JP2006300145A - Micro valve and micro chip having the same - Google Patents

Micro valve and micro chip having the same Download PDF

Info

Publication number
JP2006300145A
JP2006300145A JP2005119975A JP2005119975A JP2006300145A JP 2006300145 A JP2006300145 A JP 2006300145A JP 2005119975 A JP2005119975 A JP 2005119975A JP 2005119975 A JP2005119975 A JP 2005119975A JP 2006300145 A JP2006300145 A JP 2006300145A
Authority
JP
Japan
Prior art keywords
valve
magnetic field
microvalve
micro
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005119975A
Other languages
Japanese (ja)
Inventor
Takakazu Miyahara
隆和 宮原
Terumasa Miyahara
照昌 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elm Co Ltd
Original Assignee
Elm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elm Co Ltd filed Critical Elm Co Ltd
Priority to JP2005119975A priority Critical patent/JP2006300145A/en
Publication of JP2006300145A publication Critical patent/JP2006300145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro valve manufacturable at low cost and providing such a high reliability that does not cause troubles such as defective contact during use. <P>SOLUTION: This micro valve comprises a valve member disposed to stop the passing of a fluid and allowing the fluid to pass therethrough in a fluidized state when heat is given thereto and a heating part heating the valve member by an induced current generated by an alternating magnetic field applied from the outside thereto. When the magnetic field is applied to the heating part when the valve is opened, an induced current occurs in the heating part to generate heat from the heating part, and the valve member is heated and molten or gelated, and the liquid is allowed to pass therethrough. Since the micro valve does not require accurate machining in manufacture and also an electrode manufacturing step, it can be manufactured at low cost. Furthermore, the micro valve does not cause the troubles such as defective contact during use, its reliability is increased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、バイオチップ、DNA解析チップ等のマイクロ流路もしくはナノ流路を有するマイクロチップにおいて、試料や薬液など(以下、「試料等」)の移動を制御するマイクロバルブに関する。   The present invention relates to a microvalve that controls movement of a sample, a chemical solution, or the like (hereinafter, “sample etc.”) in a microchip having a microchannel or a nanochannel such as a biochip and a DNA analysis chip.

近年、分析化学の分野ではμTAS(Micro Total Analysis Systems)の研究が活発になされている。このような研究において用いられるマイクロチップは、化学分析、バイオ分析、DNA解析などを、微量の試料等で短時間に、かつ安価に実施することができると共に、これまで必要とされていた多くの機器や恒温恒湿等の環境制御を必要とせず、更に分析作業の自動化を図ることが可能になるなど、多くの効果が得られる、と期待されている。   In recent years, in the field of analytical chemistry, μTAS (Micro Total Analysis Systems) has been actively researched. The microchip used in such research can perform chemical analysis, bioanalysis, DNA analysis, etc. with a small amount of sample in a short time and at a low cost. It is expected that many effects can be obtained, such as the need for environmental control such as equipment and constant temperature and humidity, and further the automation of analysis work.

このマイクロチップを用いて化学分析、バイオ分析、DNA解析等をする場合は試料等は液体であり、また、複数段階の化学処理が成される場合が多いため、その処理ステージ間に液体の移動を制限する微小なバルブ(マイクロバルブ)が必要になる。   When chemical analysis, bioanalysis, DNA analysis, etc. are performed using this microchip, the sample is a liquid, and multiple stages of chemical treatment are often performed. A minute valve (microvalve) that restricts the pressure is required.

このマイクロバルブについて、例えば、特許文献1には、「ピエゾ素子を用いて駆動するもの、電極により駆動するもの、外部に置かれたコンプレッサからのエアーを用いて駆動するもの、加熱による流体の膨張又は相変化を用いるものなど、既知のいずれのものを使用することもできる。」と多くの実施方法に関する記載がある。
また、特許文献2には「バルブとしてねじバルブを用いる以外に、電磁バルブ等、公知の種々のバルブを使用することもできる。」との記載がある。
更に、特許文献3には「バルブを開くためには、駆動流体用ポートから駆動流体用通路を経てメンブレン収容室に負圧を供給し、メンブレン収容室の上部のメンブレンをメンブレン収容室側(下方向)に変形させる」との記載がある。
Regarding this microvalve, for example, Patent Document 1 discloses that “a device driven by a piezoelectric element, a device driven by an electrode, a device driven by air from an external compressor, and a fluid expansion by heating. Or, any known one can be used, such as those using phase change, "and there are many implementation descriptions.
Further, Patent Document 2 has a description that “in addition to using a screw valve as a valve, various known valves such as an electromagnetic valve can be used”.
Further, Patent Document 3 states that “in order to open the valve, negative pressure is supplied from the driving fluid port to the membrane accommodating chamber through the driving fluid passage, and the membrane in the upper part of the membrane accommodating chamber is moved to the membrane accommodating chamber side (lower side). In the direction) ”.

特開2004-180555号公報([0034], 図5)JP 2004-180555 A ([0034], FIG. 5) 特開2004-205372号公報([0036], 図1)JP 2004-205372 A ([0036], FIG. 1) 特開2004-033919号公報([0046], 図4〜図5)Japanese Unexamined Patent Publication No. 2004-033919 ([0046], FIGS. 4 to 5)

マイクロチップが処理する試料等の量は微少であるため、マイクロバルブは閉時において僅かな液体の漏れも防ぐ必要がある。しかし、ピエゾ素子やコンプレッサ等を用いる機械的な開閉機構を有するマイクロバルブはこの漏れを防ぐために製造の際に精密な加工を必要とするため、このマイクロバルブを設けたマイクロチップは高価になりやすい。そのうえ、このようなマイクロチップはマイクロバルブを試料等の流路に接続するための機構が必要になる点でも高価になりやすい。また、ピエゾや電極による駆動及び加熱による流体の膨張や相変化を用いる例では、マイクロチップと外部の電気回路を接続する為に電極を必要とするため、同様にマイクロチップの製造時に工程が増え高価になりやすいうえ、接触不良等の問題も生じやすい。   Since the amount of sample or the like processed by the microchip is very small, it is necessary to prevent slight liquid leakage when the microvalve is closed. However, since a microvalve having a mechanical opening / closing mechanism using a piezo element, a compressor, or the like requires precise processing during manufacturing in order to prevent this leakage, a microchip provided with this microvalve tends to be expensive. . In addition, such a microchip tends to be expensive in that a mechanism for connecting the microvalve to the flow path of the sample or the like is required. In addition, in the example using the expansion and phase change of fluid due to driving and heating by piezo or electrode, an electrode is required to connect the microchip and an external electric circuit. In addition to being expensive, problems such as poor contact are likely to occur.

本発明は、製造時に高い精度が要求されず、電極の製造などの工程が無く、且つコンプレッサ等の複雑な機器を必要としないことにより、価格を抑えることができ、接触不良等の不具合が生じ難いマイクロバルブ、及び該マイクロバルブを1ないし複数個有するマイクロチップを提供することを目的とする。   The present invention does not require high accuracy at the time of manufacturing, does not require any steps such as electrode manufacturing, and does not require complicated equipment such as a compressor, thereby reducing the price and causing problems such as poor contact. It is an object of the present invention to provide a difficult microvalve and a microchip having one or more microvalves.

上記課題を解決するために成された本発明に係るマイクロバルブは、
a) 液体の通過を阻止するように配置され、熱が与えられることにより流動状態となって前記液体を通過させる弁材と、
b) 外部から印加される交流磁界により誘導電流を生成し、該誘導電流により前記弁材を加熱する発熱部と、
を備えることを特徴とする。
The microvalve according to the present invention, which has been made to solve the above problems,
a) a valve member that is arranged to prevent the passage of the liquid and that is in a fluidized state when heat is applied;
b) a heating part that generates an induced current by an alternating magnetic field applied from the outside and heats the valve member by the induced current;
It is characterized by providing.

本発明に係るマイクロバルブは、閉止状態では、流動性のない弁材により液体の通過を阻止する。発熱部により弁材を加熱することにより、弁材は流動状態に変化し、前記液体と共にマイクロバルブから流れ出す。これによりマイクロバルブは開弁し、前記液体はマイクロバルブを通過することができるようになる。   In the closed state, the microvalve according to the present invention prevents passage of liquid by a non-flowable valve material. When the valve material is heated by the heat generating portion, the valve material changes to a fluid state and flows out of the microvalve together with the liquid. This opens the microvalve, allowing the liquid to pass through the microvalve.

発熱部には、外部から交流磁界が印加されることにより誘導電流を生成し、その誘導電流により発熱するものを用いる。発熱部には導電性の部材を用いることができる。導電性部材は、外部から交流磁界が印加されると渦電流が生成される。その渦電流により導電性部材がジュール熱を生成する。また、発熱部には、コイルと、そのコイルに接続した電気抵抗体から成るものを用いることもできる。この場合、外部からコイルに交流磁界を印加することにより誘導電流が生成され、その誘導電流により電気抵抗体が発熱する。   As the heat generating portion, one that generates an induced current by applying an alternating magnetic field from the outside and generates heat by the induced current is used. A conductive member can be used for the heat generating portion. The conductive member generates an eddy current when an AC magnetic field is applied from the outside. The conductive member generates Joule heat by the eddy current. Moreover, what consists of a coil and the electrical resistor connected to the coil can also be used for a heat-emitting part. In this case, an induced current is generated by applying an alternating magnetic field to the coil from the outside, and the electric resistor generates heat by the induced current.

発熱部に印加する交流磁界を生成するための磁界生成手段は、マイクロバルブではなくそれを使用する測定装置などに設けることができる。もちろん、マイクロバルブ自体に磁界生成手段を設けてもよい。磁界生成手段には通常の各種のコイルを用いることができる。   The magnetic field generating means for generating the alternating magnetic field applied to the heat generating portion can be provided not in the microvalve but in a measuring device using the magnetic valve. Of course, magnetic field generating means may be provided in the microvalve itself. Various normal coils can be used as the magnetic field generating means.

本発明に係るマイクロバルブは、誘導電流が流れることにより発熱部から熱を生成するため、電源と発熱部を接続するための接点(電極)をマイクロバルブに設ける必要がない。そのため、製造時に高精度の加工を必要とせず、安価に製造することができる。また、使用時に接触不良等の不具合が生じないため、信頼性が高い。従って、このマイクロバルブを利用したマイクロチップも安価で信頼性が高いものとなる。   Since the microvalve according to the present invention generates heat from the heat generating portion when an induced current flows, it is not necessary to provide the microvalve with a contact (electrode) for connecting the power source and the heat generating portion. Therefore, high-precision processing is not required at the time of manufacture, and it can be manufactured at a low cost. In addition, since there is no problem such as poor contact during use, the reliability is high. Therefore, a microchip using this microvalve is also inexpensive and highly reliable.

本発明のマイクロバルブの詳細を、図1〜図14を用いて説明する。図1は本発明によるマイクロバルブを3個利用したマイクロチップの例である。
本発明に係るマイクロバルブ11a、11b、11cは、複数設けた処理槽12〜14の境界にあり、弁室内にパラフィンのように常温では固体であるが数十度に加熱すると液体になる物質、又は、常温においてはゲル状であるが加熱するとゾル化する物質で、且つ、当該マイクロチップが使用される生化学分析に影響を与えない物質(弁材)が充填されており、この弁材により各槽間の試料等の移動を遮断している。
The details of the microvalve of the present invention will be described with reference to FIGS. FIG. 1 shows an example of a microchip using three microvalves according to the present invention.
The microvalves 11a, 11b, and 11c according to the present invention are at the boundary between a plurality of treatment tanks 12 to 14, and are substances that are solid at room temperature but become liquid when heated to several tens of degrees, such as paraffin in the valve chamber, Or, it is filled with a substance (valve material) that is gel-like at normal temperature but sol-forms when heated and does not affect the biochemical analysis in which the microchip is used. The movement of the sample between each tank is blocked.

図1に例示するマイクロチップにおいて、試料注入窓10から注入された検出対象試料は、第一処理槽12で不純物や不溶物が除去され、次にマイクロバルブ11aが開弁すると第二処理槽13に移送されてDNA増幅等の処理がなされ、その必要時間経過後、マイクロバルブ11bが開弁することにより第三処理槽14に移送されて電気泳動法等によりDNAの解析等がなされる。その後、マイクロバルブ11cが開弁し、試料は第三処理槽14から排出される。   In the microchip illustrated in FIG. 1, the detection target sample injected from the sample injection window 10 is freed of impurities and insoluble matters in the first processing tank 12, and then the second processing tank 13 is opened when the microvalve 11 a is opened. After the necessary time elapses, the microvalve 11b is opened to be transferred to the third processing tank 14 where DNA is analyzed by electrophoresis or the like. Thereafter, the micro valve 11c is opened, and the sample is discharged from the third processing tank 14.

また、図1に例示するマイクロチップでは、試料を試料注入窓10から注入した後、マイクロバルブ11a〜11cを上記のように定められたシーケンスに従い開弁すると、遠心力場、重力場、加圧、毛細管現象等により順次試料及び薬剤を隣接槽に移動させ、処理を進行させる。外部に大掛かりな装置や設備・環境も必要とせず、専門家でなくても容易にかつ短時間にDNAの検出が可能になる。本実施例では、マイクロバルブの開弁制御を確実且つ容易にする必要があるため、後述の電磁誘導加熱式ヒータを用いる。   In the microchip illustrated in FIG. 1, when the microvalves 11 a to 11 c are opened according to the sequence determined as described above after injecting a sample from the sample injection window 10, a centrifugal force field, a gravitational field, a pressurization field Then, the sample and the drug are sequentially moved to the adjacent tank by capillary action or the like, and the process is advanced. Large external devices, facilities, and environments are not required, and DNA can be detected easily and in a short time without being an expert. In this embodiment, since it is necessary to make the valve opening control of the microvalve reliable and easy, an electromagnetic induction heater described later is used.

本発明に係るマイクロバルブの製造方法を、図1のマイクロバルブ11a付近におけるマイクロチップの断面X-X'を表す図2及び図3を用いて説明する。
図2は3層構造の例である。アクリル樹脂、ポリカーポネート樹脂、シリコン樹脂等のプラスチックやガラス、セラミック等の薄板でできた基材30(図(A))の上に、フォトリソグラフィー技術やインクジェット等を利用して、マイクロ流路壁31を貼り付け(B)、更にその上にカバー32を貼り付けて形成する(C)。このとき、フォトリソグラフィー技術によりマイクロ流路壁31を貼り付ける代わりに、マイクロ流路壁31を構成する材料を基材30の全面に塗布し、その後エッチング等により流路部分を除去することにより製造することもできる。
A method for manufacturing a microvalve according to the present invention will be described with reference to FIGS. 2 and 3 showing a cross section XX ′ of a microchip in the vicinity of the microvalve 11a of FIG.
FIG. 2 shows an example of a three-layer structure. A micro-channel using a photolithographic technique or an ink jet on a base material 30 (FIG. (A)) made of a thin plate of plastic such as acrylic resin, polycarbonate resin, silicon resin, glass, ceramic or the like. A wall 31 is pasted (B), and a cover 32 is pasted thereon (C). At this time, instead of attaching the micro flow path wall 31 by photolithography technology, the material constituting the micro flow path wall 31 is applied to the entire surface of the substrate 30, and then the flow path portion is removed by etching or the like. You can also

図3は2層構造の例である。金型を用いた樹脂の射出成型や同じく金型を用いた熱スタンプ法・熱プレス法により流路部分を形成した基材34(図(A))の上に、カバー32を貼り付けて製造する(B)。カバー32の材料は樹脂、ガラスなど非導電性材料であれば材質は問わないが、試料を観察するために透明のものを用いることができる。   FIG. 3 shows an example of a two-layer structure. Manufactured by affixing a cover 32 on a base material 34 (FIG. (A)) in which a flow path portion is formed by resin injection molding using a mold or by a thermal stamp method or hot press method using the same mold. (B). The material of the cover 32 is not limited as long as it is a non-conductive material such as resin or glass, but a transparent material can be used for observing the sample.

これらの製造方法において、弁材はカバー32をマイクロ流路壁31又は基材34に貼り付ける前に、弁室15に形成した方がよい。その際、弁材は加熱して必要な量を溶融又はゾル化して弁室15に注入すればよい。また、各処理層に必要な試薬等の薬剤も、カバー32をマイクロ流路壁31又は基材34に貼り付ける前に、その処理層に注入した方がよい。   In these manufacturing methods, the valve material is preferably formed in the valve chamber 15 before the cover 32 is attached to the micro flow path wall 31 or the base material 34. At this time, the valve material may be heated to melt or sol the required amount and injected into the valve chamber 15. In addition, it is preferable to inject chemicals such as reagents necessary for each processing layer into the processing layer before the cover 32 is attached to the microchannel wall 31 or the base material 34.

更に、図2及び図3では、説明を容易にするために、DNAチップと同じ大きさの基材30を使う例を示したが、実際に製造する場合は、縦横共に複数個のDNAチップが並ぶ大きさの基材を用い、同時に多数個のDNAチップを作り、その後、切断して分離する方が効率的である。   Further, in FIG. 2 and FIG. 3, for ease of explanation, an example in which the base material 30 having the same size as that of the DNA chip is used is shown. It is more efficient to make a large number of DNA chips at the same time using substrates of the same size, and then cut and separate them.

次にマイクロバルブの開くための加熱に用いる電磁誘導加熱式ヒータを、図2(C)及び図3(B)を用いて説明する。図2(C)及び図3(B)は、導電性の部材20をカバー32の内面に形成した例である。導電性部材20は、金属薄膜の貼り付けとエッチング、金属の蒸着、金属のスパッタリング、金属のメッキ、導電性塗料の印刷などにより形成する。その際、導電性部材がFe等の磁性体又は磁性合金であるとエネルギー効率がよいが、非磁性体であっても目的は達成できる。   Next, an electromagnetic induction heater used for heating to open the microvalve will be described with reference to FIGS. 2 (C) and 3 (B). FIG. 2C and FIG. 3B are examples in which the conductive member 20 is formed on the inner surface of the cover 32. The conductive member 20 is formed by attaching and etching a metal thin film, metal deposition, metal sputtering, metal plating, printing of a conductive paint, or the like. In that case, if the conductive member is a magnetic material or magnetic alloy such as Fe, the energy efficiency is good, but the object can be achieved even if it is a non-magnetic material.

図2(C)及び図3(B)では導電性部材20をカバー32の内面に形成する例を示したが、基材30側、若しくはその双方に形成することも可能である。   2 (C) and 3 (B) show an example in which the conductive member 20 is formed on the inner surface of the cover 32, it may be formed on the base material 30 side or both.

次に、マイクロバルブに用いるヒータに関する実施例を、図4〜図10を用いて説明する。
図4〜図7は図1のマイクロバルブ11a〜11cの付近を拡大し、カバー32に透明な材料を用いて内部が見える状態を仮定した斜視図である。導電性部材20は弁室15の近傍に設ける。また、導電性部材20には様々な形状のものを用いることができる。例えば、円盤状の導電性部材20をカバー32の内面に形成したり(図4)、基材30側に形成したり(図5)することができる。あるいは、ドーナツ状の導電性部材20をカバー32の内面に形成したり(図6)、基材30側に形成したり(図7)することもできる。
Next, the Example regarding the heater used for a microvalve is described using FIGS.
4 to 7 are perspective views enlarging the vicinity of the microvalves 11a to 11c in FIG. 1 and assuming that the inside can be seen using a transparent material for the cover 32. FIG. The conductive member 20 is provided in the vicinity of the valve chamber 15. In addition, the conductive member 20 can have various shapes. For example, the disk-shaped conductive member 20 can be formed on the inner surface of the cover 32 (FIG. 4), or can be formed on the substrate 30 side (FIG. 5). Alternatively, the doughnut-shaped conductive member 20 can be formed on the inner surface of the cover 32 (FIG. 6), or can be formed on the substrate 30 side (FIG. 7).

導電性部材は複数のマイクロバルブに対して1個、それらのマイクロバルブが有する複数の弁材をカバーするように形成してもよい。このマイクロバルブを使用する際には、開弁しようとするマイクロバルブの近傍にのみ磁界を印加することにより、そのマイクロバルブのみを開弁することができる。図8に、マイクロチップの全面に導電性部材を形成する例を示す。図8に右上から左下に向けて斜線を引いた部分が導電性部材を形成した領域である。また、マイクロチップ全面ではなく、全てのマイクロバルブを含む一部の領域に導電性部材を形成してもよい。その場合、金属薄膜の貼り付けとエッチング、金属の蒸着、金属のスパッタリング、金属のメッキ、導電性塗料の印刷などにより、この領域に導電性部材を形成するとよい。このように複数のマイクロバルブに対して1個だけ導電性部材を形成することにより、マイクロバルブ毎に独立した導電性部材を形成するよりも、マイクロチップを容易に製造することができる。   One conductive member may be formed for a plurality of microvalves so as to cover a plurality of valve materials of the microvalves. When this microvalve is used, only the microvalve can be opened by applying a magnetic field only in the vicinity of the microvalve to be opened. FIG. 8 shows an example in which a conductive member is formed on the entire surface of the microchip. In FIG. 8, the hatched portion from the upper right to the lower left is the region where the conductive member is formed. Further, the conductive member may be formed not on the entire surface of the microchip but on a part of the region including all the microvalves. In that case, a conductive member may be formed in this region by attaching and etching a metal thin film, metal vapor deposition, metal sputtering, metal plating, printing of a conductive paint, or the like. Thus, by forming only one conductive member for a plurality of microvalves, a microchip can be manufactured more easily than forming an independent conductive member for each microvalve.

図9は電磁誘導部と電気抵抗体を分離して設けた例で、渦巻状の誘導電流発生コイル33をカバー32の表面に形成し、電気抵抗体22をカバー32の内面に形成し、その間をビアにより接続した例である。図10も電磁誘導部と電気抵抗体を分離して設けた例であり、誘導電流発生コイル33’の巻き数を1とすることにより、電気抵抗体22と共にカバー32の内面に形成した例である。   FIG. 9 shows an example in which the electromagnetic induction part and the electric resistor are separately provided. The spiral induction current generating coil 33 is formed on the surface of the cover 32, and the electric resistor 22 is formed on the inner surface of the cover 32. Are connected by vias. FIG. 10 is also an example in which the electromagnetic induction part and the electric resistor are provided separately. In this example, the number of turns of the induction current generating coil 33 ′ is set to 1, so that it is formed on the inner surface of the cover 32 together with the electric resistor 22. is there.

この2例のように、電磁誘導部と電気抵抗体が分離した構造を有する場合は、誘導電流により生じるジュール熱がその抵抗値に比例するため、電気抵抗体の抵抗値に比べ電磁誘導部の抵抗値は数分の1以下もしくは数十分の1以下にする方が望ましい。   In the case where the electromagnetic induction part and the electric resistor are separated as in these two examples, since the Joule heat generated by the induced current is proportional to the resistance value, the electromagnetic induction part has a resistance value that is higher than the resistance value of the electric resistor. It is desirable that the resistance value be a fraction or less or a few tenths or less.

図11は、当該発明による電磁誘導方式と比較するために示す、有接点方式の発熱部の例である。電気抵抗体22をカバー32の内面に形成し、その電気抵抗体22に給電する接点21a、21bをカバー32の表面に形成し、その間をビアにより接続した例であるが、図4〜図7の例に比べビアを必要とし、更に接点部には酸化防止のメッキを必要となるなど、マイクロチップの製造工程が複雑になりやすい。更に、加熱時に、電子回路と電気抵抗体を接続する為に接点を必要とするため、接触不良等の障害が生じやすい。   FIG. 11 is an example of a contact point type heat generating portion shown for comparison with the electromagnetic induction method according to the present invention. In this example, the electrical resistor 22 is formed on the inner surface of the cover 32, the contacts 21a and 21b for supplying power to the electrical resistor 22 are formed on the surface of the cover 32, and the gaps are connected by vias. Compared to this example, a microchip manufacturing process is likely to be complicated, such as requiring a via and further requiring anti-oxidation plating at the contact portion. Furthermore, since a contact is required to connect the electronic circuit and the electric resistor during heating, troubles such as poor contact are likely to occur.

なお、図4〜図10には、弁室の形態として丸型と角型の2つの例を示したが、試料等を移送する遠心力場等の圧力により弁材が流出しない形状と大きさであれば、形状や大きさは自由に決定できる。   Although FIGS. 4 to 10 show two examples of the shape of the valve chamber, a round shape and a square shape, the shape and size of the valve material do not flow out due to the pressure of a centrifugal force field or the like for transferring a sample or the like. Then, the shape and size can be determined freely.

図12は電磁誘導加熱用の交流磁界発生部の一例であり、円筒状のコア40aに磁界生成コイル41を巻いたものである。交流電源42から磁界生成コイル41に20KHzから数100KHzの交流電流を印加することにより交流磁界が生じ、その磁界が上述の導電性部材あるいは誘導電流発生コイル33を通過することにより、導電性部材20あるいは誘導電流発生コイル33に交流電流が生じる。この電流により、導電性部材20の抵抗においてジュール熱が発生する。なお、図12では円筒状のコア40aを例として示したが、コア40aの形状は角柱など、任意に決定できる。   FIG. 12 shows an example of an AC magnetic field generating unit for electromagnetic induction heating, in which a magnetic field generating coil 41 is wound around a cylindrical core 40a. An AC magnetic field is generated by applying an AC current of 20 KHz to several hundreds KHz from the AC power source 42 to the magnetic field generating coil 41, and when the magnetic field passes through the above-described conductive member or the induction current generating coil 33, the conductive member 20. Alternatively, an alternating current is generated in the induction current generating coil 33. Due to this current, Joule heat is generated in the resistance of the conductive member 20. In FIG. 12, the cylindrical core 40a is shown as an example, but the shape of the core 40a can be arbitrarily determined, such as a prism.

図13は、一般にポットコアと呼ばれる形状のコア40bを用いた交流磁界発生部の一例である。この交流磁界発生部の機能は図12のものと同じであるが、図12のものよりも効率よくエネルギーを供給することができる。   FIG. 13 shows an example of an AC magnetic field generator using a core 40b having a shape generally called a pot core. The function of this AC magnetic field generation unit is the same as that of FIG. 12, but energy can be supplied more efficiently than that of FIG.

図14は、一般にトロイダルコアと呼ばれるコア40cの一部に欠損部43を設けた交流磁界発生部の一例である。導電性部材20又は誘導電流発生コイル33はこの欠損部43に配置する。この交流磁界発生部は上述した2例よりも更に効率良くエネルギーを供給することのできる例である。ここでは円形の断面を有するコア40cを例として示したが、コア40cの形状は任意に決定できる。   FIG. 14 shows an example of an AC magnetic field generation unit in which a missing portion 43 is provided in a part of a core 40c generally called a toroidal core. The conductive member 20 or the induction current generating coil 33 is disposed in the defective portion 43. This AC magnetic field generator is an example that can supply energy more efficiently than the two examples described above. Here, the core 40c having a circular cross section is shown as an example, but the shape of the core 40c can be arbitrarily determined.

3段構造を持つマイクロチップに本発明のマイクロバルブを設けた例を示す断面図。Sectional drawing which shows the example which provided the microvalve of this invention in the microchip which has a three-stage structure. 本発明のマイクロバルブの製造方法の一例を示す断面図。Sectional drawing which shows an example of the manufacturing method of the microvalve of this invention. 本発明のマイクロバルブの製造方法の他の例を示す断面図。Sectional drawing which shows the other example of the manufacturing method of the microvalve of this invention. 円盤状の導電性部材をカバーの内面に形成した例を示す斜視図。The perspective view which shows the example which formed the disk-shaped electroconductive member in the inner surface of the cover. 円盤状の導電性部材を基材側に形成した例を示す斜視図。The perspective view which shows the example which formed the disk shaped electroconductive member in the base material side. ドーナツ状の導電性部材をカバーの内面に形成した例を示す斜視図。The perspective view which shows the example which formed the doughnut-shaped electroconductive member in the inner surface of the cover. ドーナツ状の導電性部材を基材側に形成した例を示す斜視図。The perspective view which shows the example which formed the doughnut-shaped electroconductive member in the base material side. マイクロチップの全面に導電性部材を形成した例を示す断面図。Sectional drawing which shows the example which formed the electroconductive member in the whole surface of the microchip. 電気抵抗体とは別に複数ターンのコイルを形成した例を示す斜視図。The perspective view which shows the example which formed the coil of multiple turns separately from the electrical resistor. 電気抵抗体とは別に1ターンのコイルを形成した例を示す斜視図。The perspective view which shows the example which formed the coil of 1 turn separately from the electrical resistor. 比較例である非電磁誘導加熱方式を用いた例を示す斜視図。The perspective view which shows the example using the nonelectromagnetic induction heating system which is a comparative example. 柱状コアとコイルを用いた交流磁界発生部の例を示す斜視図。The perspective view which shows the example of the alternating current magnetic field generation part using a columnar core and a coil. ポットコアとコイルを用いた交流磁界発生部の例を示す斜視図。The perspective view which shows the example of the alternating current magnetic field generation part using a pot core and a coil. トロイダルコアとコイルを用いた交流磁界発生部の例を示す斜視図。The perspective view which shows the example of the alternating current magnetic field generation part using a toroidal core and a coil.

符号の説明Explanation of symbols

10…試料注入窓
11a、11b、11c…マイクロバルブ
12…第一処理槽
13…第二処理槽
14…第三処理槽
15…弁室
20…導電性部材
21a、21b…接点
22…電気抵抗体
30、34…基材
31…マイクロ流路壁
32…カバー
33…誘導電流発生コイル
40a…柱状コア
40b…ポットコアコア
40c…トロイダルコア
41…磁界生成コイル
42…交流電源
43…欠損部
DESCRIPTION OF SYMBOLS 10 ... Sample injection | pouring window 11a, 11b, 11c ... Micro valve 12 ... 1st processing tank 13 ... 2nd processing tank 14 ... 3rd processing tank 15 ... Valve chamber 20 ... Conductive member 21a, 21b ... Contact 22 ... Electric resistor 30, 34 ... Base material 31 ... Micro flow path wall 32 ... Cover 33 ... Inductive current generating coil 40a ... Columnar core 40b ... Pot core core 40c ... Toroidal core 41 ... Magnetic field generating coil 42 ... AC power supply 43 ... Defect portion

Claims (6)

a) 液体の通過を阻止するように配置され、熱が与えられることにより流動状態となって前記液体を通過させる弁材と、
b) 外部から印加される交流磁界により誘導電流を生成し、該誘導電流により前記弁材を加熱する発熱部と、
を備えることを特徴とするマイクロバルブ。
a) a valve member that is arranged to prevent the passage of the liquid and that is in a fluidized state when heat is applied;
b) a heating part that generates an induced current by an alternating magnetic field applied from the outside and heats the valve member by the induced current;
A micro valve characterized by comprising:
前記発熱部が前記交流磁界により渦電流を生成し、該渦電流によりジュール熱を生成する導電性の部材であることを特徴とする請求項1に記載のマイクロバルブ。   2. The microvalve according to claim 1, wherein the heat generating portion is a conductive member that generates eddy current by the alternating magnetic field and generates Joule heat by the eddy current. 1個の導電性部材が複数の弁材をカバーするように形成されていることを特徴とする請求項2に記載のマイクロバルブ。   3. The microvalve according to claim 2, wherein one conductive member is formed so as to cover a plurality of valve members. 前記発熱部がコイルと該コイルに接続した電気抵抗体から成るものであることを特徴とする請求項1に記載のマイクロバルブ。   2. The microvalve according to claim 1, wherein the heat generating part comprises a coil and an electric resistor connected to the coil. 更に前記交流磁界を生成する磁界生成手段を備えることを特徴とする請求項1〜4のいずれかに記載のマイクロバルブ。   The microvalve according to any one of claims 1 to 4, further comprising magnetic field generation means for generating the alternating magnetic field. 請求項1〜5のいずれかに記載のマイクロバルブを液体の流路中に有することを特徴とするマイクロチップ。   A microchip comprising the microvalve according to claim 1 in a liquid flow path.
JP2005119975A 2005-04-18 2005-04-18 Micro valve and micro chip having the same Pending JP2006300145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119975A JP2006300145A (en) 2005-04-18 2005-04-18 Micro valve and micro chip having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119975A JP2006300145A (en) 2005-04-18 2005-04-18 Micro valve and micro chip having the same

Publications (1)

Publication Number Publication Date
JP2006300145A true JP2006300145A (en) 2006-11-02

Family

ID=37468685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119975A Pending JP2006300145A (en) 2005-04-18 2005-04-18 Micro valve and micro chip having the same

Country Status (1)

Country Link
JP (1) JP2006300145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303674A (en) * 2006-05-10 2007-11-22 Samsung Electronics Co Ltd Valve formed of phase transition material and its manufacturing method
JP2008121890A (en) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd Valve unit, microfluidic device including valve unit and microfluidic substrate
JP2008121766A (en) * 2006-11-10 2008-05-29 Canon Inc Temperature sensitive micro-machined one shot valve and its manufacturing method
JP2008298162A (en) * 2007-05-31 2008-12-11 Canon Inc Microprocessing one-shot valve and its manufacturing method
JP2014152930A (en) * 2013-02-06 2014-08-25 Astrium Gmbh Valve device for opening fluid supply passage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354497A (en) * 1989-06-01 1991-03-08 Danfoss As Temperature sensitive operating equipment for adjuster
JP2004537695A (en) * 2001-07-26 2004-12-16 ハンディラブ・インコーポレーテッド Fluid control method and system in microfluidic device
JP2004358453A (en) * 2002-07-12 2004-12-24 Tosoh Corp Microchannel structure and method for chemical operation of liquid using the same
WO2004113735A1 (en) * 2003-06-16 2004-12-29 Biomerieux Electrically-opened micro fluid-valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354497A (en) * 1989-06-01 1991-03-08 Danfoss As Temperature sensitive operating equipment for adjuster
JP2004537695A (en) * 2001-07-26 2004-12-16 ハンディラブ・インコーポレーテッド Fluid control method and system in microfluidic device
JP2004358453A (en) * 2002-07-12 2004-12-24 Tosoh Corp Microchannel structure and method for chemical operation of liquid using the same
WO2004113735A1 (en) * 2003-06-16 2004-12-29 Biomerieux Electrically-opened micro fluid-valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303674A (en) * 2006-05-10 2007-11-22 Samsung Electronics Co Ltd Valve formed of phase transition material and its manufacturing method
JP2008121890A (en) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd Valve unit, microfluidic device including valve unit and microfluidic substrate
US9011795B2 (en) 2006-11-09 2015-04-21 Samsung Electronics Co., Ltd. Valve unit, microfluidic device with the valve unit, and microfluidic substrate
JP2008121766A (en) * 2006-11-10 2008-05-29 Canon Inc Temperature sensitive micro-machined one shot valve and its manufacturing method
JP2008298162A (en) * 2007-05-31 2008-12-11 Canon Inc Microprocessing one-shot valve and its manufacturing method
JP2014152930A (en) * 2013-02-06 2014-08-25 Astrium Gmbh Valve device for opening fluid supply passage

Similar Documents

Publication Publication Date Title
Ahn et al. Disposable smart lab on a chip for point-of-care clinical diagnostics
Lei Materials and fabrication techniques for nano-and microfluidic devices
Angelescu Highly integrated microfluidics design
WO2001088525A1 (en) Structurally programmable microfluidic systems
US7959865B2 (en) Miniaturized gas chromatograph and injector for the same
JP2006300145A (en) Micro valve and micro chip having the same
Biswas et al. Switchable hydrophobic valve for controlled microfluidic processing
Zheng et al. A BioMEMS chip with integrated micro electromagnet array towards bio-particles manipulation
Walczak Inkjet 3D printing–towards new micromachining tool for MEMS fabrication
Attia et al. Integration of functionality into polymer-based microfluidic devices produced by high-volume micro-moulding techniques
Carlen et al. Paraffin actuated surface micromachined valves
Kumar et al. SU‐8 as Hydrophobic and Dielectric Thin Film in Electrowetting‐on‐Dielectric Based Microfluidics Device
WO2012085728A1 (en) Microfluidic device with fluid flow control means
US20080213134A1 (en) Device for Supplying Fluids, Method for Producing this Device, and Pipette Comprising Such a Device
Gholizadeh et al. Electronically actuated microfluidic valves with zero static-power consumption using electropermanent magnets
WO2006104467A1 (en) Configurable microfluidic device and method
Huang et al. Metallic glass thin film integrated with flexible membrane for electromagnetic micropump application
Gaspar et al. Magnetically controlled valve for flow manipulation in polymer microfluidic devices
Tice et al. Control of pressure-driven components in integrated microfluidic devices using an on-chip electrostatic microvalve
US20060037657A1 (en) Method and apparatus for controlling minute amount of fluid
Zhang et al. A smart and portable micropump for stable liquid delivery
CN111500406B (en) Microfluidic PCR chip
Liu et al. A thermally actuated microvalve using paraffin composite by induction heating
Okamoto et al. Thermal flow sensor with a bidirectional thermal reference
Chang et al. Valve-less diaphragm micropump with electromagnetic actuation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928