JP2006300651A - Particle behavior analyzer and analytical method - Google Patents

Particle behavior analyzer and analytical method Download PDF

Info

Publication number
JP2006300651A
JP2006300651A JP2005121133A JP2005121133A JP2006300651A JP 2006300651 A JP2006300651 A JP 2006300651A JP 2005121133 A JP2005121133 A JP 2005121133A JP 2005121133 A JP2005121133 A JP 2005121133A JP 2006300651 A JP2006300651 A JP 2006300651A
Authority
JP
Japan
Prior art keywords
particle
particles
developer
amount
behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005121133A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Arakawa
満吉 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005121133A priority Critical patent/JP2006300651A/en
Publication of JP2006300651A publication Critical patent/JP2006300651A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an particle behavior analyzer and analytical method capable of finding a difference in a compression condition such as a deformed amount and elastic energy of an individual particle due to a physical property of the particle or a structure in detail, in particle behavior analysis using a discrete element method. <P>SOLUTION: In this particle behavior analyzer having the particle and the structure arranged related thereto, and for finding the behavior thereof by the discrete element method, the individual deformed amount and elastic energy of the particle or the structure are individually obtained, as a deformed condition of the particle or the structure, using an approach amount between the two contacting bodies and the respective physical properties, in a contact part between the particle and the particle or patrticle and the structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、離散要素法を用いた粒子挙動解析装置及び粒子挙動解析方法に関し、更に詳しくは、現像剤等の粒子や容器などの構造物の物性値を用いて、接触部における粒子の圧縮状態表す物理量を求める粒子挙動解析装置及び粒子挙動解析方法に関する。   The present invention relates to a particle behavior analysis apparatus and a particle behavior analysis method using a discrete element method, and more specifically, a compression state of particles in a contact portion using a property value of a particle such as a developer or a structure such as a container. The present invention relates to a particle behavior analysis apparatus and a particle behavior analysis method for obtaining a physical quantity to be expressed.

例えば、電子写真技術を利用した複写機やプリンタなどには、現像器によって感光体の表面上にトナーからなる可視像を形成することが行われる。現像器内には微細なトナー粒子が供給され、このトナー粒子を適切に現像部位に供給し現像を行う。また、2成分現像方式では、トナーは磁性体であるキャリアに付着し、現像器内を攪拌・搬送される。このように現像機内には、トナー粒子やキャリアの他に、外添剤や樹脂など様々な粒径、材料の粒子が混在している。また、トナー粒子は供給されてから紙面上に転写される一連の過程において摺擦や圧縮によって劣化し、このトナー劣化が画質に非常に大きく影響することが分かっている。   For example, in a copying machine or a printer using an electrophotographic technique, a visible image made of toner is formed on the surface of a photoreceptor by a developing device. Fine toner particles are supplied into the developing device, and the toner particles are appropriately supplied to the development site for development. In the two-component development method, the toner adheres to a carrier that is a magnetic material, and is stirred and conveyed in the developing device. Thus, in the developing machine, particles of various particle sizes and materials such as external additives and resins are mixed in addition to toner particles and carriers. In addition, it is known that toner particles are deteriorated by rubbing and compression in a series of processes in which toner particles are supplied and then transferred onto a paper surface, and this toner deterioration has a great influence on image quality.

上記のように粉体や粒状体を扱う分野では、粒子の挙動を把握することが重要な課題となっている。近年このような課題に対して離散要素法(DEM)を用いたシミュレーションが数多く行われている。   In the field of handling powders and granular materials as described above, it is an important issue to understand the behavior of particles. In recent years, many simulations using the discrete element method (DEM) have been performed for such problems.

DEMについては、非特許文献1などに具体的な計算方法が説明されているので、ここでは特徴のみを簡単に説明する。DEMは粒子に働く力をもとに運動方程式を解くことにより各時間の粒子の挙動を求める方法であり、2物体間に作用する接触力として、バネ−ダッシュポットモデルに基づいた弾性反発力と粘性減衰力を定義する。   Regarding DEM, a specific calculation method is described in Non-Patent Document 1 and the like, and only features will be briefly described here. DEM is a method for obtaining the behavior of a particle at each time by solving a motion equation based on the force acting on the particle. As a contact force acting between two objects, an elastic repulsive force based on a spring-dashpot model is used. Define viscous damping force.

以下、DEMにおける接触力の求め方について図5(a)と図8を用いて説明する。   Hereinafter, a method for obtaining the contact force in the DEM will be described with reference to FIGS.

粒子間の作用力は、図5(a)に示すように法線方向には弾性バネ、ダッシュポット、接線方向に弾性バネ、ダッシュポット、スライダーを用いてモデル化し、2つの物体間の接近量δを定義し、その距離を用いて接触/非接触の判定、並びに接触力の計算を行う。また、粒子と容器壁などの構造物との接触部においても、粒子間接触と同様のモデルを適用することができる。これにより、粉体や粒状体における粒子の挙動をDEMを用いて解析できるようになる。このうち、接近量の定義は図8に示すとおりであり、2粒子間の接近量(粒子の中心を結ぶ直線状に於ける粒子同士の重なった部分の長さ)を図8(a)に、粒子と構造物の接近量(粒子の中心から構造物表面に垂直に交わる直線状に於ける粒子と構造物との重なり長さ)を図8(b)に示している。ここで粒子の中心とは、通常接触部分もしくは最近接部分の曲率半径を有する円や球の中心で規定される。   The acting force between the particles is modeled using an elastic spring, dashpot in the normal direction, and an elastic spring, dashpot, slider in the tangential direction as shown in FIG. δ is defined, and contact / non-contact determination and contact force calculation are performed using the distance. In addition, a model similar to the contact between particles can be applied to the contact portion between the particle and a structure such as a container wall. As a result, the behavior of the particles in the powder or granular material can be analyzed using the DEM. Of these, the definition of the approaching amount is as shown in FIG. 8, and the approaching amount between two particles (the length of the overlapping portion of the particles in a straight line connecting the centers of the particles) is shown in FIG. FIG. 8B shows the approach amount between the particle and the structure (the overlapping length of the particle and the structure in a straight line perpendicular to the structure surface from the center of the particle). Here, the center of the particle is defined by the center of a circle or a sphere having a radius of curvature of the normal contact portion or the closest portion.

以下、粒子挙動解析装置の代表的なプログラム構成の一例を図7を用いて説明する。   Hereinafter, an example of a typical program configuration of the particle behavior analysis apparatus will be described with reference to FIG.

図中、符号100は制御部であり、プログラムの全体処理を制御する。   In the figure, reference numeral 100 denotes a control unit that controls the overall processing of the program.

符号111は初期条件設定部であり、粒子の初期配置、半径、物性値、解析領域を構成する剛性構造物の形状、寸法、物性値、及び計算条件として計算時間、時間ステップの設定を行う。符号112は粒子同士の作用力計算部であり、2粒子間に働く接触力や付着力などの作用力を求める。符号113は粒子と構造物の作用力計算部であり、粒子と構造物間に働く接触力や付着力などの作用力を求める。符号115は粒子に働く外力の計算部であり、粒子に作用する重力、磁気力、静電気力などの作用力の計算を行う。符号116は粒子の変位計算部であり、粒子に働く作用力を元に運動方程式を解き、粒子の速度と変位を求める。符号117は粒子挙動表示部であり各時間の粒子と構造物の位置を表示する。なお、実際の計算では、符号112〜116の処理を繰り返し行うことにより粒子の挙動を求めることが出来る。   Reference numeral 111 denotes an initial condition setting unit, which sets a calculation time and a time step as an initial arrangement of particles, a radius, a physical property value, a shape, a dimension, a physical property value of a rigid structure constituting an analysis region, and a calculation condition. Reference numeral 112 denotes an acting force calculation unit between particles, which obtains an acting force such as a contact force or an adhesion force acting between two particles. Reference numeral 113 denotes an acting force calculation unit for the particle and the structure, which obtains an acting force such as a contact force and an adhesion force acting between the particle and the structure. Reference numeral 115 denotes a calculation unit for an external force acting on the particle, and calculates an acting force such as gravity, magnetic force, electrostatic force, etc. acting on the particle. Reference numeral 116 denotes a particle displacement calculator, which solves the equation of motion based on the acting force acting on the particle and obtains the velocity and displacement of the particle. Reference numeral 117 denotes a particle behavior display unit that displays the positions of particles and structures at each time. In the actual calculation, the behavior of the particles can be obtained by repeatedly performing the processes 112 to 116.

一方、DEM手法を用いた粒子挙動解析においてトナーの劣化の指標として、圧縮によるトナーの変形量や弾性エネルギーを用いる方法がある。以下に、DEM手法において粒子の変形量と弾性エネルギーを指標として取り扱った例を示す。   On the other hand, in the particle behavior analysis using the DEM method, there is a method of using the deformation amount of the toner due to compression or elastic energy as an index of toner deterioration. The following shows an example in which the deformation amount and elastic energy of particles are used as indices in the DEM technique.

粒子の変形量を指標としたDEM手法としては非特許文献2などに具体的に記載されている。この方法では、2体の接近量δに基づいて粒子間、もしくは粒子と構造物間の接触力を求め、接近量が弾性限界量δを超えた場合に粒子が塑性変形したとしている。 Non-patent document 2 specifically describes the DEM technique using the deformation amount of particles as an index. In this way, between the particles on the basis of the approaching amount [delta] of two bodies, or determine the contact force between the particles and the structure, and the particles are plastically deformed when the amount close exceeds the elastic limit amount [delta] L.

また、弾性エネルギーを指標としたDEM手法としては非特許文献3などに報告されている。この方法では、粒子間、もしくは粒子−構造物間における接近量δδに基づいて、法線方向と接線方向の弾性エネルギーを以下の式で求める。 A DEM technique using elastic energy as an index is reported in Non-Patent Document 3 and the like. In this method, the elastic energy in the normal direction and the tangential direction is obtained by the following equation based on the approach amount δ n δ t between particles or between particles and structures.

そして個々の粒子に蓄えられる弾性エネルギーは、粒子間の接触部においてはそれぞれの粒子に2等分されて蓄えられると考え、粒子−構造物間においては、全弾性エネルギーは粒子に蓄えられるものとしている。
田中他,日本機会学会論文集(B編),57,534,60(1991) 中山他,富士ゼロックステクニカルレポート,12,103(1998) 日本機械学会論文集:64,625,(1998),323
The elastic energy stored in each particle is considered to be divided into two equal parts and stored in the contact part between the particles, and the total elastic energy is stored in the particles between the particles and the structure. Yes.
Tanaka et al., Proceedings of the Japan Opportunity Society (Part B), 57, 534, 60 (1991) Nakayama et al., Fuji Xerox Technical Report, 12, 103 (1998) Transactions of the Japan Society of Mechanical Engineers: 64, 625, (1998), 323

しかしながら上記の方法は、粒子や構造物の変形量の和である接近量を用いて粒子の圧縮状態である変形量や弾性エネルギーを求めている為、接触粒子の大きさやヤング率などの物性値が等しい場合には正しい値となるものの、異なる場合には各粒子の変形量や弾性エネルギーを正しく求めることが出来ない。   However, since the above method uses the approach amount that is the sum of the deformation amounts of the particles and structures to determine the deformation amount and elastic energy in the compressed state of the particles, the physical property values such as the size and Young's modulus of the contact particles If they are equal, the value is correct, but if they are different, the deformation amount and elastic energy of each particle cannot be obtained correctly.

例えば図9は粒子と構造物の接触状態を表した図であり、符号901は粒子、符号902は構造物を示す。ここでは、図9(a)のように、粒子と構造物の接近量がδであった場合を例にとり説明をする。通常のDEMにおいて、図9(a)のように接近量δが求まれば接触による弾性力を求めるが、粒子と構造物のそれぞれの変形量を別々に求めることは行われない。しかし、図9(b)のように粒子が構造物よりも十分に柔らかい場合、構造物はほとんど変形せず粒子のみが変形すると考えられる。また逆に、図9(c)のように粒子が構造物よりも十分に硬い場合には、粒子はほとんど変形せず構造物のみが変形する。 For example, FIG. 9 is a diagram showing a contact state between particles and a structure, where reference numeral 901 denotes particles and reference numeral 902 denotes a structure. Here, as in FIG. 9 (a), taken describes the case amount approaching of the particles and the structure was [delta] n the example. In an ordinary DEM, if the approach amount δ n is obtained as shown in FIG. 9A, the elastic force due to contact is obtained, but the respective deformation amounts of the particles and the structure are not obtained separately. However, when the particles are sufficiently softer than the structure as shown in FIG. 9B, it is considered that the structure hardly deforms and only the particles deform. Conversely, as shown in FIG. 9C, when the particles are sufficiently harder than the structure, the particles are hardly deformed and only the structure is deformed.

このように、DEMにおいて同じ接近量であっても、粒子の圧縮状態は粒子や構造物の物性値によって全く異なっている。   Thus, even in the same approach amount in the DEM, the compressed state of the particles is completely different depending on the physical properties of the particles and structures.

本発明はこのような問題を鑑みてなされたものであり、離散要素法を用いた粒子挙動解析において、粒子の圧縮状態として各粒子の変形量や弾性エネルギーを厳密に求めることの出来る粒子挙動解析装置及び解析方法を提供することを目的とする。   The present invention has been made in view of such problems, and in particle behavior analysis using the discrete element method, particle behavior analysis that can accurately determine the deformation amount and elastic energy of each particle as the compression state of the particle. An object is to provide an apparatus and an analysis method.

かかる課題を解決するため、本発明の粒子挙動解析装置は、粒子とそれに関連して配された構造物を有し、離散要素法により、それらの挙動を求める粒子挙動解析装置において、粒子と粒子もしくは粒子と構造物の接触部において、接触している2体間の接近量とそれぞれの物性値を用いて、粒子や構造物の変形状態として、粒子や構造物の個々の変形量や弾性エネルギーを個別に求めることを特徴とする。   In order to solve such a problem, a particle behavior analysis apparatus according to the present invention includes a particle and a structure arranged in association with the particle, and the particle behavior analysis apparatus obtains the behavior by a discrete element method. Alternatively, at the contact part between the particle and the structure, the deformation amount of each particle or structure and the elastic energy can be obtained as the deformation state of the particle or structure by using the approaching amount between the two contacting bodies and the respective physical property values. Is obtained individually.

加えて本発明の粒子挙動解析装置は、潜像が形成された担持体表面上に可視像を形成するための粒子としての現像剤を内包した容器内の粒子、現像剤担持体に圧接されて同現像剤担持体上の現像剤の量を規制する現像剤規制部材を備えた現像装置の粒子、現像剤を攪拌混合している攪拌部や現像部の粒子、現像剤担持体と中間転写体の接触部に代表される粒子としての現像剤を転写する転写装置における粒子、転写後の現像剤担持体上の不要粒子を除去するために設けられたクリーニングブレードを有するクリーニング装置における粒子の少なくとも一つの挙動を解析するために利用されることを特徴とする。   In addition, the particle behavior analysis apparatus of the present invention is in pressure contact with particles in a container containing developer as particles for forming a visible image on the surface of the carrier on which the latent image is formed, and the developer carrier. Particles of a developing device equipped with a developer regulating member that regulates the amount of developer on the developer carrier, particles in the agitator and developer where the developer is agitated and mixed, developer carrier and intermediate transfer At least particles in a transfer device that transfers developer as particles represented by a contact portion of the body, and particles in a cleaning device having a cleaning blade provided to remove unnecessary particles on the developer carrier after transfer It is used to analyze one behavior.

また、本発明の粒子挙動解析方法は、粒子とそれに関連して配された構造物を有し、離散要素法により、それらの挙動を求める粒子挙動解析方法において、粒子と粒子もしくは粒子と構造物の接触部において、接触している2体間の接近量とそれぞれの物性値を用いて、粒子や構造物の変形状態として、粒子や構造物の個々の変形量や弾性エネルギーを個別に求めることを特徴とする。   The particle behavior analysis method of the present invention includes a particle and a structure arranged in relation to the particle, and the particle behavior analysis method for obtaining the behavior by a discrete element method. In the contact part, the amount of deformation and elastic energy of each particle or structure are individually determined as the deformation state of the particle or structure using the approaching amount between the two bodies in contact with each other and the respective physical property values. It is characterized by.

加えて本発明の粒子挙動解析方法は、潜像が形成された担持体表面上に可視像を形成するための粒子としての現像剤を内包した容器内の粒子、現像剤担持体に圧接されて同現像剤担持体上の現像剤の量を規制する現像剤規制部材を備えた現像装置の粒子、現像剤を攪拌混合している攪拌部や現像部の粒子、現像剤担持体と中間転写体の接触部に代表される粒子としての現像剤を転写する転写装置における粒子、転写後の現像剤担持体上の不要粒子を除去するために設けられたクリーニングブレードを有するクリーニング装置における粒子の少なくとも一つの挙動を解析するために利用されることを特徴とする。   In addition, the particle behavior analysis method of the present invention is brought into pressure contact with particles in a container containing developer as particles for forming a visible image on the surface of the carrier on which the latent image is formed, and the developer carrier. Particles of a developing device equipped with a developer regulating member that regulates the amount of developer on the developer carrier, particles in the agitator and developer where the developer is agitated and mixed, developer carrier and intermediate transfer At least particles in a transfer device that transfers developer as particles represented by a contact portion of the body, and particles in a cleaning device having a cleaning blade provided to remove unnecessary particles on the developer carrier after transfer It is used to analyze one behavior.

本発明によれば、離散要素法を用いた粒子挙動解析装置において、粒子や構造物の物性値による個々の粒子の変形量や弾性エネルギーなどの圧縮状態の違いを詳細に求めることが出来るようになった。   According to the present invention, in the particle behavior analysis apparatus using the discrete element method, it is possible to obtain in detail the difference in compression state such as the deformation amount and elastic energy of each particle due to the physical property value of the particle or structure. became.

また、本手法を用いることで、通常のDEMと粒子の挙動が変わることなく、粒子の圧縮状態をより詳細に求めることが出来るようになった。   In addition, by using this method, the compression state of particles can be obtained in more detail without changing the behavior of particles with normal DEM.

また、本発明を電子写真装置の現像剤挙動解析に適用することにより、中間転写体と感光体が接する転写装置や、転写残トナーを除去するためのクリーニングブレードを備えたクリーニング装置、弾性ブレードにより磁性ローラにトナーを薄層コートする規制部、接触現像方式におけるトナーカートリッジの現像ニップ部など、構造物を用いて現像剤の挙動を制御する装置などに対して、現像剤の圧縮による変形量や弾性エネルギーをより厳密に予測できるようになった。   Further, by applying the present invention to the developer behavior analysis of an electrophotographic apparatus, a transfer device in which the intermediate transfer member and the photosensitive member are in contact with each other, a cleaning device having a cleaning blade for removing transfer residual toner, and an elastic blade are used. For devices that control the behavior of the developer using a structure, such as a regulating part that coats the magnetic roller with a thin layer of toner, and a development nip part of a toner cartridge in the contact development method, Elastic energy can be predicted more precisely.

本発明は上記説明した実施例に限定されるものではなく、本発明の主旨の範囲において、適宜変形、組み合わせが可能であることはいうまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that modifications and combinations can be appropriately made within the scope of the gist of the present invention.

以下に、本発明の好適な一実施例について必要に応じて図面を参照しつつ詳しく説明する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings as necessary.

まず、本発明による粒子挙動解析装置の全体構成を図1,図2を用いて説明する。   First, the whole structure of the particle | grain behavior analyzer by this invention is demonstrated using FIG. 1, FIG.

図1は、本粒子挙動解析装置の処理プログラムの好適な一例を表す概略的プログラム構成図である。   FIG. 1 is a schematic program configuration diagram showing a preferred example of the processing program of the particle behavior analysis apparatus.

符号100、符号111〜113、符号115〜117は図7と同じであるため、説明を省略する。   Reference numerals 100, 111 to 113, and 115 to 117 are the same as those in FIG.

符号114は粒子の変形量と弾性エネルギー計算部であり、接触している粒子や構造物の接近量と、粒子や構造物の物性値から個々の粒子や構造物の変形量を別々に求め、求めた変形量から各粒子の弾性エネルギーを算出する。   Reference numeral 114 is a particle deformation amount and elastic energy calculation unit, and separately determines the deformation amount of each particle or structure from the approaching amount of the contacting particle or structure and the physical property value of the particle or structure. The elastic energy of each particle is calculated from the obtained deformation amount.

図2は、本発明による好適な一例を表す装置のブロック図である。   FIG. 2 is a block diagram of an apparatus representing a preferred example according to the present invention.

本装置の構成を詳述すると、CPU200は、中央処理装置であり、バス205を介して接続された上記各部を制御する。RAM201の各格納部201a〜201fには、上記図1に示したプログラム、計算条件データ、粒子データ、構造物データ、変形量データ、弾性エネルギーデータがそれぞれ格納される。表示装置202は、ディスプレイやプリンタ等から構成され、CPU200の制御により表示すべきデータを表示する。入力部203は、キーボードやマウス等から構成され、外部からの入力データを装置内に入力する。外部記憶装置204は、ハードディスク等で構成されており、各種データを記憶する。   The configuration of this apparatus will be described in detail. The CPU 200 is a central processing unit and controls the above-described units connected via the bus 205. The storage units 201a to 201f of the RAM 201 store the program, calculation condition data, particle data, structure data, deformation amount data, and elastic energy data shown in FIG. The display device 202 includes a display, a printer, and the like, and displays data to be displayed under the control of the CPU 200. The input unit 203 includes a keyboard, a mouse, and the like, and inputs input data from the outside into the apparatus. The external storage device 204 is composed of a hard disk or the like and stores various data.

ここで、RAM201の各データの内容を説明する。計算条件データには、時間ステップ、実計算時間等の計算条件に関する値が格納されている。粒子データには、各粒子の位置座標、及び粒径、ヤング率、ポアソン比、摩擦係数、比重などの物性値が格納されている。構造物データには構造部物の形状、寸法、物性値、位置座標、移動速度等の値が格納されている。変形量データには各粒子の変形量の値が格納されている。弾性エネルギーデータには各粒子の弾性エネルギー値が格納されている。   Here, the contents of each data in the RAM 201 will be described. The calculation condition data stores values related to calculation conditions such as time step and actual calculation time. In the particle data, the position coordinates of each particle and physical property values such as particle size, Young's modulus, Poisson's ratio, friction coefficient, specific gravity and the like are stored. The structure data stores values such as the shape, dimensions, physical property values, position coordinates, and movement speed of the structure part. In the deformation amount data, the value of the deformation amount of each particle is stored. The elastic energy data stores the elastic energy value of each particle.

ここで、本発明の特徴である上記粒子の変形量と弾性エネルギー計算部114について図3〜6を用いて本手法の詳細な概念と具体的な処理の流れについて説明する。   Here, the detailed concept of the method and the specific processing flow will be described with reference to FIGS. 3 to 6 for the deformation amount of the particles and the elastic energy calculation unit 114 which are the features of the present invention.

まず、粒子同士の接触モデルの概念を図5〜6を用いて説明する。   First, the concept of a contact model between particles will be described with reference to FIGS.

図5(a)で示した通常のDEMで用いられる弾性係数k,kで表される弾性バネは粒子1、粒子2の弾性バネを直列に結合したものと等価であり、本手法によって求まる粒子の挙動は、通常のDEMと全く同じとなる。 FIGS. 5 (a) modulus of elasticity used in conventional DEM shown in k n, elastic spring represented by k t is equivalent to that bound particles 1, the elastic spring of the particles 2 in series, by this method The behavior of the obtained particles is exactly the same as that of a normal DEM.

図6(a)、(b)は粒子同士の接触部における法線方向、接線方向の変形量と変形力を示した図であり、符号601が粒子1、符号602が粒子2を表す。ここでは、粒子1の変形量、変形力、弾性エネルギーの求め方を示す。なお、粒子2に関しても全く同じ方法で求めることが出来る。   FIGS. 6A and 6B are diagrams showing the deformation amount and the deformation force in the normal direction and the tangential direction at the contact portion between the particles. Reference numeral 601 indicates the particle 1 and reference numeral 602 indicates the particle 2. Here, how to obtain the deformation amount, deformation force, and elastic energy of the particles 1 is shown. The particle 2 can be obtained by the same method.

以降、Rは粒子の半径を表す。また、cは各部材の剛性定数を表し、各部材のヤング率E、ポアソン比νから次の式で求める。   Hereinafter, R represents the radius of the particle. C represents the stiffness constant of each member, and is obtained from the Young's modulus E and Poisson's ratio ν of each member by the following formula.

また、粒子と構造物の接触部においても粒子同士の接触部と同じ考え方で、粒子の変形量と弾性エネルギーを求めることが出来る。具体的には式(7)〜(9)において粒子2の物性値及び粒径を、構造物の物性値および曲率半径に置き換えることで、粒子と構造物の変形量及び粒子の弾性エネルギーを求めることが出来る。   Further, the deformation amount and elastic energy of the particle can be obtained in the contact portion between the particle and the structure in the same way as the contact portion between the particles. Specifically, the amount of deformation of the particles and the structure and the elastic energy of the particles are obtained by substituting the physical property values and particle diameters of the particles 2 with the physical property values and the curvature radius of the structures in the formulas (7) to (9). I can do it.

次に、粒子同士の接触部における粒子の変形量と弾性エネルギー計算部114における具体的な処理の流れを説明する。   Next, the deformation amount of the particles at the contact portion between the particles and the specific processing flow in the elastic energy calculation unit 114 will be described.

図3は、粒子の変形量と弾性エネルギー計算部114における処理の好適な一例を表すブロック図である。また、図4は粒子の変形量と弾性エネルギー計算部114における処理の流れの好適な一例を表すフローチャートである。上記の図3〜4と図2を用いて、上記装置を用いて粒子と構造物の作用力計算を行う処理の流れを説明する。   FIG. 3 is a block diagram illustrating a preferred example of processing in the deformation amount and elastic energy calculation unit 114 of the particles. FIG. 4 is a flowchart showing a preferred example of the deformation amount of the particles and the flow of processing in the elastic energy calculation unit 114. The flow of processing for calculating the acting force of particles and structures using the above apparatus will be described with reference to FIGS.

1)接触判定部311において、粒子データ201cをもとに、通常のDEMと同じ方法で、粒子同士、または粒子と構造物の接触判定を行い、接近量δ,δを求める(ステップS401)。 1) The contact determination unit 311 performs contact determination between particles or between a particle and a structure based on the particle data 201c by the same method as a normal DEM, and obtains the approach amounts δ n and δ t (step S401). ).

2)剛性定数計算部312において、粒子データ201c、構造物データ201dをもとに、式(4),(6)を用いて各粒子、構造物の剛性定数を求める(ステップS402)。   2) The stiffness constant calculation unit 312 obtains the stiffness constant of each particle and structure using the equations (4) and (6) based on the particle data 201c and the structure data 201d (step S402).

3)変形量計算部313において、1)で求めた接近量と2)で求めた剛性定数から、式(7),(8)を用いて各粒子の変形量を求め、変形量データ201eに保存する(ステップS403)。   3) In the deformation amount calculation unit 313, the deformation amount of each particle is obtained from the approach amount obtained in 1) and the stiffness constant obtained in 2) using equations (7) and (8), and the deformation amount data 201e is obtained. Save (step S403).

4)弾性エネルギー計算部314において3)で求めた変形量から、式(9)を用いて各粒子の弾性エネルギーを算出し、弾性エネルギーデータ201fに保存する。(ステップS404)。   4) The elastic energy calculation unit 314 calculates the elastic energy of each particle using the equation (9) from the deformation amount obtained in 3), and stores it in the elastic energy data 201f. (Step S404).

5)1)〜4)の処理を、全ての粒子と構造物に対して行う(ステップS405)。   5) The processes 1) to 4) are performed on all particles and structures (step S405).

以上の説明に基づいて、図6(a)のように同粒径の2粒子の接近量がδ=100μmである場合について本手法を適用した例を示す。 Based on the above description, an example in which this method is applied when the approaching amount of two particles having the same particle diameter is δ n = 100 μm as shown in FIG.

図11(a)(b)はそれぞれ、粒子2のヤング率を固定し、粒子1のヤング率を変化させた場合における粒子の変形量、弾性エネルギーを算出した結果の一例である。   11A and 11B are examples of the results of calculating the deformation amount and elastic energy of the particles when the Young's modulus of the particles 2 is fixed and the Young's modulus of the particles 1 is changed.

図11(a)は、粒子1のヤング率を変化させた場合の粒子の変形量の結果の一例である。この結果では粒子1の剛性が小さいほど粒子1の変形量は大きく、粒子2の変形量は小さい。また、粒子1の剛性が大きくなる程、粒子1の変形量は小さくなり、粒子2の変形量は大きくなっている。   FIG. 11A is an example of the result of the deformation amount of the particle when the Young's modulus of the particle 1 is changed. In this result, the smaller the rigidity of the particle 1, the larger the deformation amount of the particle 1, and the smaller the deformation amount of the particle 2. Further, as the rigidity of the particle 1 increases, the deformation amount of the particle 1 decreases and the deformation amount of the particle 2 increases.

また図11(b)は、粒子1、粒子2の弾性エネルギー及び従来のDEMにおける粒子1と粒子2の弾性エネルギーを示している。従来のDEMでは、粒子1と粒子2のヤング率の関係が変化しても、粒子1粒子2の弾性エネルギーは同じ値であったが、本手法では、粒子1と粒子2の物性値や変形量が変化することにより、それぞれの弾性エネルギーは異なる値を示し、その大小関係も変化している。   FIG. 11B shows the elastic energy of the particles 1 and 2 and the elastic energy of the particles 1 and 2 in the conventional DEM. In the conventional DEM, even if the relationship between the Young's modulus of the particle 1 and the particle 2 is changed, the elastic energy of the particle 1 and the particle 2 is the same value. As the amount changes, each elastic energy shows a different value, and its magnitude relationship also changes.

以上の結果のように、本手法を用いることで、離散要素法による粒子挙動解析装置において、各粒子や構造物の物性値や粒径の違いを考慮して個々の粒子の変形量や弾性エネルギーを求めることが可能となった。   As shown in the above results, using this method, in the particle behavior analysis device by the discrete element method, the deformation amount and elastic energy of each particle are considered in consideration of the physical property value and particle size of each particle or structure. It became possible to ask for.

本実施例では、粒子の変形量を求め、その変形量を基に弾性エネルギーを求めたが、弾性エネルギーのみを求める場合には、各粒子の剛性と接近量からも、式(9)と同じ弾性エネルギーを求めることが出来る。この場合には以下の式を用いて各粒子の弾性エネルギーを求める。   In this embodiment, the deformation amount of the particles is obtained, and the elastic energy is obtained based on the deformation amount. However, when only the elastic energy is obtained, the same as the equation (9) from the rigidity and the approach amount of each particle. Elastic energy can be obtained. In this case, the elastic energy of each particle is obtained using the following equation.

また、本実施例で求めた粒子の変形量や弾性エネルギーは粒子同士の作用力計算部112や粒子と構造物の作用力計算部113において作用力を求める際に同時に求めると、接触判定や剛性定数の算出などと共通化することが出来る。   Further, if the deformation amount and elastic energy of the particles obtained in this embodiment are obtained simultaneously when the acting force is calculated in the acting force calculator 112 between the particles and the acting force calculator 113 between the particle and the structure, contact determination and rigidity It can be shared with the calculation of constants.

以下では、本発明の具体的な適用例の1つとして、中間転写方式を用いた電子写真装置の一次転写部における現像剤挙動解析について説明する。   Hereinafter, as one specific application example of the present invention, a developer behavior analysis in a primary transfer portion of an electrophotographic apparatus using an intermediate transfer method will be described.

図10は、電子写真装置における画像形成装置を構成する装置の一部を示している。図中、1011は帯電部材、1012は感光体ドラム、1013はコート部材、1014は磁性ローラ、1015は現像容器、1016はトナーボトル、1017は搬送スクリュー、1018は中間転写体、1019は紙搬送ローラ、1020はクリーニング装置、1021はクリーニング部材である。感光ドラム上のトナー像を中間転写体に転写する転写部において、転写不良の原因として圧縮によるトナーの塑性変形が原因と言われており、安定な転写を実現するための中間転写体が設計項目の1つとなっている。   FIG. 10 shows a part of an apparatus constituting the image forming apparatus in the electrophotographic apparatus. In the figure, 1011 is a charging member, 1012 is a photosensitive drum, 1013 is a coating member, 1014 is a magnetic roller, 1015 is a developing container, 1016 is a toner bottle, 1017 is a conveying screw, 1018 is an intermediate transfer member, and 1019 is a paper conveying roller. Reference numeral 1020 denotes a cleaning device, and reference numeral 1021 denotes a cleaning member. In the transfer part that transfers the toner image on the photosensitive drum to the intermediate transfer member, it is said that the toner is plastically deformed due to compression as a cause of transfer failure, and the intermediate transfer member for realizing stable transfer is a design item. It is one of.

この1次転写部(感光ドラムと中間転写体の接触部)においてに対して本発明を適用することにより、転写部におけるトナーの変形量や弾性エネルギーを計算機で予測することができ、画像不良の原因解明や転写部の設計等に活用することができる。   By applying the present invention to the primary transfer portion (contact portion between the photosensitive drum and the intermediate transfer member), the deformation amount and elastic energy of the toner in the transfer portion can be predicted by a computer, and the image defect It can be used to elucidate the cause and design the transcription part.

なお、電子写真装置では、一次転写部以外に、現像剤のクリーニング装置において転写されなかった現像剤をクリーニングするためのクリーニング部材1021、磁性ローラ1014にトナーを均一薄層コートするためのコート部材1013、接触現像方式の現像ローラなど、現像剤の挙動を制御するために様々な構造物が用いられており、本発明による解析装置はそれらに対しても適用可能である。   In the electrophotographic apparatus, in addition to the primary transfer portion, a cleaning member 1021 for cleaning the developer that has not been transferred by the developer cleaning apparatus, and a coating member 1013 for coating the magnetic roller 1014 with a uniform thin layer of toner. Various structures such as a contact developing type developing roller are used to control the behavior of the developer, and the analysis apparatus according to the present invention is applicable to them.

本発明における粒子挙動解析装置における処理プログラムの全体構成の好適な一例を表す概略的プログラム構成図Schematic program configuration diagram showing a preferred example of the overall configuration of the processing program in the particle behavior analysis apparatus of the present invention 本発明の実施例に係わる離散要素法解析装置の構成図1 is a block diagram of a discrete element method analyzer according to an embodiment of the present invention. 本発明の実施例に係わる粒子の変形量と弾性エネルギー計算部における処理プログラムの好適な一例を表す構成図The block diagram which shows a suitable example of the processing amount in the deformation amount and elastic energy calculation part of the particle concerning the Example of this invention 本発明の実施例に係わる粒子の変形量と弾性エネルギー計算部における処理の流れの好適な一例を表すフローチャートThe flowchart showing a suitable example of the flow of the deformation | transformation amount of the particle concerning the Example of this invention, and the flow of a process in an elastic energy calculation part (a)通常のDEMの接触モデル(b)本発明の実施例に係わる接触モデルを示す図(A) Normal DEM contact model (b) Diagram showing a contact model according to an embodiment of the present invention (a)本発明の実施例にかかわる粒子同士の接触部における法線方向の変形量と変形力の関係を説明する図(b)本発明の実施例にかかわる粒子同士の接触部における接線方向の変形量と変形力の関係を説明する図(A) The figure explaining the relationship between the deformation amount and deformation force of the normal direction in the contact part of the particle | grains concerning the Example of this invention (b) The tangential direction in the contact part of the particle | grains concerning the Example of this invention The figure explaining the relationship between the amount of deformation and the deformation 従来例に係わる粒子の挙動を解析する装置における、処理プログラムの全体構成を概略的に説明するためのプログラム構成図Program configuration diagram for schematically explaining the overall configuration of a processing program in an apparatus for analyzing the behavior of particles according to a conventional example 従来例に係わる粒子の挙動を解析する装置における、接触計算の概念を概略的に説明するための説明図Explanatory diagram for schematically explaining the concept of contact calculation in an apparatus for analyzing the behavior of particles according to a conventional example 粒子と構造物構造物の接触部における両者の変形量を説明する説明図Explanatory drawing explaining the deformation amount of both in the contact part of particle and structure structure 本発明の実施例に係わる電子写真装置一部を示す説明図Explanatory drawing which shows a part of electrophotographic apparatus concerning the Example of this invention 本発明の実施例に係わる粒子同士の接触部における2次元断面内の弾性粒子の圧縮状態を計算した一例の模式的断面図及び弾性構造物の変形量に関する結果の一例を表す図The figure showing an example of the result regarding the typical sectional view of an example which calculated the compression state of the elastic particle in the two-dimensional section in the contact part of the particles concerning the example of the present invention, and the amount of deformation of an elastic structure

符号の説明Explanation of symbols

ステップS401〜ステップS405 処理を表すブロック
100 制御部
111〜117、311〜314 部を表すブロック
200 CPU
201 RAM
202 表示装置
203 入力部
204 外部記憶装置
205 バス
Step S401 to Step S405 Block 100 Represents Processing Control Blocks 111 to 117, 311 to 314 Block 200 Represents CPU
201 RAM
202 Display device 203 Input unit 204 External storage device 205 Bus

Claims (4)

粒子とそれに関連して配された構造物を有し、離散要素法により、それらの挙動を求める粒子挙動解析装置において、
粒子と粒子もしくは粒子と構造物の接触部において、接触している2体間の接近量とそれぞれの物性値を用いて、粒子や構造物の変形状態として、粒子や構造物の個々の変形量や弾性エネルギーを個別に求めることを特徴とした粒子挙動解析装置。
In a particle behavior analyzer that has particles and structures arranged in relation to them, and obtains their behavior by the discrete element method,
The amount of deformation of each particle or structure as the deformation state of the particle or structure using the approach amount between the two bodies in contact with each other and the respective physical property values at the contact portion of the particle and particle or particle and structure. A particle behavior analysis device characterized by obtaining individual and elastic energy.
請求項1に記載の粒子挙動解析装置は、
潜像が形成された担持体表面上に可視像を形成するための粒子としての現像剤を内包した容器内の粒子、現像剤担持体に圧接されて同現像剤担持体上の現像剤の量を規制する現像剤規制部材を備えた現像装置の粒子、現像剤を攪拌混合している攪拌部や現像部の粒子、現像剤担持体と中間転写体の接触部に代表される粒子としての現像剤を転写する転写装置における粒子、転写後の現像剤担持体上の不要粒子を除去するために設けられたクリーニングブレードを有するクリーニング装置における粒子の少なくとも一つの挙動を解析するために利用されることを特徴とする粒子挙動解析装置。
The particle behavior analysis apparatus according to claim 1,
Particles in a container containing a developer as particles for forming a visible image on the surface of the carrier on which the latent image is formed, and the developer on the developer carrier in contact with the developer carrier Particles of a developing device equipped with a developer regulating member that regulates the amount, particles of the agitating unit and developing unit in which the developer is agitated and mixed, and particles represented by the contact part of the developer carrying member and the intermediate transfer member Used to analyze at least one behavior of particles in a transfer device for transferring developer and particles in a cleaning device having a cleaning blade provided to remove unnecessary particles on the developer carrier after transfer. A particle behavior analysis apparatus characterized by that.
粒子とそれに関連して配された構造物を有し、離散要素法により、それらの挙動を求める粒子挙動解析方法において、
粒子と粒子もしくは粒子と構造物の接触部において、接触している2体間の接近量とそれぞれの物性値を用いて、粒子や構造物の変形状態として、粒子や構造物の個々の変形量や弾性エネルギーを個別に求めることを特徴とした粒子挙動解析方法。
In the particle behavior analysis method, which has particles and structures arranged in relation to them, and obtains their behavior by the discrete element method,
The amount of deformation of each particle or structure as the deformation state of the particle or structure using the approach amount between the two bodies in contact with each other and the respective physical property values at the contact portion of the particle and particle or particle and structure. A particle behavior analysis method characterized by individually obtaining elastic energy.
請求項3に記載の粒子挙動解析方法は、
潜像が形成された担持体表面上に可視像を形成するための粒子としての現像剤を内包した容器内の粒子、現像剤担持体に圧接されて同現像剤担持体上の現像剤の量を規制する現像剤規制部材を備えた現像装置の粒子、現像剤を攪拌混合している攪拌部や現像部の粒子、現像剤担持体と中間転写体の接触部に代表される粒子としての現像剤を転写する転写装置における粒子、転写後の現像剤担持体上の不要粒子を除去するために設けられたクリーニングブレードを有するクリーニング装置における粒子の少なくとも一つの挙動を解析するために利用されることを特徴とする粒子挙動解析方法。
The particle behavior analysis method according to claim 3,
Particles in a container containing a developer as particles for forming a visible image on the surface of the carrier on which the latent image is formed, and the developer on the developer carrier in contact with the developer carrier Particles of a developing device equipped with a developer regulating member that regulates the amount, particles of the agitating unit and developing unit in which the developer is agitated and mixed, and particles represented by the contact part of the developer carrying member and the intermediate transfer member Used to analyze at least one behavior of particles in a transfer device for transferring developer and particles in a cleaning device having a cleaning blade provided to remove unnecessary particles on the developer carrier after transfer. A particle behavior analysis method characterized by the above.
JP2005121133A 2005-04-19 2005-04-19 Particle behavior analyzer and analytical method Withdrawn JP2006300651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121133A JP2006300651A (en) 2005-04-19 2005-04-19 Particle behavior analyzer and analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121133A JP2006300651A (en) 2005-04-19 2005-04-19 Particle behavior analyzer and analytical method

Publications (1)

Publication Number Publication Date
JP2006300651A true JP2006300651A (en) 2006-11-02

Family

ID=37469122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121133A Withdrawn JP2006300651A (en) 2005-04-19 2005-04-19 Particle behavior analyzer and analytical method

Country Status (1)

Country Link
JP (1) JP2006300651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069656A (en) * 2009-09-24 2011-04-07 Nippon Steel Corp Particle behavior analyzer, particle behavior analyzing method, and computer program
JP2013205312A (en) * 2012-03-29 2013-10-07 Kyocera Document Solutions Inc Particle behavior simulation device and method for analyzing particle behavior
CN103983547A (en) * 2014-05-23 2014-08-13 重庆大学 Dividing method of powder particle size in compaction process of slender metal pipe powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069656A (en) * 2009-09-24 2011-04-07 Nippon Steel Corp Particle behavior analyzer, particle behavior analyzing method, and computer program
JP2013205312A (en) * 2012-03-29 2013-10-07 Kyocera Document Solutions Inc Particle behavior simulation device and method for analyzing particle behavior
CN103983547A (en) * 2014-05-23 2014-08-13 重庆大学 Dividing method of powder particle size in compaction process of slender metal pipe powder

Similar Documents

Publication Publication Date Title
JP2006300651A (en) Particle behavior analyzer and analytical method
JP5183698B2 (en) Particle behavior analysis method, particle behavior analysis apparatus, and analysis program
JP4756920B2 (en) Particle behavior analysis apparatus, particle behavior analysis method, program, and storage medium
JP2007017380A (en) Particle simulation device, particle simulation method and computer program
JP4125111B2 (en) Behavior analysis apparatus, behavior analysis method, and program
JP2010079493A (en) Particle behavior analyzer and program
JP4827427B2 (en) Particle behavior analysis apparatus, control method, and program
JP2008176084A (en) Particle behavior analyzer and program
JP2007280242A (en) Particle behavior analyzing method and particle behavior analyzing device, and program
JP2010243243A (en) Particle behavior analyzer and particle behavior analysis method
JP2009134504A (en) Particle behavior analyzer and program
JP4920910B2 (en) Particle behavior analysis apparatus, particle behavior analysis method, program, and storage medium
JP2011008382A (en) Particle behavior analysis system, information processing apparatus, particle behavior analysis apparatus, information processing system and program
JP4692031B2 (en) Powder behavior analysis apparatus, powder behavior analysis method, and computer program
JP4920899B2 (en) Information processing apparatus and control method thereof
US8254821B2 (en) Cleaning apparatus, image forming apparatus including the same, and process cartridge including the same
JP5521346B2 (en) Particle behavior analyzer, program
JP4692074B2 (en) Powder behavior analysis apparatus, powder behavior analysis method, and computer program
JP5810019B2 (en) Particle behavior simulation apparatus and particle behavior analysis method
JP2009251467A (en) Electrical condition calculating apparatus, method of calculating electrical condition, method of manufacturing image forming apparatus, information processing program and recording medium
JP2007249076A (en) Information processor and information processing method
JP5417865B2 (en) Particle behavior analysis apparatus and program
JP2009075201A (en) Particle behavior analysis device and program
JP5892059B2 (en) Powder conveyance simulation apparatus and powder conveyance simulation program
JP2010072379A (en) Particle behavior analysis device, and program

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701