JP2006300569A - Evaluation device of hydrogen storage material and evaluation method using it - Google Patents

Evaluation device of hydrogen storage material and evaluation method using it Download PDF

Info

Publication number
JP2006300569A
JP2006300569A JP2005119026A JP2005119026A JP2006300569A JP 2006300569 A JP2006300569 A JP 2006300569A JP 2005119026 A JP2005119026 A JP 2005119026A JP 2005119026 A JP2005119026 A JP 2005119026A JP 2006300569 A JP2006300569 A JP 2006300569A
Authority
JP
Japan
Prior art keywords
storage material
hydrogen storage
hydrogen
container
sample container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005119026A
Other languages
Japanese (ja)
Inventor
Hidetoshi Saito
秀俊 斎藤
Fujio Takada
不二雄 高田
Akira Doi
陽 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Rhesca Co Ltd
Original Assignee
Nagaoka University of Technology NUC
Rhesca Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC, Rhesca Co Ltd filed Critical Nagaoka University of Technology NUC
Priority to JP2005119026A priority Critical patent/JP2006300569A/en
Publication of JP2006300569A publication Critical patent/JP2006300569A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation device of a hydrogen storage material capable of directly analyzing a hydrogen storage state qualitatively and quantitatively under the condition of the pressure, temperature or the like of an atmosphere where the hydrogen storage material and hydrogen are present, and an evaluation method of the hydrogen storage material. <P>SOLUTION: The evaluation device of the hydrogen storage material for evaluating the storage state of hydrogen stored in the hydrogen storage material is equipped with a high-pressure sample container 7 for housing the hydrogen storage material 4 and hydrogen, a light source 1 for irradiating the hydrogen storage material 4 in the container 7 with infrared rays and a detector 6 for detecting the infrared rays selectively absorbed by the hydrogen storage material 4. The high-pressure sample container 7 has an incident light window 2 comprising an infrared pervious body and allowing infrared rays to enter the container 7, an emitting light window 5 comprising the infrared pervious body and emitting the infrared rays, which are transmitted through or reflected by the hydrogen storage material 4, to the outside of the container 7 and a supply/discharge mechanism of hydrogen inside and outside of the container 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素を可逆的に貯蔵・放出する水素貯蔵材料の評価装置と方法に関するものである。具体的には、高圧水素雰囲気中での水素貯蔵材料と水素との結合状態、および吸蔵された水素中の不純物ガス量を評価する装置及び方法に関するものである。   The present invention relates to a hydrogen storage material evaluation apparatus and method for reversibly storing and releasing hydrogen. Specifically, the present invention relates to an apparatus and method for evaluating the bonding state between a hydrogen storage material and hydrogen in a high-pressure hydrogen atmosphere, and the amount of impurity gas in the stored hydrogen.

水素は、地球環境を汚染しないエネルギーの一つなので、今後の使用量が増加すると予想され、水素の貯蔵から応用までの広範な分野で研究がなされている。特に、燃料電池車などへの利用が期待される水素貯蔵材料と、その水素貯蔵量の評価についての種々の研究がなされている。   Since hydrogen is one of the energy that does not pollute the global environment, it is expected that the amount used will increase in the future, and research is being conducted in a wide range of fields from hydrogen storage to application. In particular, various studies have been conducted on hydrogen storage materials expected to be used in fuel cell vehicles and the like, and evaluation of the amount of hydrogen storage.

従来使われている水素貯蔵量の評価方法は、水素雰囲気中に水素貯蔵材料を暴露し、これに水素を貯蔵させた前後での平衡水素分圧または平衡温度の変化から吸蔵水素量を計測する方法である。この方法は、P(水素圧力)-C(水素貯蔵量)-T(温度)特性曲線で評価され、非特許文献1に示すJIS規格として定められている。一般的には、PCT装置(圧力−組成等温線測定装置)を用いて評価を行う。   The conventional method for evaluating hydrogen storage is to measure the amount of stored hydrogen from changes in equilibrium hydrogen partial pressure or equilibrium temperature before and after hydrogen storage material is exposed to a hydrogen atmosphere and hydrogen is stored in this material. Is the method. This method is evaluated by a P (hydrogen pressure) -C (hydrogen storage amount) -T (temperature) characteristic curve, and is defined as a JIS standard shown in Non-Patent Document 1. In general, evaluation is performed using a PCT device (pressure-composition isotherm measuring device).

図5にPCT装置の概略構成図を示す。この装置は、水素貯蔵材料4を収納する試料容器54と、この試料容器54を覆う恒温槽56とを有する。試料容器54には試料となる水素貯蔵材料4が試料容器54内のガスの出し入れに伴って飛散しないようにフィルター53が設けられている。   FIG. 5 shows a schematic configuration diagram of the PCT apparatus. The apparatus includes a sample container 54 that stores the hydrogen storage material 4 and a thermostatic chamber 56 that covers the sample container 54. The sample container 54 is provided with a filter 53 so that the hydrogen storage material 4 as a sample does not scatter when the gas in the sample container 54 is taken in and out.

また、この試料容器54は圧力制御機構に接続されている。この圧力制御機構は、互いに配管で接続された不活性ガス供給バルブ50、水素供給バルブ51、試料容器バルブ52、圧力計57、蓄圧容器58、真空計59および真空バルブ60を有している。   The sample container 54 is connected to a pressure control mechanism. This pressure control mechanism includes an inert gas supply valve 50, a hydrogen supply valve 51, a sample container valve 52, a pressure gauge 57, a pressure storage container 58, a vacuum gauge 59, and a vacuum valve 60 that are connected to each other by piping.

このPCT装置を利用するには、予め、不活性ガス供給バルブ50から不活性ガスを導入して、不活性ガス供給バルブ50、水素供給バルブ51、真空バルブ60および試料容器バルブ52で閉鎖された配管内と蓄圧容器58内などを含めた部分の体積を求めておく。同様に、試料容器バルブ52から試料容器54側の配管と試料容器などを含めた部分の体積も求めておく。   In order to use this PCT apparatus, an inert gas was previously introduced from an inert gas supply valve 50 and closed by an inert gas supply valve 50, a hydrogen supply valve 51, a vacuum valve 60, and a sample container valve 52. The volume of the portion including the inside of the piping and the pressure accumulating vessel 58 is obtained. Similarly, the volume of the part including the pipe on the sample container 54 side from the sample container valve 52 and the sample container is also obtained.

このような装置で水素貯蔵材料の評価を行う場合、まず、不活性ガス供給バルブ50と水素供給バルブ51とを閉め、試料容器バルブ52と真空バルブ60を開けて、真空計59が所定の値になるまで排気系で試料容器54内を真空に吸引し脱気する。次に、試料容器バルブ52と真空バルブ60を閉め、水素供給バルブ51を開放して水素を所定量導入し、圧力計57により蓄圧容器58内の圧力を測定する。次に、試料容器バルブ52を開けて試料容器54内に水素を導入し、水素貯蔵材料4に水素を貯蔵させ、貯蔵が平衡に達したときの平衡圧力を圧力計57で測定する。以下同様の操作を繰り返し、水素貯蔵材料4に少しずつ水素を貯蔵させていき、水素貯蔵材料4に貯蔵された水素量を求める。また、水素放出量を測定する場合は、逆に真空バルブ60を開き試料容器バルブ52を閉めて、水素を蓄圧容器系内から放出し、その後、真空バルブ60を閉じて試料容器バルブ52を開けて試料容器54内の圧力が平衡に達したときの平衡圧力を圧力計57で測定する。そして、水素貯蔵材料の水素放出量を測定し、水素貯蔵材料の評価をする。   When evaluating a hydrogen storage material with such an apparatus, first, the inert gas supply valve 50 and the hydrogen supply valve 51 are closed, the sample container valve 52 and the vacuum valve 60 are opened, and the vacuum gauge 59 is set to a predetermined value. The inside of the sample container 54 is sucked and degassed by an exhaust system until the pressure becomes. Next, the sample container valve 52 and the vacuum valve 60 are closed, the hydrogen supply valve 51 is opened, a predetermined amount of hydrogen is introduced, and the pressure in the pressure accumulating container 58 is measured by the pressure gauge 57. Next, the sample container valve 52 is opened, hydrogen is introduced into the sample container 54, hydrogen is stored in the hydrogen storage material 4, and the equilibrium pressure when the storage reaches equilibrium is measured by the pressure gauge 57. Thereafter, the same operation is repeated to gradually store hydrogen in the hydrogen storage material 4, and the amount of hydrogen stored in the hydrogen storage material 4 is obtained. When measuring the hydrogen release amount, conversely, the vacuum valve 60 is opened and the sample container valve 52 is closed to release hydrogen from the accumulator container system, and then the vacuum valve 60 is closed and the sample container valve 52 is opened. The pressure gauge 57 measures the equilibrium pressure when the pressure in the sample container 54 reaches equilibrium. Then, the amount of hydrogen released from the hydrogen storage material is measured to evaluate the hydrogen storage material.

この方法は、次に示すボイル-シャルルの法則に基づき水素貯蔵量または水素放出量を計算する。
pv=nzRT
但し、p:圧力、v:体積、n:体積vの中のガスのモル数、
z:ガス圧縮率、R:気体定数、T:温度
In this method, the hydrogen storage amount or the hydrogen release amount is calculated based on the following Boyle-Charles law.
pv = nzRT
Where p: pressure, v: volume, n: number of moles of gas in volume v,
z: Gas compressibility, R: Gas constant, T: Temperature

この式において、理想気体であればz=1である。これを実際の水素にそのまま適用すると、室温で5MPaの圧力のとき、計測される水素量に3%程度の誤差が生じる。精度を高めるには、補正が必要である。また、上の式から正確な水素の貯蔵量や放出量を測定するには、繰り返し使用される体積、圧力などの測定精度を高めることが重要である。PCT装置により水素貯蔵量などの測定精度を高めるには、上記を考慮する必要がある。   In this equation, z = 1 for an ideal gas. If this is applied to actual hydrogen as it is, an error of about 3% occurs in the measured hydrogen amount at a pressure of 5 MPa at room temperature. Correction is necessary to improve accuracy. In addition, in order to accurately measure the amount of hydrogen stored and released from the above equations, it is important to increase the measurement accuracy of repeatedly used volumes, pressures, and the like. The above needs to be taken into account in order to improve the measurement accuracy of the hydrogen storage amount by the PCT device.

また、非特許文献2は、水素貯蔵材料に水素が貯蔵されるメカニズムを究明するために、前記したPCT線(圧力−組成等温線)と赤外光の吸収スペクトルとを利用した技術を開示している。ここで対象となる水素貯蔵材料は、アモルファス炭窒化物である。   Non-Patent Document 2 discloses a technique using the PCT line (pressure-composition isotherm) and the absorption spectrum of infrared light in order to investigate the mechanism of hydrogen storage in the hydrogen storage material. ing. Here, the target hydrogen storage material is amorphous carbonitride.

JIS規格 JIS H 7201JIS standard JIS H 7201 Jpn. J. Appl. Phys. Vol.42(2003) 第5251頁〜5254頁、Part.1、No.8、2003年8月Jpn. J. Appl. Phys. Vol.42 (2003), pages 5251-5254, Part.1, No.8, August 2003

しかし、非特許文献1に規定する測定方法は、水素貯蔵材料への水素の貯蔵が安定するまでに時間がかかる上、測定可能な圧力範囲が1KPa〜5MPaとされ、この範囲を超える高圧状態では水素貯蔵量を計測できない。仮に、上記範囲を超える高圧状態での水素貯蔵材料中の水素貯蔵量を計測しようとすれば、一旦水素貯蔵材料をPCT装置外に取り出して別な手法で計測を行うことも考えられるが、その場合、PCT装置で高圧状態のまま水素貯蔵量を計測することができない。   However, the measurement method stipulated in Non-Patent Document 1 takes time to stabilize the storage of hydrogen in the hydrogen storage material, and the measurable pressure range is 1 KPa to 5 MPa, and in a high pressure state exceeding this range, The amount of hydrogen stored cannot be measured. If it is going to measure the amount of hydrogen stored in the hydrogen storage material in a high pressure state exceeding the above range, it may be possible to take the hydrogen storage material out of the PCT device and measure it by another method. In this case, the hydrogen storage amount cannot be measured with the PCT device in a high pressure state.

また、非特許文献1は、水素貯蔵材料に貯蔵される水素量または水素貯蔵材料から放出される水素量を測定する技術を示しているが、ガス組成の測定はできない。従って、この文献の技術では、水素がどのようなメカニズムや状態で貯蔵されるかを解明することができない。   Non-Patent Document 1 shows a technique for measuring the amount of hydrogen stored in the hydrogen storage material or the amount of hydrogen released from the hydrogen storage material, but the gas composition cannot be measured. Therefore, the technique of this document cannot elucidate the mechanism and state in which hydrogen is stored.

さらに、装置内の雰囲気ガスが水素以外の不純物ガスを含む混合ガスの場合、その混合ガスのガス組成を計測することもできない。仮に、混合ガスのガス組成をガスクロマトグラフなどで分析しようとしても、混合ガスをPCT装置から採取して分析装置に導入する必要があり、そのとき混合ガスの圧力や温度の条件が変わり、ガス組成が変わる可能性もある。   Furthermore, when the atmospheric gas in the apparatus is a mixed gas containing an impurity gas other than hydrogen, the gas composition of the mixed gas cannot be measured. Even if trying to analyze the gas composition of the mixed gas with a gas chromatograph, etc., it is necessary to extract the mixed gas from the PCT device and introduce it into the analyzer. At that time, the pressure and temperature conditions of the mixed gas change, and the gas composition May change.

一方、非特許文献2は、赤外光の吸収スペクトルを利用し、水素貯蔵材料における水素貯蔵のメカニズムを究明している。しかし、この文献は、赤外光の吸収スペクトルを測定した装置や方法については開示していない。   On the other hand, Non-Patent Document 2 uses the absorption spectrum of infrared light to investigate the mechanism of hydrogen storage in hydrogen storage materials. However, this document does not disclose an apparatus or method for measuring an infrared absorption spectrum.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、水素貯蔵材料と水素が存在する雰囲気のそのままの圧力、温度などの条件下で、水素貯蔵材料に水素が貯蔵されて生成する化合物や水素貯蔵材料の構成原子と水素原子同士の結合状態を、定性的または定量的に直接分析できる装置と方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to store hydrogen in the hydrogen storage material under conditions such as the pressure and temperature of the atmosphere in which the hydrogen storage material and hydrogen exist. Another object of the present invention is to provide an apparatus and a method capable of directly and qualitatively or quantitatively analyzing the bonding state between the constituent atoms of the compound and the hydrogen storage material produced and the hydrogen atoms.

また、本発明の別の目的は、水素貯蔵材料と水素などが存在する雰囲気のそのままの圧力、温度などの条件下で、雰囲気ガス組成を定性的または定量的に高い精度で、直接分析できる装置と方法を提供することにある。   Another object of the present invention is an apparatus that can directly analyze the atmosphere gas composition qualitatively or quantitatively with high accuracy under the conditions of the pressure, temperature, etc. of the atmosphere in which the hydrogen storage material and hydrogen exist. And to provide a way.

水素中に暴露させた水素貯蔵材料が水素と物理化学的に結合すると、その結合は赤外光の特定の波長帯を選択的に吸収または散乱する。その赤外光の吸収量及び/又は散乱量を、その暴露雰囲気のままの状態で計測することにより、水素と水素貯蔵材料の結合状態や雰囲気中の不純物ガス量を評価できるという知見に基づき本発明をなすに至った。この明細書において、評価というのは被測定物の定性分析と定量分析の一方または双方を意味する。   When a hydrogen storage material exposed in hydrogen physicochemically binds to hydrogen, the bond selectively absorbs or scatters certain wavelengths of infrared light. Based on the knowledge that by measuring the amount of absorption and / or scattering of infrared light in the exposed atmosphere, the combined state of hydrogen and the hydrogen storage material and the amount of impurity gas in the atmosphere can be evaluated. Invented the invention. In this specification, evaluation means one or both of qualitative analysis and quantitative analysis of an object to be measured.

請求項1の評価装置は、水素貯蔵材料に貯蔵された水素の貯蔵状態を評価する水素貯蔵材料の評価装置である。この評価装置は、水素貯蔵材料と水素とを収納する高圧試料容器と、この容器内の水素貯蔵材料に赤外光を照射する光源と、水素貯蔵材料が選択的に吸収した赤外光を検出する検出器とを備える。高圧試料容器は、赤外透明体からなって赤外光を容器内に入射する入射光窓と、赤外透明体からなって水素貯蔵材料を透過または反射した赤外光が容器外に出射される出射光窓と、容器内外への水素の供給・排出機構とを有することを特徴とする。この装置は、水素貯蔵材料の暴露雰囲気を変えることなく、そのままの状態で水素吸蔵・放出量の計測はもちろん、水素と水素貯蔵材料の結合状態を評価することができる。ここで、検出とは赤外光を受け、その吸収スペクトルを得ることまでを意味する。   The evaluation apparatus according to claim 1 is an evaluation apparatus for a hydrogen storage material that evaluates a storage state of hydrogen stored in the hydrogen storage material. This evaluation device detects a high-pressure sample container that contains hydrogen storage material and hydrogen, a light source that irradiates the hydrogen storage material in the container with infrared light, and infrared light that is selectively absorbed by the hydrogen storage material. Detector. The high-pressure sample container is made of an infrared transparent body, an incident light window for entering infrared light into the container, and infrared light made of an infrared transparent body that passes through or reflects the hydrogen storage material is emitted outside the container. And a mechanism for supplying and discharging hydrogen into and out of the container. This apparatus can evaluate the combined state of hydrogen and the hydrogen storage material as well as the measurement of the hydrogen storage / release amount without changing the exposure atmosphere of the hydrogen storage material. Here, detection means receiving infrared light and obtaining its absorption spectrum.

特に、この装置は、常圧から高圧(約100MPa)までの範囲で水素貯蔵材料に吸蔵、吸着された水素が形成する結合状態を定性分析したり、水素貯蔵材料に吸蔵、吸着された水素の量を定性的または定量的に測定することができる。   In particular, this device qualitatively analyzes the bonding state formed by hydrogen stored and adsorbed in hydrogen storage materials in the range from atmospheric pressure to high pressure (about 100 MPa), and the hydrogen stored and adsorbed in hydrogen storage materials. The amount can be measured qualitatively or quantitatively.

ここで、吸蔵とは水素貯蔵材料と水素が化学的に結合した状態を、吸着とは分子間力などにより水素が水素貯蔵材料に物理的に引き付けられた状態を、貯蔵とは吸蔵と吸着を併せた状態を意味する。評価対象の水素貯蔵材料は、水素貯蔵機能を有するものであれば何でもよく、金属系、アモルファス炭素系のいずれでもよい。   Here, occlusion refers to a state in which hydrogen storage material and hydrogen are chemically bonded, adsorption refers to a state in which hydrogen is physically attracted to the hydrogen storage material by intermolecular forces, etc., storage refers to occlusion and adsorption. It means the combined state. The hydrogen storage material to be evaluated may be anything as long as it has a hydrogen storage function, and may be either metallic or amorphous carbon.

また、この装置において、水素の供給・排出機構は、供給機構と排出機構を独立して設けても良いし、単一の機構で供給機構と排出機構の双方を兼ねてもよい。後者の一例としては、一つの水素バルブの開閉により水素の供給と排出の双方を行なうことが挙げられる。   In this apparatus, the supply / discharge mechanism for hydrogen may be provided independently from the supply mechanism and the discharge mechanism, or a single mechanism may serve as both the supply mechanism and the discharge mechanism. As an example of the latter, both supply and discharge of hydrogen can be performed by opening and closing one hydrogen valve.

請求項2に記載の装置は、高圧試料容器内に水素貯蔵材料を保持する試料ホルダーを有することを特徴とする。試料ホルダーを設けることで、水素貯蔵材料を赤外光の透過または反射に適した状態に保持することができる。ここで、保持とは、(1)水素貯蔵材料を2つの赤外透明体により挟む、(2)赤外透明体からなるホルダーの表面に水素貯蔵材料を塗布する、(3)材料を載置するなどの方法を用いることができる。この中で、水素貯蔵材料を試料ホルダーで挟む場合は、試料ホルダーに多数の小さい穴を設け水素と水素貯蔵材料が良く接触するようにすることが望ましい。また、塗布する方法は、水素と水素貯蔵材料の接触面積が多いので、水素貯蔵材料への水素の吸蔵、吸着が安定するまでの時間が短いと言う長所がある。赤外光を反射させる場合は、水素貯蔵材料を載置する方法が好ましい。   The apparatus according to claim 2 is characterized by having a sample holder for holding the hydrogen storage material in the high-pressure sample container. By providing the sample holder, the hydrogen storage material can be held in a state suitable for transmission or reflection of infrared light. Here, holding means (1) sandwiching the hydrogen storage material between two infrared transparent bodies, (2) applying the hydrogen storage material to the surface of the holder made of the infrared transparent body, (3) placing the material Or the like can be used. Among these, when the hydrogen storage material is sandwiched between the sample holders, it is desirable to provide a large number of small holes in the sample holder so that the hydrogen and the hydrogen storage material are in good contact. In addition, the coating method has an advantage that since the contact area between hydrogen and the hydrogen storage material is large, the time until hydrogen storage and adsorption in the hydrogen storage material is stabilized is short. In the case of reflecting infrared light, a method of placing a hydrogen storage material is preferable.

請求項3に記載の試料ホルダーは、赤外透明体からなることを特徴とする。このような赤外透明体を試料ホルダーに用いれば、水素貯蔵材料を透過方式により、高精度に計測することができるからである。   The sample holder according to claim 3 is made of an infrared transparent body. This is because if such an infrared transparent body is used for the sample holder, the hydrogen storage material can be measured with high accuracy by the transmission method.

請求項4に記載の装置は、水素貯蔵材料に貯蔵される水素と不純物ガスからなる混合ガスの組成を測定する評価装置である。この評価装置は、水素貯蔵材料と混合ガスを収納する高圧試料容器と、この容器に収納された混合ガスに赤外光を照射する光源と、混合ガスが選択的に吸収した赤外光を検出する検出器とを備える。そして、高圧試料容器は、赤外透明体からなって赤外光を容器内に入射する入射光窓と、赤外透明体からなって混合ガスを透過した赤外光が容器外に出射される出射光窓と、容器内外への水素の供給・排出機構とを有していることを特徴とする。   The apparatus according to claim 4 is an evaluation apparatus for measuring a composition of a mixed gas composed of hydrogen and impurity gas stored in the hydrogen storage material. This evaluation device detects a high-pressure sample container that contains hydrogen storage material and mixed gas, a light source that irradiates infrared light to the mixed gas stored in this container, and infrared light that is selectively absorbed by the mixed gas. Detector. The high-pressure sample container is made of an infrared transparent body, an incident light window for entering infrared light into the container, and infrared light made of an infrared transparent body and transmitted through the mixed gas is emitted outside the container. It has an emission light window and a mechanism for supplying and discharging hydrogen into and out of the container.

この装置は、水素貯蔵材料および水素と不純物ガスが共存する雰囲気ガスの組成を、圧力、温度などの条件を変えずにそのままの状態で、定性的または定量的に分析することができる。ここで不純物ガスは、水素に添加したガス、水素の貯蔵・放出のときに生成するガスおよび配管などから混入するガス、ボンベなどから出るガスのことである。具体的には、メタンなどの炭化水素や水素と窒素の化合物などである。   This apparatus can qualitatively or quantitatively analyze the composition of the hydrogen storage material and the atmospheric gas in which hydrogen and the impurity gas coexist without changing the conditions such as pressure and temperature. Here, the impurity gas is a gas added to hydrogen, a gas generated when hydrogen is stored / released, a gas mixed from a pipe or the like, and a gas emitted from a cylinder. Specifically, it is a hydrocarbon such as methane or a compound of hydrogen and nitrogen.

この装置においても、請求項1に記載の装置と同様に、混合ガスの供給機構と排出機構とを独立して設けても良いし、単一の機構で供給機構と排出機構の双方を兼ねてもよい。それぞれを独立して設け、ガス組成が経時的に変化するボンベからの不純物含有水素などをこの評価装置を通過させ、水素中の不純物ガス量などを測定できる。   In this apparatus, similarly to the apparatus described in claim 1, the mixed gas supply mechanism and the discharge mechanism may be provided independently, or a single mechanism serves as both the supply mechanism and the discharge mechanism. Also good. Each of them is provided independently, and impurity-containing hydrogen from a cylinder whose gas composition changes with time can be passed through this evaluation apparatus to measure the amount of impurity gas in the hydrogen.

請求項5に記載の装置は、高圧試料容器内の雰囲気ガスの温度計測手段と圧力計測手段とを有している。こうすることで、本発明の評価装置をPCT装置として利用することができる。水素貯蔵材料が貯蔵している水素量を定量的に測定できるので、例えば、高圧試料容器内の圧力と、水素貯蔵材料が貯蔵している水素量の関係を把握することができるからである。従って、PCT装置の測定結果と、赤外光の吸収などの結果を直接対比することもできる。ただし、本評価装置にPCT装置の機能を付加した場合、本評価装置は高圧試料容器と同じ100MPaまでの耐圧性のあることが望ましい。   The apparatus according to claim 5 includes a temperature measuring means and a pressure measuring means for the atmospheric gas in the high pressure sample container. By doing so, the evaluation apparatus of the present invention can be used as a PCT apparatus. This is because, since the amount of hydrogen stored in the hydrogen storage material can be measured quantitatively, for example, the relationship between the pressure in the high-pressure sample container and the amount of hydrogen stored in the hydrogen storage material can be grasped. Therefore, the measurement result of the PCT apparatus can be directly compared with the result of absorption of infrared light. However, when the function of the PCT apparatus is added to the evaluation apparatus, it is desirable that the evaluation apparatus has a pressure resistance up to 100 MPa, which is the same as the high-pressure sample container.

本発明装置は、さらに温度計測手段と圧力計測手段の各計測結果、前記容器の容積および気体の状態方程式を利用して水素貯蔵材料の水素吸蔵放出特性を自動的に計算する評価手段を有することが好ましい。また、水素の通路である配管などに本評価装置を設けることができる。   The apparatus of the present invention further has an evaluation means for automatically calculating the hydrogen storage / release characteristics of the hydrogen storage material using the measurement results of the temperature measurement means and the pressure measurement means, the volume of the container and the state equation of the gas. Is preferred. Moreover, this evaluation apparatus can be provided in piping etc. which are hydrogen passages.

請求項6に記載の装置は、上述の各装置において、赤外透明体を、サファイア、ダイヤモンド、SiC、ZnS、ZnSeのいずれかとすることを特徴とする。赤外透明体は、赤外光を所定波数の領域で吸収することなく透過する材料である。高圧試料容器には、赤外光を導入するための入射光窓と赤外光を取り出すための出射光窓がある。これらの窓材料は、赤外光に対する透明体であり、かつ破壊強度が10MPa(≒1Kgf/mm2)に比べて十分大きい材料が望ましい。例えば、サファイア、ダイヤモンド、SiC、ZnS、ZnSeなどがこれに該当するが、赤外透光性、耐吸湿性、価格の点からは、ZnSeが特に好ましい。 The device according to claim 6 is characterized in that, in each of the above-described devices, the infrared transparent body is any one of sapphire, diamond, SiC, ZnS, and ZnSe. An infrared transparent body is a material that transmits infrared light without absorbing it in a predetermined wavenumber region. The high-pressure sample container has an incident light window for introducing infrared light and an outgoing light window for extracting infrared light. These window materials are transparent to infrared light and desirably have a sufficiently large breaking strength compared to 10 MPa (≈1 kgf / mm 2 ). For example, sapphire, diamond, SiC, ZnS, ZnSe, and the like correspond to this, and ZnSe is particularly preferable from the viewpoint of infrared translucency, moisture absorption resistance, and cost.

請求項7に記載の装置は、上述の各装置において、高圧試料容器を蓋と底付きの円筒体状の容器とする。そして、入射光窓および出射光窓が円筒状容器の周面に設けられていることを特徴とする。円筒体状の試料容器は、比較的高圧に耐える高強度のものが得やすく、内部への試料の出し入れも行いやすい。また、円筒体状の試料容器の周面に入射光窓および出射光窓を設けることで、円筒体端面の蓋を開閉して容器内に試料の出し入れを容易に行える。特に、入射光窓と出射光窓を結ぶ線は円筒体状の試料容器の中心を通ること、つまり試料容器の径方向に沿うことが望ましい。この構成により、入射光窓と出射光窓が対向されることになり、試料容器の中心に水素貯蔵材料の配置空間を十分に確保した上で、入射光の進路を反射などにより変更することなく出射光窓に導くことができる。高圧試料容器は、100MPaまでの高圧で計測ができるように強度の高い構成とすることが望ましい。特に、従来のPCT装置に上述した赤外光の分析を行うための機構を付加して本発明装置にPCT装置の機能を兼用させる場合、高圧試料容器以外の配管部材、バルブなどの耐圧性を高める。   The apparatus according to claim 7 is the above-described apparatus, wherein the high-pressure sample container is a cylindrical container with a lid and a bottom. The incident light window and the outgoing light window are provided on the peripheral surface of the cylindrical container. The cylindrical sample container is easy to obtain a high-strength material that can withstand a relatively high pressure, and the sample can be easily taken in and out. In addition, by providing an incident light window and an output light window on the peripheral surface of the cylindrical sample container, the lid of the end face of the cylindrical body can be opened and closed so that the sample can be easily put in and out of the container. In particular, it is desirable that the line connecting the incident light window and the outgoing light window pass through the center of the cylindrical sample container, that is, along the radial direction of the sample container. With this configuration, the incident light window and the output light window are opposed to each other, and the arrangement space for the hydrogen storage material is sufficiently secured in the center of the sample container, and the path of the incident light is not changed by reflection or the like. It can be led to the exit light window. It is desirable that the high-pressure sample container has a high strength so that measurement can be performed at a high pressure up to 100 MPa. In particular, when adding the above-described mechanism for analyzing infrared light to a conventional PCT apparatus to make the apparatus of the present invention also function as a PCT apparatus, the pressure resistance of piping members, valves, etc. other than the high-pressure sample container is improved. Increase.

請求項8に記載の装置は、上述した各装置において、入射光窓および出射光窓の少なくとも一方の直径を10mm以下の円板または円柱とすることを特徴とする。このようなサイズとすることで、高圧に耐えられる試料容器を容易に構成することができる。この各窓の形状は、円板が製造上や試料容器への組み立て容易性の点で好ましく、厚さは使用圧力が高くなると厚くして、耐圧性を高めればよい。   The device according to claim 8 is characterized in that, in each of the above-described devices, at least one of the incident light window and the outgoing light window is a disk or a cylinder having a diameter of 10 mm or less. By setting it as such a size, the sample container which can endure high pressure can be comprised easily. As for the shape of each window, a disk is preferable in terms of manufacturing and ease of assembling into a sample container, and the thickness may be increased when the operating pressure is increased to increase pressure resistance.

次に、本発明の評価方法について説明する。
請求項9に記載の水素貯蔵材料の評価方法は、水素貯蔵材料に貯蔵された水素の貯蔵状態を評価する方法である。まず、高圧試料容器中に水素貯蔵材料を配置し、高圧試料容器を真空に吸引する。次に、水素を高圧試料容器に所定量供給し、高圧試料容器の温度または圧力が平衡に達した時点で赤外光を水素貯蔵材料に照射する。さらに、水素貯蔵材料により選択的に吸収された赤外光を検出し、水素貯蔵材料に貯蔵された水素の貯蔵状態を評価することを特徴とする。この構成によれば、水素貯蔵材料が暴露された雰囲気そのままの状態で、水素貯蔵材料の水素吸蔵・放出量の計測はもちろん、水素と水素貯蔵材料の結合状態を評価することができる。ここで、検出とは赤外光を受け、その吸収スペクトルを得ることまでを意味する
Next, the evaluation method of the present invention will be described.
The method for evaluating a hydrogen storage material according to claim 9 is a method for evaluating a storage state of hydrogen stored in the hydrogen storage material. First, a hydrogen storage material is placed in a high-pressure sample container, and the high-pressure sample container is sucked into a vacuum. Next, a predetermined amount of hydrogen is supplied to the high-pressure sample container, and when the temperature or pressure of the high-pressure sample container reaches equilibrium, infrared light is irradiated to the hydrogen storage material. Further, the present invention is characterized in that infrared light selectively absorbed by the hydrogen storage material is detected, and the storage state of the hydrogen stored in the hydrogen storage material is evaluated. According to this configuration, it is possible to evaluate the combined state of hydrogen and the hydrogen storage material as well as the measurement of the hydrogen storage / release amount of the hydrogen storage material in the state where the hydrogen storage material is exposed. Here, detection means receiving infrared light and obtaining its absorption spectrum.

請求項10に記載の水素貯蔵材料の評価方法は、水素貯蔵材料の水素と不純物ガスからなる混合ガスの組成を評価する水素貯蔵材料の評価方法である。まず、高圧試料容器中に水素貯蔵材料を配置し、高圧試料容器を真空に吸引する。次に、混合ガスを高圧試料容器に所定量供給し、高圧試料容器の温度または圧力が平衡に達した時点で赤外光を混合ガスに照射する。さらに、混合ガスにより選択的に吸収された赤外光を検出し、混合ガスの組成を評価することを特徴とする。この方法によれば、水素貯蔵材料および水素と不純物ガスが共存する雰囲気ガスの組成を、圧力、温度などの条件を変えずにそのままの状態で、定性的または定量的に分析することができる。   The method for evaluating a hydrogen storage material according to claim 10 is a method for evaluating a hydrogen storage material for evaluating a composition of a mixed gas composed of hydrogen and an impurity gas of the hydrogen storage material. First, a hydrogen storage material is placed in a high-pressure sample container, and the high-pressure sample container is sucked into a vacuum. Next, a predetermined amount of the mixed gas is supplied to the high-pressure sample container, and when the temperature or pressure of the high-pressure sample container reaches equilibrium, the mixed gas is irradiated with infrared light. Furthermore, the infrared light selectively absorbed by the mixed gas is detected, and the composition of the mixed gas is evaluated. According to this method, the composition of the hydrogen storage material and the atmospheric gas in which hydrogen and the impurity gas coexist can be qualitatively or quantitatively analyzed without changing the conditions such as pressure and temperature.

貯蔵された水素や雰囲気のガス組成を定性的または定量的に直接分析することにより、水素などの吸着や吸蔵などのメカニズムを解明することができる。また、触媒ガスの機能や効果も確認することができる。   By directly analyzing qualitatively or quantitatively the gas composition of the stored hydrogen and the atmosphere, it is possible to elucidate the mechanism such as adsorption and storage of hydrogen. Also, the function and effect of the catalyst gas can be confirmed.

この発明の装置および方法を用いることにより、常圧から100MPaまでの広い圧力範囲で、液体窒素温度から500℃までの広い温度範囲における、水素貯蔵材料の状態を評価できる。好ましい温度の範囲は、0〜100℃である。特に、水素貯蔵材料の水素の貯蔵量を定性的また定量的に求めることができる。これらの分析により、水素貯蔵材料に水素が貯蔵されて生成する化合物や水素貯蔵材料の構成原子と水素原子同士の結合状態を、直接分析することができる。また評価に際し、水素貯蔵材料を別の装置に移動することもないので、評価に要する時間が短い。   By using the apparatus and method of the present invention, the state of the hydrogen storage material can be evaluated in a wide temperature range from liquid nitrogen temperature to 500 ° C. in a wide pressure range from normal pressure to 100 MPa. A preferred temperature range is 0-100 ° C. In particular, the amount of hydrogen stored in the hydrogen storage material can be determined qualitatively and quantitatively. By these analyses, it is possible to directly analyze the compound produced by storing hydrogen in the hydrogen storage material and the bonding state between the constituent atoms of the hydrogen storage material and the hydrogen atoms. Moreover, since the hydrogen storage material is not moved to another apparatus in the evaluation, the time required for the evaluation is short.

さらに、混合ガスの定性、定量分析は、従来のPCT装置ではできなかったが、本発明の装置および方法を用いることにより可能になった。特に、高圧状態での水素中の不純物ガス組成を、温度、圧力を変えることなくそのままの状態で直接評価できるようになった。従って、正確な測定を短時間で行うことができるようになった。   Further, qualitative and quantitative analysis of the mixed gas could not be performed by the conventional PCT apparatus, but has become possible by using the apparatus and method of the present invention. In particular, it has become possible to directly evaluate the impurity gas composition in hydrogen under high pressure without changing the temperature and pressure. Therefore, accurate measurement can be performed in a short time.

したがって、従来PCT装置で問題となっていた誤差要因、より具体的には水素貯蔵量の算定に影響を与える圧力、計量容積及び温度の誤差要因を最大限排除することができる。   Therefore, it is possible to eliminate the error factors that have been a problem in the conventional PCT apparatus, more specifically, the error factors of pressure, metering volume, and temperature that affect the calculation of the hydrogen storage amount.

図1は、本発明装置で用いる高圧試料容器の概略構成図である。この高圧試料容器7は、蓋8と容器部9で構成される円筒状容器である。この例では、内部の圧力が約100MPaまでの高圧で水素貯蔵特性が測定できるようになっている。そのために、蓋8と容器部9は、ボルト(図示せず)などでしっかりと締め付ける。   FIG. 1 is a schematic configuration diagram of a high-pressure sample container used in the apparatus of the present invention. The high-pressure sample container 7 is a cylindrical container composed of a lid 8 and a container part 9. In this example, the hydrogen storage characteristics can be measured at a high internal pressure of up to about 100 MPa. For this purpose, the lid 8 and the container 9 are firmly tightened with bolts (not shown).

また、この容器7の周面の対向位置には入射光窓2と出射光窓5が設けられ、これら両窓2、5の中間位置、つまり容器7の中央部には試料ホルダー3が設けられている。図1は、透過方式による評価なので赤外透明体からなる一対の板材を試料ホルダー3とし、このホルダー3の間に水素貯蔵材料4を挟む構造としている。試料ホルダーを構成する各板材は、多数の小さな貫通穴14を有し、水素と水素貯蔵材料が良く接触するようになっている。   Further, an incident light window 2 and an outgoing light window 5 are provided at positions opposed to the peripheral surface of the container 7, and a sample holder 3 is provided at an intermediate position between the two windows 2 and 5, that is, at the center of the container 7. ing. In FIG. 1, since the transmission method is used for evaluation, a pair of plates made of an infrared transparent body is used as a sample holder 3, and a hydrogen storage material 4 is sandwiched between the holders 3. Each plate constituting the sample holder has a large number of small through holes 14 so that hydrogen and the hydrogen storage material are in good contact with each other.

一方、容器7の外側には、入射光窓2に対向して赤外光13を照射する光源1が配置され、出射光窓5に対向して検出器6が配置されている。検出器6は、試料ホルダー4に保持された水素貯蔵材料が選択的に吸収した赤外光13を検出する。ここで、検出とは赤外光を受け、その吸収スペクトルを得ることまでを意味する   On the other hand, on the outside of the container 7, a light source 1 that irradiates infrared light 13 is disposed facing the incident light window 2, and a detector 6 is disposed facing the outgoing light window 5. The detector 6 detects the infrared light 13 that is selectively absorbed by the hydrogen storage material held in the sample holder 4. Here, detection means receiving infrared light and obtaining its absorption spectrum.

さらに、この容器7には、容器内に水素を導入するための配管や水素を排出する配管が接続されており、これら配管に水素導入バルブ10と水素放出バルブ11とが設けられている。そして、この容器7は、容器7内を真空にも調整できるように排気系に接続されている。その他、図示していないが、高圧試料容器は本発明評価装置に設置され、評価装置はさらに容器内の圧力を計測する圧力計、容器内の温度を計測する温度計、雰囲気ガスの加熱・冷却装置が設けられている。   Further, a pipe for introducing hydrogen into the container and a pipe for discharging hydrogen are connected to the container 7, and a hydrogen introduction valve 10 and a hydrogen release valve 11 are provided in these pipes. The container 7 is connected to an exhaust system so that the inside of the container 7 can be adjusted to a vacuum. Although not shown, the high-pressure sample container is installed in the evaluation apparatus of the present invention. The evaluation apparatus further includes a pressure gauge for measuring the pressure in the container, a thermometer for measuring the temperature in the container, and heating / cooling of the atmospheric gas. A device is provided.

このような装置を用いて水素を貯蔵した水素貯蔵材料を評価する場合、次の手順により評価を行う。まず、この高圧試料容器7を十分に真空引きした後、ガス放出バルブ11を閉めて水素導入バルブ10を開いてから水素を容器7内へ導入する。導入された水素は、水素貯蔵材料4に吸蔵され且つ吸着され、高圧試料容器7の圧力は次第に低下する。圧力計(図示せず)により、容器内の圧力が平衡となったときの圧力を測定する。次に、光源1から赤外光を発生させ、赤外光は入射光窓2を経由して試料ホルダー3で保持する水素貯蔵材料を透過して出射光窓5を経由して検出器6に至る。検出器6において吸収された赤外光の吸収スペクトル分析を行い水素貯蔵材料が吸蔵した水素の量を求める。   When evaluating the hydrogen storage material which stored hydrogen using such an apparatus, it evaluates with the following procedure. First, after the high-pressure sample container 7 is sufficiently evacuated, the gas release valve 11 is closed and the hydrogen introduction valve 10 is opened, and then hydrogen is introduced into the container 7. The introduced hydrogen is occluded and adsorbed by the hydrogen storage material 4, and the pressure in the high-pressure sample container 7 gradually decreases. A pressure gauge (not shown) is used to measure the pressure when the pressure in the container is in equilibrium. Next, infrared light is generated from the light source 1, and the infrared light passes through the incident light window 2 through the hydrogen storage material held by the sample holder 3, and passes through the outgoing light window 5 to the detector 6. It reaches. The absorption spectrum analysis of the infrared light absorbed by the detector 6 is performed to determine the amount of hydrogen stored in the hydrogen storage material.

図3は、本発明で用いる別の高圧試料容器の概略図である。符号は、図1と同じである。この高圧試料容器7は、高圧の水素雰囲気ガスの中に赤外光を透過させガスの組成などを評価すると共に、水素貯蔵材料4に貯蔵された水素量を反射法により同時に求めることができる。なお、図中1a、6aおよび13aは、反射法により水素貯蔵材料中の水素を求めるための光源、検出器および赤外光である。   FIG. 3 is a schematic view of another high-pressure sample container used in the present invention. The reference numerals are the same as in FIG. The high-pressure sample container 7 allows infrared light to pass through a high-pressure hydrogen atmosphere gas to evaluate the gas composition and the like, and simultaneously obtain the amount of hydrogen stored in the hydrogen storage material 4 by a reflection method. In the figure, 1a, 6a and 13a are a light source, a detector and infrared light for obtaining hydrogen in the hydrogen storage material by a reflection method.

このように、本発明装置によれば、水素貯蔵材料4に貯蔵された水素量と、雰囲気ガス中のガスの種類や、その組成を赤外吸収スペクトルから求めることができる。   Thus, according to the apparatus of the present invention, the amount of hydrogen stored in the hydrogen storage material 4, the type of gas in the atmospheric gas, and the composition thereof can be obtained from the infrared absorption spectrum.

照射する赤外光の強度は、水素貯蔵材料の原子と水素が結合したことによる赤外光のスペクトル変化が、水素貯蔵量の計測精度として必要な差異(感度)を提供する程度であればよい。また、照射する赤外光の波数は、水素貯蔵材料と水素が結合した際の伸縮振動、変角振動の特性波数に対応する波数を包含する波数であればよい。したがって、赤外光の使用波長帯域として、300カイザー以上4000カイザー以下が適当である。水素貯蔵材料が水素を貯蔵するとき、水素貯蔵材料や雰囲気ガスによる赤外光の主要な吸収はこの範囲に入るからである。   The intensity of the infrared light to irradiate only needs to provide a difference (sensitivity) necessary for the measurement accuracy of the hydrogen storage amount by the spectral change of the infrared light due to the combination of hydrogen and hydrogen atoms in the hydrogen storage material. . Moreover, the wave number of the infrared light to irradiate should just be a wave number including the wave number corresponding to the characteristic wave number of the stretching vibration and bending vibration when a hydrogen storage material and hydrogen couple | bond. Therefore, a wavelength range of 300 Kaiser to 4000 Kaiser is appropriate as a wavelength band used for infrared light. This is because when the hydrogen storage material stores hydrogen, the main absorption of infrared light by the hydrogen storage material and the atmospheric gas falls within this range.

例えば、水素貯蔵材料が水素と結合して赤外光を吸収する場合、300カイザー以下では吸収は殆ど観察されない。一方、4000カイザー以上での赤外吸収が観察される場合もあるが、その吸収に起因する水素結合は、殆どの場合、4000カイザー以下の波数に対応する赤外領域でも吸収として観察される。従ってわざわざ4000カイザー以上のレンジに(通常4000カイザー以上は別レンジに切り替えて計測する)測定波数領域を切り替えて観察する手間を省くことができるので、測定作業がより能率的にとなる。   For example, when a hydrogen storage material combines with hydrogen and absorbs infrared light, absorption is hardly observed below 300 Kaiser. On the other hand, in some cases, infrared absorption at 4000 Kaiser or higher is observed, but in most cases, hydrogen bonds resulting from the absorption are also observed as absorption in the infrared region corresponding to wave numbers of 4000 Kaiser or lower. Therefore, it is possible to save the trouble of observing by switching the measurement wavenumber region to the range of 4000 Kaiser or more (usually switching to another range for 4000 Kaiser or more), and the measurement work becomes more efficient.

この実施例は、水素貯蔵材料に貯蔵される水素量を赤外光の透過により求める実験である。まず、水素貯蔵材料を以下のようにして作製した。メタンと窒素の混合ガスを200Wのマイクロ波プラズマCVD装置に導入して、アモルファスの炭素系の水素貯蔵材料を作製した。ZnSe製の試料ホルダーでこの水素貯蔵材料を挟み、図1に示す高圧試料容器の中に取り付けた。高圧試料容器は、ステンレス製の円筒状の容器と蓋からなり、蓋はボルトでしっかりと容器に取り付ける構造とした。窓材は、円筒状容器の側面には、対向するようにZnSeの直径10mm、厚さ10mmの入射光窓、出射光窓が形成されている。   This example is an experiment for determining the amount of hydrogen stored in a hydrogen storage material by transmitting infrared light. First, a hydrogen storage material was produced as follows. A mixed gas of methane and nitrogen was introduced into a 200 W microwave plasma CVD apparatus to produce an amorphous carbon-based hydrogen storage material. The hydrogen storage material was sandwiched between ZnSe sample holders and mounted in a high-pressure sample container shown in FIG. The high-pressure sample container was composed of a stainless steel cylindrical container and a lid, and the lid was firmly attached to the container with bolts. As for the window material, an incident light window and an output light window having a ZnSe diameter of 10 mm and a thickness of 10 mm are formed on the side surface of the cylindrical container so as to face each other.

PCT装置で水素・吸蔵放出特性を評価するために、前記したZnSeで挟まれた水素貯蔵材料のほかに、粉末状の水素貯蔵材料1gも高圧試料容器の中に挿入した。ZnSe上の水素貯蔵材料だけでは、量が少ないのでPCT装置では水素の貯蔵状態を評価できないからである。このようにして、高圧試料容器のボルトをしっかり締めた。   In order to evaluate the hydrogen storage / release characteristics with the PCT apparatus, in addition to the hydrogen storage material sandwiched between the ZnSe described above, 1 g of a powdered hydrogen storage material was also inserted into the high-pressure sample container. This is because the amount of hydrogen storage material on ZnSe alone is small and the PCT device cannot evaluate the hydrogen storage state. In this way, the bolt of the high-pressure sample container was firmly tightened.

図5に示すPCT装置の試料容器54として図1に示す高圧試料容器7をPCT装置に装着し、温度を300Kに設定し系内を真空とした。次に、水素貯蔵材料の初期状態における赤外光の吸収状態を調べた。図1における光源から赤外光を試料ホルダーに保持された水素貯蔵材料に照射し、その透過光を出射光窓を介して検出器6で受光して図2の20に示す赤外光の吸収スペクトルを得た。   The high-pressure sample container 7 shown in FIG. 1 was mounted on the PCT apparatus as the sample container 54 of the PCT apparatus shown in FIG. 5, the temperature was set to 300 K, and the system was evacuated. Next, the absorption state of infrared light in the initial state of the hydrogen storage material was examined. Infrared light is irradiated from the light source in FIG. 1 onto the hydrogen storage material held in the sample holder, and the transmitted light is received by the detector 6 through the outgoing light window, and the infrared light absorption shown in 20 of FIG. A spectrum was obtained.

水素を少量ずつ加え、平衡状態での水素の貯蔵量をPCT装置および赤外光の吸収により測定した。水素の貯蔵量は、12MPaのとき最大になり、以下系内から水素を放出し、貯蔵量と同様にして水素放出量をPCT線と赤外光の吸収量から求めた。高圧試料容器の中の圧力が大気圧(0.1MPa)になったところの赤外光の吸収状態を代表例として、図2の21に示した。   Hydrogen was added in small portions, and the amount of hydrogen stored in an equilibrium state was measured by a PCT apparatus and absorption of infrared light. The amount of hydrogen stored reached its maximum at 12 MPa, and hydrogen was released from the system below. The amount of hydrogen released was determined from the amount of absorption of PCT rays and infrared light in the same manner as the amount stored. A typical example of the absorption state of infrared light when the pressure in the high-pressure sample container is atmospheric pressure (0.1 MPa) is shown in FIG.

図2において、縦軸は赤外光の吸収量を示し、横軸は波数を示す。但し、バックグランドのレベルは、水素貯蔵の前後において重なっているが、スペクトルを見やすくするために縦方向に並行移動したものである。図2のピーク22はC-H3の伸縮振動に基づく吸収位置であり、ピーク23はC-H2の伸縮振動に基づく吸収位置である。また、ピーク24はC-H3の変角振動に基づく吸収位置であり、ピーク25はC-H2の変角振動に基づく吸収位置である。水素貯蔵前、水素貯蔵後の赤外光吸収スペクトルを20、21に示す。 In FIG. 2, the vertical axis represents the amount of absorbed infrared light, and the horizontal axis represents the wave number. However, although the background level overlaps before and after hydrogen storage, it is moved in parallel in the vertical direction to make the spectrum easier to see. The peak 22 in FIG. 2 is an absorption position based on the stretching vibration of CH 3 , and the peak 23 is an absorption position based on the stretching vibration of CH 2 . The peak 24 is an absorption position based on the CH 3 bending vibration, and the peak 25 is an absorption position based on the CH 2 bending vibration. Infrared light absorption spectra before and after hydrogen storage are shown in 20 and 21, respectively.

水素貯蔵前後における、伸縮振動と変角振動による吸収量をみると、水素貯蔵後の吸収量がいずれにおいても多いことが分かる。水素は水素貯蔵材料に貯蔵され、C-H3やC-H2を形成することを示している。この実施例で用いた水素貯蔵材料は、アモルファス炭素なので、そのダングリングボンドに水素が結合しているものと考えられる。また、一度貯蔵された水素は、0.1MPaにおいてもまだ、C-H3やC-H2の形で貯蔵されたまま残ることを示している。 Looking at the amount of absorption due to stretching vibration and bending vibration before and after hydrogen storage, it can be seen that the amount of absorption after hydrogen storage is large. Hydrogen stored in the hydrogen storage material, has been shown to form a CH 3 or CH 2. Since the hydrogen storage material used in this example is amorphous carbon, it is considered that hydrogen is bonded to the dangling bonds. In addition, hydrogen stored once is still stored in the form of CH 3 and CH 2 even at 0.1 MPa.

さらに、PCT装置により得られた水素の貯蔵量と、赤外吸収スペクトルにより得られた赤外の吸収量の関係を調べた。図2に示す赤外吸収スペクトルのうち、感度の高いCH3伸縮22と、水素の貯蔵量の間には相関関係のあることがわかり、これを検量線とした。この検量線を用いることにより、水素貯蔵材料が貯蔵する水素量を定量的に測定できるようになり、簡単な操作で、短時間に水素の貯蔵量を定量的に測定できるようになった。雰囲気の圧力が変動しても、水素貯蔵量と赤外吸収スペクトルの間に相関関係のあることを見出すことができた。 Furthermore, the relationship between the hydrogen storage amount obtained by the PCT apparatus and the infrared absorption amount obtained by the infrared absorption spectrum was investigated. In the infrared absorption spectrum shown in FIG. 2, it was found that there was a correlation between the highly sensitive CH 3 stretch 22 and the amount of hydrogen stored, and this was taken as a calibration curve. By using this calibration curve, the amount of hydrogen stored in the hydrogen storage material can be measured quantitatively, and the amount of hydrogen stored can be measured quantitatively in a short time with a simple operation. It was found that there was a correlation between the hydrogen storage amount and the infrared absorption spectrum even when the atmospheric pressure fluctuated.

この実施例では、水素と不純物の混合ガスの組成を評価した。実施例1と同じ評価装置及び同じ水素貯蔵材料を用いて以下の実験をした。但し、高圧試料容器は図3に示すものを用い水素ガスの組成と、水素貯蔵材料に貯蔵された水素量を評価した。まず、試料ホルダー3の上に水素貯蔵材料4を所定量載置し、さらに高圧試料容器の中に水素貯蔵材料(図示せず)を1g入れた。実施例1と同様に水素を用いて、12MPaまで増圧した後に、容器からガスを放出し0.1MPaまで放出した。   In this example, the composition of the mixed gas of hydrogen and impurities was evaluated. The following experiment was performed using the same evaluation apparatus and the same hydrogen storage material as in Example 1. However, the high pressure sample container shown in FIG. 3 was used to evaluate the composition of hydrogen gas and the amount of hydrogen stored in the hydrogen storage material. First, a predetermined amount of the hydrogen storage material 4 was placed on the sample holder 3, and 1 g of hydrogen storage material (not shown) was placed in the high-pressure sample container. After increasing the pressure to 12 MPa using hydrogen in the same manner as in Example 1, the gas was released from the container and released to 0.1 MPa.

その間、適宜ガスの組成を測定し、ガス組成の変動を把握した。また、赤外光の反射光を受光して、水素貯蔵材料に貯蔵された水素の量を測定した。水素の圧力が増大する過程では、水素の組成変動は把握できなかったが、減圧の過程で水素以外の不純物ガスが含まれることが確認された。不純物ガスの中に、メタンガスが含まれていた。水素貯蔵材料と水素が反応して上記の不純物ガスが生成したものと思われる。   Meanwhile, the composition of the gas was measured as appropriate to grasp the variation of the gas composition. Further, the amount of hydrogen stored in the hydrogen storage material was measured by receiving reflected light of infrared light. In the process of increasing the pressure of hydrogen, the compositional variation of hydrogen could not be grasped, but it was confirmed that impurity gases other than hydrogen were included in the process of depressurization. The impurity gas contained methane gas. It is considered that the above impurity gas was generated by the reaction between the hydrogen storage material and hydrogen.

また、水素貯蔵材料に貯蔵された水素量と赤外吸収スペクトルとの間には、実施例1と同様に相関関係のあることが分かった。反射法によっても、水素の貯蔵量を定量的に評価できることが確認された。   Further, it was found that there is a correlation between the amount of hydrogen stored in the hydrogen storage material and the infrared absorption spectrum as in Example 1. It was also confirmed that the amount of hydrogen stored can be quantitatively evaluated by the reflection method.

上記の実験において、水素中のメタンを定量的に求めることが重要になった。そこで、高圧下でもメタンを定量的に求めることができるかどうかを調べた。メタンの含有量がそれぞれ、1.29×10-2モル%、3.23×10-2モル%、6.45×10-2モル%の標準ガスを作製し、これを高圧試料容器の中に5MPaの圧力で充填した。 In the above experiments, it has become important to quantitatively determine methane in hydrogen. Therefore, we investigated whether methane can be obtained quantitatively even under high pressure. Standard gases with methane contents of 1.29 x 10 -2 mol%, 3.23 x 10 -2 mol%, and 6.45 x 10 -2 mol% are prepared and filled in a high-pressure sample container at a pressure of 5 MPa. did.

これに光源から赤外光を混合ガスに照射して、赤外光の吸収特性を調べた。図4に示すように、CH伸縮振動と、CH変角振動の赤外光の吸収量とメタンの導入量が比例関係にあることが分かり、定量分析できることが分かった。縦軸の単位a.u.は、任意単位(arbitrary unit)を意味する。   The mixed gas was irradiated with infrared light from a light source, and the absorption characteristics of infrared light were examined. As shown in FIG. 4, it was found that the CH stretching vibration, the infrared absorption amount of the CH bending vibration, and the amount of methane introduced were in a proportional relationship, and quantitative analysis was possible. The unit a.u. on the vertical axis means an arbitrary unit.

なお、水素貯蔵材料により赤外光を反射させる方式のうち、図3とは異なる方式もある。それは、水素貯蔵材料にほぼ垂直に赤外光を照射し、ほぼ垂直に反射させて入射光窓から反射光を取り出し、出射光窓を省略する方法である。この場合、光源と検出器の干渉を以下のようにして防ぐことができる。水素貯蔵材料に垂直から少し角度をつけて赤外光を入射すると、反射光は入射光と重ならないので光源と検出器の干渉を防ぐことができる。また別の手段は、水素貯蔵材料に垂直に赤外光を照射する方法である。この場合、反射光は入射光と逆向きに入射窓から出射する。この出射光を例えば、光源と入射光窓の間に設けるハーフミラーにより角度を変えて出射することにより、入射光との重なりをなくし、光源と検出器の干渉を防ぐことができる。   Of the methods of reflecting infrared light by the hydrogen storage material, there is a method different from that shown in FIG. In this method, the hydrogen storage material is irradiated with infrared light substantially perpendicularly, reflected substantially perpendicularly, the reflected light is extracted from the incident light window, and the outgoing light window is omitted. In this case, interference between the light source and the detector can be prevented as follows. When infrared light is incident on the hydrogen storage material at a slight angle from the vertical, the reflected light does not overlap the incident light, so that interference between the light source and the detector can be prevented. Another means is a method of irradiating the hydrogen storage material with infrared light perpendicularly. In this case, the reflected light is emitted from the incident window in the opposite direction to the incident light. By emitting the emitted light at a different angle by a half mirror provided between the light source and the incident light window, for example, overlapping with the incident light can be eliminated and interference between the light source and the detector can be prevented.

本発明は、水素貯蔵材料や燃料電池の開発、研究分野のほかに、水素電池などの動作状況を把握するセンサーなどとしても利用できる。また、水素供給の配管などに本評価装置を設けることにより、流れている状態の水素を自動計測して品質管理などにも使用できる。   The present invention can be used as a sensor for grasping the operating status of a hydrogen battery, in addition to the development and research fields of hydrogen storage materials and fuel cells. In addition, by providing this evaluation device in a hydrogen supply pipe or the like, it is possible to automatically measure flowing hydrogen and use it for quality control.

本発明装置に用いる高圧試料容器の概略断面構成図である。It is a general | schematic cross-section block diagram of the high-pressure sample container used for this invention apparatus. 本発明方法で計測した水素貯蔵材料の赤外光吸収スペクトルである。It is an infrared-light absorption spectrum of the hydrogen storage material measured by the method of the present invention. 本発明装置に用いる別の高圧試料容器の概略断面構成図である。It is a general | schematic cross-section block diagram of another high-pressure sample container used for this invention apparatus. 本発明方法で水素貯蔵材料の不純物ガス量を評価する際に得られた水素に対する不純物ガスの検量線を示す。The calibration curve of impurity gas with respect to hydrogen obtained when evaluating the amount of impurity gas of the hydrogen storage material by the method of the present invention is shown. PCT装置の概略構成図である。It is a schematic block diagram of a PCT apparatus.

符号の説明Explanation of symbols

1 光源 2 入射光窓
3 試料ホルダー 4 水素貯蔵材料
5 出射光窓 6 検出器
7 高圧試料容器 8 蓋
9 容器部 10 水素導入バルブ
11 水素放出バルブ
13 赤外光 14 貫通穴
20 水素貯蔵前 21 水素貯蔵後
22 CH3伸縮 23 CH2伸縮
24 CH3変角 25 CH2変角
30 CH伸縮 31 CH変角
50 不活性ガス供給バルブ 51 水素供給バルブ
52 試料容器バルブ 53 フィルター
54 試料容器 55 温度計
56 恒温槽 57 圧力計
58 蓄圧容器 59 真空計
60 真空バルブ
1 Light source 2 Incident light window
3 Sample holder 4 Hydrogen storage material
5 Outgoing light window 6 Detector
7 High-pressure sample container 8 Lid
9 Container 10 Hydrogen introduction valve
11 Hydrogen release valve
13 Infrared light 14 Through hole
20 Before hydrogen storage 21 After hydrogen storage
22 CH 3 telescopic 23 CH 2 telescopic
24 CH 3 variable angle 25 CH 2 variable angle
30 CH expansion / contraction 31 CH deflection
50 Inert gas supply valve 51 Hydrogen supply valve
52 Sample container valve 53 Filter
54 Sample container 55 Thermometer
56 Thermostatic chamber 57 Pressure gauge
58 Accumulation vessel 59 Vacuum gauge
60 Vacuum valve

Claims (10)

水素貯蔵材料に貯蔵された水素の貯蔵状態を評価する水素貯蔵材料の評価装置であって、
水素貯蔵材料と水素とを収納する高圧試料容器と、
この容器内の水素貯蔵材料に赤外光を照射する光源と、
水素貯蔵材料が選択的に吸収した赤外光を検出する検出器とを備え、
前記高圧試料容器は、
赤外透明体からなって赤外光を容器内に入射する入射光窓と、
赤外透明体からなって水素貯蔵材料を透過または反射した赤外光が容器外に出射される出射光窓と、
容器内外への水素の供給・排出機構とを有していることを特徴とする水素貯蔵材料の評価装置。
A hydrogen storage material evaluation device for evaluating a storage state of hydrogen stored in a hydrogen storage material,
A high-pressure sample container for storing a hydrogen storage material and hydrogen;
A light source for irradiating the hydrogen storage material in the container with infrared light;
A detector for detecting infrared light selectively absorbed by the hydrogen storage material,
The high-pressure sample container is
An incident light window made of an infrared transparent body and receiving infrared light into the container;
An emission light window through which infrared light made of an infrared transparent body and transmitted or reflected by the hydrogen storage material is emitted outside the container;
An apparatus for evaluating a hydrogen storage material, comprising a mechanism for supplying and discharging hydrogen into and out of the container.
さらに、高圧試料容器内に水素貯蔵材料を保持する試料ホルダーを有することを特徴とする請求項1に記載の水素貯蔵材料の評価装置。   2. The apparatus for evaluating a hydrogen storage material according to claim 1, further comprising a sample holder for holding the hydrogen storage material in the high-pressure sample container. 前記試料ホルダーは、赤外透明体からなることを特徴とする請求項2に記載の水素貯蔵材料の評価装置。   3. The apparatus for evaluating a hydrogen storage material according to claim 2, wherein the sample holder is made of an infrared transparent body. 水素貯蔵材料に貯蔵される水素と不純物ガスからなる混合ガスの組成を測定する水素貯蔵材料の評価装置であって、
水素貯蔵材料と混合ガスを収納する高圧試料容器と、
この容器に収納された混合ガスに赤外光を照射する光源と、
混合ガスが選択的に吸収した赤外光を検出する検出器とを備え、
前記高圧試料容器は、
赤外透明体からなって赤外光を容器内に入射する入射光窓と、
赤外透明体からなって混合ガスを透過した赤外光が容器外に出射される出射光窓と、
容器内外への水素の供給・排出機構とを有していることを特徴とする水素貯蔵材料の評価装置。
An apparatus for evaluating a hydrogen storage material that measures the composition of a mixed gas composed of hydrogen and an impurity gas stored in the hydrogen storage material,
A high-pressure sample container containing a hydrogen storage material and a mixed gas;
A light source for irradiating the mixed gas stored in the container with infrared light;
A detector for detecting infrared light selectively absorbed by the mixed gas,
The high-pressure sample container is
An incident light window made of an infrared transparent body and receiving infrared light into the container;
An outgoing light window from which infrared light made of an infrared transparent body and transmitted through the mixed gas is emitted to the outside of the container;
An apparatus for evaluating a hydrogen storage material, comprising a mechanism for supplying and discharging hydrogen into and out of the container.
前記評価装置は、高圧試料容器内の雰囲気ガスの温度計測手段と、圧力計測手段とを有することを特徴とする請求項1〜4のいずれかに記載の水素貯蔵材料の評価装置。   5. The apparatus for evaluating a hydrogen storage material according to claim 1, wherein the evaluation apparatus includes a temperature measurement unit for atmospheric gas in the high-pressure sample container and a pressure measurement unit. 前記赤外透明体は、サファイア、ダイヤモンド、SiC、ZnSまたはZnSeであることを特徴とする請求項1〜5のいずれかに記載の水素貯蔵材料の評価装置。   6. The apparatus for evaluating a hydrogen storage material according to claim 1, wherein the infrared transparent body is sapphire, diamond, SiC, ZnS, or ZnSe. 前記高圧試料容器は、蓋と底付きの円筒体状の容器からなり、
入射光窓および出射光窓は、円筒状容器の周面に設けられていることを特徴とする請求項1〜6のいずれかに記載の水素貯蔵材料の評価装置。
The high-pressure sample container consists of a cylindrical container with a lid and a bottom,
7. The hydrogen storage material evaluation apparatus according to claim 1, wherein the incident light window and the outgoing light window are provided on a peripheral surface of the cylindrical container.
前記入射光窓および出射光窓の少なくとも一方の直径が10mm以下の円板または円柱であることを特徴とする請求項1〜7のいずれかに記載の水素貯蔵材料の評価装置。   8. The hydrogen storage material evaluation apparatus according to claim 1, wherein at least one of the incident light window and the output light window is a disk or a cylinder having a diameter of 10 mm or less. 水素貯蔵材料に貯蔵された水素の貯蔵状態を評価する水素貯蔵材料の評価方法であって、
高圧試料容器中に水素貯蔵材料を配置し、
前記高圧試料容器を真空に吸引し、
この高圧試料容器に水素を所定量供給し、
前記高圧試料容器内の温度または圧力が平衡に達した時点で赤外光を水素貯蔵材料に照射し、
水素貯蔵材料により選択的に吸収された赤外光を検出し、
この検出結果に基づいて水素貯蔵材料に貯蔵された水素の貯蔵状態を評価することを特徴とする水素貯蔵材料の評価方法。
A hydrogen storage material evaluation method for evaluating a storage state of hydrogen stored in a hydrogen storage material,
Place hydrogen storage material in the high-pressure sample container,
Aspirating the high pressure sample container to a vacuum;
A predetermined amount of hydrogen is supplied to the high-pressure sample container,
When the temperature or pressure in the high-pressure sample container reaches equilibrium, the hydrogen storage material is irradiated with infrared light,
Detecting infrared light selectively absorbed by the hydrogen storage material,
A method for evaluating a hydrogen storage material, wherein the storage state of hydrogen stored in the hydrogen storage material is evaluated based on the detection result.
水素貯蔵材料の水素と不純物ガスからなる混合ガスの組成を評価する水素貯蔵材料の評価方法であって、
高圧試料容器中に水素貯蔵材料を配置し、
前記高圧試料容器を真空に吸引し、
この高圧試料容器に前記混合ガスを所定量供給し、
前記高圧試料容器の温度または圧力が平衡に達した時点で赤外光を混合ガスに照射し、
混合ガスにより選択的に吸収された赤外光を検出し、
この検出結果から混合ガスの組成を評価することを特徴とする水素貯蔵材料の評価方法。
A hydrogen storage material evaluation method for evaluating the composition of a mixed gas comprising hydrogen and impurity gas of a hydrogen storage material,
Place hydrogen storage material in the high-pressure sample container,
Aspirating the high pressure sample container to a vacuum;
A predetermined amount of the mixed gas is supplied to the high-pressure sample container,
When the temperature or pressure of the high-pressure sample container reaches equilibrium, the mixed gas is irradiated with infrared light,
Infrared light selectively absorbed by the mixed gas is detected,
A method for evaluating a hydrogen storage material, wherein the composition of a mixed gas is evaluated from the detection result.
JP2005119026A 2005-04-15 2005-04-15 Evaluation device of hydrogen storage material and evaluation method using it Pending JP2006300569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119026A JP2006300569A (en) 2005-04-15 2005-04-15 Evaluation device of hydrogen storage material and evaluation method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119026A JP2006300569A (en) 2005-04-15 2005-04-15 Evaluation device of hydrogen storage material and evaluation method using it

Publications (1)

Publication Number Publication Date
JP2006300569A true JP2006300569A (en) 2006-11-02

Family

ID=37469050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119026A Pending JP2006300569A (en) 2005-04-15 2005-04-15 Evaluation device of hydrogen storage material and evaluation method using it

Country Status (1)

Country Link
JP (1) JP2006300569A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118212A1 (en) * 2011-03-03 2012-09-07 メタウォーター株式会社 Method and device for measuring sludge properties to be analyzed
KR20150116164A (en) * 2014-04-07 2015-10-15 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
KR20160002610A (en) * 2015-12-11 2016-01-08 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
KR20160002611A (en) * 2015-12-11 2016-01-08 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
JP2016217985A (en) * 2015-05-25 2016-12-22 横河電機株式会社 Multicomponent gas analysis system and method
CN110389107A (en) * 2019-08-21 2019-10-29 国网重庆市电力公司电力科学研究院 The on-line measuring device of carbon tetrafluoride in a kind of high-tension switch gear

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118212A1 (en) * 2011-03-03 2012-09-07 メタウォーター株式会社 Method and device for measuring sludge properties to be analyzed
KR20150116164A (en) * 2014-04-07 2015-10-15 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
KR101592225B1 (en) * 2014-04-07 2016-02-22 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
JP2016217985A (en) * 2015-05-25 2016-12-22 横河電機株式会社 Multicomponent gas analysis system and method
KR20160002610A (en) * 2015-12-11 2016-01-08 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
KR20160002611A (en) * 2015-12-11 2016-01-08 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
KR101592230B1 (en) 2015-12-11 2016-02-22 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
KR101592229B1 (en) 2015-12-11 2016-02-22 전남대학교산학협력단 Pneumatochemical Immittance Spectroscopy and Pneumatochemical Intermittent Titration Technique for Hydrogen Storage Kinetics
CN110389107A (en) * 2019-08-21 2019-10-29 国网重庆市电力公司电力科学研究院 The on-line measuring device of carbon tetrafluoride in a kind of high-tension switch gear

Similar Documents

Publication Publication Date Title
US20090071235A1 (en) Gas Sorption Tester For Rapid Screening Of Multiple Samples
JP2006300569A (en) Evaluation device of hydrogen storage material and evaluation method using it
Arnold et al. Fiber optic ammonia gas sensing probe
US7257990B2 (en) Accelerated ultralow moisture permeation measurement
US6635875B1 (en) Infrared gas analyzer and method for operating said analyzer
CA2814895C (en) System and method for measuring hydrogen content in a sample
US8128874B2 (en) Pressurized detectors substance analyzer
JP4787344B2 (en) Humidity control system for detection cell of specimen transmission inspection device
JP2017509901A (en) High speed sample analysis method and high speed sample analysis system
CN109239117B (en) Analytical device and method for directly measuring trace aluminum, silicon, phosphorus, sulfur and chlorine content in sample
Srinivasan et al. Modified Harrick reaction cell for in situ/operando fiber optics diffuse reflectance UV–visible spectroscopic characterization of catalysts
CN111238884B (en) Filter membrane fixed knot constructs, sample stove and OCEC analysis appearance
US9063083B2 (en) Method and sensor device for measuring a carbon dioxide content in a fluid
EP2040071A2 (en) Gas sorption tester for rapid screening of multiple samples
Zhao et al. Versatile computer-controlled system for characterization of gas sensing materials
US20100045997A1 (en) Oxygen sensor using principle of surface plasmon resonance and oxygen transmission rate measurement system including the same
US20060275174A1 (en) Transportable measuring apparatus utilizing hydrogen flame
CN101470045A (en) Ni-H2 accumulator hydrogen working medium leakage detection system
AU5473200A (en) Method and apparatus for determining diffusible hydrogen concentrations
US6582663B1 (en) Apparatus for titration and circulation of gases and circulation of an absorbent or adsorbent substance
RU190702U1 (en) Cell for spectral diagnostics
US20240142374A1 (en) Gas Flow Chamber Device and Method of ATR Infrared Spectroscopy for Monitoring Chemical Reactions in Controlled Environments
JP2003139726A (en) Analytical method of analyzing crystal structure for hydrogen storage alloy
JP7390123B2 (en) Gas permeation cell, sample fixing jig, gas permeability measuring device, and gas permeability measuring method
Satar et al. Investigation of adsorption and desorption behavior of small-volume cylinders and its relevance for atmospheric trace gas analysis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507