JP2006300942A - Method of controlling measuring device - Google Patents

Method of controlling measuring device Download PDF

Info

Publication number
JP2006300942A
JP2006300942A JP2006112851A JP2006112851A JP2006300942A JP 2006300942 A JP2006300942 A JP 2006300942A JP 2006112851 A JP2006112851 A JP 2006112851A JP 2006112851 A JP2006112851 A JP 2006112851A JP 2006300942 A JP2006300942 A JP 2006300942A
Authority
JP
Japan
Prior art keywords
frequency
measurement
measuring
controlling
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006112851A
Other languages
Japanese (ja)
Inventor
Wilhelm Florin
フローリン ウィルヘルム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Publication of JP2006300942A publication Critical patent/JP2006300942A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device, or particularly a method of operating especially a magnetic induction flow meter, and to obtain satisfactory SN ratio. <P>SOLUTION: A method of controlling the measuring device, in which measuring operation is clocked by a measuring frequency. The measured data, demanded in a measuring operation, is applied to a frequency analysis, and the measuring frequency is automatically controlled as a function of the frequency spectrum demanded by this. In this method, the satisfactory SN ratio is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、測定周波数で刻時される測定作業を有する測定器具の制御方法に関する。   The present invention relates to a method for controlling a measuring instrument having a measuring operation clocked at a measuring frequency.

上記方法を用いた例としては、磁気誘導流量計の測定方法がある。磁気誘導流量計は、測定チューブを流れる媒体の流量を測定するために使用され、少なくとも一つの界磁コイルによって、前記測定チューブの縦軸に垂直な方向に延出する磁界要素を有する磁界を発生させ、媒体に誘導される電圧が2つの測定電極を介して検出される。磁気誘導流量計の基調をなす概念は、流速の測定に関して電磁誘導の原理を使用することを提案した1832年のファラディに戻る。誘導に関するファラディの法則によれば、電荷を有し、磁界内を通過する流媒体は、流れ方向に対して垂直且つ磁界に対して垂直な方向に電界強度を発生させる。磁気誘導流量計は、界磁コイルによって、流方向に垂直な方向に延出する磁界要素を有する磁界を発生させる。磁界内では、所定数の電荷を有する流媒体の量要素が、電極によって検出された測定電圧に対する量要素において生じる電界強度に貢献する。   As an example using the above method, there is a measurement method of a magnetic induction flow meter. A magnetic induction flow meter is used to measure the flow rate of a medium flowing through a measurement tube and generates a magnetic field having a magnetic field element extending in a direction perpendicular to the longitudinal axis of the measurement tube by at least one field coil. And the voltage induced in the medium is detected via the two measuring electrodes. The underlying concept of the magnetic induction flowmeter goes back to 1832 Faraday, which proposed using the principle of electromagnetic induction for the measurement of flow velocity. According to Faraday's law for induction, a flowing medium that has a charge and passes through a magnetic field generates an electric field strength in a direction perpendicular to the flow direction and perpendicular to the magnetic field. The magnetic induction flowmeter generates a magnetic field having a magnetic field element extending in a direction perpendicular to the flow direction by a field coil. Within the magnetic field, the quantity element of the flow medium having a predetermined number of charges contributes to the electric field strength that occurs in the quantity element for the measured voltage detected by the electrodes.

従来の磁気誘導流量計において、前記測定電極は、流媒体との誘導型又は容量型結合にいずれかに関して設計される。磁気誘導流量計の顕著な特性は、前記測定された電圧と、前記測定注の断面にわたって平均された流媒体の速度との間、言い換えると測定された電圧と流量との間の比例関係である。   In a conventional magnetic induction flow meter, the measuring electrode is designed for either inductive or capacitive coupling with the flow medium. A prominent characteristic of a magnetic induction flow meter is the proportional relationship between the measured voltage and the velocity of the flow medium averaged over the cross section of the measuring note, in other words, the measured voltage and flow rate. .

流速の関数として測定電極で検出される測定電圧は、典型的には、数マイクロボルト及び数ミリボルトの範囲である。しかしながら、測定される電圧には、良く干渉するノイズ電圧が重なる。通常、これらのノイズ電圧は、電流計供給電力及びポンプのストローク率の周波数に関連した異なる周波数で現れる。入力回路のインピーダンスによれば、前記ノイズ電圧の大きさを数百mV程度に高くすることができる。   The measurement voltage detected at the measurement electrode as a function of flow rate is typically in the range of a few microvolts and a few millivolts. However, the noise voltage that interferes well overlaps the measured voltage. Typically, these noise voltages appear at different frequencies related to the ammeter supply power and pump stroke rate frequency. According to the impedance of the input circuit, the magnitude of the noise voltage can be increased to about several hundred mV.

それゆえに、この発明の目的は、測定器具、特に磁気誘導流量計を作動させる方法を提供し、良好なSN比を得ることである。   The object of the present invention is therefore to provide a method for operating a measuring instrument, in particular a magnetic induction flow meter, to obtain a good signal-to-noise ratio.

最初に述べられる方法に関して、上述された目的は、測定作業の間検出される測定変数を周波数分析にかけることによって、またそれによって規定された周波数に関連して測定周波数を自動的に制御することによって達成される。   With regard to the method described at the outset, the above mentioned objective is to automatically control the measurement frequency by subjecting the measurement variables detected during the measurement operation to a frequency analysis and in relation to the frequency defined thereby. Achieved by:

このように、この発明によれば、測定作業を刻時する測定周波数は、予め設定されるのではなく、検出されたノイズ周波数に関連して制御される。測定周波数を制御する方法にはいろいろある。   Thus, according to the present invention, the measurement frequency for timing the measurement operation is not set in advance, but is controlled in relation to the detected noise frequency. There are various ways to control the measurement frequency.

基本的に、本発明の好ましい実施例において実行されるように、測定周波数は、到達可能な最高SN比を有する測定信号を引き出すような方法で、制御される。これは、測定周波数が、最高に可能なSN比を有する測定信号を常に引き出せる方法において、ノイズの大きさ分布、言い換えると干渉スペクトラムに対応して連続して制御される。ここでの重要な様相は、干渉周波数がなくなるので、測定周波数が自動的に且つ即座に新しい干渉スペクトラムにシフトされ、測定周波数をよりよいSN比に導く他の値にセットすることができることに、測定機器の制御の間、干渉スペクトラムにおける即座の対応がある。   Basically, as implemented in the preferred embodiment of the present invention, the measurement frequency is controlled in such a way as to derive a measurement signal having the highest reachable signal to noise ratio. This is continuously controlled according to the noise size distribution, in other words, the interference spectrum, in a way that the measurement frequency can always extract the measurement signal with the highest possible signal-to-noise ratio. An important aspect here is that since the interference frequency is eliminated, the measurement frequency can be automatically and immediately shifted to a new interference spectrum, and the measurement frequency can be set to other values that lead to a better signal-to-noise ratio. There is an immediate response in the interference spectrum during measurement instrument control.

一般的に前記干渉スペクトラムは、ノイズレベルから明らかに立ち上がっているいくつかの主周波数を含んでいる。それ故に、本発明の好ましい実施例において、前記測定周波数は、要求されるスペクトラムの少なくとも一つの主周波数によって自動的に制御される。これは、別の方法においても達成することができる。特に、本発明の好ましい実施例において、測定周波数は、一つの要求される主周波数によって、一つの主周波数の整数倍によって、又は一つの主周波数の分数倍によって、自動的に制御される。   In general, the interference spectrum includes several main frequencies that clearly rise from the noise level. Therefore, in a preferred embodiment of the invention, the measurement frequency is automatically controlled by at least one main frequency of the required spectrum. This can also be achieved in other ways. In particular, in the preferred embodiment of the invention, the measurement frequency is automatically controlled by one required main frequency, by an integral multiple of one main frequency, or by a fractional multiple of one main frequency.

選択肢の一つとして、本発明の好ましい実施例は、測定周波数は、要求される主周波数とは別の周波数によって自動的に制御されることを提供する。この発明の他の例では、予め規定された周波数域は、測定周波数のために選択され、この場合、前記測定周波数は、最大の内部周波数分離で、要求される主周波数のいくつかによって、予め規定された周波数域の範囲内で自動的に制御される。   As an option, the preferred embodiment of the present invention provides that the measurement frequency is automatically controlled by a frequency different from the required main frequency. In another example of the invention, a predefined frequency range is selected for the measurement frequency, in which case the measurement frequency is pre-determined by some of the main frequencies required with maximum internal frequency separation. It is automatically controlled within the specified frequency range.

本質的には、獲得された振動の位相には関係なく、周波数分析を実行することが可能である。しかしながら、この発明の実施例において、周波数分析は、位相依存である。これに関して、本発明の好ましい例は、付加的に位相依存法において、好ましくは上述したように測定周波数を制御するために使用される周波数を有する獲得された振動の位相で位相をロックすることで、測定作業の刻時機構を制御する。   In essence, it is possible to perform a frequency analysis regardless of the phase of the acquired vibration. However, in an embodiment of the invention, the frequency analysis is phase dependent. In this regard, a preferred example of the present invention is additionally to lock the phase with the phase of the acquired vibration having a frequency used to control the measurement frequency as described above, preferably in a phase dependent manner. Control the clocking mechanism of the measurement work.

上述したように、この発明による方法は、磁気誘導流量計の操作に特に良く役に立つ。したがって、この発明の好ましい例は、界磁コイル及び2つの電極を有する測定チューブからなる磁気誘導流量計の形の測定機器を目指している。この場合、測定周波数で刻時される界磁コイルは、コイル駆動電流が供給され、電圧は、2つの測定電極で検出され、これによって検出された電圧は、周波数分析にかけられ、コイル駆動電流で界磁コイルに影響を与える測定周波数は、要求される周波数スペクトラムに関連して制御される。特に、本発明の実施例において、界磁コイルに変化する定電流を供給する。   As mentioned above, the method according to the invention is particularly useful for the operation of magnetic induction flow meters. Accordingly, a preferred example of the invention is aimed at a measuring instrument in the form of a magnetic induction flow meter consisting of a measuring tube having a field coil and two electrodes. In this case, the field coil clocked at the measurement frequency is supplied with a coil drive current, the voltage is detected at the two measurement electrodes, and the voltage detected thereby is subjected to frequency analysis and the coil drive current. The measurement frequency that affects the field coil is controlled in relation to the required frequency spectrum. In particular, in the embodiment of the present invention, a constant current changing to the field coil is supplied.

発明の方法が実行され、強化されるいくつかの方法がある。これに対して、添付図面を参照して、従属請求項及び本発明の実施例の下記する詳細な説明に注意を払う必要がある。   There are several ways in which the inventive method can be implemented and enhanced. On the other hand, attention should be paid to the following detailed description of the dependent claims and embodiments of the present invention with reference to the accompanying drawings.

以下、この発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1に示される磁気誘導流量計は、そこを流れる媒体によって誘導される電圧を検出する2つの電極を有する測定チューブ1を具備する。必要な磁界は、2つの界磁コイル3によって生じる。   The magnetic induction flow meter shown in FIG. 1 comprises a measuring tube 1 having two electrodes that detect the voltage induced by the medium flowing therethrough. The required magnetic field is generated by the two field coils 3.

界磁電流発生器4は、界磁コイル3にコイル駆動電流を供給する。マイクロコントローラ5は、界磁電流発生器4を作動させ、予め選択された測定周波数で刻時される界磁コイル3は、変化する定電流が供給される。磁気誘導流量計n測定作業が刻時される測定周波数は、下記に記載される方法において選択される:
磁界によって流媒体に誘導される電圧は、測定電極によって検出されてプリアンプ6に供給され、そこからA/D変換器7に送られる。しかしながら、媒体に誘導された電圧に加えて、ノイズ電圧が同様に結合され、誘導された電圧と同様にプリアンプ6及びA/D変換器7を介してマイクロコントローラ5に送られる。これによって得られた値は、マイクロコントローラ5に接続されたメモリモジュール8に蓄積され、測定作業において要求される測定データを、マイクロコントローラ5の制御下で、この場合には、高速フーリエ変換(FFT)である周波数分析にかけられる。この結果、分離出力を介して出力される有効な情報信号9からなる周波数スペクトラム及び干渉スペクトラム10を生じる。
The field current generator 4 supplies a coil drive current to the field coil 3. The microcontroller 5 operates the field current generator 4 and the field coil 3 clocked at a preselected measurement frequency is supplied with a changing constant current. The measurement frequency at which the magnetic induction flow meter n measurement operation is clocked is selected in the manner described below:
The voltage induced in the flow medium by the magnetic field is detected by the measurement electrode, supplied to the preamplifier 6, and sent from there to the A / D converter 7. However, in addition to the voltage induced in the medium, the noise voltage is similarly combined and sent to the microcontroller 5 via the preamplifier 6 and the A / D converter 7 in the same way as the induced voltage. The value obtained in this way is stored in a memory module 8 connected to the microcontroller 5, and the measurement data required in the measurement operation is controlled under the control of the microcontroller 5, in this case a fast Fourier transform (FFT). ) Is subjected to frequency analysis. This results in a frequency spectrum and an interference spectrum 10 consisting of a valid information signal 9 output via a separate output.

干渉スペクトラム10は、再びマイクロコントローラ5に最適化され、測定周波数を制御するのに使用される。上述した実施例において、測定周波数は、干渉スペクトラムの主周波数の一つ、好ましくは優れた干渉周波数で自動的に制御される。この場合、周波数分析は、測定作業の位相依存刻時によって、特に測定周波数が制御される方法によって主周波数を提供する振動位相を位相固定させる位相依存法において実行される。   The interference spectrum 10 is again optimized for the microcontroller 5 and used to control the measurement frequency. In the embodiment described above, the measurement frequency is automatically controlled at one of the main frequencies of the interference spectrum, preferably a superior interference frequency. In this case, the frequency analysis is performed in a phase-dependent manner in which the phase of the oscillation providing the main frequency is phase-locked by the phase-dependent time of the measurement operation, in particular by the method in which the measurement frequency is controlled.

その結果、寄生するノイズ電圧による重要な干渉の発生なしに、たいへん良好なSN比を提供する磁気誘導流量計を得ることができる。   As a result, a magnetic induction flow meter can be obtained that provides a very good signal-to-noise ratio without the occurrence of significant interference due to parasitic noise voltages.

図1は、本発明に方法によって奏される磁気誘導流量計のブロックダイアグラムでえある。FIG. 1 is a block diagram of a magnetic induction flow meter played by the method of the present invention.

符号の説明Explanation of symbols

1 測定チューブ
2 測定電極
3 界磁コイル
4 界磁電流発生器
5 マイクロコントローラ
6 プリアンプ
7 A/D変換器
8 メモリモジュール
9 情報信号
10 干渉スペクトラム
DESCRIPTION OF SYMBOLS 1 Measurement tube 2 Measurement electrode 3 Field coil 4 Field current generator 5 Microcontroller 6 Preamplifier 7 A / D converter 8 Memory module 9 Information signal 10 Interference spectrum

Claims (10)

測定作業が測定周波数で刻時される測定装置の制御方法において、
測定作業に要求される測定データは周波数分析にかけられ、前記測定周波数は、前記周波数分析によって規定された周波数スペクトルに関連して自動的に制御されることを特徴とする測定装置の制御方法。
In the control method of the measuring device in which the measurement work is clocked at the measurement frequency,
The measurement data required for the measurement operation is subjected to frequency analysis, and the measurement frequency is automatically controlled in relation to the frequency spectrum defined by the frequency analysis.
前記測定周波数は、最高のSN比を有する測定信号が得られる方法において自動的に選択されることを特徴とする請求項1記載の測定装置の制御方法。   The method according to claim 1, wherein the measurement frequency is automatically selected in a method for obtaining a measurement signal having the highest S / N ratio. 前記測定周波数は、規定された周波数スペクトルからの少なくとも一つの主周波数に関連して制御されることを特徴とする請求項1記載の測定装置の制御方法。   The method according to claim 1, wherein the measurement frequency is controlled in association with at least one main frequency from a defined frequency spectrum. 前記測定周波数は、前記少なくとも一つの主周波数で、前記少なくとも一つの主周波数の整数倍で、又は前記少なくとも一つの前記主な周波数の分数倍で、自動的に制御されることを特徴とする請求項3記載の測定装置の制御方法。   The measurement frequency is automatically controlled at the at least one main frequency, an integer multiple of the at least one main frequency, or a fractional multiple of the at least one main frequency. The control method of the measuring apparatus according to claim 3. 前記測定周波数は、前記少なくとも一つの主周波数より他の周波数で自動的に制御されることを特徴とする請求項3記載の測定装置の制御方法。   The method according to claim 3, wherein the measurement frequency is automatically controlled at a frequency other than the at least one main frequency. 予め規定された周波数域は、前記測定周波数に配分され、前記測定周波数は、前記予め規定された周波数域内で、いくつかの要求された主周波数によって、最大全周波数分離で、自動的に制御されることを特徴とする請求項3記載の測定装置の制御方法。   A predefined frequency range is allocated to the measurement frequency, and the measurement frequency is automatically controlled within the predefined frequency range by several required main frequencies, with a maximum total frequency separation. The method of controlling a measuring apparatus according to claim 3. 前記周波数分析は、位相判別法において実行されることを特徴とする請求項1〜6のいずれか一つに記載の測定装置の制御方法。   The method for controlling a measuring apparatus according to claim 1, wherein the frequency analysis is performed in a phase discrimination method. 前記測定動作は、好ましくは特定の位相で位相固定する位相依存法において制御されることを特徴とする請求項7記載の測定装置の制御方法。   8. The method of controlling a measuring apparatus according to claim 7, wherein the measuring operation is preferably controlled by a phase-dependent method in which the phase is fixed at a specific phase. 前記測定器具は、界磁コイルと、2つの測定電極を有し、測定周波数で刻時される測定チューブとからなる磁気誘導流量計であり、前記界磁コイルは、コイル駆動電流が供給され、電圧が2つの測定電極で検出され、検出された電圧は、周波数分析にかけられ、前記コイル駆動電流が前記界磁コイルに供給されるときの測定周波数は、所定の周波数スペクトラムの関数として制御されることを特徴とする請求項1〜6のいずれか一つに記載の測定装置の制御方法。   The measuring instrument is a magnetic induction flowmeter including a field coil and two measuring electrodes, and a measuring tube clocked at a measuring frequency, and the field coil is supplied with a coil driving current, The voltage is detected by two measurement electrodes, the detected voltage is subjected to frequency analysis, and the measurement frequency when the coil drive current is supplied to the field coil is controlled as a function of a predetermined frequency spectrum. The method for controlling a measuring apparatus according to any one of claims 1 to 6. 前記界磁コイルには、変化する定電流が供給されることを特徴とする請求項9記載の測定装置の制御方法。   The method for controlling a measuring apparatus according to claim 9, wherein a constant current that changes is supplied to the field coil.
JP2006112851A 2005-04-19 2006-04-17 Method of controlling measuring device Pending JP2006300942A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005018179A DE102005018179A1 (en) 2005-04-19 2005-04-19 Method for operating a measuring device

Publications (1)

Publication Number Publication Date
JP2006300942A true JP2006300942A (en) 2006-11-02

Family

ID=36781516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112851A Pending JP2006300942A (en) 2005-04-19 2006-04-17 Method of controlling measuring device

Country Status (4)

Country Link
US (1) US20060235634A1 (en)
EP (1) EP1715301A2 (en)
JP (1) JP2006300942A (en)
DE (1) DE102005018179A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533295A (en) * 2007-07-10 2010-10-21 ローズマウント インコーポレイテッド Noise diagnosis of electromagnetic flow meter operating conditions

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015368A1 (en) 2007-03-28 2008-10-02 Endress + Hauser Flowtec Ag Method for operating a magnetic-inductive flowmeter
DE102008051034A1 (en) 2008-10-13 2010-04-15 Endress + Hauser Flowtec Ag Method for energy-saving operation of a magneto-inductive flowmeter
US9057634B2 (en) * 2010-08-11 2015-06-16 Rosemount Inc. Noise detection and avoidance
JP2015105929A (en) * 2013-12-02 2015-06-08 株式会社東芝 Electromagnetic flow meter
CN105698881A (en) * 2016-03-15 2016-06-22 江苏华海测控技术有限公司 High-precision electromagnetic flowmeter based on fast Fourier transform
DE102020123945B4 (en) 2020-09-15 2023-09-07 Krohne Messtechnik Gmbh Method for operating a magnetic-inductive flowmeter and corresponding magnetic-inductive flowmeter
DE102020123941A1 (en) 2020-09-15 2022-03-17 Krohne Messtechnik Gmbh Method for operating a magnetic-inductive flowmeter and corresponding magnetic-inductive flowmeter
DE102021208598A1 (en) * 2021-08-06 2023-02-09 Siemens Aktiengesellschaft Noisy flow measurement method, electromagnetic flowmeter and computer program product
DE102022115787A1 (en) 2022-06-24 2024-01-04 Krohne Messtechnik Gmbh Method for operating a magnetic-inductive flowmeter and a corresponding magnetic-inductive flowmeter

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH508884A (en) * 1969-11-21 1971-06-15 Bbc Brown Boveri & Cie Laser Doppler flow probe with high spatial resolution
SE417883B (en) * 1980-03-26 1981-04-13 Elfi Innovationer SET AND DEVICE FOR DETECTING THE SPEED OF AN ASYNCHRON MOTOR MOTOR
SE451913B (en) * 1982-09-21 1987-11-02 Michael Grimsland PROCEDURE AND DEVICE FOR SEATING OF FREQUENCY
US5224201A (en) * 1988-03-31 1993-06-29 Heidelberger Druckmaschinen Ag Method and device for measuring rotary speed
DE59106867D1 (en) * 1991-06-08 1995-12-14 Flowtec Ag Magnetic-inductive flow meter.
US5212386A (en) * 1991-12-13 1993-05-18 I.S.S. (U.S.A.) Inc. High speed cross-correlation frequency domain fluorometry-phosphorimetry
DE19604004C1 (en) * 1996-02-05 1997-06-05 Elsag Int Nv Magnetic-inductive flow meter esp. for pastes, muds
US6493576B1 (en) * 1996-06-17 2002-12-10 Erich Jaeger Gmbh Method and apparatus for measuring stimulus-evoked potentials of the brain
DE19906004A1 (en) * 1999-02-15 2000-09-14 Krohne Messtechnik Kg Signal processing circuit for a differential voltage, especially for a magnetic-inductive flow meter
DE19907864A1 (en) * 1999-02-23 2000-09-14 Krohne Messtechnik Kg Magnetic-inductive flow meter
DE10118003A1 (en) * 2001-04-10 2002-10-24 Krohne Messtechnik Kg Magnetic-inductive flowmeter and magnetic-inductive flowmeter
US6834555B2 (en) * 2002-03-28 2004-12-28 Krohne Messtechnik Gmbh & Co. Kg Magnetoinductive flow measuring method
EP1363108B1 (en) * 2002-05-14 2014-04-02 Krohne Messtechnik Gmbh & Co. Kg Method to determine the uncertainty of a magnetic inductive flow meter
DE10356008B4 (en) * 2003-11-27 2010-04-08 Krohne Meßtechnik GmbH & Co KG Method for operating a measuring device
DE10356007B3 (en) * 2003-11-27 2005-07-07 Krohne Meßtechnik GmbH & Co KG Method for operating a magnetic-inductive flowmeter
DE10357514B3 (en) * 2003-12-08 2005-04-14 Krohne Meßtechnik GmbH & Co KG Magnetic-inductive volumetric flowmeter using detection of voltage induced in flow medium by magnetic field in measuring pipe with control circuit for controlling potential of reference electrode
DE102004018078B3 (en) * 2004-04-08 2006-01-05 Krohne Meßtechnik GmbH & Co KG Method for operating a magnetic-inductive flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533295A (en) * 2007-07-10 2010-10-21 ローズマウント インコーポレイテッド Noise diagnosis of electromagnetic flow meter operating conditions

Also Published As

Publication number Publication date
US20060235634A1 (en) 2006-10-19
EP1715301A2 (en) 2006-10-25
DE102005018179A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP2006300942A (en) Method of controlling measuring device
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
US6566874B1 (en) Detecting tool motion effects on nuclear magnetic resonance measurements
US10197652B2 (en) Method and system for applying NMR pulse sequences with interacting shells
JP4386855B2 (en) Operation method of magnetic inductive flow meter
JPH09502267A (en) Magnetic flowmeter with empty pipe detector
CN1273632A (en) Measurement of flow fractions, flow velocities and flow rates of multiphase fluid using NMR sensor
EA200400234A1 (en) METHOD AND DEVICE FOR MULTI-COMPONENT INDUCTION MEASUREMENT SYSTEM
JP5162473B2 (en) Potential sensor used to detect nuclear magnetic resonance signals.
US10371772B2 (en) Magnetic resonance imaging apparatus
JP2009505085A (en) Magnetic induction flow measuring device
US7574924B1 (en) Magnetic flow meter
JP2016529506A (en) Method and apparatus for analyzing sample volume with magnetic particles
US20190154523A1 (en) Gap Compensation for Magnetostrictive Torque Sensors
JP4908752B2 (en) Operation method of measuring equipment
CN106225657B (en) displacement sensor
JP4312438B2 (en) Wire wound type magnetic sensor
US7110899B2 (en) Phase measurement in measuring device
US5703772A (en) Method and apparatus for correcting drift in the response of analog receiver components in induction well logging instruments
JP3204066B2 (en) Capacitive electromagnetic flowmeter
JP3965130B2 (en) Magnetic induction flow measurement method
JP2932448B2 (en) Capacitive electromagnetic flowmeter
JP2001241983A (en) Electromagnetic flowmeter
KR100467314B1 (en) Electromagnetic Flowmeter
US11841252B2 (en) Method for determining a conductivity, operating method of a magnetic-inductive flowmeter and magnetic-inductive flowmeter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090819