JP2006302739A - Temperature estimation device of fuel cell and fuel cell system controller - Google Patents

Temperature estimation device of fuel cell and fuel cell system controller Download PDF

Info

Publication number
JP2006302739A
JP2006302739A JP2005124754A JP2005124754A JP2006302739A JP 2006302739 A JP2006302739 A JP 2006302739A JP 2005124754 A JP2005124754 A JP 2005124754A JP 2005124754 A JP2005124754 A JP 2005124754A JP 2006302739 A JP2006302739 A JP 2006302739A
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
detecting means
detecting
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005124754A
Other languages
Japanese (ja)
Other versions
JP5239113B2 (en
Inventor
Tsutomu Yamazaki
努 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005124754A priority Critical patent/JP5239113B2/en
Publication of JP2006302739A publication Critical patent/JP2006302739A/en
Application granted granted Critical
Publication of JP5239113B2 publication Critical patent/JP5239113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate the temperature of a fuel cell based on the temperature of cooling water delivered from the fuel cell and ambient temperature, and decide whether heating of the fuel cell is necessary or not. <P>SOLUTION: A fuel cell system controller equipped with a cooling means 3 cooling moisture exhausted from the fuel cell 1 in the downstream part of a heating means 11 heating the moisture in a circulation passage 37 through which the moisture is circulated to the fuel cell 1 is equipped with a first temperature detecting means 32 detecting the ambient temperature, a second temperature detecting means 30 detecting the temperature of moisture in an outlet of the fuel cell 1, a third temperature detecting means 33 detecting the temperature of moisture in an inlet of the cooling means 3, and the temperature of the fuel cell is estimated based on the temperature difference between the temperature detected with the second temperature detecting means 30 and the temperature detected with the third temperature detecting means 33 and the heat discharge of the fuel cell 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池に冷却水として循環する水分の温度から燃料電池の温度を推定する温度推定装置と、その推定温度に応じて水分の解凍判断を行う燃料電池システム制御装置に関するものである。   The present invention relates to a temperature estimation device that estimates the temperature of a fuel cell from the temperature of water that circulates as cooling water in the fuel cell, and a fuel cell system control device that performs thawing determination of moisture according to the estimated temperature.

従来、燃料電池セルの温度に応じて燃料電池に供給する空気を加熱することで、燃料電池を加熱するものが知られている。これによれば、燃料電池に供給する空気で暖機することができるため、装置を小型化できると共に、システム始動時の燃料電池の発電効率を向上させ、または氷点下等での低温起動時に装置内で生成された氷を解凍する暖機時間を短縮することを達成している。(例えば、特許文献1、参照。)
特開2002−039445号公報
Conventionally, what heats a fuel cell by heating air supplied to the fuel cell according to the temperature of the fuel cell is known. According to this, since it is possible to warm up with air supplied to the fuel cell, it is possible to reduce the size of the device, improve the power generation efficiency of the fuel cell at the time of starting the system, or at the time of low temperature startup such as below freezing point The warming-up time for thawing the ice produced in is reduced. (For example, see Patent Document 1)
JP 2002-039445 A

上記従来の燃料電池が排出する空気の温度を前記燃料電池の温度と推定する方法や、前記燃料電池に供給する空気の温度から燃料電池の温度を推定する方法では、車両等に搭載する燃料電池においては、燃料電池の温度を推定する空気等の温度を検出する部分によって、温度変化の速度が異なるため、正確に燃料電池の温度を推定することが困難であり、推定温度の信頼性が得られないという問題があった。   In the method of estimating the temperature of the air discharged from the conventional fuel cell as the temperature of the fuel cell or the method of estimating the temperature of the fuel cell from the temperature of the air supplied to the fuel cell, the fuel cell mounted on a vehicle or the like However, since the speed of temperature change differs depending on the part that detects the temperature of air or the like that estimates the temperature of the fuel cell, it is difficult to accurately estimate the temperature of the fuel cell, and the reliability of the estimated temperature is obtained. There was a problem that it was not possible.

そこで本発明は、温度変化の速度が異なる燃料電池が排出する冷却水の温度等を用いて前記燃料電池の温度推定する場合でも、燃料電池の温度を正確に推定することを目的とする。   Therefore, an object of the present invention is to accurately estimate the temperature of the fuel cell even when the temperature of the fuel cell is estimated using the temperature of the cooling water discharged from the fuel cell having a different temperature change rate.

本発明に係る燃料電池の温度推定装置では、燃料電池に水分を循環させる循環通路と、前記加熱手段の下流にて、燃料電池が排出した水分を冷却する冷却手段とを備える燃料電池を前提として、燃料電池出口の水分温度を検出する第1の温度検出手段と、前記冷却手段入口の水分温度を検出する第2の温度検出手段と、前記第1と第2の温度検出手段で検出した温度の温度差と前記燃料電池の放熱量に基づいて前記燃料電池の温度を推定することを特徴とする。   The fuel cell temperature estimation apparatus according to the present invention is premised on a fuel cell comprising a circulation passage for circulating water in the fuel cell and a cooling means for cooling the water discharged from the fuel cell downstream of the heating means. The first temperature detecting means for detecting the water temperature at the fuel cell outlet, the second temperature detecting means for detecting the water temperature at the cooling means inlet, and the temperature detected by the first and second temperature detecting means. The temperature of the fuel cell is estimated on the basis of the difference in temperature and the amount of heat released from the fuel cell.

また、本発明に係る燃料電池システム制御装置では、燃料電池に水分を循環させる循環通路と、燃料電池が排出した水分を冷却する冷却手段とを備える燃料電池システムを前提として、燃料電池出口の水分温度を検出する第1の温度検出手段と、前記冷却手段入口の水分温度を検出する第2の温度検出手段と、外気温度を検出する第3の温度検出手段と、前記循環通路の水分を加熱する加熱手段を備え、前記第3の温度検出手段で検出した外気温度が氷点下、かつ、前記燃料電池の推定温度が氷点下のときは、前記循環通路の水分を加熱することを特徴とする。   Further, in the fuel cell system control device according to the present invention, on the premise of a fuel cell system comprising a circulation passage for circulating water in the fuel cell and a cooling means for cooling the water discharged from the fuel cell, the moisture at the fuel cell outlet First temperature detecting means for detecting temperature, second temperature detecting means for detecting moisture temperature at the inlet of the cooling means, third temperature detecting means for detecting outside air temperature, and heating the moisture in the circulation passage Heating means that heats the water in the circulation passage when the outside temperature detected by the third temperature detecting means is below freezing and the estimated temperature of the fuel cell is below freezing.

本発明によると、燃料電池を冷却する水分の温度等から推定した燃料電池の温度から、燃料電池を起動する際に、前記燃料電池の暖機が必要か否か判断することができる。また、これにより燃料電池の低温起動を効率よく行うことができる。   According to the present invention, it is possible to determine whether or not the fuel cell needs to be warmed up when starting the fuel cell from the temperature of the fuel cell estimated from the temperature of moisture for cooling the fuel cell. In addition, this makes it possible to efficiently start the fuel cell at a low temperature.

第1の実施形態に用いる燃料電池システムの制御装置の概略構成を図1に示す。本実施形態において、反応ガスと酸化剤ガスとを用いて発電を行う燃料電池1を備え、反応ガスとしては水素含有ガスを、酸化剤ガスとしては空気等の酸素含有ガスを用いる。なお、反応ガスはこの限りではなく、例えば改質装置により改質された水素含有ガス等を用いることもできる。   FIG. 1 shows a schematic configuration of a control device of the fuel cell system used in the first embodiment. In the present embodiment, a fuel cell 1 that generates power using a reaction gas and an oxidant gas is provided, a hydrogen-containing gas is used as the reaction gas, and an oxygen-containing gas such as air is used as the oxidant gas. The reaction gas is not limited to this, and for example, a hydrogen-containing gas reformed by a reformer can be used.

燃料電池1の運転を開始すると、燃料電池1は発電反応によりその温度が上昇するため、燃料電池1を冷却するように、燃料電池1が排出した冷却水を再度燃料電池1に還流する冷却水流路37を備え、さらに冷却水が循環するようにポンプ2を設ける。   When the operation of the fuel cell 1 is started, the temperature of the fuel cell 1 rises due to a power generation reaction. Therefore, the cooling water flow that recirculates the cooling water discharged by the fuel cell 1 to the fuel cell 1 again so as to cool the fuel cell 1. A path 37 is provided, and a pump 2 is provided so that cooling water circulates.

氷点下におけるシステム起動時等の際、冷却水が冷却水流路37で凍結し、冷却水の循環が困難となるので、冷却水を解凍するヒータ11を燃料電池1の下流でポンプ2の上流に設置し、その下流に燃料電池1の発電反応により加熱された冷却水を冷却するラジエータ3を備える。   At the time of starting the system below the freezing point, the cooling water freezes in the cooling water flow path 37 and it becomes difficult to circulate the cooling water. Therefore, the heater 11 for thawing the cooling water is installed downstream of the fuel cell 1 and upstream of the pump 2. And the radiator 3 which cools the cooling water heated by the electric power generation reaction of the fuel cell 1 downstream is provided.

ラジエータ3を迂回するようにバイパス通路42を設け、冷却水流路37からバイパス通路42へ分岐する部分には冷却水の流路を冷却水流路37またはバイパス通路42の何れか一方に切り替える三方弁4を設置する。   A three-way valve 4 that provides a bypass passage 42 so as to bypass the radiator 3 and switches the cooling water passage to one of the cooling water passage 37 and the bypass passage 42 at a portion branched from the cooling water passage 37 to the bypass passage 42. Is installed.

本システム外部の温度(例えば外気温度)を検出する温度センサ32を備え、燃料電池1が排出した冷却水の温度を検出するように燃料電池1の下流でヒータ11の上流に温度センサ30を備え、ラジエータ3に供給する冷却水の温度を検出するように、温度センサ33をポンプ2の下流でラジエータ3の上流に設置する。バイパス通路42の冷却水の温度を検出するためバイパス通路42に温度センサ31を設置する。   A temperature sensor 32 for detecting the temperature outside the system (for example, the outside air temperature) is provided, and a temperature sensor 30 is provided downstream of the fuel cell 1 and upstream of the heater 11 so as to detect the temperature of the cooling water discharged by the fuel cell 1. The temperature sensor 33 is installed downstream of the pump 2 and upstream of the radiator 3 so as to detect the temperature of the cooling water supplied to the radiator 3. A temperature sensor 31 is installed in the bypass passage 42 to detect the temperature of the cooling water in the bypass passage 42.

氷点下での燃料電池システムの起動においては、冷却水流路37の冷却水が凍結している可能性があるため、ヒータ11により冷却水の加熱または解凍の判断が必要である。一方、氷点を超える温度域での燃料電池システムの起動においては、冷却水流路37の冷却水が凍結せず冷却水は円滑に流通しているので、ヒータ11により加熱する必要がない。そこで、温度センサ32で検出した本システムの外部の温度が氷点下の際、冷却水流路37に上述した温度センサ30,31および33から得た検出値に基づき、冷却水を加熱する必要があるか否かの判断を行う。   In starting the fuel cell system below the freezing point, the cooling water in the cooling water passage 37 may be frozen, so it is necessary to determine whether the cooling water is heated or thawed by the heater 11. On the other hand, in starting the fuel cell system in a temperature range exceeding the freezing point, the cooling water in the cooling water flow path 37 is not frozen and the cooling water is flowing smoothly, so that the heater 11 does not need to be heated. Therefore, when the temperature outside the system detected by the temperature sensor 32 is below freezing point, is it necessary to heat the cooling water in the cooling water flow path 37 based on the detection values obtained from the temperature sensors 30, 31 and 33 described above? Make a decision.

燃料電池システムの外部の温度が低く、燃料電池1が排出した冷却水が冷却水流路37を循環し再度燃料電池1に供給される間に、冷却水が放熱によって冷やされ、燃料電池1を十分冷却できる程度に冷却水の温度が低いときは、燃料電池1が排出した冷却水がラジエータ3を迂回するように、三方弁4の開度を調節し冷却水がバイパス通路42を循環するようにする。   While the temperature outside the fuel cell system is low and the cooling water discharged from the fuel cell 1 circulates through the cooling water flow path 37 and is supplied to the fuel cell 1 again, the cooling water is cooled by heat radiation, and the fuel cell 1 is sufficiently discharged. When the temperature of the cooling water is low enough to cool, the opening of the three-way valve 4 is adjusted so that the cooling water discharged from the fuel cell 1 bypasses the radiator 3 so that the cooling water circulates in the bypass passage 42. To do.

次に、燃料電池システム起動開始時の温度からは測定が困難な燃料電池1の温度の推定方法について説明する。   Next, a method for estimating the temperature of the fuel cell 1 that is difficult to measure from the temperature at the start of starting the fuel cell system will be described.

燃料電池1に発熱がなく、外気により冷却される際に、燃料電池1内部の温度分布を考慮しない場合には燃料電池1の放熱量の式(1)が成立する。式(1)の微分方程式を解くことにより、式(2)が導出される。   When the fuel cell 1 does not generate heat and is cooled by outside air, if the temperature distribution inside the fuel cell 1 is not taken into consideration, the heat dissipation amount formula (1) of the fuel cell 1 is established. Equation (2) is derived by solving the differential equation of Equation (1).

Figure 2006302739
Figure 2006302739

ここで、Cは燃料電池1の熱容量、Tは燃料電池1の温度、Hは燃料電池1の熱伝達率、Aは燃料電池1の放熱面積、T0は燃料電池1の加熱前の温度、Tairは外気の温度、△tは放置中の経過時
間、βは定数(β=−H・A/C)、αは定数(α=Ln(T0−Tair))とする。式(2)の定数を以上のように整理すると、式(3)が得られる。
Here, C is the heat capacity of the fuel cell 1, T is the temperature of the fuel cell 1, H is the heat transfer coefficient of the fuel cell 1, A is the heat radiation area of the fuel cell 1, T 0 is the temperature before heating of the fuel cell 1, T air is the outside air temperature, Δt is the elapsed time during standing, β is a constant (β = −H · A / C), and α is a constant (α = L n (T 0 −T air )). Arranging the constants of equation (2) as described above yields equation (3).

Figure 2006302739
Figure 2006302739

同様に、温度センサ30と温度センサ31温度検出部において式(4)と式(5)が成り立つ。ただし、温度TT1、TT2は温度センサ30および温度センサ31により検出した値である。 Similarly, Expression (4) and Expression (5) are established in the temperature sensor 30 and the temperature sensor 31 temperature detection unit. However, the temperatures TT 1 and TT 2 are values detected by the temperature sensor 30 and the temperature sensor 31.

Figure 2006302739
Figure 2006302739

なお、式(4)及び式(5)で用いたβは、温度を検出する部分により異なる固定値である。そのため、各々の温度測定位置の冷却水の熱容量、熱伝達率、放熱面積からβ1及びβ2が定まる。ここで、燃料電池システム停止直前の前記2箇所の温度TT1とTT2の温度はT0とほぼ等しいので、α1とα2もαとほぼ等しい。また、β1とβ2は、温度測定位置による固定値であるから、式(4)と式(5)より経過時間△tとシステム停止直前の冷却水経路の温度T0を求めることができる。

したがって、燃料電池システム起動時の燃料電池の推定温度Tsについても、燃料電池システム停止時の燃料電池が排出した冷却水の温度T0として、式(2)を用いることによって、燃料電池システム起動時の燃料電池の温度を推定することができる。そして、この温度が氷点下のときは、後述する燃料電池システムの解凍制御を行い、氷点を超えるときは燃料電池システムの起動を開始する。
Note that β used in the equations (4) and (5) is a fixed value that varies depending on the temperature detection portion. Therefore, β 1 and β 2 are determined from the heat capacity, heat transfer coefficient, and heat radiation area of the cooling water at each temperature measurement position. Here, since the temperatures of the two locations TT 1 and TT 2 immediately before the stop of the fuel cell system are substantially equal to T 0 , α 1 and α 2 are also substantially equal to α. Since β 1 and β 2 are fixed values depending on the temperature measurement position, the elapsed time Δt and the temperature T 0 of the cooling water path immediately before the system stop can be obtained from the equations (4) and (5). .

Accordingly, the estimated temperature T s of the fuel cell at the time of starting the fuel cell system is also determined by using the equation (2) as the temperature T 0 of the cooling water discharged from the fuel cell at the time of stopping the fuel cell system. The fuel cell temperature at the time can be estimated. And when this temperature is below freezing point, thawing control of the fuel cell system mentioned later is performed, and when it exceeds freezing point, starting of the fuel cell system is started.

以上のように、燃料電池システム起動開始時の温度から測定困難な燃料電池1の温度が推定可能であり、この温度と予め定めた所定温度を比較して、燃料電池システムの解凍判断を適切に行うことが可能である。ここに、所定温度とは燃料電池1に解凍制御が必要か否かを判断するための温度であり、予め実験または計算等により求めておきデータベースとしてマイクロコンピュータに記憶しておく。   As described above, the temperature of the fuel cell 1 that is difficult to measure can be estimated from the temperature at the start of starting the fuel cell system, and this temperature is compared with a predetermined temperature to appropriately determine the thawing of the fuel cell system. Is possible. Here, the predetermined temperature is a temperature for determining whether or not the fuel cell 1 needs to be defrosted, and is obtained in advance by experiments or calculations and stored in a microcomputer as a database.

この燃料電池システムにおいて、コントロールユニット20が実行する燃料電池システムの解凍判断の制御について図2のフローチャートに従い説明する。各フローチャートの処理はコントロールユニット20により周期的に実行される。   In this fuel cell system, control of the fuel cell system thawing determination executed by the control unit 20 will be described with reference to the flowchart of FIG. The processing of each flowchart is periodically executed by the control unit 20.

S201において、燃料電池システムの起動要求の有無を判断する。燃料電池システムの起動の要求がなかった場合には、燃料電池システムは停止したままであり、起動の要求があった場合には、S202へ進む。このステップで、温度センサ32により燃料電池システムの外部温度(Tair)を検出する。なお、ここで外部温度Tairを定数としたが、外部温度が図2に示した制御中に変化しても燃料電池1が排出する冷却水の温度変化に比べ十分小さいので、温度の推定に与える影響は無視できる程度である。 In S201, it is determined whether or not there is a request for starting the fuel cell system. If there is no request for activation of the fuel cell system, the fuel cell system remains stopped. If there is a request for activation, the process proceeds to S202. In this step, the temperature sensor 32 detects the external temperature (T air ) of the fuel cell system. Here, the external temperature T air is a constant, but even if the external temperature changes during the control shown in FIG. 2, it is sufficiently smaller than the temperature change of the cooling water discharged from the fuel cell 1. The effect is negligible.

S203では、温度センサ32で検出した外部温度(Tair)が氷点下か否か判断する。外部温度が氷点より高い場合、冷却水流路37の冷却水は凍結することなく円滑に流通していると考えて、ヒータ11において冷却水を加熱することなく通常の起動を行う。一方、外部温度が氷点下の場合、冷却水流路37の冷却水が凍結している場合の考えられるため以下の方法により、燃料電池システムの解凍判断を行う。 In S203, it is determined whether or not the external temperature (T air ) detected by the temperature sensor 32 is below the freezing point. When the external temperature is higher than the freezing point, it is considered that the cooling water in the cooling water passage 37 is smoothly flowing without freezing, and the heater 11 performs normal activation without heating the cooling water. On the other hand, when the external temperature is below freezing point, it is considered that the cooling water in the cooling water passage 37 is frozen. Therefore, the thawing determination of the fuel cell system is performed by the following method.

S204へ進み、温度センサ30(T1)、温度センサ31(T2)および温度センサ33(T3)により、本システムの各部の温度を検出する。 Proceeding to S204, the temperature of each part of the system is detected by the temperature sensor 30 (T 1 ), the temperature sensor 31 (T 2 ), and the temperature sensor 33 (T 3 ).

S205で、T1、T2、T3のそれぞれの温度が氷点下か否か判断し、全て氷点下のときは冷却水が凍結しているとみなし、以下に述べるS211の氷点下解凍起動制御(S301〜S304)を行った後、本システムを起動する。一方、T1、T2、T3のいずれか一つでも氷点以上の場合は、本システムの冷却水が凍結しているか否か判断しがたいため、S206へ進み、冷却水流路フラグの値が“1”か否か判断し、燃料電池システム停止直前に冷却水が流通していた流路を選択する。なお、氷点付近に設定した基準温度が正確に氷点である必要はない。 In S205, it is determined whether or not the temperatures of T 1 , T 2 , and T 3 are below freezing point. If all of them are below freezing point, it is considered that the cooling water is frozen. After performing S304), the present system is activated. On the other hand, if any one of T 1 , T 2 , and T 3 is above the freezing point, it is difficult to determine whether or not the cooling water of this system is frozen. Is selected as “1”, and the flow path through which the cooling water has circulated immediately before the stop of the fuel cell system is selected. Note that the reference temperature set near the freezing point does not have to be the freezing point accurately.

燃料電池1の運転により、燃料電池1が排出した冷却水が十分な冷却を行うことができない程度まで冷却水の温度が上昇したときは、燃料電池1が排出した冷却水がラジエータ3を通過し冷却されるように三方弁4の開度を調節する。このとき、冷却水流路フラグを前者の場合には“1”とし、後者の場合には“0”と設定する。このような制御を行うように、マイクロコンピュータで構成されるコントロールユニット20が備えられる。   When the temperature of the cooling water rises to such an extent that the cooling water discharged from the fuel cell 1 cannot be sufficiently cooled by the operation of the fuel cell 1, the cooling water discharged from the fuel cell 1 passes through the radiator 3. The opening degree of the three-way valve 4 is adjusted so as to be cooled. At this time, the cooling water flow path flag is set to “1” in the former case and “0” in the latter case. A control unit 20 composed of a microcomputer is provided so as to perform such control.

冷却水流路フラグが“1”の場合、すなわち、本システム停止時、冷却水がラジエータ3を迂回するようにバイパス通路42を流通していた場合は、S207へ進み温度センサ30と温度センサ31より検出した運転開始時の温度T1をTT1に入力し、T2をTT2に入力する。 When the cooling water flow path flag is “1”, that is, when the cooling water flows through the bypass passage 42 so as to bypass the radiator 3 when the system is stopped, the process proceeds to S207 and the temperature sensor 30 and the temperature sensor 31 The detected temperature T 1 at the start of operation is input to TT 1 , and T 2 is input to TT 2 .

一方、冷却水流路フラグが“0”のとき、すなわち、本システム停止時、冷却水の大部分がラジエータ3を介して冷却水流路37を還流している場合は、S208へ進み、温度センサ30と温度センサ33より検出した運転開始時の温度T1をTT1に入力し、T3をTT2に入力する。 On the other hand, when the cooling water flow path flag is “0”, that is, when most of the cooling water is recirculating through the cooling water flow path 37 via the radiator 3 when the system is stopped, the process proceeds to S208 and the temperature sensor 30 is reached. The temperature T 1 at the start of operation detected by the temperature sensor 33 is input to TT 1 , and T 3 is input to TT 2 .

S209において、前ステップで検出した値を式(4)〜式(5)に代入し、燃料電池1の温度(Ts)を推定する。S210において、燃料電池1の推定温度が氷点下のときはS211へ進み後述する氷点下解凍起動制御(S301〜S304)を行った後に燃料電池システムを起動する。一方、燃料電池1の推定温度が氷点より高い場合は、S212へ進み燃料電池システムを起動する。 In S209, the value detected in the previous step is substituted into Expressions (4) to (5), and the temperature (T s ) of the fuel cell 1 is estimated. In S210, when the estimated temperature of the fuel cell 1 is below freezing, the process proceeds to S211 and below-freezing thawing start control (S301 to S304) described later is performed, and then the fuel cell system is started. On the other hand, when the estimated temperature of the fuel cell 1 is higher than the freezing point, the process proceeds to S212 and the fuel cell system is activated.

次に、前述した氷点下解凍起動制御について、図3のフローチャートに基づき説明する。S301において、燃料電池システムの冷却水が凍結しているため、冷却水を解凍した際、冷却水流路37のみを循環するように三方弁を制御する。S302において、ポンプ2を起動し燃料電池1が排出した冷却水が冷却水流路37を循環し再度燃料電池1へ供給される。そして、S303へ進み、ヒータ11の電源をONとし、冷却水の加熱を行い解凍する。S304において、温度センサ30により検出した燃料電池1が排出した冷却水の温度(TT1)が、冷却水流路37の冷却水が解凍され円滑に流通できるように氷点より高くなるまで、ヒータ11により冷却水の加熱を続ける。以上の制御によって、燃料電池システムの冷却水を解凍することが可能となる。 Next, the below-freezing thawing start control described above will be described based on the flowchart of FIG. In S301, since the cooling water of the fuel cell system is frozen, the three-way valve is controlled so that only the cooling water passage 37 is circulated when the cooling water is thawed. In S <b> 302, the pump 2 is activated and the cooling water discharged from the fuel cell 1 circulates through the cooling water passage 37 and is supplied to the fuel cell 1 again. In step S303, the heater 11 is turned on, and the cooling water is heated and defrosted. In S304, the temperature of the cooling water discharged by the fuel cell 1 detected by the temperature sensor 30 (TT 1 ) is increased by the heater 11 until the cooling water in the cooling water flow path 37 becomes higher than the freezing point so that the cooling water can be thawed and smoothly circulated. Continue heating the cooling water. By the above control, it becomes possible to thaw the cooling water of the fuel cell system.

氷点下で燃料電池1を起動する際、前記燃料電池1が排出した冷却水の温度から、燃料電池1の温度を推定することにより、従来よりも正確に燃料電池1の温度が把握できるため、冷却水流路37の冷却水の解凍有無の判断をより正確に行うことができる。   Since the temperature of the fuel cell 1 is estimated from the temperature of the cooling water discharged from the fuel cell 1 when the fuel cell 1 is started below the freezing point, the temperature of the fuel cell 1 can be grasped more accurately than before. It is possible to more accurately determine whether or not the cooling water in the water flow path 37 is thawed.

車両に燃料電池システムを搭載した際、温度測定の部分が異なると燃料電池1が排出した冷却水の温度と冷却水流路37の冷却水の温度またはバイパス通路42の冷却水の温度が大きく異なる場合があるが、温度センサ30で検出した温度と温度センサ31で検出した温度または温度センサ33で検出した温度の何れか一つを選択し燃料電池1の温度を推定することによって、より正確に冷却水流路37の冷却水の解凍有無の判断が可能となる。   When the fuel cell system is mounted on the vehicle, the temperature of the cooling water discharged from the fuel cell 1 and the temperature of the cooling water in the cooling water passage 37 or the temperature of the cooling water in the bypass passage 42 are greatly different if the temperature measurement portions are different. However, by selecting one of the temperature detected by the temperature sensor 30 and the temperature detected by the temperature sensor 31 or the temperature detected by the temperature sensor 33 and estimating the temperature of the fuel cell 1, the cooling can be performed more accurately. It is possible to determine whether or not the cooling water in the water channel 37 is thawed.

本システムにおいて、温度センサ33で検出される冷却水流路37の冷却水の温度は燃料電池1で温められた冷却水が到達するまでの距離が温度センサ31で検出する部分と比較して長く、それだけ冷却されやすいので温度センサ31と温度センサ33で検出される検出値が大きく異なる。したがって、このように冷却水の温度が各部分において異なる場合でも燃料電池1の温度を推定し、冷却水流路37の冷却水の解凍有無の判断が可能となる。   In this system, the temperature of the cooling water in the cooling water flow path 37 detected by the temperature sensor 33 is longer than the part detected by the temperature sensor 31 in the distance until the cooling water heated by the fuel cell 1 arrives. Since it is easily cooled, the detection values detected by the temperature sensor 31 and the temperature sensor 33 are greatly different. Therefore, even when the temperature of the cooling water is different in each part, it is possible to estimate the temperature of the fuel cell 1 and determine whether or not the cooling water in the cooling water channel 37 is thawed.

第2の実施形態に用いる燃料電池システムの制御装置の概略構成を第1実施形態と異なる部分を中心に図4を用いて説明する。本発明では、燃料電池システムが停止したときから、起動までの時間を測定するタイマー21を備えた。   A schematic configuration of a control device for a fuel cell system used in the second embodiment will be described with reference to FIG. 4 with a focus on differences from the first embodiment. In the present invention, the timer 21 for measuring the time from when the fuel cell system is stopped to when it is started is provided.

次に、この燃料電池システムにおいて、コントロールユニット20が実行する燃料電池システムの解凍判断の制御について図5のフローチャートに従い説明する。   Next, in this fuel cell system, control of the fuel cell system thawing determination executed by the control unit 20 will be described with reference to the flowchart of FIG.

S501で本システム起動の要求があったか否か検出し、システム起動の要求がないときにはそのまま起動しない。一方、本システム起動の要請があればS502へ進み、タイマー21において本システムの停止中の時間を測定する。ここでは、タイマー21による時間の測定方法(S601〜S605)について詳細を説明しないが、タイマー21による時間の測定は、本システム停止から起動の要請があるまで行う。   In S501, it is detected whether or not there is a request for starting the system. If there is no request for starting the system, the system is not started as it is. On the other hand, if there is a request to start the system, the process proceeds to S502, and the timer 21 measures the time during which the system is stopped. Here, the details of the time measurement method (S601 to S605) by the timer 21 will not be described, but the time measurement by the timer 21 is performed from the stop of the system until a request for activation is made.

次に、S503とS504において、温度センサ32より本システムの外部温度を検出し、外気温度が氷点下か否か判断する。外気温度が氷点より高いときは、冷却水が凍結していないと判断して、S511へ進み通常起動をする。外気温度が氷点下のときは、冷却水が凍結している場合もあるので以下の方法で、本システムの解凍判断を行う。   Next, in S503 and S504, the temperature outside the system is detected by the temperature sensor 32, and it is determined whether or not the outside air temperature is below freezing point. When the outside air temperature is higher than the freezing point, it is determined that the cooling water is not frozen, and the process proceeds to S511 to start normally. When the outside air temperature is below the freezing point, the cooling water may be frozen.

S505、S506で温度センサ30において冷却水の温度を検出し、TT0へ格納するとともに、S502で得た燃料電池1の停止時間を△tに格納する。なお、△tの測定制御(S601〜S6
05)は後述する。
S505, detects the temperature of the cooling water at the temperature sensor 30 in S506, stores the TT 0, stores the stop time fuel cell 1 obtained in S502 to △ t. Note that Δt measurement control (S601 to S6)
05) will be described later.

S507では、燃料電池1の起動時の温度(Ts0)をTT0とし、S508において燃料電池1の推定方法を用いて燃料電池1の温度を推定する。ここで、燃料電池1の推定方法は、本システム停止直前の温度TT0を燃料電池1の温度変数Ts0に入力する。式(2)のT0にはTs0、外気温度Tair、経過時間△tを入力し、得られた温度Tsを燃料電池1の推定温度とする。 In S507, the fuel cell 1 starts the temperature (T s0) and TT 0, estimates the temperature of the fuel cell 1 using the estimation method of the fuel cell 1 in S508. Here, the estimation method of the fuel cell 1 inputs the temperature TT 0 immediately before the stop of the system into the temperature variable T s0 of the fuel cell 1. T s0 , the outside air temperature T air , and the elapsed time Δt are input to T 0 in Equation (2), and the obtained temperature T s is set as the estimated temperature of the fuel cell 1.

S509で燃料電池1の推定温度が氷点下のときは、冷却水が凍結していると判断して氷点下解凍起動制御(S301〜S304)を行い、冷却水を解凍した後にS511において燃料電池1を起動する。一方、燃料電池1の推定温度が氷点以上のときは、冷却水が凍結していないと判断して、氷点下解凍起動制御を行うことなくS511へ進み燃料電池1を起動する。   When the estimated temperature of the fuel cell 1 is below freezing in S509, it is determined that the cooling water is frozen, and the below freezing thaw starting control (S301 to S304) is performed. After the cooling water is thawed, the fuel cell 1 is started in S511. To do. On the other hand, when the estimated temperature of the fuel cell 1 is equal to or higher than the freezing point, it is determined that the cooling water is not frozen, and the process proceeds to S511 and the fuel cell 1 is started without performing the below-freezing thawing start control.

次に、上述した本システムの停止中の時間の測定方法について図6に基づき説明する。   Next, a method for measuring the time during which the system is stopped will be described with reference to FIG.

S601において、本システムのシステム停止要求があったとき、S602、S603において温度センサ30により燃料電池1が排出した冷却水の温度を検出し、温度変数TT1にその検出値を入力する。S604で温度変数の値をデータベースとしてマイクロコンピュータに記憶しておく。その後、S605へ進み、本システムの起動要請があるまで時間の測定を開始する。 In S601, when a system stop request of the system, S602, the fuel cell 1 detects the temperature of cooling water discharged by the temperature sensor 30 in S603, and inputs the detected value of the temperature variable TT 1. In S604, the value of the temperature variable is stored in the microcomputer as a database. After that, the process proceeds to S605, and time measurement is started until there is a request for activation of this system.

第2実施形態の効果について以下説明する。燃料電池1を停止する際、温度センサ30により検出した燃料電池1が排出する冷却水の温度をそのときの燃料電池1の温度と仮定しマイクロコンピュータに記憶しておく。そして、燃料電池1の停止から起動までの時間(△t)と本システムの外部温度
とから、本システム開始時の燃料電池1の温度を推定するものである。したがって、本システムでは冷却水の温度を検出する温度センサを一箇所とシステム停止時間のみで燃料電池1の温度を推定し冷却水の解凍判断を行うことが可能となる。
The effect of 2nd Embodiment is demonstrated below. When the fuel cell 1 is stopped, the temperature of the cooling water discharged by the fuel cell 1 detected by the temperature sensor 30 is assumed to be the temperature of the fuel cell 1 at that time and stored in the microcomputer. Then, the temperature of the fuel cell 1 at the start of the system is estimated from the time (Δt) from the stop to the start of the fuel cell 1 and the external temperature of the system. Therefore, in this system, it is possible to estimate the temperature of the fuel cell 1 with only one temperature sensor for detecting the temperature of the cooling water and the system stop time, and to perform the thawing determination of the cooling water.

第3実施形態について、第2実施形態と異なる部分について以下説明する。なお、本実施形態で用いるシステムの構成は第2実施形態と同様である。   The third embodiment will be described below with respect to differences from the second embodiment. The system configuration used in this embodiment is the same as that in the second embodiment.

本実施形態の燃料電池システムにおいて、コントロールユニット20が実行する燃料電池システムの解凍判断の制御について図7のフローチャートに従い説明する。   In the fuel cell system of the present embodiment, control of the fuel cell system thawing determination executed by the control unit 20 will be described with reference to the flowchart of FIG.

S701からS708は、燃料電池1の停止時から、起動時までの本システムの処理について記載している。具体的には、本システムを停止する前に、温度センサ30において燃料電池1が排出した冷却水の温度Ts0を温度センサ30で検出する。そして、一定の時間間隔毎(△t)に本システムの
外部温度(Tair)を検出し、式(2)に代入して燃料電池1の温度(Ts)推定し、本システムの起動要求を検知するまで更新していく。ここで、一定の時間間隔は予め実験および計算等により、燃料電池1の温度変化に応じて時間の間隔を定めておく。更新した燃料電池1の推定温度は、データベースとして記憶しておく。
S701 to S708 describe the processing of this system from when the fuel cell 1 is stopped to when it is started. Specifically, the temperature sensor 30 detects the temperature T s0 of the cooling water discharged from the fuel cell 1 in the temperature sensor 30 before stopping the system. Then, the external temperature (T air ) of the present system is detected at regular time intervals (Δt), substituted into the equation (2) to estimate the temperature (T s ) of the fuel cell 1, and the system startup request Update until it is detected. Here, the predetermined time interval is determined in advance according to the temperature change of the fuel cell 1 through experiments and calculations. The updated estimated temperature of the fuel cell 1 is stored as a database.

S709においてシステムの起動要求があると、S710で本システムの外部温度を検出し、S711で外部の温度が氷点より大きければS715において、燃料電池1の起動をする。一方、外部の温度が氷点下のとき、S712へ進み上記のように推定した燃料電池1の推定温度を参照する。   If there is a system activation request in S709, the external temperature of the system is detected in S710, and if the external temperature is higher than the freezing point in S711, the fuel cell 1 is activated in S715. On the other hand, when the external temperature is below freezing point, the process proceeds to S712 and the estimated temperature of the fuel cell 1 estimated as described above is referred to.

S713において、燃料電池1の推定温度が氷点より高いときはそのまま起動し、推定温度が氷点下のときは、S714において氷点下解凍起動制御を行い、冷却水流路37の冷却水を解凍した後S715で燃料電池1を起動する。   In S713, when the estimated temperature of the fuel cell 1 is higher than the freezing point, the fuel cell 1 is started as it is. When the estimated temperature is lower than the freezing point, the below-freezing thawing starting control is performed in S714, and the cooling water in the cooling water channel 37 is thawed, The battery 1 is activated.

以下第3実施形態の効果について説明する。燃料電池1の停止から燃料電池1の起動まで、一定の時間間隔で温度センサ32により検出されるシステムの外部温度と前記一定時間とから、燃料電池1の温度を予め推定しておくことで、システムの起動時に改めて、燃料電池1の温度を推定する必要がなく速やかに解凍するか否か判断できる。   The effects of the third embodiment will be described below. By preliminarily estimating the temperature of the fuel cell 1 from the external temperature of the system detected by the temperature sensor 32 at regular time intervals from the stop of the fuel cell 1 to the start of the fuel cell 1 and the certain time, It is not necessary to estimate the temperature of the fuel cell 1 again at the time of starting the system, and it can be determined whether or not to quickly defrost.

本発明は、上記した実施形態に限定されるものではなく、特許請求の範囲に記載した発明の技術的思想の範囲内で当業者がなしうるさまざまな改良、変更が含まれることは明白である。
It is obvious that the present invention is not limited to the above-described embodiments, and includes various improvements and modifications that can be made by those skilled in the art within the scope of the technical idea of the invention described in the claims. .

第1の実施形態のシステムのブロック図である。It is a block diagram of the system of a 1st embodiment. 第1の実施形態の燃料電池の解凍判断を制御するフローチャートである。It is a flowchart which controls the thawing | decompression determination of the fuel cell of 1st Embodiment. 第1の実施形態の燃料電池の解凍の制御をするフローチャートである。It is a flowchart which controls the thawing | decompression of the fuel cell of 1st Embodiment. 第2の実施形態のシステムのブロック図である。It is a block diagram of the system of a 2nd embodiment. 第2の実施形態の燃料電池の解凍判断を制御するフローチャートである。It is a flowchart which controls the thawing | decompression determination of the fuel cell of 2nd Embodiment. 第2の実施形態の燃料電池停止時間の測定を制御するフローチャートである。It is a flowchart which controls the measurement of the fuel cell stop time of 2nd Embodiment. 第3の実施形態の燃料電池の解凍判断を制御するフローチャートである。It is a flowchart which controls the thawing | decompression determination of the fuel cell of 3rd Embodiment.

符号の説明Explanation of symbols

1 燃料電池
2 ポンプ
3 ラジエータ(冷却手段)
4 三方弁(切り替え手段)
11 ヒータ(加熱手段)
21 タイマー(測定手段)
30 温度センサ(第1の温度検出手段)
31 温度センサ(第4の温度検出手段)
32 温度センサ(第3の温度検出手段)
33 温度センサ(第2の温度検出手段)
37 冷却水流路(循環通路)
42 バイパス通路(分岐通路)
1 Fuel cell 2 Pump 3 Radiator (cooling means)
4 Three-way valve (switching means)
11 Heater (heating means)
21 Timer (measuring means)
30 Temperature sensor (first temperature detection means)
31. Temperature sensor (fourth temperature detection means)
32 Temperature sensor (third temperature detection means)
33 Temperature sensor (second temperature detection means)
37 Cooling water flow path (circulation passage)
42 Bypass passage (branch passage)

Claims (7)

燃料電池に水分を循環させる循環通路と、
燃料電池が排出した水分を冷却する冷却手段とを備える燃料電池の温度推定装置において、
燃料電池出口の水分温度を検出する第1の温度検出手段と、
前記冷却手段入口の水分温度を検出する第2の温度検出手段と、
外気温度を検出する第3の温度検出手段とを備え、
前記燃料電池の放熱量に関係する定数と、前記第1から第3の温度検出手段で検出した温度とに基づいて前記燃料電池の温度を推定することを特徴とする燃料電池の温度推定装置。
A circulation passage for circulating water in the fuel cell;
In a fuel cell temperature estimation device comprising cooling means for cooling the water discharged from the fuel cell,
First temperature detecting means for detecting the moisture temperature at the fuel cell outlet;
Second temperature detecting means for detecting the moisture temperature at the cooling means inlet;
A third temperature detecting means for detecting the outside air temperature,
An apparatus for estimating a temperature of a fuel cell, wherein the temperature of the fuel cell is estimated based on a constant related to a heat radiation amount of the fuel cell and a temperature detected by the first to third temperature detecting means.
燃料電池に水分を循環させる循環通路と、
燃料電池が排出した水分を冷却する冷却手段とを備える燃料電池システム制御装置において、
燃料電池出口の水分温度を検出する第1の温度検出手段と、
前記冷却手段入口の水分温度を検出する第2の温度検出手段と、
外気温度を検出する第3の温度検出手段と、
前記循環通路の水分を加熱する加熱手段を備え、
前記第3の温度検出手段で検出した外気温度が氷点下、かつ、前記燃料電池の推定温度が氷点下のときは、前記循環通路の水分を加熱することを特徴とする燃料電池システム制御装置。
A circulation passage for circulating water in the fuel cell;
In a fuel cell system control device comprising a cooling means for cooling moisture discharged from the fuel cell,
First temperature detecting means for detecting the moisture temperature at the fuel cell outlet;
Second temperature detecting means for detecting the moisture temperature at the cooling means inlet;
Third temperature detecting means for detecting the outside air temperature;
Heating means for heating the water in the circulation passage;
The fuel cell system control device, wherein when the outside air temperature detected by the third temperature detecting means is below freezing point and the estimated temperature of the fuel cell is below freezing point, the water in the circulation passage is heated.
前記冷却手段を迂回するように前記循環通路に設けた分岐通路と、
前記循環通路または前記分岐通路に流路を切り替える切り替え手段と、
前記分岐通路の水分の温度を検出する第4の温度検出手段と、を備え、
前記温度推定手段は、前記第1と第2または第4の温度検出手段の何れか一つの検出温度に基づいて前記燃料電池の温度を推定することを特徴とする請求項2に記載の燃料電池システム制御装置。
A branch passage provided in the circulation passage so as to bypass the cooling means;
Switching means for switching the flow path to the circulation path or the branch path;
A fourth temperature detecting means for detecting the temperature of moisture in the branch passage,
3. The fuel cell according to claim 2, wherein the temperature estimation unit estimates the temperature of the fuel cell based on any one of the first, second, and fourth temperature detection units. System controller.
前記温度推定手段は、前記第3の温度検出手段及び第1の温度検出手段の検出温度と、
前記燃料電池の停止の際に、前記第2の温度検出手段または前記第4の温度検出手段のうち水分が流通していた側の温度から前記燃料電池の温度を推定することを特徴とする請求項3に記載の燃料電池システム制御装置。
The temperature estimating means includes a temperature detected by the third temperature detecting means and the first temperature detecting means,
The temperature of the fuel cell is estimated from the temperature of the second temperature detecting means or the fourth temperature detecting means on the side where moisture has circulated when the fuel cell is stopped. Item 4. The fuel cell system control device according to Item 3.
前記燃料電池の停止から起動までの時間を測定する測定手段を備え、
第3の温度検出手段で検出した値が氷点下のとき、前記第3の温度検出手段、前記第1の温度検出手段、前記測定手段で検出した値に基づいて前記燃料電池の温度を推定する温度推定手段を備え、
前記温度推定手段において推定した前記燃料電池の温度が氷点下のときは、前記循環通路の水分を加熱することを特徴とする請求項2に記載の燃料電池システム制御装置。
Comprising measuring means for measuring the time from stop to start of the fuel cell;
The temperature at which the temperature of the fuel cell is estimated based on the values detected by the third temperature detecting means, the first temperature detecting means, and the measuring means when the value detected by the third temperature detecting means is below freezing point. An estimation means,
3. The fuel cell system control device according to claim 2, wherein when the temperature of the fuel cell estimated by the temperature estimation unit is below freezing, the water in the circulation passage is heated.
前記温度推定手段は、前記燃料電池の運転停止の際の第1の温度検出手段の検出温度、前記第3の温度検出手段の検出温度と、前記燃料電池の停止時間に基づいて、前記燃料電池の温度を推定することを特徴とする請求項5に記載の燃料電池システム制御装置。   The temperature estimation unit is configured to detect the fuel cell based on a detection temperature of the first temperature detection unit, a detection temperature of the third temperature detection unit, and a stop time of the fuel cell when the operation of the fuel cell is stopped. The fuel cell system control device according to claim 5, wherein the temperature of the fuel cell system is estimated. 燃料電池に水分を循環させる循環通路と、
前記循環通路の水分を加熱する加熱手段と、
前記加熱手段の下流にて、燃料電池が排出した水分を冷却する冷却手段とを備える燃料電池システム制御装置において、
燃料電池出口の水分温度を検出する第1の温度検出手段と、
外気温度を検出する第2の温度検出手段と、
第2の温度検出手段で検出した値が氷点下のとき、一定時間毎に前記第2と、前記第1の温度検出手段の検出温度と、所定時間との関係に基づいて前記燃料電池の温度を推定する温度推定手段を備え、
前記温度推定手段において推定した前記燃料電池の温度が氷点下のときは、前記循環通路の水分を加熱することを特徴とする燃料電池システム制御装置。
A circulation passage for circulating water in the fuel cell;
Heating means for heating moisture in the circulation passage;
A fuel cell system control device comprising cooling means for cooling the water discharged from the fuel cell downstream of the heating means;
First temperature detecting means for detecting the moisture temperature at the fuel cell outlet;
Second temperature detecting means for detecting the outside air temperature;
When the value detected by the second temperature detection means is below freezing point, the temperature of the fuel cell is determined based on the relationship between the second, the detection temperature of the first temperature detection means, and the predetermined time at regular intervals. Temperature estimation means for estimating,
When the temperature of the fuel cell estimated by the temperature estimating means is below freezing point, the fuel in the circulation passage is heated.
JP2005124754A 2005-04-22 2005-04-22 Fuel cell temperature estimation device and fuel cell system control device Active JP5239113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124754A JP5239113B2 (en) 2005-04-22 2005-04-22 Fuel cell temperature estimation device and fuel cell system control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124754A JP5239113B2 (en) 2005-04-22 2005-04-22 Fuel cell temperature estimation device and fuel cell system control device

Publications (2)

Publication Number Publication Date
JP2006302739A true JP2006302739A (en) 2006-11-02
JP5239113B2 JP5239113B2 (en) 2013-07-17

Family

ID=37470780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124754A Active JP5239113B2 (en) 2005-04-22 2005-04-22 Fuel cell temperature estimation device and fuel cell system control device

Country Status (1)

Country Link
JP (1) JP5239113B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282794A (en) * 2007-04-13 2008-11-20 Toyota Motor Corp Fuel cell system
JP2009022077A (en) * 2007-07-10 2009-01-29 Olympus Imaging Corp Electronic apparatus system
JP2009272275A (en) * 2008-05-12 2009-11-19 Honda Motor Co Ltd Fuel cell system, and starting method for fuel cell system
WO2010090091A1 (en) * 2009-02-04 2010-08-12 トヨタ自動車株式会社 Fuel cell system
JP2013179064A (en) * 2013-04-25 2013-09-09 Toyota Motor Corp Fuel cell system
CN103733407A (en) * 2011-09-02 2014-04-16 日产自动车株式会社 Fuel cell system
WO2017154310A1 (en) * 2016-03-09 2017-09-14 ブラザー工業株式会社 Fuel cell, fuel cell control method, and computer program
JP2021051874A (en) * 2019-09-24 2021-04-01 株式会社Subaru Fuel cell system and control device
CN113991149A (en) * 2021-10-22 2022-01-28 苏州中车氢能动力技术有限公司 Fuel cell stack inlet air temperature testing method and device and storage medium
WO2024165046A1 (en) * 2023-02-08 2024-08-15 中联重科股份有限公司 Control method for thermal management system, thermal management system, and controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203662A (en) * 2001-12-28 2003-07-18 Nissan Motor Co Ltd Fuel cell vehicle
JP2004146240A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Fuel cell system
JP2004165101A (en) * 2002-01-30 2004-06-10 Denso Corp Fuel cell, fuel cell system, and method for warming the fuel cell
JP2004327083A (en) * 2003-04-21 2004-11-18 Honda Motor Co Ltd Fuel cell system and its control method
JP2005085531A (en) * 2003-09-05 2005-03-31 Nissan Motor Co Ltd Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203662A (en) * 2001-12-28 2003-07-18 Nissan Motor Co Ltd Fuel cell vehicle
JP2004165101A (en) * 2002-01-30 2004-06-10 Denso Corp Fuel cell, fuel cell system, and method for warming the fuel cell
JP2004146240A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Fuel cell system
JP2004327083A (en) * 2003-04-21 2004-11-18 Honda Motor Co Ltd Fuel cell system and its control method
JP2005085531A (en) * 2003-09-05 2005-03-31 Nissan Motor Co Ltd Fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282794A (en) * 2007-04-13 2008-11-20 Toyota Motor Corp Fuel cell system
JP2009022077A (en) * 2007-07-10 2009-01-29 Olympus Imaging Corp Electronic apparatus system
JP2009272275A (en) * 2008-05-12 2009-11-19 Honda Motor Co Ltd Fuel cell system, and starting method for fuel cell system
WO2010090091A1 (en) * 2009-02-04 2010-08-12 トヨタ自動車株式会社 Fuel cell system
CN103733407A (en) * 2011-09-02 2014-04-16 日产自动车株式会社 Fuel cell system
US10873094B2 (en) 2011-09-02 2020-12-22 Nissan Motor Co., Ltd. Fuel cell system
JP2013179064A (en) * 2013-04-25 2013-09-09 Toyota Motor Corp Fuel cell system
WO2017154310A1 (en) * 2016-03-09 2017-09-14 ブラザー工業株式会社 Fuel cell, fuel cell control method, and computer program
JP2021051874A (en) * 2019-09-24 2021-04-01 株式会社Subaru Fuel cell system and control device
JP7445401B2 (en) 2019-09-24 2024-03-07 株式会社Subaru Fuel cell system and control device
CN113991149A (en) * 2021-10-22 2022-01-28 苏州中车氢能动力技术有限公司 Fuel cell stack inlet air temperature testing method and device and storage medium
WO2024165046A1 (en) * 2023-02-08 2024-08-15 中联重科股份有限公司 Control method for thermal management system, thermal management system, and controller

Also Published As

Publication number Publication date
JP5239113B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5239113B2 (en) Fuel cell temperature estimation device and fuel cell system control device
CA2647868C (en) Fuel cell system and control method thereof
US7666532B2 (en) Fuel cell system and method of starting fuel cell system
US10777831B2 (en) Equation based cooling system control strategy/method
US20190165396A1 (en) COOLING SYSTEM dT/dt BASED CONTROL
JP6853173B2 (en) Coolant injection control device
JP2004039528A (en) Fuel cell system
US20190165395A1 (en) Equation based state estimator for cooling system controller
US20150311547A1 (en) Fuel cell cathode balance of plant freeze strategy
JP5310294B2 (en) Fuel cell system
JP2006179198A (en) Fuel cell system
CN102734983A (en) Heat pump system and heat pump unit controlling method
JP5610029B2 (en) Fuel cell system
JP5168719B2 (en) Fuel cell system
JP6751714B2 (en) Fuel cell and coolant storage
US10720655B2 (en) Partial derivative based feedback controls for pid
KR101575356B1 (en) System and method for preventing heater of fuel cell vehicle from overheating
JP7223718B2 (en) Power cycle test device and power cycle test method
JP2007317553A (en) Fuel cell system
JP2009129848A (en) Fuel cell system
JP2007157616A (en) Heat medium control system, heating control system, and fuel cell vehicle
JP4127063B2 (en) Fuel cell system
JP5187481B2 (en) Fuel cell system
US10985391B2 (en) Real time iterative solution using recursive calculation
JP2022065695A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150