
JP2004212208A (en) * 2002-12-27 2004-07-29 Honda Motor Co Ltd On-table noise testing method for tire single body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659184U (en) * 1993-01-27 1994-08-16 東洋電機製造株式会社 Gearbox for railway vehicles
JP2000155048A (en) * 1998-11-24 2000-06-06 Hitachi Ltd Analyzing method of sound source contribution
JP2002095110A (en) * 2000-07-11 2002-03-29 Mitsubishi Electric Corp Vehicle drive
JP2004212208A (en) * 2002-12-27 2004-07-29 Honda Motor Co Ltd On-table noise testing method for tire single body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126916A1 (en) * 2007-04-11 2008-10-23 Hitachi, Ltd. Sound source separating device and sound source separating method
JP2008261688A (en) * 2007-04-11 2008-10-30 Hitachi Ltd Apparatus and method for separating sound source
JP4584951B2 (en) * 2007-04-11 2010-11-24 株式会社日立製作所 Sound source separation device and sound source separation method
US8094828B2 (en) 2007-04-11 2012-01-10 Hitachi, Ltd. Sound source separating apparatus and sound source separating method

Also Published As

Publication number Publication date
JP4676811B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
US7285926B2 (en) System and method for locomotive adhesion control
CN104718103B (en) The control device of electric motor of electric vehicle
CN103415415B (en) Electronlmobil
CN103384615B (en) Electronlmobil, interiorly take turns motor drive and method of motor control
CN103442930B (en) Electronlmobil
CN103384614B (en) Electronlmobil
JP5371908B2 (en) Travel speed detection device
JP2014039451A (en) Vibration reduction device and method for power train of electric vehicle
CN103429457A (en) Electric vehicle
CN103946053A (en) Electric vehicle
US10673308B2 (en) Drive motor, electric vehicle, and drive motor control method
US20180323738A1 (en) Stray magnetic field compensation for a rotor position sensor
JP2017095060A (en) Vehicle approach notification device
JP4676811B2 (en) Estimation method
JP4606350B2 (en) Electric vehicle tangential force estimation method
JP2008104257A (en) Inspection device for hybrid vehicle drive unit
JP2010112918A (en) Inspection method of motor noise
Mei et al. Control of wheel motors for the provision of traction and steering of railway vehicles
US10457157B2 (en) Motor drive device
Mehrgou et al. Advanced CAE Methods for NVH Development of High-Speed Electric Axle
JP4675264B2 (en) Rotor frequency estimation device and rotor frequency estimation method
Lu et al. Enhancing interior noise of electric vehicles by design analyses and refinements of traction motors
JP2021022971A (en) State monitoring device, transport vehicle on which the state monitoring device is mounted and state monitoring method
JP2006275577A (en) Motor noise measuring method
CN113525451A (en) Method for monitoring wheel polygon of railway vehicle by using traction motor current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees