JP2006300766A - Method and apparatus for weighing raw material particle for use in molding fuel compact - Google Patents

Method and apparatus for weighing raw material particle for use in molding fuel compact Download PDF

Info

Publication number
JP2006300766A
JP2006300766A JP2005123685A JP2005123685A JP2006300766A JP 2006300766 A JP2006300766 A JP 2006300766A JP 2005123685 A JP2005123685 A JP 2005123685A JP 2005123685 A JP2005123685 A JP 2005123685A JP 2006300766 A JP2006300766 A JP 2006300766A
Authority
JP
Japan
Prior art keywords
raw material
weighing
material particles
fuel
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005123685A
Other languages
Japanese (ja)
Inventor
Atsushi Yasuda
淳 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005123685A priority Critical patent/JP2006300766A/en
Publication of JP2006300766A publication Critical patent/JP2006300766A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for weighing raw material particles for use in molding fuel compact which satisfies accurate weighing, speedy weighing, lowering difficulty of weighing and reduction of weighing cost. <P>SOLUTION: A technology for weighing raw material particles applied in molding process of a fuel compact including nuclear fuel material among processes for manufacturing fuel for high-temperature gas-cooled reactors is provided. It weighs raw material particle 11 of a fuel compact and has the following steps. At first, the raw material particle 11 is measured in volume. Then, the raw material particle 11 after measuring volume is weighed. For the weighing raw material particle 11, actual weighed value and a target weighing value of a fuel compact are compared in calculation, the difference of the actual weighed value from the target weighing value is counted to the number of raw material particle 11 and raw material particle 11 of necessary quantity for resolving the difference is supplied to the weighing raw material particle by the number. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高温ガス炉用の核燃料物質を含む燃料製造工程のうちの燃料コンパクト成形工程(プレス成形工程)に付帯した秤量技術に関し、より詳しくは燃料コンパクト用の原料粒子を短時間で正確簡易に秤量するための方法と装置に関する。   The present invention relates to a weighing technique attached to a fuel compact molding process (press molding process) in a fuel manufacturing process including nuclear fuel material for a HTGR. More specifically, the present invention relates to a raw material particle for a fuel compact in a short time. It relates to a method and an apparatus for weighing.

高温ガス炉については周知のとおり、熱容量が大きくて高温健全性の良好な黒鉛で炉心構造(燃料を含む)を構成し、高温下でも化学反応の起こらない不活性ガスたとえばHeガスを冷却ガスとして用いている。こうすることで固有の安全性が高くなり、高い出口温度のHeガスも取り出すことができるようになる。この高温ガス炉から得られる約900℃の高熱は、発電をはじめ、水素製造・化学プラント・その他を含む幅広い分野での熱利用を可能にするものである。   As is well known for high-temperature gas reactors, the core structure (including fuel) is composed of graphite with a large heat capacity and good high-temperature soundness, and an inert gas such as He gas that does not cause a chemical reaction even at high temperatures is used as a cooling gas. Used. By doing so, the inherent safety is increased, and the He gas having a high outlet temperature can be taken out. The high heat of about 900 ° C. obtained from this HTGR enables heat utilization in a wide range of fields including power generation, hydrogen production, chemical plants, and others.

高温ガス炉の燃料については、下記の特許文献1〜2や非特許文献1などを参照してつぎのことがいえる。直径500〜1000μmの被覆燃料粒子は、核燃料物質の酸化物からなる燃料核(直径350〜650μm)の外周面に4層の被覆が施されたものである。被覆燃料粒子の被覆層で、低密度炭素からなる第1被覆層は、ガス状の核分裂生成物FPを溜めるためのガス溜め機能と燃料核スウェリングを吸収するためのバッファ機能とを併せもつものである。高密度炭素からなる第2被覆層にはガス状FPの保持機能があり、炭化珪素SiCからなる第3被覆層には固体状FPの保持機能がある。第2被覆層と同様の高密度炭素からなる第4被覆層には、固体状FPの保持機能があるほか第3被覆層に対する保護機能もある。これら以外に関しては、被覆燃料粒子を黒鉛粉末と混ぜ合わせて一定の形状に成形かつ焼結したものが燃料コンパクトとなり、一定数量の燃料コンパクトを黒鉛筒に入れて封じたものが燃料棒となる。最終的には、所定数の燃料棒を黒鉛ブロックの各挿入口に装填したものが高温ガス炉の燃料となる。   Regarding the fuel of the HTGR, the following can be said with reference to the following Patent Documents 1 and 2, Non-Patent Document 1, and the like. The coated fuel particles having a diameter of 500 to 1000 μm are obtained by coating four layers on the outer peripheral surface of a fuel nucleus (diameter 350 to 650 μm) made of an oxide of nuclear fuel material. A coating layer of coated fuel particles, the first coating layer made of low-density carbon having both a gas reservoir function for accumulating gaseous fission products FP and a buffer function for absorbing fuel nuclear swelling It is. The second coating layer made of high-density carbon has a holding function for gaseous FP, and the third coating layer made of silicon carbide SiC has a holding function for solid FP. The fourth coating layer made of high-density carbon similar to the second coating layer has a function of retaining the solid FP and also has a protective function for the third coating layer. In addition to these, a fuel compact is obtained by mixing coated fuel particles with graphite powder and molding and sintering into a fixed shape, and a fuel rod is obtained by sealing a fixed quantity of fuel compact in a graphite tube. Eventually, a high-temperature gas reactor fuel is obtained by loading a predetermined number of fuel rods into the insertion ports of the graphite block.

高温ガス炉の燃料は以下のようにして製造するのが一般的である。燃料核をつくる初期のステップでは、硝酸ウラニル原液をアンモニア溶液中に滴下して重ウラン酸アンモニウム粒子を形成し、当該粒子を乾燥した後、酸化・還元・焼結する。燃料核を第1被覆層〜第4被覆層で被覆して被覆燃料粒子をつくるときは、燃料核を高温流動床に導入しCVD法を実施することで各層を形成する。燃料コンパクトをつくるときの一例では、所定量の被覆燃料粒子を黒鉛マトリックス材(黒鉛粉末+粘結剤など)とともに所定形状に成形してそれを焼結する。燃料コンパクトをつくるときの他の一例では、被覆燃料粒子を黒鉛マトリックス材でコーティングしてオーバコート粒子とし、所定量のオーバコート粒子を黒鉛マトリックス材とともに所定形状に成形した後、それを焼結する。燃料棒をつくるステップのときは、燃料コンパクトを黒鉛筒に封入すればよい。こうして得られた燃料棒を黒鉛ブロックの各挿入口に装填することで高温ガス炉の燃料ができあがる。   Generally, the fuel for the HTGR is manufactured as follows. In the initial step of creating fuel nuclei, uranyl nitrate stock solution is dropped into an ammonia solution to form ammonium heavy uranate particles, and the particles are dried and then oxidized, reduced, and sintered. When coating the fuel nuclei with the first coating layer to the fourth coating layer to produce coated fuel particles, each layer is formed by introducing the fuel nuclei into the high-temperature fluidized bed and carrying out the CVD method. In an example of making a fuel compact, a predetermined amount of coated fuel particles is formed into a predetermined shape together with a graphite matrix material (graphite powder + binder, etc.) and sintered. In another example of making a fuel compact, coated fuel particles are coated with a graphite matrix material to form overcoat particles, a predetermined amount of overcoat particles are formed into a predetermined shape together with the graphite matrix material, and then sintered. . In the step of making the fuel rod, the fuel compact may be enclosed in the graphite tube. The fuel in the HTGR is completed by loading the thus obtained fuel rods into the insertion ports of the graphite block.

上述した被覆燃料粒子は直径が500〜1500μmの範囲内にあり、その上にオーバコート層が形成されたオーバコート粒子の場合は直径が1000〜3000μmの範囲内にある。このような粒子について、オーバコート層を有するものをオーバコート粒子と称したりしているが、広義の意味ではオーバコート粒子も被覆燃料粒子の範疇に含まれるものである。したがって以下においては、オーバコート粒子についても単に被覆燃料粒子という。   The above-mentioned coated fuel particles have a diameter in the range of 500 to 1500 μm, and in the case of overcoat particles having an overcoat layer formed thereon, the diameter is in the range of 1000 to 3000 μm. For such particles, those having an overcoat layer are referred to as overcoat particles, but in a broad sense, overcoat particles are also included in the category of coated fuel particles. Therefore, in the following, the overcoat particles are also simply referred to as coated fuel particles.

高温ガス炉の燃料製造に際して燃料コンパクトをつくるときは既述のとおり、被覆燃料粒子を原料にして成形工程を実施する。その際には原料粒子を1燃料コンパクト分あたり精密に秤量することで品質のよい燃料コンパクトが得られ、それが最終製品の高品質化にも通じたりする。ちなみに従来法では、下記の非特許文献2やその他に開示された電磁式マイクロフィーダ・既成の計量機器・既成の秤量容器などを用いてこの秤量を実施する。その場合の実施形態についてさらにいうと、電磁式マイクロフィーダは、適当な勾配で下降傾斜した断面溝形の振動供給部から計量機器上の秤量容器内に原料粒子を定量供給し、それを計量機器が測定する。
特開平06−265669号公報 特開平07−218674号公報 原子力百科事典 ATMICA[平成16年12月 7日インターネット検索]<URL:http://www-atm.jst.go.jp/atomica/03030301_1.html> 電磁式マイクロフィーダ・MF−1形(筒井理化学器械株式会社製:東京都)[平成17年 2月22日インターネット検索]<URL:http://www.funtaitokogyo.co.jp/rasinban/tt/tt-5.html>
When producing a fuel compact in the production of fuel in a HTGR, as described above, the molding process is carried out using coated fuel particles as a raw material. In that case, a high-quality fuel compact can be obtained by accurately weighing the raw material particles per one fuel compact, which leads to an improvement in the quality of the final product. Incidentally, in the conventional method, this weighing is carried out using an electromagnetic micro-feeder, a pre-made weighing device, a pre-made weighing container, etc. disclosed in Non-Patent Document 2 below and others. The embodiment in that case will be further described. The electromagnetic microfeeder quantitatively feeds the raw material particles into the weighing container on the weighing instrument from the vibration supply section having a cross-sectional groove shape inclined downward with an appropriate gradient, and supplies it to the weighing instrument. Measure.
Japanese Patent Laid-Open No. 06-265669 JP 07-218674 A Atomica Encyclopedia ATMICA [Search on the Internet on December 7, 2004] <URL: http://www-atm.jst.go.jp/atomica/03030301_1.html> Electromagnetic microfeeder MF-1 type (manufactured by Tsutsui Rika Instruments Co., Ltd .: Tokyo) [Search on the Internet on February 22, 2005] <URL: http://www.funtaitokogyo.co.jp/rasinban/tt/ tt-5.html>

上記のような従来法で1燃料コンパクト分の原料粒子を秤量するときは、電磁式マイクロフィーダにおける振動供給部の幅・勾配(下り傾斜角)・振動数などに依存して秤量容器内への原料粒子供給速度や秤量持間が定まる。これについて従来法の場合は、原料粒子の供給速度が低いために秤量を終えるまでの時間が長くなり、数10gの原料粒子を小数点2桁の精度で秤量するのに1回あたり数分も費やしてしまう。もちろん電磁式マイクロフィーダの振動供給部を調整したり仕様を変更したりして原料粒子の供給速度を高めた場合には秤量持間を短縮することができる。しかしこれには面倒な調整がともなう。それに秤量持間の短縮を優先するあまり、原料粒子の供給速度を過度に高速化したりすると、測定系が不安定になったり外乱が生じたりして秤量精度が低下する。   When weighing raw material particles for one fuel compact by the conventional method as described above, depending on the width, gradient (downward tilt angle), frequency, etc. of the vibration supply unit in the electromagnetic microfeeder, Raw material particle supply speed and weighing time are determined. In the case of the conventional method, since the supply speed of the raw material particles is low, it takes a long time to finish weighing, and several minutes are required to weigh several tens of grams of raw material particles with a precision of two decimal places. End up. Of course, when the supply speed of the raw material particles is increased by adjusting the vibration supply unit of the electromagnetic microfeeder or changing the specifications, the holding time can be shortened. But this comes with a tedious adjustment. If the feed rate of the raw material particles is excessively increased so as to give priority to shortening the weighing time, the measurement system becomes unstable or disturbance occurs, resulting in a decrease in weighing accuracy.

本発明はこのような技術上の課題に鑑み、高精度秤量・高速秤量・秤量難度の低下・秤量コストの低減などを満足させることのできる秤量方法と秤量装置を提供しようとするものである。   In view of such technical problems, the present invention intends to provide a weighing method and a weighing apparatus that can satisfy high-precision weighing, high-speed weighing, reduction in weighing difficulty, reduction in weighing cost, and the like.

本発明の請求項1に係る燃料コンパクト成形用原料粒子の秤量方法は所期の目的を達成するために下記の課題解決手段を特徴とする。すなわち請求項1に記載の秤量方法は、高温ガス炉用燃料を製造するための工程のうちの核燃料物質を含む燃料コンパクトの成形工程で実施される原料粒子の秤量技術であって原料粒子を1燃料コンパクト分あたり秤量するための方法において、はじめに原料粒子を容積計量すること、つぎに容積計量後の原料粒子を秤量すること、そのつぎに秤量中の原料粒子について1燃料コンパクト分の実測秤量値とその目標秤量値とを比較演算して目標秤量値に対する実測秤量値の差分を原料粒子の個数に換算し、当該差分を解消するために必要な量の原料粒子を秤量中の原料粒子に個数単位で供給することを特徴とする。   The method for weighing raw material particles for compact fuel molding according to claim 1 of the present invention is characterized by the following problem solving means in order to achieve the intended purpose. That is, the weighing method according to claim 1 is a raw material particle weighing technique carried out in a process for forming a fuel compact including a nuclear fuel substance in a process for producing a high temperature gas reactor fuel. In the method for weighing per fuel compact, first weigh the raw material particles, then weigh the raw material particles after volumetric measurement, and then weigh the actual measured weight for one fuel compact for the raw material particles in the weighing And the target weighing value are compared and the difference between the actual weighing value and the target weighing value is converted into the number of raw material particles, and the number of raw material particles necessary for eliminating the difference is counted in the raw material particles in the weighing. It is characterized by being supplied in units.

本発明の請求項2に係る燃料コンパクト成形用原料粒子の秤量方法は、請求項1に記載の方法において、平均直径が0.5〜3mmかつ平均真球度が1.2以下の原料粒子を秤量することを特徴とする。   The method for weighing raw material particles for compact fuel molding according to claim 2 of the present invention is the method according to claim 1, wherein raw material particles having an average diameter of 0.5 to 3 mm and an average sphericity of 1.2 or less are used. It is characterized by weighing.

本発明の請求項3に係る燃料コンパクト成形用原料粒子の秤量方法は、請求項1または2に記載の方法において、1粒子あたりの重量が0.002〜0.01gの原料粒子を秤量することを特徴とする。   The method for weighing fuel compact molding raw material particles according to claim 3 of the present invention is the method according to claim 1 or 2, wherein the raw material particles having a weight per particle of 0.002 to 0.01 g are weighed. It is characterized by.

本発明の請求項4に係る燃料コンパクト成形用原料粒子の秤量方法は、請求項1〜3いずれかに記載の方法において、目標秤量値が0.001〜100gの範囲内にあることを特徴とする。   The method for weighing fuel compact molding raw material particles according to claim 4 of the present invention is characterized in that, in the method according to any one of claims 1 to 3, the target weighing value is in the range of 0.001 to 100 g. To do.

本発明の請求項5に係る燃料コンパクト成形用原料粒子の秤量装置は所期の目的を達成するために下記の課題解決手段を特徴とする。すなわち請求項5に記載の秤量装置は、高温ガス炉用燃料を製造するための工程のうちの核燃料物質を含む燃料コンパクトの成形工程で実施される原料粒子の秤量技術であって原料粒子を1燃料コンパクト分あたり秤量するための装置において、原料粒子を容積計量するための容積計量容器と、容積計量後の原料粒子を秤量するための秤量機器と、秤量中の原料粒子について1燃料コンパクト分の実測秤量値とその目標秤量値とを比較演算して目標秤量値に対する実測秤量値の差分を原料粒子の個数に換算するための手段と、秤量中の原料粒子に対して追加用の原料粒子を個数単位で供給するための粒子供給機械とを備えていることを特徴とする。   The fuel compact molding raw material particle weighing device according to claim 5 of the present invention is characterized by the following problem solving means in order to achieve the intended purpose. That is, the weighing apparatus according to claim 5 is a raw material particle weighing technique performed in a forming step of a fuel compact including a nuclear fuel substance in a process for producing a fuel for a HTGR. In an apparatus for weighing per fuel compact, a volume measuring container for volumetric measurement of raw material particles, a weighing device for weighing the volumetric raw material particles, and one fuel compact for the raw material particles being weighed Means for comparing and calculating the actual measurement value and the target measurement value to convert the difference between the actual measurement value and the target measurement value into the number of raw material particles, and additional raw material particles for the raw material particles in the measurement And a particle supply machine for supplying in units.

本発明に係る燃料コンパクト成形用原料粒子の秤量方法はつぎのような効果を有する。(1) 個数単位で算出した原料粒子を容積計量後の原料粒子に供給して目標の秤量値に到達させるので、燃料コンパクト成形用原料粒子の秤量について、小数点2桁以下の高い秤量精度を満足させることができる。
(2) 原料粒子の容積計量や個数補給を1分前後で終えることができる。したがって燃料コンパクト成形用原料粒子の秤量について、従来技術を凌駕することのできる高速化が実現する。
(3) 目標秤量値に近似した計量分の容積計量原料粒子に対して極微少量の原料粒子を個数補給するだけでよく、これに際して難度の高い調整などもともなわないから、高精度や高速性が要求される秤量であってもこれを容易に実施することができる。
(4) 秤量については容積計量容器・秤量機器・粒子供給機械などがあればよく、電磁式マイクロフィーダのような高価設備を要しない。それに粒子供給機械などは電磁式マイクロフィーダに比べて消費電力が格段に少ない。したがって燃料コンパクト成形用原料粒子の秤量について、イニシャルコストやランニングコストを抑えて秤量コストを低減することができる。
The method for weighing the fuel compact molding raw material particles according to the present invention has the following effects. (1) Since the raw material particles calculated in number units are supplied to the volumetric raw material particles to reach the target weighing value, the weighing of raw material particles for compact fuel molding satisfies high weighing accuracy of two decimal places or less. Can be made.
(2) Volumetric measurement and replenishment of raw material particles can be completed in about 1 minute. Therefore, the speed of the weighing of the raw material particles for compact molding can be increased so as to surpass the prior art.
(3) It is only necessary to replenish a very small amount of raw material particles with respect to the volumetric raw material particles to be weighed close to the target weighing value, and there is no need for highly difficult adjustments. This can be done easily even with the required weighing.
(4) For weighing, it is only necessary to have a volumetric container, weighing device, particle supply machine, etc., and expensive equipment such as an electromagnetic microfeeder is not required. In addition, particle supply machines consume much less power than electromagnetic microfeeders. Therefore, with regard to the weighing of the fuel compact molding raw material particles, the initial cost and the running cost can be suppressed and the weighing cost can be reduced.

本発明に係る燃料コンパクト成形用原料粒子の秤量装置はつぎのような効果を有する。(5) 容積計量容器・秤量機器・原料粒子の個数換算手段・粒子供給機械などを備えたものであるから、高精度秤量・高速秤量・秤量難度の低下・秤量コストの低減などを確保しながら本発明方法を実施する場合に有用で有益な装置となる。   The fuel compact molding material particle weighing device according to the present invention has the following effects. (5) Since it is equipped with a volumetric container, weighing device, raw material particle number conversion means, particle supply machine, etc., while ensuring high-precision weighing, high-speed weighing, reduced weighing difficulty, reduced weighing costs, etc. This is a useful and useful apparatus for carrying out the method of the present invention.

本発明で取り扱われるところの燃料コンパクト成形用原料粒子と、本発明に係る燃料コンパクト成形用原料粒子の秤量装置について、これらの実施形態を添付の図面に基づいて先行説明する。   Embodiments of the fuel compact molding raw material particles to be handled in the present invention and the fuel compact molding raw material particle weighing apparatus according to the present invention will be described in advance with reference to the accompanying drawings.

図1〜図4において、はじめに説明するところの原料粒子11は既述の被覆燃料粒子からなる。この原料粒子11にはオーバコート層のない被覆燃料粒子とオーバコート層のある被覆燃料粒子とが含まれる。これについて図4を参照して詳述すると、オーバコート層のない原料粒子11は燃料核(コア)12の外周面に第1被覆層13・第2被覆層14・第3被覆層15・第4被覆層16などを有し、オーバコート層のある原料粒子11はさらに、黒鉛マトリックス材層17を第4被覆層16の上に備えている。   In FIG. 1 to FIG. 4, the raw material particles 11 described first are composed of the above-described coated fuel particles. The raw material particles 11 include coated fuel particles having no overcoat layer and coated fuel particles having an overcoat layer. This will be described in detail with reference to FIG. 4. The raw material particles 11 without the overcoat layer are formed on the outer peripheral surface of the fuel core (core) 12 with the first coating layer 13, the second coating layer 14, the third coating layer 15, and the first coating layer. The raw material particles 11 having the four coating layers 16 and the like and having the overcoat layer further include a graphite matrix material layer 17 on the fourth coating layer 16.

核燃料物質の酸化物からなる燃料核12は二酸化ウランをセラミック状に焼結した直径350〜650μmのものからなる。燃料核12の外周面に形成された第1被覆層13は低密度炭素(低密度熱分解炭素)からなり、厚さ30〜150μm、密度0.8〜1.2g/cmである。第1被覆層13はガス状の核分裂生成物(FP)を溜めるためのガス溜め機能や燃料核スウェリングを吸収するためのバッファ機能を併せもっている。第1被覆層13の上に形成された第2被覆層14は高密度炭素(高密度熱分解炭素)からなり、厚さ20〜50μm、密度1.6〜2.0g/cmである。第2被覆層14にはガス状FPの保持機能がある。第2被覆層14の上に形成された第3被覆層15は炭化珪素(SiC)からなり、厚さ20〜50μm、密度3.0〜3.2g/cmである。第3被覆層15は主要な強度保証層であり、かつ、固体状FPに対する保持機能をも有する。第3被覆層15の上に形成された第4被覆層16は第2被覆層14と同様の高密度炭素(高密度熱分解炭素)からなり、厚さ20〜80μm、密度1.6〜2.0g/cmである。第4被覆層16には固体状FPの保持機能があるほか第3被覆層15に対する保護機能もある。この図示例のように、被覆層を第4被覆層16で終えたものがオーバコート層のない被覆燃料粒子である。この場合の粒子直径(外径)は500〜1500μm(0.5〜1.5mm)の範囲内にあり、一例として1200μm(1.2mm)の直径を有する。オーバコート層のない被覆燃料粒子としては、熱分解炭素層からなる第5被覆層が第4被覆層16の上に形成されるものもある。この第5被覆層用の炭素層は高密度であることを要しない。第4被覆層16(または第5被覆層)の外周面に形成された黒鉛マトリックス材層17は黒鉛マトリックス材の転動造粒物からなる。その場合の黒鉛マトリックス材は黒鉛粉末に粘結剤を加えて均一に混練したものである。黒鉛マトリックス材層17は厚さ20〜400μmの範囲内にある。被覆層としてこのような黒鉛マトリックス材層17までを形成したものがオーバコート層のある被覆燃料粒子となる。この場合の粒子直径(外径)は1000〜3000μm(1〜3mm)の範囲内にあり、一例として1300μm(1.3mm)の直径を有する。原料粒子11は、また、これの平均真球度が1.2以下である。 The fuel core 12 made of an oxide of nuclear fuel material is made of uranium dioxide sintered in a ceramic form and having a diameter of 350 to 650 μm. The first coating layer 13 formed on the outer peripheral surface of the fuel core 12 is made of low density carbon (low density pyrolytic carbon), and has a thickness of 30 to 150 μm and a density of 0.8 to 1.2 g / cm 3 . The first coating layer 13 has a gas storage function for storing gaseous fission products (FP) and a buffer function for absorbing fuel nuclear swelling. The second coating layer 14 formed on the first coating layer 13 is made of high-density carbon (high-density pyrolytic carbon), and has a thickness of 20 to 50 μm and a density of 1.6 to 2.0 g / cm 3 . The second coating layer 14 has a function of holding a gaseous FP. The third coating layer 15 formed on the second coating layer 14 is made of silicon carbide (SiC), and has a thickness of 20 to 50 μm and a density of 3.0 to 3.2 g / cm 3 . The third coating layer 15 is a main strength assurance layer and also has a holding function for the solid FP. The 4th coating layer 16 formed on the 3rd coating layer 15 consists of high density carbon (high density pyrolytic carbon) similar to the 2nd coating layer 14, thickness 20-80 micrometers, density 1.6-2. 0.0 g / cm 3 . The fourth coating layer 16 has a function of retaining the solid FP and also has a protection function for the third coating layer 15. As shown in the illustrated example, the coated fuel particles having no overcoat layer are formed by finishing the coating layer with the fourth coating layer 16. In this case, the particle diameter (outer diameter) is in the range of 500 to 1500 μm (0.5 to 1.5 mm), and has a diameter of 1200 μm (1.2 mm) as an example. As the coated fuel particles without the overcoat layer, there is one in which a fifth coating layer made of a pyrolytic carbon layer is formed on the fourth coating layer 16. The carbon layer for the fifth coating layer does not need to have a high density. The graphite matrix material layer 17 formed on the outer peripheral surface of the fourth coating layer 16 (or the fifth coating layer) is made of a rolling granulated material of the graphite matrix material. In this case, the graphite matrix material is obtained by uniformly kneading a graphite powder with a binder. The graphite matrix material layer 17 has a thickness in the range of 20 to 400 μm. A coating layer having such a graphite matrix material layer 17 as a coating layer is a coated fuel particle having an overcoat layer. The particle diameter (outer diameter) in this case is in the range of 1000 to 3000 μm (1 to 3 mm), and has a diameter of 1300 μm (1.3 mm) as an example. The raw material particles 11 also have an average sphericity of 1.2 or less.

原料粒子11について平均直径をD1(mm)とすると、その平均体積V1(cm)は下記(1) 式で表される。
V1=(4/3π)×(D1/20)…………(1)
When the average diameter of the raw material particles 11 is D1 (mm), the average volume V1 (cm 3 ) is represented by the following formula (1).
V1 = (4 / 3π) × (D1 / 20) 3 (1)

図1において、原料粒子11を一次計量するための計量容器21は金属・強化樹脂・その複合材のうちから選択された任意材料からなる。とくにいえば熱膨張係数が小さくて機械的特性(強度)の大きい材料からなる。計量容器21は一例にすぎない図示例において底付きの円筒形をしているが、これは底付きの角筒形のものであっても構わない。   In FIG. 1, a measuring container 21 for primarily measuring raw material particles 11 is made of an arbitrary material selected from metal, reinforced resin, and a composite material thereof. In particular, it is made of a material having a small coefficient of thermal expansion and a large mechanical property (strength). The weighing container 21 has a cylindrical shape with a bottom in the illustrated example which is only an example, but it may be a rectangular tube with a bottom.

計量容器21の容積V2(cm)は、原料粒子11の平均重量をW1(g)、目標秤量値をW2(g)とした場合に下記(2) 式に基づき設定される。
V2=(W2/W1)×(V1)×(100−3.2)………(2)
この(2) 式における「3.2」は、計量容器21への原料粒子11の充填率誤差を最大2%として算出したものである。
The volume V2 (cm 3 ) of the measuring container 21 is set based on the following formula (2) when the average weight of the raw material particles 11 is W1 (g) and the target weighing value is W2 (g).
V2 = (W2 / W1) × (V1) × (100-3.2) (2)
“3.2” in the equation (2) is calculated by assuming that the filling rate error of the raw material particles 11 into the measuring container 21 is 2% at the maximum.

図1に例示された秤量機器31は応答性・温度特性・耐衝撃性に優れた高分解能を有する電子天秤からなる。秤量機器31は個数計算・チェック計量・%計量・単位変換(ファクター計算)機能・一般統計データ処理・フィルター測定・その他、多くの機能を備えている。秤量機器31は、また、それらの機能で得た各種のデータを記録・保存・加工したり入出力したりするためのコンピュータ32を装備しており、コンピュータ32で演算した制御用の信号を後述の粒子供給機械41へ出力できるようにもなっている。ちなみにコンピュータ32は、秤量機器31で秤量した原料粒子11について、1燃料コンパクト分の実測秤量値とその目標秤量値とを演算回路で比較演算して目標秤量値に対する実測秤量値の差分を原料粒子の個数に換算し、それを後述の粒子供給機械41に入力したりする。   The weighing device 31 illustrated in FIG. 1 is an electronic balance having a high resolution excellent in responsiveness, temperature characteristics, and impact resistance. The weighing device 31 has many functions such as piece counting, check weighing,% weighing, unit conversion (factor calculation) function, general statistical data processing, filter measurement, and others. The weighing device 31 is also equipped with a computer 32 for recording, storing, processing and inputting / outputting various data obtained by these functions, and a control signal calculated by the computer 32 will be described later. Can be output to the particle supply machine 41. Incidentally, the computer 32 compares the actual measured value of one fuel compact with the target measured value for the raw material particle 11 weighed by the weighing device 31 by an arithmetic circuit, and calculates the difference between the measured measured value and the target measured value as the raw material particle. Is converted into the number of particles and input to a particle supply machine 41 described later.

図1において秤量機器31上に搭載された秤量容器33は、計量容器21により一次計量された原料粒子11や後述の粒子供給機械41から個数計算して送られてくる原料粒子11を受け入れるためのものである。秤量容器33は前記計量容器21と同様の材質のものからなる。秤量機器31と秤量容器33との関係でいうと、原料粒子11の秤量時、秤量機器31は秤量容器33の重量を算入しないで原料粒子11の正味量のみを秤量してそれを表示したり出力したりする。   In FIG. 1, a weighing container 33 mounted on a weighing device 31 is used for receiving raw material particles 11 that are primarily weighed by the weighing container 21 and raw material particles 11 that are sent from the particle supply machine 41 that will be described later. Is. The weighing container 33 is made of the same material as the weighing container 21. In terms of the relationship between the weighing device 31 and the weighing container 33, when weighing the raw material particles 11, the weighing device 31 does not include the weight of the weighing container 33 and weighs only the net amount of the raw material particles 11 and displays it. Or output.

図1〜図3に例示された粒子供給機械41は、基台42・支持台43・軸受44・回転盤45・粒子装填用の案内部材51・粒子供給用の案内部材54・電動機61・回転制御機64・その他で構成されている。   The particle supply machine 41 illustrated in FIGS. 1 to 3 includes a base 42, a support base 43, a bearing 44, a rotating disk 45, a particle loading guide member 51, a particle supply guide member 54, an electric motor 61, and a rotation. It comprises a controller 64 and others.

上記において、軸受44を介して回転盤45を支持するための支持台43は図3のごとく基台42上に組み付けられている。これらのうちで基台42や支持台43は金属・合成樹脂・木材・その複合材などのうちの適当な機械的強度を有するものからなり、軸受44は周知の材質からなる。   In the above description, the support base 43 for supporting the turntable 45 via the bearing 44 is assembled on the base 42 as shown in FIG. Of these, the base 42 and the support base 43 are made of metal, synthetic resin, wood, a composite material thereof, or the like having an appropriate mechanical strength, and the bearing 44 is made of a known material.

図2・図3で明らかな円盤状の回転盤45は、周方向に等間隔で並んだ多数の凹部46を表面の外周沿いに有するとともに裏面中央から突出した軸47をも有するものである。回転盤45の凹部46については、原料粒子11を一つあて嵌め込むことができるものであれば、球面状・円錐面状・角錐面状・円柱形状の凹み・角柱形状の凹みなどいずれでもよい。図示例の場合は球面状の凹部46が採用されている。このような凹部46を有する回転盤45は、支持台43上において軸47を傾斜保持した前記軸受44によって回転自在に支持されている。すなわち回転盤45は、15〜30度、具体的には20度ほど後方へ傾斜した姿勢で回転自在に支持されている。凹部46の深さや原料粒子11について両者の関係をいうと、凹部46内に嵌め込まれた原料粒子11は、その粒子の半分をわずかに上回る部分が凹部46外へ突出する。けれども回転盤45が傾斜状態にあるため、原料粒子11が凹部46から脱出したり脱落したりすることは通常ない。   The disc-shaped rotating disk 45 apparent in FIGS. 2 and 3 has a large number of recesses 46 arranged at equal intervals in the circumferential direction along the outer periphery of the surface and also has a shaft 47 protruding from the center of the back surface. The concave part 46 of the turntable 45 may be any of spherical, conical, pyramidal, cylindrical, and prismatic dents as long as one raw material particle 11 can be fitted. . In the case of the illustrated example, a spherical recess 46 is employed. The turntable 45 having such a recess 46 is rotatably supported on the support base 43 by the bearing 44 that holds the shaft 47 inclined. That is, the turntable 45 is rotatably supported in a posture inclined backward to 15 to 30 degrees, specifically about 20 degrees. Regarding the relationship between the depth of the concave portion 46 and the raw material particles 11, the raw material particles 11 fitted in the concave portion 46 protrude out of the concave portion 46 at a portion slightly larger than half of the particles. However, since the turntable 45 is in an inclined state, the raw material particles 11 usually do not escape from the recess 46 or fall off.

図2・図3に例示された粒子装填用の案内部材51や粒子供給用の案内部材54はつぎのようなものである。一方の案内部材51は管状または溝状の長い部材からなる。この案内部材51は基端部側に粒子入口(図示せず)を有するとともに先端部側に開口形の粒子出口52を有するものである。さらに、この一方の案内部材51の粒子出口52の下部には、粒子送り出し用として図3のごとき小さな突出片53が形成されている。他方の案内部材54も管状または溝状の長い部材からなる。この案内部材54は基端部側に開口形の粒子入口55を有するとともに先端部側に開口形の粒子出口57を有するものである。さらに、この他方の案内部材54の粒子入口55の下部には、粒子受け入れ用として図3のごとき小さな突出片56が形成されている。これら両案内部材51・54も金属・合成樹脂・その複合材など、任意の材質のものからなる。そのうちで合成樹脂からなる両案内部材51・54などは可撓性を有していたりする。   The guide member 51 for loading particles and the guide member 54 for supplying particles illustrated in FIGS. 2 and 3 are as follows. One guide member 51 is a long tubular or groove-shaped member. The guide member 51 has a particle inlet (not shown) on the proximal end side and an open particle outlet 52 on the distal end side. Further, a small protruding piece 53 as shown in FIG. 3 is formed at the lower part of the particle outlet 52 of the one guide member 51 for particle delivery. The other guide member 54 is also a long tubular or grooved member. The guide member 54 has an open particle inlet 55 on the proximal end side and an open particle outlet 57 on the distal end side. Further, a small projecting piece 56 as shown in FIG. 3 is formed for receiving particles under the particle inlet 55 of the other guide member 54. These guide members 51 and 54 are also made of any material such as metal, synthetic resin, or composite material thereof. Among them, the guide members 51 and 54 made of synthetic resin have flexibility.

図2で明らかなように、粒子装填用の案内部材51や粒子供給用の案内部材54は回転盤45の表面側に配置される。具体的一例にすぎない図示例でいうと、粒子装填用の案内部材51は、粒子出口52側を下位とする下り勾配においてその粒子出口52側が回転盤表面の一方側に近接して配置されるとともに、かかる姿勢や位置を保持して図示しない支持手段で支持される。こうして配置された案内部材51の粒子出口52や突出片53は、回転時における回転盤45の各凹部46と定位置において離合するようになる。粒子供給用の案内部材54も、粒子出口57側を下位とする下り勾配において粒子入口55側が回転盤表面の他方側に近接して配置されるとともに、かかる姿勢や位置を保持して図示しない支持手段で支持される。したがって案内部材54の粒子入口55や突出片56も、回転時における回転盤45の各凹部46と定位置において離合するようになる。このほか、粒子装填用案内部材51の基端部側(図示しない粒子入口側)は、一列状態の原料粒子11をつぎつきと案内部材51内に進入させるための粒子繰り出し系(図示せず)に連絡されている。さらに粒子供給用案内部材54の粒子出口57側は、図1のごとく秤量機器31上の秤量容器33まで達している。   As is apparent from FIG. 2, the particle loading guide member 51 and the particle supply guide member 54 are arranged on the surface side of the rotating disk 45. In the illustrated example, which is only a specific example, the particle loading guide member 51 is disposed close to one side of the surface of the rotating disk in the downward gradient with the particle outlet 52 side as the lower level. At the same time, it is supported by a supporting means (not shown) while maintaining such posture and position. The particle outlet 52 and the protruding piece 53 of the guide member 51 arranged in this way come to be separated from the respective concave portions 46 of the turntable 45 at a fixed position during rotation. The particle supply guide member 54 is also arranged in a descending gradient with the particle outlet 57 side as the lower side, the particle inlet 55 side being disposed close to the other side of the surface of the rotating disk, and supporting such a posture and position, not shown. Supported by means. Accordingly, the particle inlet 55 and the protruding piece 56 of the guide member 54 are also separated from the respective concave portions 46 of the rotating disk 45 at a fixed position during rotation. In addition, the base end side (particle inlet side not shown) of the particle loading guide member 51 has a particle feeding system (not shown) for causing the raw material particles 11 in a row to enter the guide member 51 one after another. Have been contacted. Further, the particle outlet 57 side of the particle supply guide member 54 reaches the weighing container 33 on the weighing device 31 as shown in FIG.

図3の電動機61は回転盤45に回転力を付与するためのものである。そのため支持台43上に搭載された電動機61は、これの駆動軸62がカップリング63を介して回転盤45の軸47に連結されている。電動機61についてさらにいうと、これは1ステップあたりの回転量をたとえば15度のように設定したりその回転量を調整したりすることのできるステッピングモータ(パルスモータ)またはサーボモータからなる。この電動機61に接続された電気的な回転制御機64は、秤量機器31側にあるコンピュータ32からの制御信号を受けたとき電動機61にステップ出力を指令したりするためのものである。   The electric motor 61 shown in FIG. 3 is for applying a rotational force to the turntable 45. Therefore, the electric motor 61 mounted on the support base 43 has a drive shaft 62 connected to the shaft 47 of the turntable 45 via a coupling 63. The electric motor 61 further includes a stepping motor (pulse motor) or a servo motor that can set the rotation amount per step to 15 degrees, for example, and adjust the rotation amount. The electric rotation controller 64 connected to the electric motor 61 is for instructing the electric motor 61 to output a step when receiving a control signal from the computer 32 on the weighing device 31 side.

つぎに本発明に係る燃料コンパクト成形用原料粒子の秤量方法について、上述した手段を用いるときの実施形態を以下に説明する。   Next, an embodiment in which the above-described means is used for the weighing method of the fuel compact molding raw material particles according to the present invention will be described below.

図1において、はじめの段階では原料粒子11を容積計量する。これに際しては計量容器21の容積が前記のV2であるから、これに基づいて所定量の原料粒子11を計量容器21内に入れる。原料粒子11を計量容器21内に入れる手段は手動・半自動・全自動のいずれでもよいが、一例として半自動や全自動のような機械的作業を実施するときは、周知の計量ホッパを用いて計量容器21内に原料粒子11を定量供給すればよい。   In FIG. 1, the raw material particles 11 are weighed in the first stage. At this time, since the volume of the measuring container 21 is V2, the predetermined amount of the raw material particles 11 is put into the measuring container 21 based on this. The means for putting the raw material particles 11 into the measuring container 21 may be either manual, semi-automatic or fully automatic. For example, when performing a mechanical operation such as semi-automatic or fully automatic, a known measuring hopper is used. What is necessary is just to supply a fixed amount of the raw material particles 11 into the container 21.

図1において、つぎの段階では容積計量後の原料粒子11を秤量する。このときは計量容器21内の原料粒子11を秤量機器31上にある秤量容器33内に移し入れる。より具体的にいうと、ターンテーブル上またはコンベア上に載せられた計量容器21を所定位置まで搬送した後、それをロボットバンドで掴んで計量容器21内の原料粒子11を秤量容器33内に移し入れるとか、あるいは、移動式のロボットバンドで掴んで上記と同様に原料粒子11を秤量容器33内に移し入れるとかする。容積計量後の原料粒子11をこのようにして秤量容器33内に移し入れたときは、秤量機器31がそれを秤量する。   In FIG. 1, in the next stage, the raw material particles 11 after the volume measurement are weighed. At this time, the raw material particles 11 in the weighing container 21 are transferred into the weighing container 33 on the weighing device 31. More specifically, after the weighing container 21 placed on the turntable or the conveyor is transported to a predetermined position, the raw material particles 11 in the weighing container 21 are transferred into the weighing container 33 by grasping it with a robot band. Or, it may be held by a movable robot band and the raw material particles 11 may be transferred into the weighing container 33 in the same manner as described above. When the raw material particles 11 after volumetric measurement are transferred into the weighing container 33 in this way, the weighing device 31 weighs them.

この段階で秤量機器31が秤量しているのは、容積計量後の原料粒子11であるから、現在秤量値は前記(2) 式のとおり目標秤量値W2をわずかに下回る。ゆえに秤量容器33内には不足分の原料粒子11を追加しなければならない。この原料粒子11の追加は個数単位で行われ、それで秤量中の原料粒子11が目標秤量値W2にいたる。ちなみに追加すべき原料粒子11の数W4(個)は、現在秤量中の重量(容積計量後の原料粒子11の重量)をW3(g)とした場合に下記(3) 式で求まる。
W4(個)=(W2−W3)/W1………(3)
At this stage, the weighing device 31 weighs the raw material particles 11 after volumetric measurement, so that the current weighing value is slightly below the target weighing value W2 as shown in the equation (2). Therefore, a shortage of raw material particles 11 must be added to the weighing container 33. The addition of the raw material particles 11 is performed in units of number, so that the raw material particles 11 in the weighing reach the target weighing value W2. Incidentally, the number W4 (number) of the raw material particles 11 to be added is obtained by the following equation (3) when the weight in the current weighing (the weight of the raw material particles 11 after the volume measurement) is W3 (g).
W4 (pieces) = (W2-W3) / W1 (3)

秤量機器31が容積計量後の原料粒子11を秤量しているとき、上記(3) 式に基づく電気的ないし電子的な演算をコンピュータ32が行い、目標秤量値W2に対して不足する原料粒子11の個数すなわち追加すべき原料粒子11の個数を求める。ここで求められた原料粒子11の個数信号やその追加をうながす信号すなわち制御信号は、コンピュータ32から粒子供給機械41の回転制御機64に送信される。   When the weighing device 31 is weighing the raw material particles 11 after volumetric measurement, the computer 32 performs an electrical or electronic calculation based on the above equation (3), and the raw material particles 11 that are insufficient with respect to the target weighing value W2. , That is, the number of raw material particles 11 to be added. The number signal of the raw material particles 11 obtained here and a signal prompting the addition thereof, that is, a control signal are transmitted from the computer 32 to the rotation controller 64 of the particle supply machine 41.

上記の制御信号を受けた粒子供給機械41の回転制御機64は、その制御信号に基づいて電動機61を所定ステップだけ回転させる。たとえば秤量機器31上の秤量容器33内に原料粒子11を50個だけ追加すればよいとき、電動機61を50ステップだけ作動させて回転盤45を50ステップ分だけ間欠回転または連続回転させる。   Upon receiving the control signal, the rotation controller 64 of the particle supply machine 41 rotates the electric motor 61 by a predetermined step based on the control signal. For example, when only 50 raw material particles 11 need be added to the weighing container 33 on the weighing device 31, the electric motor 61 is operated for 50 steps, and the rotating disk 45 is rotated intermittently or continuously for 50 steps.

図2を参照して、回転盤45の表面のほぼ上半領域にある各凹部46にはそれぞれ原料粒子11が装填されている。この回転盤上半領域で左側最下位に位置する凹部46内の原料粒子11は粒子供給用案内部材54の粒子入口55に直面している。したがって回転盤45が図2の反時計回り方向へ1ステップ回転したとき、その左側最下位の原料粒子11が粒子入口55から粒子供給用案内部材54内に進入し、ここを重力降下しながら粒子出口57から秤量容器33内へと落下する。回転盤45が図2の反時計回り方向へつぎの1ステップ回転したとき、回転盤45上にあるつぎの原料粒子11が粒子入口55に合致して上記と同様に秤量容器33内へ落下する。以降のステップ回転でも回転盤45上にある所定位置の原料粒子11が上記と同様にしてつぎつぎと秤量容器33内へ落下する。図2において、このようにして原料粒子11を追加しているときの回転盤45の右側では、その表面のほぼ下半領域にある空の凹部46がステップ回転にともなってつぎつぎと繰り上がり、それらが粒子装填用案内部材51の粒子出口52と離合する。空の凹部46が粒子装填用案内部材51の粒子出口52に合致したとき、当該案内部材51内の原料粒子11が粒子出口52から空の凹部46へと移乗する。したがってそれぞれの空の凹部46は、粒子装填用案内部材51の粒子出口52に合致するごとに原料粒子11を装填されることとなる。   Referring to FIG. 2, raw material particles 11 are loaded in each of the recesses 46 in the substantially upper half area of the surface of the turntable 45. The raw material particles 11 in the recess 46 located at the lowermost left side in the upper half region of the rotating disk face the particle inlet 55 of the particle supply guide member 54. Accordingly, when the turntable 45 is rotated one step in the counterclockwise direction of FIG. 2, the lowermost raw material particle 11 on the left side enters the particle supply guide member 54 from the particle inlet 55, and the particle is lowered while gravity falling there. It falls into the weighing container 33 from the outlet 57. When the turntable 45 rotates the next step in the counterclockwise direction of FIG. 2, the next raw material particle 11 on the turntable 45 matches the particle inlet 55 and falls into the weighing container 33 in the same manner as described above. . In the subsequent step rotation, the raw material particles 11 at predetermined positions on the rotating disk 45 are successively dropped into the weighing container 33 in the same manner as described above. In FIG. 2, on the right side of the turntable 45 when the raw material particles 11 are added in this way, empty concave portions 46 in the substantially lower half area of the surface are successively raised along with the step rotation. Is separated from the particle outlet 52 of the particle loading guide member 51. When the empty concave portion 46 matches the particle outlet 52 of the particle loading guide member 51, the raw material particles 11 in the guide member 51 are transferred from the particle outlet 52 to the empty concave portion 46. Therefore, each empty recess 46 is loaded with the raw material particles 11 each time it coincides with the particle outlet 52 of the particle loading guide member 51.

かくて所定数の原料粒子11が秤量容器33内へ追加されたとき、秤量機器31は秤量中の原料粒子11が目標秤量値W2に到達したことを視覚および/または聴覚にとらえることのできる手段で報知する。このような手段で燃料コンパクト成形用原料粒子を秤量するときの目標秤量値W2は、およそで100gの範囲内にある。ちなみに本発明の手段で「目標秤量値W2=数十g」かつ「秤量精度=小数点2桁以下」を実現するとき、これに要する時間は従来技術の半分以下ですむ。   Thus, when a predetermined number of raw material particles 11 are added into the weighing container 33, the weighing device 31 can visually and / or audibly detect that the raw material particles 11 in the weighing have reached the target weighing value W2. To inform. The target weighing value W2 when weighing the fuel compact molding raw material particles by such means is in the range of approximately 100 g. Incidentally, when the “target weighing value W2 = several tens of grams” and “weighing accuracy = two digits or less of the decimal point” are realized by means of the present invention, the time required for this is less than half that of the prior art.

本発明の手段で精密秤量された原料粒子11は、中空円筒形にプレス成形またはモールド成形する。その成形物を焼結したものが燃料コンパクトとなり、一定数量の燃料コンパクトを黒鉛製筒に入れてその上下を端栓で封じたものが燃料棒となる。最終的なものとしては、所定数の燃料棒を六角柱型黒鉛ブロックの各挿入口に装填したものが高温ガス炉の燃料となる。   The raw material particles 11 precisely weighed by the means of the present invention are pressed or molded into a hollow cylindrical shape. A sintered compact of the molded product becomes a fuel compact, and a fuel rod is obtained by putting a certain amount of fuel compact in a graphite tube and sealing the top and bottom with end plugs. As a final product, a fuel in the high temperature gas furnace is obtained by loading a predetermined number of fuel rods into the insertion ports of the hexagonal columnar graphite block.

本発明方法や本発明装置は秤量精度が高く、かつ、秤量時間が短い上、イニシャルコストやランニングコストが低いので、産業上の利用可能性が高い。   The method of the present invention and the device of the present invention have high weighing accuracy, short weighing time, and low initial cost and running cost, so that the industrial applicability is high.

本発明方法および本発明装置の一実施形態を略示した斜視図である。1 is a perspective view schematically showing an embodiment of a method and a device of the present invention. 本発明方法および本発明装置の一実施形態で採用された粒子供給機械の正面図である。It is a front view of the particle supply machine employ | adopted by one Embodiment of this invention method and this invention apparatus. 図2に示された粒子供給機械の側面図である。FIG. 3 is a side view of the particle supply machine shown in FIG. 2. 本発明方法および本発明装置で取り扱われる原料粒子の一例を示した断面図である。It is sectional drawing which showed an example of the raw material particle handled with this invention method and this invention apparatus.

符号の説明Explanation of symbols

11 原料粒子
12 燃料核
13 第1被覆層
14 第2被覆層
15 第3被覆層
16 第4被覆層
17 黒鉛マトリックス材層
21 計量容器
31 秤量機器
32 コンピュータ
33 秤量容器
41 粒子供給機械
45 回転盤
46 凹部
47 軸
51 粒子装填用の案内部材
52 粒子出口
53 突出片
54 粒子供給用の案内部材
55 粒子入口
56 突出片
57 粒子出口
61 電動機
62 電動機の駆動軸
64 回転制御機
DESCRIPTION OF SYMBOLS 11 Raw material particle | grains 12 Fuel nucleus 13 1st coating layer 14 2nd coating layer 15 3rd coating layer 16 4th coating layer 17 Graphite matrix material layer 21 Measuring container 31 Weighing apparatus 32 Computer 33 Weighing container 41 Particle supply machine 45 Turntable 46 Recess 47 Shaft 51 Guide member for loading particles 52 Particle outlet 53 Protruding piece 54 Guide member for supplying particle 55 Particle inlet 56 Protruding piece 57 Particle outlet 61 Electric motor 62 Motor drive shaft 64 Rotation controller

Claims (5)

高温ガス炉用燃料を製造するための工程のうちの核燃料物質を含む燃料コンパクトの成形工程で実施される原料粒子の秤量技術であって原料粒子を1燃料コンパクト分あたり秤量するための方法において、はじめに原料粒子を容積計量すること、つぎに容積計量後の原料粒子を秤量すること、そのつぎに秤量中の原料粒子について1燃料コンパクト分の実測秤量値とその目標秤量値とを比較演算して目標秤量値に対する実測秤量値の差分を原料粒子の個数に換算し、当該差分を解消するために必要な量の原料粒子を秤量中の原料粒子に個数単位で供給することを特徴とする燃料コンパクト成形用原料粒子の秤量方法。   In a method for weighing raw material particles carried out in a fuel compact forming step including a nuclear fuel material in a process for producing a fuel for a HTGR, the raw material particles are weighed per fuel compact. First, volumetrically measure the raw material particles, then weigh the volumetric raw material particles, and then compare the actual measured value for one fuel compact with the target measured value for the raw material particles being weighed. A fuel compact characterized by converting the difference between the actual measurement value and the target measurement value into the number of raw material particles, and supplying the required amount of raw material particles to the raw material particles in the weighing unit in order to eliminate the difference Method of weighing raw material particles for molding. 平均直径が0.5〜3mmかつ平均真球度が1.2以下の原料粒子を秤量する請求項1に記載の燃料コンパクト成形用原料粒子の秤量方法。   2. The method for weighing fuel compact molding raw material particles according to claim 1, wherein raw material particles having an average diameter of 0.5 to 3 mm and an average sphericity of 1.2 or less are weighed. 1粒子あたりの重量が0.002〜0.01gの原料粒子を秤量する請求項1または2に記載の燃料コンパクト成形用原料粒子の秤量方法。   3. The method for weighing fuel compact molding raw material particles according to claim 1, wherein raw material particles having a weight per particle of 0.002 to 0.01 g are weighed. 目標秤量値が0.001〜100gの範囲内にある請求項1〜3のいずれかに記載の燃料コンパクト成形用原料粒子の秤量方法。   The method for weighing fuel compact molding raw material particles according to any one of claims 1 to 3, wherein the target weighing value is in the range of 0.001 to 100 g. 高温ガス炉用燃料を製造するための工程のうちの核燃料物質を含む燃料コンパクトの成形工程で実施される原料粒子の秤量技術であって原料粒子を1燃料コンパクト分あたり秤量するための装置において、原料粒子を容積計量するための容積計量容器と、容積計量後の原料粒子を秤量するための秤量機器と、秤量中の原料粒子について1燃料コンパクト分の実測秤量値とその目標秤量値とを比較演算して目標秤量値に対する実測秤量値の差分を原料粒子の個数に換算するための手段と、秤量中の原料粒子に対して追加用の原料粒子を個数単位で供給するための粒子供給機械とを備えていることを特徴とする燃料コンパクト成形用原料粒子の秤量装置。   In an apparatus for weighing raw material particles carried out in a process for forming a fuel compact containing a nuclear fuel material in a process for producing a fuel for a HTGR, the raw material particles are weighed per one fuel compact. Volumetric container for volumetric measurement of raw material particles, weighing device for weighing raw material particles after volumetric measurement, and comparison between the actual measured value for one fuel compact and the target measured value for the raw material particles in the weighing Means for calculating and converting the difference between the actual measurement value and the target measurement value into the number of raw material particles, and a particle supply machine for supplying additional raw material particles in units of the raw material particles in the weighing An apparatus for weighing raw material particles for compact fuel molding, comprising:
JP2005123685A 2005-04-21 2005-04-21 Method and apparatus for weighing raw material particle for use in molding fuel compact Withdrawn JP2006300766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123685A JP2006300766A (en) 2005-04-21 2005-04-21 Method and apparatus for weighing raw material particle for use in molding fuel compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123685A JP2006300766A (en) 2005-04-21 2005-04-21 Method and apparatus for weighing raw material particle for use in molding fuel compact

Publications (1)

Publication Number Publication Date
JP2006300766A true JP2006300766A (en) 2006-11-02

Family

ID=37469227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123685A Withdrawn JP2006300766A (en) 2005-04-21 2005-04-21 Method and apparatus for weighing raw material particle for use in molding fuel compact

Country Status (1)

Country Link
JP (1) JP2006300766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006618A (en) * 2008-06-24 2010-01-14 Nuclear Fuel Ind Ltd Method and apparatus for regulating uranium enrichment for high-temperature gas-cooled reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006618A (en) * 2008-06-24 2010-01-14 Nuclear Fuel Ind Ltd Method and apparatus for regulating uranium enrichment for high-temperature gas-cooled reactor

Similar Documents

Publication Publication Date Title
JP2006300766A (en) Method and apparatus for weighing raw material particle for use in molding fuel compact
US4963758A (en) Method of making compacts containing precise amounts of nuclear fuel
Robinson et al. The M8 Power Calibration Experiment (M8CAL)
Aoyama et al. Core performance tests for the JOYO MK-III upgrade
CN115359935A (en) Internal circulation tracing method for spherical element of high-temperature gas-cooled reactor
Herbig et al. Vibrocompacted fuel for the liquid metal reactor BOR-60
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
Robinson et al. Power coupling in TREAT M-Series: New experimental results from M7CAL and updated analyses
Varlachev et al. Technology for Silicon NTD Using Pool-Type Research Reactors
Gunn et al. High Precision Irradiation Techniques for NTD Silicon at the University of Missouri Research Reactor
Bock et al. A wiring system for mass production of drift and proportional chambers
Pflasterer Jr et al. Activation measurement of the Doppler effect for 238U capture and 235U fission in a fast-neutron spectrum
JP2008249608A (en) Method of measuring zirconium carbide layer density
JP4942708B2 (en) Uranium enrichment adjusting method for HTGR and uranium enrichment adjusting apparatus for HTGR
JP2006258799A (en) Manufacturing method of fuel for high-temperature gas-cooled reactor
RU2256961C2 (en) Method of controlling nuclear fuel for thermal resistance
CN114743701A (en) Method for measuring reactivity value of control rod of high-temperature gas cooled reactor
LOS ALAMOS ‘~ o~ Reference
Smith et al. Tissue equivalent proportional counter neutron monitor
Angelini et al. Uranium and thorium loadings determined by chemical and nondestructive methods in HTGR fuel rods for the Fort St. Vrain Early Validation Irradiation Experiment
Lanzo Results of a preliminary experimental investigation of a vapor transport fuel pin
Roake IRRADIATION TESTING OF NOVEL URANIUM DIOXIDE FUEL ELEMENTS
Avaev et al. Highly sensitive microcalorimeters for radiation research
JP2006064442A (en) Manufacturing device of hollow fuel compact for high-temperature gas furnace
Schürrer et al. Steady-State Neutrbnic Investigations to the Accident of Water Ingress in Systems with Pebble-Bed High-Temperature Gas-Cooled Reactor Fuel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701