JP2006302548A - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP2006302548A
JP2006302548A JP2005119187A JP2005119187A JP2006302548A JP 2006302548 A JP2006302548 A JP 2006302548A JP 2005119187 A JP2005119187 A JP 2005119187A JP 2005119187 A JP2005119187 A JP 2005119187A JP 2006302548 A JP2006302548 A JP 2006302548A
Authority
JP
Japan
Prior art keywords
sample
electron beam
electron
scanning
conductive plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005119187A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kazumori
森 啓 悦 数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2005119187A priority Critical patent/JP2006302548A/en
Publication of JP2006302548A publication Critical patent/JP2006302548A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning electron microscope in which testpiece charging with electricity when observing a non-conductivity testpiece by the scanning electron microscope is prevented by removing scattered floating electrons between the testpiece and an objective lens. <P>SOLUTION: A scattered floating electron ejection mechanism configured with an electrically conductive plate 23 having a through hole through which an electron beam passes and electrodes 21a and 21b insulated from the electrically conductive plate 23 is prepared between the testpiece and the objective lens. By applying negative potential to the electrode 21a and positive potential to the electrode 21b, electric field in a direction perpendicular to an optical axis of the electron beam EB is generated. The floating electrons are ejected to a position apart from the testpiece by the generated electric field as shown by electron ejection orbits DE, and thereby testpiece surface charging with electricity is prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、試料表面に電子線を照射して像観察や分析を行う走査電子顕微鏡(以下、SEMと略称する)において、試料の帯電を防止する技術に関する。   The present invention relates to a technique for preventing charging of a sample in a scanning electron microscope (hereinafter abbreviated as SEM) that performs image observation and analysis by irradiating the surface of the sample with an electron beam.

SEMは、細く絞った電子線を二次元的に走査しながら試料表面に照射し、電子線の照射に伴って試料から発生した二次電子や反射電子を検出し、検出された信号を電子ビームの走査と同期させて画像として表示することにより試料表面の観察を行っている。   SEM irradiates a sample surface while scanning a finely focused electron beam two-dimensionally, detects secondary electrons and reflected electrons generated from the sample with the irradiation of the electron beam, and detects the detected signal as an electron beam. The surface of the sample is observed by displaying it as an image in synchronization with the scanning.

図1に、従来のSEMの概略構成例を示す。図1において、鏡体100はSEM鏡体の電子線光軸を含む面の断面をあらわしており、集束レンズ2、走査コイル3、対物レンズ4は略円環状となるように設けられている。ただし、対物レンズ4は、磁極片に二次電子検出器6を挿入するための穴とそれに対称な穴が空けられている様子を示しており、上下に分離されているわけではない。鏡体100内に配置された電子銃1から放射された電子線EBは、集束レンズ2、対物レンズ4により細く集束され、試料台7に取り付けられた試料5に照射される。加速電源9は電子線EBを加速するために必要な電圧を電子銃1に供給する。集束レンズ2、対物レンズ4、走査コイル3には、それぞれのコイル励磁に必要な電力が駆動部10から供給される。   FIG. 1 shows a schematic configuration example of a conventional SEM. In FIG. 1, a mirror 100 represents a cross section of a surface including an electron beam optical axis of an SEM mirror, and the focusing lens 2, the scanning coil 3, and the objective lens 4 are provided so as to be substantially annular. However, the objective lens 4 shows a state in which a hole for inserting the secondary electron detector 6 in the magnetic pole piece and a hole symmetrical to the hole are formed, and the objective lens 4 is not separated vertically. The electron beam EB radiated from the electron gun 1 disposed in the mirror body 100 is finely focused by the focusing lens 2 and the objective lens 4 and irradiated onto the sample 5 attached to the sample stage 7. The acceleration power supply 9 supplies a voltage necessary for accelerating the electron beam EB to the electron gun 1. The focusing lens 2, the objective lens 4, and the scanning coil 3 are supplied with electric power necessary for exciting the coils from the driving unit 10.

試料台7は試料ステージ8に載置され、試料ステージ制御部によって、X及びY軸の水平移動、Z軸の高さ移動、回転、傾斜を行うことができるようになっている。制御演算処理装置13は、上記の加速電圧、各種レンズと走査コイル、試料ステージ等の制御及び二次電子の検出信号の処理等を行う。操作者は操作部15を操作して、二次電子像等の観察条件、表示条件等を所望の条件に設定したり、試料5上の観察領域を選択する操作等が行える。   The sample stage 7 is placed on the sample stage 8, and the sample stage controller can horizontally move the X and Y axes, move the height of the Z axis, rotate, and tilt. The control arithmetic processing unit 13 performs control of the acceleration voltage, various lenses and scanning coils, a sample stage, etc., processing of detection signals of secondary electrons, and the like. The operator can operate the operation unit 15 to set observation conditions such as a secondary electron image, display conditions, etc. to desired conditions, or to perform an operation of selecting an observation area on the sample 5.

電子線照射により試料表面から放出された二次電子は、電子線EBの光軸に沿って対物レンズの磁界により巻き上げられ、例えば図1に示される二次電子軌道SEに沿って二次電子検出器6に導かれて検出される。電子線EBは、走査コイル3により二次元的に走査されるので、これと同期して検出された二次電子の検出信号は、画像信号処理部11、バス16を介して表示装置14に送られ、二次電子像として表示される。なお、散乱浮遊電子軌道FEについては後述する。   The secondary electrons emitted from the sample surface by the electron beam irradiation are rolled up by the magnetic field of the objective lens along the optical axis of the electron beam EB, and, for example, detect secondary electrons along the secondary electron trajectory SE shown in FIG. It is guided to the detector 6 and detected. Since the electron beam EB is scanned two-dimensionally by the scanning coil 3, the secondary electron detection signal detected in synchronization therewith is sent to the display device 14 via the image signal processing unit 11 and the bus 16. And displayed as a secondary electron image. The scattered floating electron orbit FE will be described later.

試料5に照射された電子線EBは、二次電子や反射電子として試料外に放出される電子と、試料に吸収される電子に分かれる。試料5に導電性がある場合は、試料5に吸収された電子は、試料5を支持している試料台7を通ってアースに流れる。しかし、試料5が非導電性の場合、試料表面の電子線の照射されている領域は帯電してしまう。   The electron beam EB irradiated to the sample 5 is divided into electrons emitted outside the sample as secondary electrons and reflected electrons, and electrons absorbed by the sample. When the sample 5 is conductive, the electrons absorbed by the sample 5 flow to the ground through the sample stage 7 supporting the sample 5. However, when the sample 5 is non-conductive, the region irradiated with the electron beam on the sample surface is charged.

試料表面が帯電すると、その影響を受けて観察像に様々な悪影響を及ぼす。例えば、明暗の極端な異常コントラストが表れたり、観察視野がドリフトしたり、非点収差が増大して高分解能の像観察が行えないなどの障害を引き起こす。この帯電を防止するため、従来から多くの技術が知られている。   When the surface of the sample is charged, the observation image is affected variously by the influence. For example, it causes troubles such as extreme contrast of brightness and darkness, drift of observation field of view, and astigmatism increase, and high-resolution image observation cannot be performed. In order to prevent this charging, many techniques are conventionally known.

例えば、非導電性試料の表面に金等の導電性物質を薄く被覆すると、帯電を防ぐことができる。しかし、表面のアーティファクトを引き起こす可能性や、試料調整に手間がかかる、元に戻すことができない等の問題もある。特に高分解の像観察を行う場合は、微細な表面構造が被覆により変形してしまい、正しい表面形状を観察しているか判断できないという基本的な問題がある。   For example, charging can be prevented by coating the surface of a non-conductive sample with a thin conductive material such as gold. However, there are also problems such as the possibility of causing surface artifacts, troublesome sample preparation, and inability to restore the original. In particular, when performing high-resolution image observation, there is a basic problem that the fine surface structure is deformed by the coating, and it cannot be determined whether the correct surface shape is observed.

観察条件を選ぶことによって帯電を防止又は軽減する方法もある。試料に照射する電子線の加速電圧を低くすると、入射電子に対する試料から放出される二次電子の割合が増加することが知られている。また、試料を傾斜させて電子線が試料面に入射する角度を小さくしていくと、入射電子に対する試料から放出される二次電子の割合が増加することもよく知られている。そのため、絶縁抵抗の特に高い非導電性試料を観察する場合は、低加速電圧と試料傾斜の観察条件を組み合わせて帯電を防止する方法が有効とされている。   There is also a method of preventing or reducing electrification by selecting observation conditions. It is known that when the acceleration voltage of an electron beam applied to a sample is lowered, the ratio of secondary electrons emitted from the sample to incident electrons increases. It is also well known that when the sample is tilted to reduce the angle at which the electron beam is incident on the sample surface, the ratio of secondary electrons emitted from the sample to the incident electrons increases. Therefore, when observing a non-conductive sample having a particularly high insulation resistance, a method of preventing charging by combining a low acceleration voltage and a sample tilt observation condition is effective.

その他観察条件によって帯電を軽減する方法としては、電子線の走査速度を速くして試料表面に残り帯電の原因となる電子の数を減らす方法、試料から放出される電子のエネルギーを選別して帯電の影響を受けていない電子のみで画像を形成する方法、試料にバイアスをかけて二次電子が試料から発生する時のエネルギーを高くすることによって帯電の影響を受けないようにして画像を形成する方法等がある。   Other methods for reducing charging depending on the observation conditions include a method in which the scanning speed of the electron beam is increased to reduce the number of electrons remaining on the sample surface that cause charging, and the energy of electrons emitted from the sample is selected and charged. A method of forming an image with only electrons that are not affected by the influence of the charging, and forming an image so as not to be affected by charging by increasing the energy when the sample is biased to generate secondary electrons from the sample. There are methods.

特開平4-363849号公報Japanese Patent Laid-Open No. 4-363849 特開平11-154479号公報JP 11-154479 A 特開2003-151479号公報JP 2003-151479 A

上記背景技術のなかで述べた方法はいずれも帯電を起こさないか又は帯電現象を軽減するための条件を選ぶ方法であるが、試料の帯電を引き起こす過剰な電子を積極的に除去しているわけではない。そのため、試料上に磁界などが存在する場合、電子線の照射により試料から放出された二次電子は、エネルギーが低いため試料の表面近傍に浮遊し、また試料に戻ることがある。図1中の散乱浮遊電子軌道FEは、このような電子の振る舞いを一例として示したものである。さらには、反射電子が対物レンズ下面等に当たって放出された二次電子が浮遊し、それが試料表面に再飛来する場合もある。この現象は、対物レンズ下部の電子線通過穴の穴径が小さいほど顕著となる。これら対物レンズと試料の間に浮遊する電子が、一次電子線により直接照射される領域以外の場所にも飛来し、試料が非導電性の場合は帯電がさらに増大することになる。   None of the methods described in the background art described above is a method of selecting a condition for preventing charging or reducing the charging phenomenon. However, it actively removes excess electrons that cause charging of the sample. is not. Therefore, when a magnetic field or the like is present on the sample, secondary electrons emitted from the sample by electron beam irradiation may float near the surface of the sample and return to the sample because of low energy. The scattered floating electron trajectory FE in FIG. 1 shows such behavior of electrons as an example. Furthermore, the secondary electrons emitted when the reflected electrons hit the lower surface of the objective lens etc. may float and re-fly to the sample surface. This phenomenon becomes more prominent as the hole diameter of the electron beam passage hole below the objective lens is smaller. Electrons floating between the objective lens and the sample fly to places other than the region directly irradiated by the primary electron beam, and the charge is further increased when the sample is non-conductive.

これに対して、帯電を積極的に消してしまう従来技術も知られている。例えば、特許文献1の特開平4-363849号公報には、試料表面近傍にイオンガスを噴射するガス噴出装置とガス吸引装置を設け帯電を中和する技術が開示されている。しかし、帯電の度合いに応じたガスの流量調整は熟練を必要とし、真空内にガスを噴射することにより真空が低下すると電子源が損傷するなどの問題もある。   On the other hand, there is also known a conventional technique that positively eliminates charging. For example, Japanese Patent Laid-Open No. 4-363849 of Patent Document 1 discloses a technique for neutralizing charging by providing a gas ejection device and a gas suction device for injecting ion gas in the vicinity of a sample surface. However, adjustment of the gas flow rate according to the degree of charging requires skill, and there is a problem that the electron source is damaged when the vacuum is lowered by injecting the gas into the vacuum.

また、特許文献2の特開平11-154479号公報には、試料表面に正イオンビームを照射して導電層を誘起し、帯電した電荷を逃がす方法が開示されている。しかし、帯電量に対し、帯電除去に使用するイオンビームの照射量を一致させることは簡単ではなく、照射量の制御は操作者の経験が必要とされるという問題がある。   Japanese Patent Application Laid-Open No. 11-154479 of Patent Document 2 discloses a method for inducing a conductive layer by irradiating a sample surface with a positive ion beam to release charged charges. However, it is not easy to match the irradiation amount of the ion beam used for charge removal with the charge amount, and there is a problem that control of the irradiation amount requires experience of an operator.

また、特許文献3の特開2003-151479号公報には、プローブ状の帯電中和用電極を試料の帯電領域近傍に置くか又は接触させて、帯電領域との間に電流を発生させることにより帯電中和制御を行う技術が開示されている。しかし、高分解能観察を目的とするSEMでは対物レンズと試料の間隙は狭いので、プローブ状の電極を帯電領域近傍で制御することは簡単ではない。また、そもそも、対物レンズと試料の間に広く分布する散乱浮遊電子を排除することはできない。   Japanese Patent Laid-Open No. 2003-151479 of Patent Document 3 discloses that a probe-like charge neutralizing electrode is placed near or in contact with a charged region of a sample to generate a current between the charged region. A technique for performing charge neutralization control is disclosed. However, since the gap between the objective lens and the sample is narrow in the SEM aiming at high resolution observation, it is not easy to control the probe-like electrode in the vicinity of the charged region. In the first place, the scattered stray electrons widely distributed between the objective lens and the sample cannot be excluded.

本発明は上述の問題を解決するためのものであって、その目的は、複雑な機構を必要とせず、簡易な操作によって、対物レンズと試料の間に分布する散乱浮遊電子を効率良く排出することにより、非導電性試料の帯電を防止することにある。   The present invention is for solving the above-described problems, and the object thereof is to efficiently discharge scattered floating electrons distributed between the objective lens and the sample by a simple operation without requiring a complicated mechanism. This is to prevent charging of the non-conductive sample.

上記の問題を解決するために、本発明は、
電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に電気的に絶縁されて配置された正負の電圧を選択的に印加できる電極から構成される散乱浮遊電子排出機構を備えたことを特徴とする。
In order to solve the above problems, the present invention provides:
An objective lens for narrowing the electron beam and irradiating the sample; a scanning unit for scanning the irradiation position of the electron beam on the sample; and a detecting unit for detecting electrons generated from the sample by the electron beam irradiation; In a scanning electron microscope comprising a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
A conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and positive and negative voltages that are electrically insulated and arranged on the conductive plate are selectively applied. The present invention is characterized in that a scattering stray electron discharge mechanism composed of an electrode that can be formed is provided.

また本発明は、前記導電性板材の試料と対向する面に、前記導電性板材よりも二次電子発生効率の低い物質からなる被覆層が形成されていることを特徴とする。   The present invention is also characterized in that a coating layer made of a substance having a lower secondary electron generation efficiency than the conductive plate material is formed on the surface of the conductive plate material facing the sample.

また本発明は、前記導電性板材よりも二次電子発生効率の低い物質からなる被覆層が炭素を主成分とする物質で形成されていることを特徴とする。   Further, the invention is characterized in that a coating layer made of a material having a lower secondary electron generation efficiency than the conductive plate material is formed of a material containing carbon as a main component.

また本発明は、前記導電性板材が炭素を主成分とする物質で形成されていることを特徴とする。   Further, the present invention is characterized in that the conductive plate material is formed of a substance containing carbon as a main component.

また本発明は、前記導電性板材の少なくとも試料と対向する面が接地電位に保たれていることを特徴とする。   The present invention is also characterized in that at least the surface of the conductive plate facing the sample is kept at the ground potential.

また本発明は、前記散乱浮遊電子排出機構を電子線通路から退避させるための退避機構を設けたことを特徴とする。   Further, the present invention is characterized in that a retracting mechanism for retracting the scattered floating electron discharge mechanism from the electron beam path is provided.

また本発明は、前記導電性板材を電子線の光軸と垂直な方向に動かして、前記導電性板材に設けられた電子線の通過する貫通穴の位置合わせを行う調整機構を備えたことを特徴とする。   The present invention further includes an adjustment mechanism that moves the conductive plate in a direction perpendicular to the optical axis of the electron beam to align a through hole through which the electron beam is provided in the conductive plate. Features.

また本発明は、前記電極によって形成された電子線の光軸と垂直な方向の電界により電子線の軸ずれを補正するための偏向器を、前記対物レンズの上方に設けたことを特徴とする。   The present invention is also characterized in that a deflector for correcting an axial misalignment of the electron beam by an electric field perpendicular to the optical axis of the electron beam formed by the electrode is provided above the objective lens. .

また本発明は、前記散乱浮遊電子排出機構により排出される浮遊電子を検出するための排出電子用検出器を設けたことを特徴とする。   The present invention is also characterized in that a discharge electron detector for detecting stray electrons discharged by the scattered stray electron discharge mechanism is provided.

また本発明は、電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に配置されてS極とN極を選択できる磁極から構成される散乱浮遊電子排出機構を備えたことを特徴とする。
The present invention also provides an objective lens for narrowing an electron beam to irradiate the sample, scanning means for scanning the electron beam irradiation position on the sample, and electrons generated from the sample by electron beam irradiation. In a scanning electron microscope comprising a detecting means for detecting, and a display means for displaying a detection signal from the detecting means as an image in synchronization with the scanning means,
Scattering composed of a conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and a magnetic pole disposed on the conductive plate and capable of selecting an S pole and an N pole A floating electron discharge mechanism is provided.

また本発明は、
電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に電気的に絶縁されて配置された正負の電圧を選択的に印加できる電極から構成される散乱浮遊電子排出機構を備え、
前記試料への電子線照射により前記試料と前記対物レンズに挟まれる空間内に生じる散乱浮遊電子を、前記散乱浮遊電子排出機構に構成される電極により電子線の光軸と垂直な面方向に形成される電界によって、前記試料と前記対物レンズに挟まれる空間の外に排出し、試料の帯電を防止することを特徴とする。
The present invention also provides
An objective lens for narrowing the electron beam and irradiating the sample; a scanning unit for scanning the irradiation position of the electron beam on the sample; and a detecting unit for detecting electrons generated from the sample by the electron beam irradiation; In a scanning electron microscope comprising a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
A conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and positive and negative voltages that are electrically insulated and arranged on the conductive plate are selectively applied. Equipped with a scattered floating electron emission mechanism composed of electrodes
Scattered stray electrons generated in the space between the sample and the objective lens due to electron beam irradiation on the sample are formed in a plane direction perpendicular to the optical axis of the electron beam by the electrode configured in the scattered stray electron discharge mechanism. The electric field is discharged out of the space between the sample and the objective lens to prevent the sample from being charged.

第1の発明によれば、
電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に電気的に絶縁されて配置された正負の電圧を選択的に印加できる電極から構成される散乱浮遊電子排出機構を備えたので、
前記試料への電子線照射により前記試料と前記対物レンズに挟まれる空間内に生じる散乱浮遊電子を、前記散乱浮遊電子排出機構に構成される電極により電子線の光軸と垂直な面方向に形成される電界によって、前記試料と前記対物レンズに挟まれる空間の外に排出し試料の帯電を防止することができる。
According to the first invention,
An objective lens for narrowing the electron beam and irradiating the sample; a scanning unit for scanning the irradiation position of the electron beam on the sample; and a detecting unit for detecting electrons generated from the sample by the electron beam irradiation; In a scanning electron microscope comprising a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
A conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and positive and negative voltages that are electrically insulated and arranged on the conductive plate are selectively applied. Because it has a scattering stray electron emission mechanism composed of electrodes that can
Scattered stray electrons generated in the space between the sample and the objective lens due to electron beam irradiation on the sample are formed in a plane direction perpendicular to the optical axis of the electron beam by the electrode configured in the scattered stray electron discharge mechanism. By the applied electric field, the sample can be discharged out of the space between the sample and the objective lens, and charging of the sample can be prevented.

第2の発明によれば、前記導電性板材の試料と対向する面に、前記導電性板材よりも二次電子発生効率の低い物質からなる被覆層が形成されているので、試料から発生した反射電子が前記導電性板材の下面に衝突して間接的に発生させる二次電子を減らし、帯電を防止することができる。   According to the second aspect of the invention, since the coating layer made of a substance having a lower secondary electron generation efficiency than the conductive plate is formed on the surface of the conductive plate facing the sample, the reflection generated from the sample Secondary electrons that are generated indirectly when the electrons collide with the lower surface of the conductive plate can be reduced, and charging can be prevented.

第3の発明によれば、前記導電性板材よりも二次電子発生効率の低い物質からなる被覆層が炭素を主成分とする物質で形成されているので、試料から発生した反射電子が前記導電性板材の下面に衝突して間接的に発生させる二次電子を減らし、帯電を防止することができる。   According to the third invention, since the coating layer made of a material having a secondary electron generation efficiency lower than that of the conductive plate material is formed of a material containing carbon as a main component, reflected electrons generated from a sample are Secondary electrons generated by collision with the lower surface of the conductive plate material can be reduced and charging can be prevented.

第4の発明によれば、前記導電性板材が炭素を主成分とする物質で形成されているので、試料から発生した反射電子が前記導電性板材の下面に衝突して間接的に発生させる二次電子を減らし、帯電を防止することができる。   According to the fourth aspect of the invention, since the conductive plate is made of a material whose main component is carbon, the reflected electrons generated from the sample collide with the lower surface of the conductive plate and are indirectly generated. Secondary electrons can be reduced and charging can be prevented.

第5の発明によれば、前記導電性板材の少なくとも試料と対向する面が接地電位に保たれているので、試料から発生した二次電子が前記導電性板材の下面に衝突して前記導電性板材に吸収され、アースに流れることによって前記導電性板材の帯電を防ぐことができる。   According to the fifth invention, since at least the surface of the conductive plate facing the sample is maintained at the ground potential, the secondary electrons generated from the sample collide with the lower surface of the conductive plate and the conductive The conductive plate material can be prevented from being charged by being absorbed by the plate material and flowing to the ground.

第6の発明によれば、前記散乱浮遊電子排出機構を電子線通路から退避させるための退避機構を設けたので、前記散乱浮遊電子排出機構を使用する必要が無い時は電子線通路から退避させて、操作性を向上させることができる。   According to the sixth aspect of the present invention, a retracting mechanism for retracting the scattered floating electron discharge mechanism from the electron beam path is provided. Therefore, when it is not necessary to use the scattered floating electron discharge mechanism, the scattered floating electron discharge mechanism is retracted from the electron beam path. The operability can be improved.

第7の発明によれば、前記導電性板材を電子線の光軸と垂直な方向に動かして、
前記導電性板材に設けられた電子線の通過する貫通穴の位置合わせを行う調整機構を備えたので、貫通穴の中心を電子線が通過するように正しく調整して、正常な二次電子像を観察することができる。
According to the seventh invention, the conductive plate is moved in a direction perpendicular to the optical axis of the electron beam,
Since the adjustment mechanism for aligning the through hole through which the electron beam passes provided in the conductive plate material is provided, the normal secondary electron image is adjusted by correctly adjusting the electron beam to pass through the center of the through hole. Can be observed.

第8の発明によれば、前記電極によって形成された電子線の光軸と垂直な方向の電界により電子線の軸ずれを補正するための偏向器を前記対物レンズの上方に設けたので、散乱浮遊電子を排出するために設けた電極により生じた電界の影響で傾斜した電子線の軸を傾斜しないように補正して、正常な二次電子像を観察することができる。   According to the eighth invention, since the deflector for correcting the axial deviation of the electron beam by the electric field perpendicular to the optical axis of the electron beam formed by the electrode is provided above the objective lens, A normal secondary electron image can be observed by correcting so that the axis of the electron beam inclined due to the influence of the electric field generated by the electrode provided for discharging floating electrons is not inclined.

第9の発明によれば、前記散乱浮遊電子排出機構により排出される浮遊電子を検出するための排出電子用検出器を設けたので、排出電子用検出器の検出信号を二次電子検出器から得られる検出信号と切替えまたは加算、減算等の演算を行って画像表示することにより、二次電子像の感度向上、帯電している領域に関する情報取得等の副次的効果を得ることができる。   According to the ninth aspect of the invention, since the detector for discharged electrons for detecting the stray electrons discharged by the scattered floating electron discharge mechanism is provided, the detection signal of the discharged electron detector is sent from the secondary electron detector. By displaying the image by performing operations such as switching, addition, or subtraction with the obtained detection signal, it is possible to obtain secondary effects such as improving the sensitivity of the secondary electron image and acquiring information about the charged region.

第10の発明によれば、電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に配置されてS極とN極を選択できる磁極から構成される散乱浮遊電子排出機構を備え、
前記磁極によって電子線の光軸と垂直な面方向に形成される磁界によって散乱浮遊電子を排出するようにしたので、
前記試料への電子線照射により前記試料と前記対物レンズに挟まれる空間内に生じる散乱浮遊電子を、前記散乱浮遊電子排出機構に構成される磁極により電子線の光軸と垂直な面方向に形成される磁界によって、前記試料と前記対物レンズに挟まれる空間の外に排出し試料の帯電を防止することができる。
According to the tenth invention, the objective lens for narrowing the electron beam to irradiate the sample, the scanning means for scanning the irradiation position of the electron beam on the sample, and generated from the sample by the electron beam irradiation In a scanning electron microscope provided with a detection means for detecting the electrons and a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
Scattering composed of a conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and a magnetic pole disposed on the conductive plate and capable of selecting an S pole and an N pole Equipped with a floating electron discharge mechanism,
Since scattered magnetic electrons are discharged by a magnetic field formed by the magnetic pole in a plane direction perpendicular to the optical axis of the electron beam,
Scattered floating electrons generated in the space between the sample and the objective lens by electron beam irradiation to the sample are formed in a plane direction perpendicular to the optical axis of the electron beam by the magnetic poles configured in the scattered floating electron discharge mechanism By the applied magnetic field, the sample can be discharged out of the space between the sample and the objective lens to prevent the sample from being charged.

第11の発明によれば、
電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に電気的に絶縁されて配置された正負の電圧を選択的に印加できる電極から構成される散乱浮遊電子排出機構を備え、
前記試料への電子線照射により前記試料と前記対物レンズに挟まれる空間内に生じる散乱浮遊電子を、前記散乱浮遊電子排出機構に構成される電極により電子線の光軸と垂直な面方向に形成される電界によって、前記試料と前記対物レンズに挟まれる空間の外に排出し試料の帯電を防止するようにしたので、
簡易な構成と簡単な操作により試料の帯電を防止して、高分解能の二次電子像観察が可能となる。
According to the eleventh invention,
An objective lens for narrowing the electron beam and irradiating the sample; a scanning unit for scanning the irradiation position of the electron beam on the sample; and a detecting unit for detecting electrons generated from the sample by the electron beam irradiation; In a scanning electron microscope comprising a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
A conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and positive and negative voltages that are electrically insulated and arranged on the conductive plate are selectively applied. Equipped with a scattered floating electron emission mechanism composed of electrodes
Scattered stray electrons generated in the space between the sample and the objective lens due to electron beam irradiation on the sample are formed in a plane direction perpendicular to the optical axis of the electron beam by the electrode configured in the scattered stray electron discharge mechanism. Since the electric field is discharged outside the space between the sample and the objective lens and the sample is prevented from being charged,
With a simple configuration and simple operation, charging of the sample is prevented, and high-resolution secondary electron image observation becomes possible.

以下、図2〜4を参照しながら、本発明を実施する最良の形態について説明する。ただし、この実施例によって本発明が限定されるものではない。図2は、本発明を実施するSEMの概略構成例を示している。図2において、図1に示した従来のSEMにおける構成と同一または類似の動作を行うものには共通の符号を付して説明の重複を避ける。また、図1の加速電源9、駆動部10、画像信号処理部11、試料ステージ制御部12、制御演算処理装置13、表示装置14、操作部15、バス16についても、図1と同様に本発明の構成例に含まれているが、図2では図を簡単にするため省略している。   Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. However, the present invention is not limited to the embodiments. FIG. 2 shows a schematic configuration example of an SEM implementing the present invention. In FIG. 2, components that perform the same or similar operations as those in the conventional SEM shown in FIG. The acceleration power source 9, the drive unit 10, the image signal processing unit 11, the sample stage control unit 12, the control arithmetic processing unit 13, the display unit 14, the operation unit 15, and the bus 16 shown in FIG. Although included in the configuration example of the invention, it is omitted in FIG. 2 for the sake of simplicity.

図2は、対物レンズ4と試料5の間に、導電性板材23と導電性板材23に支持された電極21a、21bで構成される散乱浮遊電子排出機構が挿入されている状態を示している。電極21a、21bにはそれぞれ電源22a、22bが接続されているが、電極に印加される電圧が負の時、追出電極21a、正の時、吸引電極21bと呼ぶことにする。   FIG. 2 shows a state in which a scattered floating electron discharge mechanism composed of a conductive plate 23 and electrodes 21 a and 21 b supported by the conductive plate 23 is inserted between the objective lens 4 and the sample 5. . Power sources 22a and 22b are connected to the electrodes 21a and 21b, respectively. However, when the voltage applied to the electrodes is negative, the electrodes 21a and 21b are referred to as eviction electrodes 21a, and when the voltages are positive, they are referred to as suction electrodes 21b.

図4は、散乱浮遊電子排出機構20のみを取り出した拡大図である。図4aは、散乱浮遊電子排出機構20を対物レンズ4側から見た平面図である。また、図4bは、図4aのAA断面の断面図である。導電性板材23の対物レンズ4に対向する面には、絶縁体25a、25bにより導電性板材23と電気的に絶縁されて追出電極21a、吸引電極21bが配置されている。電極21a、21bには、リード線26a、26bが導電性板材23と絶縁されて配線されている。リード線26a、26bは、電極21a、21bに負または正電圧を印加するためのものである。   FIG. 4 is an enlarged view in which only the scattered floating electron discharge mechanism 20 is taken out. FIG. 4A is a plan view of the scattered floating electron discharge mechanism 20 as viewed from the objective lens 4 side. 4b is a cross-sectional view taken along the line AA of FIG. 4a. On the surface of the conductive plate 23 facing the objective lens 4, a discharge electrode 21 a and a suction electrode 21 b are disposed so as to be electrically insulated from the conductive plate 23 by insulators 25 a and 25 b. Lead wires 26a and 26b are insulated from the conductive plate 23 and are wired to the electrodes 21a and 21b. The lead wires 26a and 26b are for applying a negative or positive voltage to the electrodes 21a and 21b.

追出電極21a、吸引電極21bの間には、電子線EBが通過するための貫通穴23aが設けられている。貫通穴23aの位置は追出電極21aと吸引電極21bを結ぶ線上にあればよいが、必ずしも両電極の中点にある必要はない。また図4では、貫通穴23aの位置が追出電極21a側に近く示されているが、その必要もない。
導電性板材23は、吸引電極21b側の右端(図2aでは途中までしか図示していない)で、図示しない移動・保持機構により保持されており、必要に応じて導電性板材23の挿入と退避が行えるようになっている。また、この移動・保持機構は、散乱浮遊電子排出機構20を対物レンズ4と試料5の間に挿入後、貫通穴の位置を電子線の光軸と垂直な面方向に動かして、位置合わせを行う調整機構を備えている。
Between the purge electrode 21a and the suction electrode 21b, a through hole 23a for allowing the electron beam EB to pass therethrough is provided. The position of the through hole 23a may be on the line connecting the purge electrode 21a and the suction electrode 21b, but it is not always necessary to be at the middle point between both electrodes. In FIG. 4, the position of the through hole 23a is shown close to the eviction electrode 21a side, but this is not necessary.
The conductive plate 23 is held by a moving / holding mechanism (not shown) at the right end (only shown partway in FIG. 2a) on the side of the suction electrode 21b, and the conductive plate 23 is inserted and retracted as necessary. Can be done. In addition, the moving / holding mechanism moves the position of the through hole in the plane direction perpendicular to the optical axis of the electron beam after inserting the scattered floating electron discharging mechanism 20 between the objective lens 4 and the sample 5 to perform alignment. An adjustment mechanism is provided.

次に、上記の散乱浮遊電子排出機構20の動作について説明する。
既に述べたように、非導電性試料を観察する場合、試料5から直接放出された二次電子と、反射電子が対物レンズ4等に衝突して間接的に発生した二次電子が、対物レンズ4と試料5の間に多数浮遊している状態となる。これらの散乱浮遊電子は、再度試料表面に飛来し試料の帯電を増大させる。その結果、試料の表面構造を観察できない、或いは観察像のドリフト、ノイズ等の増加により正常な像観察が行えなくなる。そのような状況が起きたとき、散乱浮遊電子排出機構20を対物レンズ4と試料5の間に挿入し、浮遊電子を排出させる。
Next, the operation of the scattered floating electron discharge mechanism 20 will be described.
As described above, when observing a non-conductive sample, the secondary electrons emitted directly from the sample 5 and the secondary electrons generated indirectly by the collision of the reflected electrons with the objective lens 4 are the objective lens. 4 and the sample 5 are in a floating state. These scattered stray electrons again fly to the sample surface and increase the charge of the sample. As a result, the surface structure of the sample cannot be observed, or normal image observation cannot be performed due to an increase in drift, noise, etc. of the observed image. When such a situation occurs, the scattered floating electron discharging mechanism 20 is inserted between the objective lens 4 and the sample 5 to discharge the floating electrons.

散乱浮遊電子排出機構20が挿入されると、電子線EBは貫通穴23aを通過して試料に照射される。発生した二次電子のうち、上向きの初速度成分が比較的大きい電子は、電子線EBの光軸に沿って対物レンズの磁界により巻き上げられ、二次電子検出器6に達する。しかし、対物レンズ4の下部から下方に戻ってくる二次電子をはじめ、いろいろな方向の初速度成分を持った二次電子が存在するため、必ずしも全ての二次電子が対物レンズの上方へ向かうわけではない。すなわち、導電性板材23があっても、貫通穴の近傍にはなお多くの浮遊電子が存在することになる。   When the scattered floating electron discharge mechanism 20 is inserted, the electron beam EB passes through the through hole 23a and is irradiated to the sample. Among the generated secondary electrons, electrons having a relatively large upward initial velocity component are wound up by the magnetic field of the objective lens along the optical axis of the electron beam EB and reach the secondary electron detector 6. However, since there exist secondary electrons having initial velocity components in various directions including secondary electrons returning downward from the lower part of the objective lens 4, not all secondary electrons are necessarily directed upward of the objective lens. Do not mean. That is, even if the conductive plate member 23 is present, many floating electrons still exist in the vicinity of the through hole.

そこで散乱浮遊電子排出機構20を挿入したら、追出電極21aに負電圧を印加する。それにより、散乱浮遊電子は電子線EBの光軸に対して垂直方向に生じている電界から力を受けて追出電極21aと反対の方向に移動を始める。また、吸引電極21bに正電圧を印加して、移動を始めた散乱浮遊電子に追出電極21aから吸引電極21bへ向かう方向の力を与えることにより、対物レンズ4と試料5に挟まれた空間内で生じた散乱浮遊電子は、対物レンズ4と試料5に挟まれた空間の外に排出される。図2の排出電子軌道DEは、こうして排出される電子の軌道を模式的に示した例である。   Therefore, when the scattered floating electron discharging mechanism 20 is inserted, a negative voltage is applied to the purge electrode 21a. As a result, the scattered stray electrons start to move in the direction opposite to the purge electrode 21a by receiving a force from the electric field generated in the direction perpendicular to the optical axis of the electron beam EB. In addition, a space between the objective lens 4 and the sample 5 is applied by applying a positive voltage to the suction electrode 21b and applying a force in the direction from the extraction electrode 21a to the suction electrode 21b to the scattered floating electrons that have started to move. The scattered stray electrons generated inside are discharged out of the space between the objective lens 4 and the sample 5. The discharge electron trajectory DE of FIG. 2 is an example schematically showing the trajectory of the electrons thus discharged.

電子線EBの照射により試料5から発生する二次電子と反射電子のうちの一部は、導電性板材23に遮られるものもある。導電性板材23は図示しない移動・保持機構を通して接地電位に保たれるようになっているので、エネルギーの低い二次電子は導電性板材23に衝突してそのまま吸収される。二次電子より高いエネルギーを持つ反射電子が、導電性板材23の下面に衝突した場合、間接的に二次電子を発生させる。この二次電子が再び試料に戻ると帯電を増大させることになる。そのため、導電性板材23の下面はできるだけ二次電子発生効率の低い物質で形成されていることが望ましい。   Some of secondary electrons and reflected electrons generated from the sample 5 by irradiation with the electron beam EB are blocked by the conductive plate 23. Since the conductive plate 23 is maintained at the ground potential through a moving / holding mechanism (not shown), secondary electrons having low energy collide with the conductive plate 23 and are absorbed as they are. When reflected electrons having higher energy than secondary electrons collide with the lower surface of the conductive plate 23, secondary electrons are indirectly generated. When the secondary electrons return to the sample again, charging is increased. For this reason, it is desirable that the lower surface of the conductive plate member 23 be formed of a material having as low a secondary electron generation efficiency as possible.

導電性板材23として例えば真鍮のような金属を用いる場合、真鍮は比較的二次電子発生効率の高い物質であることが知られている。そのため、真鍮より二次電子発生効率の低い物質で、反射電子の衝突する下面を被覆することが望ましい。図4bは、二次電子発生効率を低くするための被覆層24を設けた場合を示している。いろいろな物質の二次電子効率については既に良く知られているが、本発明における目的のためには、例えば炭素を主成分とする導電性ペイントを使用することができる。炭素を主成分とする導電性ペイントは、導電性を有し、二次電子発生効率の低い物質である条件を満たし、比較的安価で入手し易い材料として知られている。   When a metal such as brass is used as the conductive plate 23, it is known that brass is a substance having a relatively high secondary electron generation efficiency. Therefore, it is desirable to cover the lower surface where the reflected electrons collide with a material having a lower secondary electron generation efficiency than brass. FIG. 4b shows a case where a coating layer 24 for reducing the secondary electron generation efficiency is provided. The secondary electron efficiency of various materials is already well known, but for the purposes of the present invention, for example, conductive paints based on carbon can be used. A conductive paint containing carbon as a main component is known as a material that has conductivity and satisfies the conditions of a substance having low secondary electron generation efficiency and is relatively inexpensive and easily available.

ただし、本発明においては、必ずしも導電性板材23と別に被覆層24を備えている必要は無く、始めから例えばグラファイトなどの炭素を主成分とする導電性を有する物質を使用して導電性板材23を構成しても良い。この場合、導電性板材23の全てを例えばグラファイト等の単一材料で形成する必要は無く、例えば、貫通穴23a近傍の先端部をグラファイトなどの材料を使用し、移動・保持機構に近い部分は充分な強度を持つ例えば真鍮などの金属を使用した構成とするなどしても良い。   However, in the present invention, it is not always necessary to provide the coating layer 24 separately from the conductive plate 23, and from the beginning, the conductive plate 23 using a conductive material mainly composed of carbon such as graphite. May be configured. In this case, it is not necessary to form all of the conductive plate 23 with a single material such as graphite. For example, the tip near the through hole 23a is made of a material such as graphite, and the portion close to the moving / holding mechanism is For example, a structure using a metal such as brass having sufficient strength may be used.

上記の説明において、図4の散乱浮遊電子排出機構20は追出電極21aと吸引電極21bの二つ電極を設ける例を示したが、電極が必ずしも二つである必要は無く、少なくとも追出電極21aと吸引電極21bのどちらかを設ければ散乱浮遊電子の排出が可能である。
また、追出電極21aと吸引電極21bがひとつずつである必要も無く、それぞれが複数の電極で構成されていても良い。
また、これら電極を取り付ける位置は、導電性板材23の試料5と対向する面上であっても良い。
また、これら電極を、導電性板材23の対物レンズ4と対向する面及び試料5と対抗する面の両側に同時に設けて、それぞれの側で浮遊電子を排出させるように動作させても良い。
In the above description, the scattering floating electron discharging mechanism 20 of FIG. 4 has been shown as an example in which two electrodes of the extraction electrode 21a and the suction electrode 21b are provided. However, the number of the electrodes is not necessarily two. If either 21a or suction electrode 21b is provided, scattered floating electrons can be discharged.
Further, there is no need to provide one purge electrode 21a and one suction electrode 21b, and each may be composed of a plurality of electrodes.
Further, the position where these electrodes are attached may be on the surface of the conductive plate 23 facing the sample 5.
Further, these electrodes may be provided simultaneously on both sides of the surface of the conductive plate 23 facing the objective lens 4 and the surface facing the sample 5 so that floating electrons are discharged on each side.

次に、電子線の光軸と垂直な面方向の電界による電子線の軸ずれを補正する方法について説明する。散乱浮遊電子を排出するために生じさせた電界により、電子線EBの軌道も影響を受ける。散乱浮遊電子排出機構20より上方に、電子線EBの軸の傾斜を補正するための偏向器を設ける。図2に、このための偏向器27が対物レンズと走査コイル3との間に設けられている状態を示す。なお、偏向器27は、図2には図示していないが、駆動部10に接続されている。
ここで、偏向器27は必ずしも対物レンズと走査コイル3との間に設けられていなくてもよく、散乱浮遊電子排出機構20より上方にあって、電子線EBの軸を補正できれば良い。または、偏向器27によって行うのと同等の動作を、走査コイル3に重畳させることで実現しても良い。
Next, a method for correcting an axial misalignment of an electron beam due to an electric field in a plane direction perpendicular to the optical axis of the electron beam will be described. The orbit of the electron beam EB is also affected by the electric field generated to discharge the scattered stray electrons. A deflector for correcting the inclination of the axis of the electron beam EB is provided above the scattered floating electron discharge mechanism 20. FIG. 2 shows a state in which a deflector 27 for this purpose is provided between the objective lens and the scanning coil 3. The deflector 27 is connected to the drive unit 10 although not shown in FIG.
Here, the deflector 27 does not necessarily have to be provided between the objective lens and the scanning coil 3, and only needs to be above the scattered floating electron discharge mechanism 20 and correct the axis of the electron beam EB. Alternatively, an operation equivalent to that performed by the deflector 27 may be realized by superimposing on the scanning coil 3.

次に、図3について説明する。図3は、鏡体300に散乱浮遊電子の排出電子用検出器30を構成した場合の概略構成例を示している。鏡体300から排出電子用検出器30を取り去れば、図2の鏡体200と同じ構成である。従って、図1に示されている加速電源9、駆動部10、画像信号処理部11、試料ステージ制御部12、制御演算処理装置13、表示装置14、操作部15、バス16についても本発明の構成例に含まれているが、図2の場合と同様に図を簡単にするため図3では省略している。排出電子用検出器30の出力は、図示していないが画像信号処理部11に入力されるようになっており、二次電子検出器6から入力される信号と切替えまたは加算、減算等の演算を行えるようになっている。   Next, FIG. 3 will be described. FIG. 3 shows a schematic configuration example in the case where the detector 300 for the scattered electron discharge electrons is configured in the mirror body 300. If the discharged electron detector 30 is removed from the mirror body 300, the configuration is the same as that of the mirror body 200 of FIG. Therefore, the acceleration power source 9, the drive unit 10, the image signal processing unit 11, the sample stage control unit 12, the control arithmetic processing unit 13, the display unit 14, the operation unit 15, and the bus 16 shown in FIG. Although included in the configuration example, it is omitted in FIG. 3 in order to simplify the drawing as in the case of FIG. The output of the discharged electron detector 30 is input to the image signal processing unit 11 (not shown), and is switched to the signal input from the secondary electron detector 6 or performs operations such as switching, addition, and subtraction. Can be done.

試料の帯電を防止または軽減する目的としては、排出電子用検出器30を構成する必要は無く、図2に示した構成で充分である。しかし、散乱浮遊電子を発生させる元となる二次電子と反射電子は、試料表面について何らかの情報を持っていると考えられる。そのため、排出電子用検出器30の検出信号を二次電子検出器6から得られる検出信号と切替えまたは加算、減算等の演算を行って画像表示すれば、二次電子像の感度向上、帯電している領域に関する情報取得等の副次的効果を得ることが可能となる。   For the purpose of preventing or reducing the electrification of the sample, it is not necessary to configure the discharged electron detector 30, and the configuration shown in FIG. 2 is sufficient. However, it is considered that the secondary electrons and the reflected electrons that generate the scattered stray electrons have some information about the sample surface. Therefore, if the detection signal of the discharge electron detector 30 is switched or added to or subtracted from the detection signal obtained from the secondary electron detector 6 to display an image, the sensitivity of the secondary electron image can be improved and charged. It is possible to obtain a secondary effect such as information acquisition related to the area.

上述した散乱浮遊電子排出機構は、電界を生じさせる電極を設けて散乱浮遊電子を排出するようにしているが、電界の代わりに磁界を生じさせる磁極を設けるようにしても同じ効果を奏することは明らかである。   The scattered floating electron discharge mechanism described above is provided with an electrode that generates an electric field and discharges scattered floating electrons. However, the same effect can be obtained by providing a magnetic pole that generates a magnetic field instead of an electric field. it is obvious.


従来の走査電子顕微鏡の概略構成例を示す図。The figure which shows the schematic structural example of the conventional scanning electron microscope. 本発明を実施する走査電子顕微鏡の概略構成例を示す図。The figure which shows the schematic structural example of the scanning electron microscope which implements this invention. 本発明を実施する走査電子顕微鏡の他の概略構成例を示す図。The figure which shows the other schematic structural example of the scanning electron microscope which implements this invention. 本発明の散乱浮遊電子排出機構の構成例を示す図。The figure which shows the structural example of the scattering floating electron discharge mechanism of this invention.

符号の説明Explanation of symbols

(同一または類似の動作を行うものには共通の符号を付す。)
EB 電子線
SE 二次電子軌道
FE 散乱浮遊電子軌道
DE 排出電子軌道
1 電子銃
2 集束レンズ
3 走査コイル
4 対物レンズ
5 試料
6 二次電子検出器
7 試料台
8 試料ステージ
9 加速電源
10 駆動部
11 画像信号処理部
12 試料ステージ制御部
13 制御演算処理装置
14 表示装置
15 操作部
16 バス
20 散乱浮遊電子排出機構
21a、21b 電極
22a、22b 電源
23 導電性板材
23a 貫通穴
24 被覆層
25a、25b 絶縁材
26a、26b リード線
27 軸ずれ補正偏向器
30 排出電子用検出器
100、200、300 鏡体
(Those that perform the same or similar operations are denoted by a common reference.)
EB electron beam SE secondary electron orbit FE scattered floating electron orbit DE discharge electron orbit 1 electron gun 2 focusing lens 3 scanning coil 4 objective lens 5 sample 6 secondary electron detector 7 sample stage 8 sample stage 9 acceleration power source
10 Drive unit
11 Image signal processor
12 Sample stage controller
13 Control processing unit
14 Display device
15 Operation unit
16 bus
20 Scattered floating electron emission mechanism
21a, 21b electrode
22a, 22b Power supply
23 Conductive plate
23a Through hole
24 Coating layer
25a, 25b insulation
26a, 26b Lead wire
27 Axis deviation corrector
30 Detector for emitted electrons
100, 200, 300 mirror

Claims (11)

電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に電気的に絶縁されて配置された正負の電圧を選択的に印加できる電極から構成される散乱浮遊電子排出機構を備えた、ことを特徴とする走査電子顕微鏡。
An objective lens for narrowing the electron beam and irradiating the sample; a scanning unit for scanning the irradiation position of the electron beam on the sample; and a detecting unit for detecting electrons generated from the sample by the electron beam irradiation; In a scanning electron microscope comprising a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
A conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and positive and negative voltages that are electrically insulated and arranged on the conductive plate are selectively applied. A scanning electron microscope comprising a scattered floating electron emission mechanism composed of an electrode that can be formed.
前記導電性板材の試料と対向する面に、前記導電性板材よりも二次電子発生効率の低い物質からなる被覆層が形成されている、ことを特徴とする請求項1に記載の走査電子顕微鏡。 2. The scanning electron microscope according to claim 1, wherein a coating layer made of a substance having a lower secondary electron generation efficiency than the conductive plate is formed on a surface of the conductive plate facing the sample. . 前記導電性板材よりも二次電子発生効率の低い物質からなる被覆層が炭素を主成分とする物質で形成されている、ことを特徴とする請求項1または2に記載の走査電子顕微鏡。 3. The scanning electron microscope according to claim 1, wherein a coating layer made of a material having a secondary electron generation efficiency lower than that of the conductive plate material is formed of a material containing carbon as a main component. 前記導電性板材が炭素を主成分とする物質で形成されている、ことを特徴とする請求項1または2に記載の走査電子顕微鏡。 The scanning electron microscope according to claim 1, wherein the conductive plate material is made of a substance mainly composed of carbon. 前記導電性板材の少なくとも試料と対向する面が接地電位に保たれている、ことを特徴とする請求項1〜4のいずれかに記載の走査電子顕微鏡。 The scanning electron microscope according to any one of claims 1 to 4, wherein at least a surface of the conductive plate facing the sample is maintained at a ground potential. 前記散乱浮遊電子排出機構を電子線通路から退避させるための退避機構を設けた、ことを特徴とする請求項1〜5のいずれかに記載の走査電子顕微鏡。 The scanning electron microscope according to claim 1, further comprising a retracting mechanism for retracting the scattered floating electron discharging mechanism from the electron beam path. 前記導電性板材を電子線の光軸と垂直な方向に動かして、前記導電性板材に設けられた電子線の通過する貫通穴の位置合わせを行う調整機構を備えた、ことを特徴とする請求項1〜6のいずれかに記載の走査電子顕微鏡。 An adjustment mechanism is provided, wherein the conductive plate is moved in a direction perpendicular to an optical axis of an electron beam to align a through hole through which an electron beam is provided in the conductive plate. Item 7. A scanning electron microscope according to any one of Items 1 to 6. 前記電極によって形成された電子線の光軸と垂直な方向の電界により電子線の軸ずれを補正するための偏向器を前記対物レンズの上方に設けた、ことを特徴とする請求項1〜7のいずれかに記載の走査電子顕微鏡。 8. A deflector for correcting an axial misalignment of an electron beam by an electric field in a direction perpendicular to the optical axis of the electron beam formed by the electrode is provided above the objective lens. A scanning electron microscope according to any one of the above. 前記散乱浮遊電子排出機構により排出される浮遊電子を検出するための排出電子用検出器を設けた、ことを特徴とする請求項1〜8のいずれかに記載の走査電子顕微鏡。 The scanning electron microscope according to claim 1, further comprising a discharge electron detector for detecting stray electrons discharged by the scattered floating electron discharge mechanism. 電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に配置されてS極とN極を選択できる磁極から構成される散乱浮遊電子排出機構を備えた、ことを特徴とする走査電子顕微鏡。
An objective lens for narrowing the electron beam and irradiating the sample; a scanning unit for scanning the irradiation position of the electron beam on the sample; and a detecting unit for detecting electrons generated from the sample by the electron beam irradiation; In a scanning electron microscope comprising a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
Scattering composed of a conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and a magnetic pole disposed on the conductive plate and capable of selecting an S pole and an N pole A scanning electron microscope comprising a floating electron discharge mechanism.
電子線を細く絞って試料に照射するための対物レンズと、電子線の照射位置を前記試料上で走査するための走査手段と、電子線照射により前記試料から発生した電子を検出する検出手段と、前記検出手段からの検出信号を前記走査手段と同期させて画像として表示する表示手段を備えた走査電子顕微鏡において、
前記対物レンズと前記試料との間に配置されて電子線の通過する貫通穴を有する導電性板材と、前記導電性板材上に電気的に絶縁されて配置された正負の電圧を選択的に印加できる電極から構成される散乱浮遊電子排出機構を備え、
前記試料への電子線照射により前記試料と前記対物レンズに挟まれる空間内に生じる散乱浮遊電子を、前記散乱浮遊電子排出機構に構成される電極により電子線の光軸と垂直な面方向に形成される電界によって、前記試料と前記対物レンズに挟まれる空間の外に排出し試料の帯電を防止する、ことを特徴とする帯電防止方法。
An objective lens for narrowing the electron beam and irradiating the sample; a scanning unit for scanning the irradiation position of the electron beam on the sample; and a detecting unit for detecting electrons generated from the sample by the electron beam irradiation; In a scanning electron microscope comprising a display means for displaying a detection signal from the detection means as an image in synchronization with the scanning means,
A conductive plate having a through-hole through which an electron beam passes and disposed between the objective lens and the sample, and positive and negative voltages that are electrically insulated and arranged on the conductive plate are selectively applied. Equipped with a scattered floating electron emission mechanism composed of electrodes
Scattered stray electrons generated in the space between the sample and the objective lens due to electron beam irradiation on the sample are formed in a plane direction perpendicular to the optical axis of the electron beam by the electrode configured in the scattered stray electron discharge mechanism. An antistatic method, wherein the sample is discharged out of a space between the sample and the objective lens by an electric field to prevent the sample from being charged.
JP2005119187A 2005-04-18 2005-04-18 Scanning electron microscope Withdrawn JP2006302548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119187A JP2006302548A (en) 2005-04-18 2005-04-18 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119187A JP2006302548A (en) 2005-04-18 2005-04-18 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JP2006302548A true JP2006302548A (en) 2006-11-02

Family

ID=37470621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119187A Withdrawn JP2006302548A (en) 2005-04-18 2005-04-18 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2006302548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035621A1 (en) * 2008-09-24 2010-04-01 株式会社 日立ハイテクノロジーズ Method for controlling charging of sample and scanning electron microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035621A1 (en) * 2008-09-24 2010-04-01 株式会社 日立ハイテクノロジーズ Method for controlling charging of sample and scanning electron microscope
JP2010080065A (en) * 2008-09-24 2010-04-08 Hitachi High-Technologies Corp Sample static charge control method and scanning electron microscope
US8487251B2 (en) 2008-09-24 2013-07-16 Hitachi High-Technologies Corporation Method for controlling charging of sample and scanning electron microscope

Similar Documents

Publication Publication Date Title
CN109300759B (en) Low-energy scanning electron microscope system, scanning electron microscope system and sample detection method
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
JP3786875B2 (en) Objective lens for charged particle beam devices
JP3268583B2 (en) Particle beam device
JP4300710B2 (en) Scanning electron microscope
US7504626B2 (en) Scanning electron microscope and apparatus for detecting defect
KR20220153059A (en) Charged particle beam apparatus and imaging method with multiple detectors
TW201618149A (en) Charged particle beam specimen inspection system and method for operation thereof
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
US6504164B2 (en) Electron beam apparatus
AU9411598A (en) Environmental sem with a magnetic field for improved secondary electron detection
JP4527289B2 (en) Particle optics including detection of Auger electrons
US20190385810A1 (en) Charged Particle Beam Device
JP4613405B2 (en) Scanning electron microscope
JP6224710B2 (en) Environment-controlled SEM gas injection system
US6617579B2 (en) Scanning electronic beam apparatus
EP1018757A1 (en) Charged particle beam emitting device
US20020109089A1 (en) SEM provided with an adjustable final electrode in the electrostatic objective
US20060255288A1 (en) Method and system for discharging a sample
JPH0636346B2 (en) Charged particle beam apparatus and sample observation method using the same
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP2006302548A (en) Scanning electron microscope
JP4073149B2 (en) Electron beam equipment
WO2005091328A1 (en) Apparatus and method for directing gas towards a specimen
JP2005093106A (en) Scanning electron microscope

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701